EP0045532B1 - Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus schwefelhaltigen Bleimaterialien - Google Patents

Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus schwefelhaltigen Bleimaterialien Download PDF

Info

Publication number
EP0045532B1
EP0045532B1 EP81200510A EP81200510A EP0045532B1 EP 0045532 B1 EP0045532 B1 EP 0045532B1 EP 81200510 A EP81200510 A EP 81200510A EP 81200510 A EP81200510 A EP 81200510A EP 0045532 B1 EP0045532 B1 EP 0045532B1
Authority
EP
European Patent Office
Prior art keywords
lead
slag
temperature
zone
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81200510A
Other languages
English (en)
French (fr)
Other versions
EP0045532A1 (de
Inventor
Werner Dr. Ing. Schwartz
Peter Dr. Ing. Fischer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Priority to AT81200510T priority Critical patent/ATE5902T1/de
Publication of EP0045532A1 publication Critical patent/EP0045532A1/de
Application granted granted Critical
Publication of EP0045532B1 publication Critical patent/EP0045532B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/02Obtaining lead by dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B13/00Obtaining lead
    • C22B13/06Refining

Definitions

  • the invention relates to a process for the continuous direct melting of metallic lead from sulfur-containing lead materials in an elongated, lying reactor, wherein a melt of a slag phase and a lead phase is maintained in the reactor, the slag phase and the lead phase are passed through the reactor in countercurrent, the gas atmosphere is passed through the reactor in countercurrent to the slag phase, in the oxidation zone lying to the side of the lead tap, oxygen is blown into the melt in regulated amounts from below, and sulfur-containing lead material is charged to the melt in controlled amounts, in which the slag tap lies to the side Reduction zone reducing agents are introduced into the melt and the gas space is heated, the oxidation potential in the oxidation zone is set such that an autothermal melting of the feed into slag containing metallic lead and lead oxide e followed and the amount of reducing agent and the temperature in the reduction zone are regulated so that a low-lead slag is formed.
  • DE-OS 28 07 964 discloses such a process for the continuous conversion of lead sulfide concentrates into a liquid lead phase and a slag phase in an elongated, lying reactor under a gas atmosphere containing zones of SO 2 , with sulfidic lead concentrates and additives being charged onto the melt , the lead phase and a low-lead slag phase are discharged at the opposite end of the reactor and the phases flow in countercurrent to one another in substantially continuously layered streams to the outlet ends, at least a portion of the oxygen through a plurality of independently controlled and along the length of the oxidation zone of the reactor distributed nozzles is blown into the melt from below, the solid feed is gradually charged into the reactor by a plurality of independently controlled feeders which are distributed over a considerable length of the reactor, the gradie nt the oxygen activity in the melt is adjusted by choosing the local addition and control of the amounts of oxygen and solid material introduced so that it progressively progresses in the reduction zone to a minimum for the production of lead at
  • reducing substances are introduced into the melt to produce a low-lead slag, and the gas space is heated.
  • the reduction heat is applied by the heating and the temperature increase of the slag is achieved in the reduction zone.
  • Calming zones into which no gases are blown into the melt, can be arranged between the oxidation and reduction zones and in front of the oxidation zone and behind the reduction zone.
  • the temperature of the melt should be kept as low as possible both in the oxidation zone and in the reduction zone. As a result, the attack of overheated slag on the masonry and the cooling of the masonry that is otherwise required at higher temperatures, a strong evaporation of metals or metal compounds and an unnecessary heating of the lead phase are avoided. At low working temperatures, however, there is a risk of the melt subcooling due to operating fluctuations.
  • a direct lead melting process in which a mixture of fine-grained lead sulfide and oxygen strikes a melt bath from above with ignition and flame formation, with a considerable part of the oxidation already taking place in the furnace atmosphere.
  • the flame temperature is over 1 300 ° C and the temperature of the melt between 1 100 and 1300 ° C.
  • the slag phase and furnace atmosphere flow through the furnace in cocurrent.
  • the slag is withdrawn from the furnace with at least 35% lead as lead oxide and reduced in a separate reduction furnace.
  • To generate the lead phase 98 to 120% of the stoichiometrically calculated amount of oxygen is required, which would be necessary for a complete conversion of the lead sulfide into metallic lead.
  • An oxygen addition of approximately 120% can be used for short periods to increase the transition of lead oxide into the slag and thus to control the furnace temperature.
  • this temperature control is not suitable for the process described above with an oxidation and reduction zone in a reactor with the deduction of a low-lead slag.
  • this temperature control does not prevent the disadvantages of high melting temperatures with overheated slag.
  • the invention has for its object a direct lead melting process of the ge to operate as described in such a way that the temperatures of the melt in the entire reactor are kept as low and constant as possible and undercooling of the melt is prevented even when the operating mode fluctuates.
  • the temperature of the melt in the reduction zone is kept constant by regulating the auxiliary heating, and the temperature of the melt in the oxidation zone is regulated by regulating the ratio of oxidizable sulfur to oxygen in such a way that at an increase in temperature increases the ratio of sulfur to oxygen to reduce the lead oxide content of the slag, decreases the ratio of sulfur to oxygen to increase the lead oxide content of the slag when the temperature is lowered, and the increase or decrease in the ratio of sulfur to oxygen takes into account the heat content of the gases entering the oxidation zone from the reduction zone is controlled as a result of the changed lead oxide content of the slag.
  • oxidizable sulfur only the sulfur bound to lead as the sulfide is specified as oxidizable sulfur and only the oxygen supplied in gaseous form as oxygen. If the temperature in the oxidation zone rises above the desired value, the ratio of oxidizable sulfur to oxygen introduced in the oxidation zone is increased, as a result of which more metallic lead is produced and less PbO is introduced into the slag and, accordingly, less heat is generated.
  • the ratio of sulfur to oxygen is not increased in accordance with the rise in temperature, since the reduced PbO content of the slag as it enters the reduction zone results in a reduction in the reduction work required there. Since the temperature in the reduction zone is kept constant, less heat is introduced there by the auxiliary heating and accordingly the gas from the reduction zone introduces less heat into the oxidation zone with a certain time delay. This reduced amount of heat is taken into account when increasing the ratio of sulfur to oxygen and the ratio of sulfur to oxygen is only increased accordingly. If the temperature in the oxidation zone drops, the procedure is reversed. Without keeping the temperature in the reduction zone constant and without taking into account the changed heat content of the gases entering the oxidation zone from the reduction zone, a change in the ratio of sulfur to oxygen leads to permanent temperature fluctuations.
  • the ratio of sulfur to oxygen When the ratio of sulfur to oxygen is increased, the evaporation of PbS is increased, which also results in a certain cooling effect, while when the ratio is reduced the reverse effects occur.
  • the amount of change in the ratio of sulfur to oxygen with a change in temperature in the oxidation zone depends on the reactor and the operating conditions. The required size can be calculated or determined empirically. The regulation can also take place gradually.
  • a preferred embodiment consists in that the temperature of the melt in the oxidation zone is set at 900 to 1000 ° C and in the reduction zone at 1100 to 1200 ° C. At these temperatures, a good reaction rate is achieved in the oxidation zone and a low-lead slag in the reduction zone with low oxygen consumption and heat consumption, and undercooling of the melt can be avoided with certainty by means of the temperature control. In addition, the evaporation losses are still relatively low.
  • a preferred embodiment is that in the oxidation zone a slag type of 45 to 50% ZnO + FeO + Al 2 O 3 , 15 to 20% Ca0 + MgO + BaO and 30 to 35% Si0 2 , calculated on lead-free slag, with 30 up to 70% PbO is set.
  • This type of slag enables the maintenance of low temperatures with good operating results.
  • a galena concentrate which contained 73.6% Pb and 15.8% S, was mixed with 20% lead sulfate fly dust (62.3% Pb, 6.5% S) and slag-forming additives and pelletized, resulting in pellets with the following composition:
  • PbS-rich pellets were continuously placed in a refractory brick reactor with the shape of a horizontal cylinder 4.50 m in length and 1.20 m in diameter knife charged, which was equipped on the front face with an auxiliary burner and an overflow stitch for the slag and on the rear face with an exhaust gas opening.
  • the charging opening was arranged on the jacket of the reactor in the immediate vicinity of the end wall on the flue gas side.
  • the reactor was charged with 2.5 t of metallic lead and 1 t of lead oxide-rich slag (65% Pb), which were melted down with the help of the burner and heated to a temperature of 950 ° C.
  • Technically pure oxygen was then blown into the lead bath at the bottom of the reactor in such a time quantity that the pellets charged to the bath were converted to metallic lead, slag rich in lead oxide and SO 2 gas laden with dust.
  • the Pb content of the slag was 63.7% under these conditions.
  • the temporal pellet quantity was then carefully increased. It was found that a melt temperature of 950 ° C. was reached with a pellet quantity of 2.7 t / h.
  • the slag flowing out of the reactor contained only 48.4% Pb, while the lead contained in the pellets was distributed 51% to the metal phase, 29% to the slag phase and 20% to the gas phase.
  • the advantages of the invention are that low temperatures are used, cooling of the reactor is avoided, heat consumption and oxygen consumption are kept to a minimum, and nevertheless undercooling of the melt can be avoided with certainty.

Description

  • Die Erfindung betrifft ein Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus schwefelhaltigen Bleimaterialien in einem länglichen, liegenden Reaktor, wobei in dem Reaktor eine Schmelze aus einer Schlackenphase und einer Bleiphase aufrechtgehalten wird, die Schlackenphase und die Bleiphase im Gegenstrom durch den Reaktor geführt werden, die Gasatmosphäre im Gegenstrom zu der Schlackenphase durch den Reaktor geführt wird, in der zur Seite des Bleiabstiches liegenden Oxidationszone Sauerstoff in geregelten Mengen von unten in die Schmelze eingeblasen und schwefelhaltiges Bleimaterial in geregelten Mengen auf die Schmelze chargiert wird, in der zur Seite des Schlackenabstiches liegenden Reduktionszone Reduktionsmittel in die Schmelze eingebracht werden und eine Zuheizung in den Gasraum erfolgt, das Oxidationspotential in der Oxidationszone so eingestellt wird, daß ein autothermes Einschmelzen der Beschickung in metallisches Blei und Bleioxid enthaltende Schlacke erfolgt und die Menge des Reduktionsmittels und die Temperatur in der Reduktionszone so geregelt werden, daß eine bleiarme Schlacke entsteht.
  • Aus der DE-OS 28 07 964 ist ein solches Verfahren zur kontinuierlichen Konvertierung von Bleisulfidkonzentraten in eine flüssige Bleiphase und eine Schlackenphase in einem länglichen, liegenden Reaktor unter einer zonenweise S02- enthaltenden Gasatmosphäre bekannt, wobei sulfidische Bleikonzentrate und Zuschläge auf die Schmelze chargiert werden, die Bleiphase und eine Bleiarme Schlackenphase am entgegengesetzten Ende des Reaktors ausgetragen und die Phasen im Gegenstrom zueinander in im wesentlichen kontinuierlich schichtförmigen Strömen zu den Auslaßenden fließen, mindestens ein Teil des Sauerstoffs durch eine Mehrzahl von unabhängig voneinander gesteuerten und über die Länge der Oxidationszone des Reaktors verteilten Düsen in die Schmelze von unten eingeblasen wird, die feste Beschickung durch eine Mehrzahl von unabhängig voneinander gesteuerten und über eine beträchtliche Länge des Reaktors verteilten Beschickungsvorrichtungen stufenweise in den Reaktor chargiert wird, der Gradient der Sauerstoffaktivität in der Schmelze durch Wahl der örtlichen Zugabe und Steuerung der Mengen des eingeführten Sauerstoffs und festen Materials so eingestellt wird, daß er von einem Maximum für die Erzeugung von Blei an dessen Auslaßende in fortschreitender Folge in der Reduktionszone bis zu einem Minimum für die Erzeugung von Blei-armer Schlackenphase an deren Auslaßende abnimmt, mit dem Sauerstoff gasförmige und/oder flüssige Schutzmedien in gesteuerten Mengen zum Schutz der Düsen und der umgebenden Auskleidung und zur Hilfe für die Steuerung der Prozeßtemperatur in die Schmelze eingeblasen wird, die in die Schmelze eingeblasenen Gasmengen so geregelt werden, daß eine für einen guten Stoffaustausch ausreichende Turbulenz im Bad entsteht, ohne daß die schichtförmige Strömung der Phasen und der Gradient der Sauerstoffaktivität im wesentlichen gestört wird, und die Gasatmosphäre im Reaktor im Gegenstrom zu der Strömungsrichtung der Schlackenphase geführt und das Abgas am Auslaßende der Bleiphase aus dem Reaktor abgezogen wird. In der Reduktionszone werden zur Erzeugung einer bleiarmen Schlacke Reduktionsstoffe in die Schmelze eingebracht und es erfolgt eine Zuheizung in den Gasraum. Durch die Zuheizung wird die Reduktionswärme aufgebracht und die Temperatursteigerung der Schlacke in der Reduktionszone erzielt. Zwischen Oxidations-und Reduktionszone und vor der Oxidationszone und hinter der Reduktionszone können Beruhigungszonen angeordnet werden, in die keine Gase in die Schmelze eingeblasen werden.
  • Die Temperatur der Schmelze soll sowohl in der Oxidationszone als auch in der Reduktionszone so niedrig wie möglich gehalten werden. Dadurch wird der Angriff überhitzter Schlacke auf das Mauerwerk und die deshalb sonst bei höheren Temperaturen erforderliche Kühlung des Mauerwerks, eine starke Verdampfung von Metallen oder Metallverbindungen und eine unnötige Erhitzung der Bleiphase vermieden. Bei niedrigen Arbeitstemperaturen besteht aber die Gefahr der Unterkühlung der Schmelze bei Betriebsschwankungen.
  • Aus der DE-AS 23 20 548 ist ein direktes Bleischmelzverfahren bekannt, bei dem eine Mischung von feinkörnigem Bleisulfid und Sauerstoff unter Zündung und Flammenbildung von oben auf ein Schmelzbad aufprallt, wobei in der Ofenatomosphäre bereits die Oxidation zu einem beträchtlichen Teil erfolgt. Die Flammentemperatur liegt über 1 300 °C und die Temperatur der Schmelze zwischen 1 100 und 1300°C. Schlackenphase und Ofenatmosphäre strömen im Gleichstrom durch den Ofen. Die Schlacke wird mit mindestens 35 % Blei als Bleioxid aus dem Ofen abgezogen und in einem separaten Reduktionsofen reduziert. Zur Erzeugung der Bleiphase werden 98 bis 120 % der stöchiometrisch berechneten Sauerstoffmenge benötigt, die für eine vollständige Umwandlung des Bleisulfids in metallisches Blei notwendig wäre. Eine Sauerstoffzugabe von etwa 120 % kann für kurzzeitige Perioden zur erhöhten Übergang von Bleioxid in die Schlacke und damit zur Kontrolle der Ofentemperatur verwendet werden. Diese Temperaturregelung ist jedoch nicht für das eingangs geschilderte Verfahren mit Oxidations- und Reduktionszone in einem Reaktor unter Abzug einer bleiarmen Schlacke geeignet. Außerdem verhindert diese Temperaturregelung nicht die Nachteile hoher Schmelztemperaturen mit überhitzter Schlacke.
  • Der Erfindung liegt die Aufgabe zugrunde, ein direktes Bleischmelzverfahren der eingangs geschilderten Art in der Weise zu betreiben, daß die Temperaturen der Schmelze im ganzen Reaktor möglichst niedrig und konstant gehalten werden und auch bei Schwankungen der Betriebsweise eine Unterkühlung der Schmelze verhindert wird.
  • Die Lösung dieser Aufgabe erfolgt erfindungsgemäß dadurch, daß die Temperatur der Schmelze in der Reduktionszone durch Regelung der Zuheizung konstant gehalten wird, und die Temperatur der Schmelze in der Oxidationszone durch Regelung des Verhältnisses von oxidierbarem Schwefel zu Sauerstoff in der Weise konstant gehalten wird, daß bei einer Temperaturerhöhung das Verhältnis von Schwefel zu Sauerstoff zur Verringerung des Bleioxidgehaltes der Schlacke vergrößert wird, bei einer Temperaturerniedrigung das Verhältnis von Schwefel zu Sauerstoff zur Erhöhung des Bleioxidgehaltes der Schlacke verkleinert wird, und die Vergrößerung bzw. Verkleinerung des Verhältnisses von Schwefel zu Sauerstoff unter vorheriger Berücksichtigung des infolge des geänderten Bleioxidgehaltes der Schlacke geänderten Wärmeinhaltes der aus der Reduktionszone in die Oxidationszone eintretenden Gase gesteuert wird.
  • Die partielle Oxidation des eingesetzten Bleisulfids zu metallischem Primär-Blei und PbOreicher Primär-Schlacke in der Oxidationszone erfolgt etwa nach folgender Formel :
    Figure imgb0001
  • Bei n = 0 geht das gesamte Blei als PbO in die Schlacke. Bei n = 1 fällt das gesamte Blei als metallisches Blei an. Bei n = 0,5 geht die Hälfte des Bleis als PbO in die Schlacke und die andere Hälfte fällt als metallisches Blei an. Zur Vereinfachung ist als oxidierbarer Schwefel nur der als Sulfid an Blei gebundene Schwefel angegeben und als Sauerstoff nur der in gasförmiger Form zugeführte Sauerstoff. Wenn die Temperatur in der Oxidationszone über den gewünschten Wert ansteigt, wird das Verhältnis von eingebrachtem oxidierbaren Schwefel zu Sauerstoff in der Oxidationszone vergrößert, dadurch mehr metallisches Blei erzeugt und weniger PbO in die Schlacke gebracht und dementsprechend weniger Wärme entwickelt. Das Verhältnis von Schwefel zu Sauerstoff wird jedoch nicht entsprechend dem Temperaturanstieg vergrößert, da der verringerte PbO-Gehalt der Schlacke beim Eintritt in die Reduktionszone eine Verringerung der dort notwendigen Reduktionsarbeit zur Folge hat. Da die Temperatur in der Reduktionszone konstant gehalten wird, wird dort weniger Wärme durch die Zuheizung eingebracht und dementsprechend bringt das Gas aus der Reduktionszone mit einer gewissen Zeitverzögerung weniger Wärme in die Oxidationszone ein. Diese verringerte Wärmemenge wird bei der Vergrößerung des Verhältnisses von Schwefel zu Sauerstoff berücksichtigt und das Verhältnis von Schwefel zu Sauerstoff nur entsprechend vergrößert. Wenn die Temperatur in der Oxidationszone sinkt, wird umgekehrt verfahren. Ohne die Konstanthaltung der Temperatur in der Reduktionszone und ohne die Berücksichtigung des geänderten Wärmeinhalts der aus der Reduktionszone in die Oxidationszone eintretenden Gase, führt eine Änderung des Verhältnisses von Schwefel zu Sauerstoff zu dauernden Temperaturschwankungen. Bei einer Vergrößerung des Verhältnisses von Schwefel zu Sauerstoff wird die Verdampfung von PbS vergrößert, wodurch zusätzlich noch ein gewisser Kühleffekt eintritt, während bei einer Verkleinerung des Verhältnisses umgekehrte Wirkungen eintreten. Die Größe der Änderung des Verhältnisses von Schwefel zu Sauerstoff bei einer Temperaturänderung in der Oxidationszone hängt von dem Reaktor und den Betriebsbedingungen ab. Die erforderliche Größe kann berechnet oder empirisch ermittelt werden. Die Regelung kann auch schrittweise erfolgen.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß die Temperatur der Schmelze in der Oxidationszone auf 900 bis 1 000 °C und in der Reduktionszone auf 1 100 bis 1 200 °C eingestellt wird. Bei diesen Temperaturen wird in der Oxidationszone eine gute Reaktionsgeschwindigkeit und in der Reduktionszone eine bleiarme Schlacke bei geringem Sauerstoffverbrauch und Wärmeverbrauch erzielt, und eine Unterkühlung der Schmelze kann mittels der Temperaturregelung mit Sicherheit vermieden werden. Außerdem sind die Verdampfungsverluste noch relativ gering.
  • Eine vorzugsweise Ausgestaltung besteht darin, daß in der Oxidationszone ein Schlackentyp von 45 bis 50 % ZnO + FeO + AI203, 15 bis 20 % Ca0 + MgO + BaO und 30 bis 35 % Si02, gerechnet auf bleifreie Schlacke, mit 30 bis 70 % PbO eingestellt wird. Dieser Schlackentyp ermöglicht besonders gut die Einhaltung niedriger Temperaturen mit guten Betriebsergebnissen.
  • Die Erfindung wird an Hand von Beispielen näher erläutert.
  • Beispiele
  • Ein Bleiglanzkonzentrat, das 73,6 % Pb und 15,8 % S enthielt, wurde mit 20% Bleisulfatflugstaub (62,3 % Pb, 6,5 % S) sowie schlackenbildenden Zuschlagstoffen vermischt und pelletiert, wobei Pellets mit folgender Zusammensetzung entstanden :
    Figure imgb0002
  • Diese PbS-reichen Pellets wurden kontinuierlich in einen feuerfest ausgemauerten Reaktor mit der Form eines liegenden Zylinders von 4,50 m lichter Länge und 1,20 m lichtem Durchmesser chargiert, der an der vorderen Stirnseite mit einem Hilfsbrenner und einem Überlaufstich für die Schlacke und an der hinteren Stirnseite mit einer Abgasöffnung ausgerüstet war. Die Chargieröffnung war am Mantel des Reaktors in unmittelbarer Nähe der abgasseitigen Stirnwand angeordnet.
  • Auf diese Weise wurde ein Gegenstrom von Gas- und Schlackenphase erzwungen. Der Reaktor war allerdings zu kurz, um gleichzeitig und räumlich nebeneinander die Oxidation des Bleisulfids und die Reduktion der bleireichen Primär-schlacke ablaufen zu lassen.
  • Vor Beginn der Versuche wurde der Reaktor mit 2,5 t metallischem Blei und 1 t bleioxidreicher Schlacke (65 % Pb) beschickt, die mit Hilfe des Brenners eingeschmolzen und auf eine Temperatur von 950 °C aufgeheizt wurden. In das Bleibad am Boden des Reaktors wurde sodann durch Düsen technisch reiner Sauerstoff in einer solchen zeitlichen Menge eingeblasen, daß die auf das Bad chargierten Pellets zu metallischem Blei, bleioxidreicher Schlacke und flugstaubbeladenem S02-Gas umgesetzt wurden.
  • 1. In einem ersten Versuch wurde eine zeitlich konstante Sauerstoffmenge (ohne Falschluft) von 150 m3/h (NPT) aufrecht erhalten, während die zeitlich zugeführte Pelletmenge variiert wurde.
  • Es zeigte sich, daß nach Abschalten des Brenners eine konstante Temperatur der Schmelze von 950 °C dann eingehalten werden konnte, wenn die zeitliche Pelletmenge genau 2,1 t/h betrug. Die aus dem Reaktor fliessende Schlacke enthielt unter diesen Bedingungen durchschnittlich 63,4 % Pb. Das in den Pellets enthaltene Blei verteilte sich zu 44 % auf die Metallphase, zu 40 % auf die Schlackenphase und zu 16 % auf die Gasphase, aus der es nach Abkühlung und Umsetzung mit S02 und 02 als Bleisulfatflugstaub abgeschieden wurde.
  • 2. In einem zweiten Versuch, der zunächst analog dem ersten begonnen wurde, konnte der Einfluß einer Variation der zeitlich zugeführten Pelletmenge auf die Temperatur der Schmelze studiert werden. So bewirkte eine Verringerung der zeitlichen Pelletmenge auf 2,0 t/h eine Temperatursteigerung auf 965 °C unter gleichzeitiger Erhöhung des Pb-Gehaltes der Schlacke auf 65,1 %. Durch Steigerung der zeitlichen Pelletmenge auf 2,2 t/h sank die Temperatur der Schmelze auf 940 °C ab, während der Pb-Gehalt der Schlacke auf 59,8 % zurückging.
  • 3. In einem dritten Versuch, der wiederum analog dem ersten begonnen wurde, wurde unter Einhaltung einer zeitlichen Sauerstoffmenge von 150 m3/h (NPT) und einerzeitlichen Pelletmenge von 2,1 t/h die Temperatur der Schmelze mit Hilfe des Brenners auf 1 000 °C angehoben.
  • Auf diese Weise wurde die Zufuhr von Wärme über die der Schlackenphase entgegen strömende Gasphase aus einer imaginären, auf .höherer Temperatur befindlichen Reduktionszone simuliert.
  • Der Pb-Gehalt der Schlacke betrug unter diesen Bedingungen 63,7 %.
  • Ohne die Brennerleistung und die zeitliche Sauerstoffzufuhr zu ändern, wurde sodann die zeitliche Pelletmenge vorsichtig gesteigert. Es zeigte sich, daß eine Temperatur der Schmelze von 950 °C bei einer zeitlichen Pelletmenge von 2,7 t/h erreicht wurde. Die aus dem Reaktor abfließende Schlacke enthielt nur noch 48,4 % Pb, während sich das in den Pellets enthaltene Blei zu 51 % auf die Metallphase, zu 29 % auf die Schlackenphase und zu 20 % auf die Gasphase verteilte.
  • Die Vorteile der Erfindung bestehen darin, daß mit niedrigen Temperaturen gearbeitet, eine Kühlung des Reaktors vermieden, der Wärmeverbrauch und der Sauerstoffverbrauch auf ein Minimum gehalten und trotzdem eine Unterkühlung der Schmelze mit Sicherheit vermieden werden kann.

Claims (3)

1. Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus schwefelhaltigen Bleimaterialien in einem länglichen, liegenden Reaktor, wobei in dem Reaktor eine Schmelze aus einer Schlackenphase und einer Bleiphase aufrechtgehalten wird, die Schlackenphase und die Bleiphase im Gegenstrom durch den Reaktor geführt werden, die Gasatmosphäre im Gegenstrom zu der Schlackenphase durch den Reaktor geführt wird, in der zur Seite des Bleiabstiches liegenden Oxidationszone Sauerstoff in geregelten Mengen von unten in die Schmelze eingeblasen und schwefelhaltiges Bleimaterial in geregelten Mengen auf die Schmelze chargiert wird, in der zur Seite des Schlackenabstiches liegenden Reduktionszone Reduktionsmittel in die Schmelze eingebracht werden und eine Zuheizung in den Gasraum erfolgt, das Oxidationspotential in der Oxidationszone so eingestellt wird, daß ein autothermes Einschmelzen der Beschickung in metallisches Blei und Bleioxid enthaltende Schlacke erfolgt und die Menge des Reduktionsmittels und die Temperatur in der Reduktionszone so geregelt werden, daß eine bleiarme Schlacke entsteht, dadurch gekennzeichnet, daß die Temperatur der Schmelze in der Reduktionszone durch Regelung der Zuheizung konstant gehalten wird, und die Temperatur der Schmelze in der Oxidationszone durch Regelung des Verhältnisses von oxidierbarem Schwefel zu Sauerstoff in der Weise konstant gehalten wird, daß bei einer Temperaturerhöhung das Verhältnis von Schwefel zu Sauerstoff zur Verringerung des Bleioxidgehaltes der Schlacke vergrößert wird, bei einer Temperaturerniedrigung das Verhältnis von Schwefel zu Sauerstoff zur Erhöhung des Bleioxidgehaltes der Schlacke verkleinert wird, und die Vergrößerung bzw. Verkleinerung des Verhältnisses von Schwefel zu Sauerstoff unter vorheriger Berücksichtigung des infolge des geänderten Bleioxidgehaltes der Schlacke geänderten Wärmeinhaltes der aus der Reduktionszone in die Oxidationszone eintretenden Gase gesteuert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Temperatur der Schmelze in der Oxidationszone auf 900 bis 1 000 °C und in der Reduktionszone auf 1 100 bis 1 200 °C eingestellt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in der Oxidationszone ein Schlackentyp von 45 bis 50 % ZnO + FeO + A12031 15 bis 20 % Ca0 + MgO + BaO und 30 bis 35 % Si02, gerechnet auf bleifreie Schlacke, mit 30 bis 70 % PbO eingestellt wird.
EP81200510A 1980-08-06 1981-05-13 Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus schwefelhaltigen Bleimaterialien Expired EP0045532B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81200510T ATE5902T1 (de) 1980-08-06 1981-05-13 Verfahren zum kontinuierlichen direkten schmelzen von metallischem blei aus schwefelhaltigen bleimaterialien.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803029741 DE3029741A1 (de) 1980-08-06 1980-08-06 Verfahren zum kontinuierlichen direkten schmelzen von metallischem blei aus schwefelhaltigen bleimaterialien
DE3029741 1980-08-06

Publications (2)

Publication Number Publication Date
EP0045532A1 EP0045532A1 (de) 1982-02-10
EP0045532B1 true EP0045532B1 (de) 1984-01-18

Family

ID=6108995

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81200510A Expired EP0045532B1 (de) 1980-08-06 1981-05-13 Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus schwefelhaltigen Bleimaterialien

Country Status (19)

Country Link
US (1) US4397688A (de)
EP (1) EP0045532B1 (de)
JP (1) JPS5757847A (de)
KR (1) KR850001254B1 (de)
AR (1) AR225515A1 (de)
AT (1) ATE5902T1 (de)
AU (1) AU545143B2 (de)
BR (1) BR8104918A (de)
CA (1) CA1171289A (de)
DE (2) DE3029741A1 (de)
ES (1) ES502523A0 (de)
FI (1) FI70729C (de)
IN (1) IN154359B (de)
MA (1) MA19235A1 (de)
PH (1) PH19065A (de)
PL (1) PL232496A2 (de)
YU (1) YU43026B (de)
ZA (1) ZA813228B (de)
ZM (1) ZM7081A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE436045B (sv) * 1983-05-02 1984-11-05 Boliden Ab Forfarande for framstellning av rably ur svavelinnehallande oxidiska blyravaror
IN160772B (de) * 1983-05-05 1987-08-01 Boliden Ab
DE29822553U1 (de) * 1998-12-18 1999-03-04 Widia Gmbh Schneideinsatz und Werkzeug mit Schneideinsatz
SE537235C2 (sv) * 2012-09-21 2015-03-10 Valeas Recycling Ab Förfarande och arrangemang för återvinning av förångningsbara ämnen ur en slagg medelst plasmainducerad förångning
CN115216641B (zh) * 2022-03-24 2023-08-15 西安交通大学 一种无碳化铅冶炼装置及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE540757A (de) * 1954-09-03 1900-01-01
DE1031524B (de) * 1955-01-27 1958-06-04 Metallgesellschaft Ag Selbstgaengiges Bleischmelzen
DE2320548B2 (de) * 1973-04-21 1978-04-13 Cominco Ltd., Vancouver, Britisch Kolumbien (Kanada) Verfahren zum Verhütten von Blei
US3941587A (en) * 1973-05-03 1976-03-02 Q-S Oxygen Processes, Inc. Metallurgical process using oxygen
DE2807964A1 (de) * 1978-02-24 1979-08-30 Metallgesellschaft Ag Verfahren zur kontinuierlichen konvertierung von ne-metallsulfidkonzentraten

Also Published As

Publication number Publication date
JPH0158257B2 (de) 1989-12-11
KR830006452A (ko) 1983-09-24
ZM7081A1 (en) 1981-12-21
YU43026B (en) 1989-02-28
YU176981A (en) 1983-10-31
EP0045532A1 (de) 1982-02-10
AU545143B2 (en) 1985-07-04
IN154359B (de) 1984-10-20
FI812263L (fi) 1982-02-07
MA19235A1 (fr) 1982-04-01
AU7370081A (en) 1982-02-11
US4397688A (en) 1983-08-09
JPS5757847A (en) 1982-04-07
AR225515A1 (es) 1982-03-31
PL232496A2 (de) 1982-04-13
PH19065A (en) 1985-12-17
ES8203978A1 (es) 1982-04-01
KR850001254B1 (ko) 1985-08-26
FI70729C (fi) 1986-10-06
ZA813228B (en) 1982-06-30
CA1171289A (en) 1984-07-24
BR8104918A (pt) 1982-04-13
ATE5902T1 (de) 1984-02-15
DE3161937D1 (en) 1984-02-23
ES502523A0 (es) 1982-04-01
DE3029741A1 (de) 1982-04-01
FI70729B (fi) 1986-06-26

Similar Documents

Publication Publication Date Title
DE3042222C2 (de) Verfahren zur Reduktion von feinkörnigen, unter anderem Eisenoxide enthaltenden Metalloxiden unter Gewinnung von bei der Temperatur der Eisenschmelze flüchtigen Metallen
DE3415813C2 (de)
DE69914613T2 (de) Direktes schmelzverfahren
DE2710970C2 (de) Verfahren zur Gewinnung von Roh- bzw. Blasenkupfer aus sulfidischem Kupferrohmaterial
DE2156041A1 (de) Verfahren zum kontinuierlichen Schmelzen und Windfrischen von Kupferkonzentraten und Vorrichtung für dieses
EP0053848B1 (de) Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad
DE2521830A1 (de) Verfahren und vorrichtung zur thermischen raffination von stark verunreinigtem kupfer in schmelzfluessiger phase
DE112007001820B4 (de) Bleischlackenreduzierung
DE3611159C2 (de)
DE2807964A1 (de) Verfahren zur kontinuierlichen konvertierung von ne-metallsulfidkonzentraten
EP0045532B1 (de) Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus schwefelhaltigen Bleimaterialien
DE3212100C2 (de) Verfahren und Vorrichtung zur Durchführung pyrometallurgischer Prozesse
EP0171845B1 (de) Verfahren und Vorrichtung zur kontinuierlichen pyrometallurgischen Verarbeitung von Kupferbleistein
DE2645585C3 (de) Verfahren zur kontinuierlichen oder diskontinuierlichen Behandlung von geschmolzenen schwermetalloxidhaltigen Schlacken zur Freisetzung von Wertmetallen und/oder deren Verbindungen
EP0045531B1 (de) Verfahren zum kontinuierlichen direkten Schmelzen von metallischem Blei aus sulfidischen Bleikonzentraten
DE3639343C2 (de) Verfahren und Anlage zur pyrometallurgischen Verhüttung von feinverteilten Materialien
DE3115502C2 (de)
DE2320548B2 (de) Verfahren zum Verhütten von Blei
DE3304884C2 (de) Verfahren zur Gewinnung von Blei aus Bleisulfid
DE2747586A1 (de) Verfahren und vorrichtung zur kontinuierlichen gewinnung von schwermetallphasen, insbesondere von eisenarmen metallischem rohzinn
DE823937C (de) Verfahren zum Betrieb eines Zink-Blasofens
DE2459756C3 (de) Verfahren zum autogenen Gewinnen und Schmelzen von Blei
DE1758084C2 (de) Schmelzofen für die Gewinnung von Nichteisenmetallen
DE1143030B (de) Verfahren zum Betrieb eines Blei-Schachtofens
DE4129475A1 (de) Verfahren zum kontinuierlichen erschmelzen von metallischem blei

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT SE

17P Request for examination filed

Effective date: 19820116

RBV Designated contracting states (corrected)

Designated state(s): AT BE DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE DE FR GB IT SE

REF Corresponds to:

Ref document number: 5902

Country of ref document: AT

Date of ref document: 19840215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3161937

Country of ref document: DE

Date of ref document: 19840223

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840627

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860327

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19880513

Ref country code: AT

Effective date: 19880513

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19930315

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19930319

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19930601

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19940514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19940531

BERE Be: lapsed

Owner name: METALL-G. A.G.

Effective date: 19940531

EUG Se: european patent has lapsed

Ref document number: 81200510.6

Effective date: 19941210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950131

EUG Se: european patent has lapsed

Ref document number: 81200510.6

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST