EP0036961A2 - Behälter zur Lagerung von Tritium - Google Patents

Behälter zur Lagerung von Tritium Download PDF

Info

Publication number
EP0036961A2
EP0036961A2 EP81101561A EP81101561A EP0036961A2 EP 0036961 A2 EP0036961 A2 EP 0036961A2 EP 81101561 A EP81101561 A EP 81101561A EP 81101561 A EP81101561 A EP 81101561A EP 0036961 A2 EP0036961 A2 EP 0036961A2
Authority
EP
European Patent Office
Prior art keywords
tritium
container
molecular sieve
cartridge
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP81101561A
Other languages
English (en)
French (fr)
Other versions
EP0036961B1 (de
EP0036961A3 (en
Inventor
Josef Knieper
Heinz Printz
Robert Dr. Dipl.-Chem. Wölfle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0036961A2 publication Critical patent/EP0036961A2/de
Publication of EP0036961A3 publication Critical patent/EP0036961A3/de
Application granted granted Critical
Publication of EP0036961B1 publication Critical patent/EP0036961B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases

Definitions

  • the invention relates to a method for storing tritium, in particular tritium waste from nuclear power plants, and to a device for carrying out this method.
  • Tritium has so far been poured into concrete for final storage. Due to the properties of the concrete, this is only permitted in quantities of up to 10 millicuries. The removal of larger amounts of tritium is therefore very complex. In addition, the tritium is not recoverable afterwards. This can become important when the fusion reactor technology is more advanced because it requires tritium.
  • the invention is therefore based on the object of finding a method with which tritium or tritium-containing substances can be stored safely and without problems and can be recovered at any time.
  • the tritium is oxidized to HTO or T 2 O, bound to an adsorbent with molecular sieve properties and the adsorbent is then surrounded by a corrosion-resistant metal container which is sealed against hydrogen diffusion. Larger amounts of tritium can also be stored relatively safely using this method. It is particularly advantageous that the tritium can be easily recovered.
  • the tritium can be oxidized, for example, by oxidation of HT or tritiated organic compounds on heated copper oxide.
  • the oxidized tritium can be easily bound to the adsorbent under dry inert gas. Dry air, nitrogen or argon can be used as inert gases. The inert gas can also be used in the same way for the recovery of the tritium.
  • the device for storing tritium according to the invention is characterized by a container consisting of a metal which is impermeable to hydrogen diffusion, in which a molecular sieve, loaded with tritium in the form of HTO or T 2 O and encased by a filler, is enclosed.
  • a molecular sieve contains zeolites which, for the present application, should have the highest possible selectivity for water vapor and a high temperature resistance in the loaded state up to over 3oo C.
  • the container can consist of, for example, pure aluminum, titanium or stainless steel, since these metals are particularly tight against hydrogen diffusion and are also corrosion-resistant.
  • Pure aluminum stands out in particular because it has a very low permeation rate for HT, high flexibility and thus low risk of breakage, insensitivity to radiolysis; Has incombustibility and insensitivity to water due to the formation of a coherent oxide layer, which should have a thickness of 5o to 6 0 A. This layer can be anodized to a value of 5 to 6 ⁇ m, which causes an additional permeation inhibition.
  • the container should be provided with a blind flange or welded for a secure and completely tight seal.
  • the welding is preferably carried out by an electron beam in a vacuum.
  • the resulting cavity offers a high level of security against pressure increases in the interior through radiolysis or decomposition gases at high temperatures.
  • the container is coated with glass fiber reinforced plastic, for example polyester, phenol or epoxy resin, or with material of the type that is used in the manufacture of heat shields on space capsules.
  • glass fiber reinforced plastic for example polyester, phenol or epoxy resin
  • material of the type that is used in the manufacture of heat shields on space capsules is coated with glass fiber reinforced plastic, for example polyester, phenol or epoxy resin, or with material of the type that is used in the manufacture of heat shields on space capsules.
  • the molecular sieve should have a pure aluminum patron.
  • the cartridge having an oxide layer of 5o to 6 0 thickness may be optionally provided with an anodizing.
  • Quick fasteners are used to fill the cartridge in the manner of the known quick connector fasteners. These closures are designed in such a way that they only open automatically if suitable connections are fitted. Otherwise they are sealed vacuum-tight so that there is no risk of contamination. They can also be opened at any time without risk of contamination, for example to dilute the tritium to a smaller specific final storage activity or to remove it in a controlled manner by passing an inert gas stream through it. When passing the inert gas stream, the amount and concentration of tritium can be controlled by setting a selected temperature in the range from -19o ° C to + 3oo ° C. The withdrawal quantity can be dosed exactly as desired.
  • the filler be made of plastic, for example Po there is polyester, epoxy or phenolic resin, and / or gypsum and / or cement. These substances, in particular the last three, do not promote or maintain combustion.
  • a separation wax layer should be provided between the molecular sieve and the filler. Due to the softer consistency of the separating wax, the molecular sieve, especially if it is provided with quick connector closures, is protected from damage when opened later, since the separating wax prevents a direct connection with the filler. Both filler and release wax can absorb small amounts of tritium that have stuck to the caps of the cartridge during the process.
  • the multi-layer structure provides optimal protection against external corrosion due to the different chemical vulnerability.
  • a larger number of the device according to the invention can also be introduced into 2oo 1 waste containers, filled with concrete and then transported to final storage, for example in a salt mine.
  • Fig. 1 shows a molecular sieve 1, consisting of a molecular sieve filling la and a cartridge 2 enveloping it made of pure aluminum, the cartridge 2 with Schnell closures 3, 4 is provided.
  • the cartridge 2 is coated with a release wax layer 5, so that the cartridge 2 does not enter into a connection with the filler 6, in which the molecular sieve is embedded.
  • the outer casing is formed by a container 7, for example also made of pure aluminum, which is closed with a lid 8. The closure point is sealed with a weld 9.
  • Fig. 2 shows a device for storing tritium, in which three molecular sieves lo, 11, 12 are embedded in cartridge form. These molecular sieves 10, 11, 12 are also each surrounded by a release wax layer 13 and by a filler 14, for example plastic or gypsum, and by a container 15 made of pure aluminum.
  • the container 15 is additionally coated with a multi-layer, glass fiber reinforced plastic layer 16 and sealed by means of a blind flange with a metal seal 17.
  • the plastic layer 16 closes the container 15 in a gas-tight and liquid-tight manner and forms good protection against aggressive liquids or gases.
  • the container 15 can be sawed open for subsequent separation or reopening, the molecular sieves 10, 11, 12 being exposed.
  • predetermined breaking points 18, 19 can be provided on the container 15.
  • the quick-release fasteners lo can be connected to a gas or flushing line.
  • the tritium can be dissolved out again from the molecular sieves 10, 11, 12 by passing an inert gas through it.
  • the closures are designed as so-called quick connector closures that open automatically when the appropriate ones are used Connections are attached and otherwise close absolutely vacuum-tight.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Mit einem Verfahren und einer Vorrichtung soll eine sichere und problemlose Lagerung von Tritium oder tritumhaltigen Stoffen erzielt werden, wobei die Möglichkeit bestehen soll, das Tritum zu jedem beliebigen Zeitpunkt zurückzugewinnen. Hierzu wird das Tritium zu HTO bzw. T20 oxidiert, an einem Adsorbens mit Molekularsiebeigenschaften gebunden und das Abdsorbens dann von einem gegen Wasserstoffdiffusion dichten, korrosionsfesten Metallbehälter (7,15) umgeben.

Description

  • Die Erfindung betrifft ein Verfahren zur Lagerung von Tritium, insbesondere von Tritiumabfällen aus Kernkraftwerken sowie eine Vorrichtung zur Durchfürung dieses Verfahrens.
  • Bei der Langzeitlagerung von radioaktiven Stoffen, insbesondere von Abfällen aus Kernkraftwerken, müssen hohe Sicherheitsanforderungen erfüllt sein. So ist es erforderlich, daß die Stoffe in Behältern mit einer möglichst geringen Permeationsrate und einer möglichst hohen Dichtigkeit an den Verschlußstellen eingeschlossen werden. Das Material des Behälters muß ferner eine hohe mechanische Festigkeit, hohe Drucksicherheit und Unbrennbarkeit bzw. feuerhemmende Eigenschaften aufweisen. Sofern die Behälter für die Endlagerung vorgesehen sind, müssen sie optimal gegen Korrosionsangriffe geschützt sein. Dieser Korrosionsschutz muß umfassend sein, da die möglichen Endlagerungsstätten heute im einzelnen noch nicht bekannt sind.
  • Tritium wird bisher für die Endlagerung in Beton eingegossen. Dies ist aufgrund der Eigenschaften des Beton nur in Mengen bis zu 10 Millicurie zulässig. Die Beseitigung größerer Tritiummengen ist deshalb sehr aufwendig. Außerdem ist das Tritium danach nicht wiedergewinnbar . Dieser Umstand kann dann von Bedeutung werden, wenn die Fusionsreaktortechnologie weiter fortgeschritten ist, da hierfür Tritium benötigt wird.
  • Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zu finden, mit dem sich Tritium oder tritiumhaltige Stoffe sicher und problemlos lagern lassen und zu jedem beliebigen Zeitpunkt zurückgewonnen werden können.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Tritium zu HTO bzw. T20 oxidiert, an einem Adsorbens mit Mo - lekularsiebeigenschaften gebunden und das Adsorbens dann von einem gegen Wasserstoffdiffusion dichten, korrosionsfesten Metallbehälter umgeben wird. Nach diesem Verfahren lassen sich auch größere Mengen Tritium relativ sicher lagern. Dabei ist von besonderem Vorteil, daß das Tritium auf einfache Weise wiedergewonnen werden kann. Die Oxidation des Tritiums kann beispielsweise durch Oxidation von HT oder tritiierten organischen Verbindungen an erhitztem Kupferoxid erfolgen.
  • Das oxidierte Tritium läßt sich auf einfache Weise unter trockenem Inertgas an dem Adsorbens binden. Dabei kommen als Inertgase trockene Luft, Stickstoff oder Argon in Frage. Das Inertgas kann in gleicher Weise auch für die Wiedergewinnung des Tritiums verwendet werden.
  • Die erfindungsgemäße Vorrichtung zur Lagerung des Tritiums ist durch einen aus einem gegen Wasserstoffdiffusion dichten Metall bestehenden Behälter gekennzeichnet, in dem ein Molekularsieb, beladen mit Tritium in Form von HTO bzw. T20 und umhüllt von einem Füllstoff, eingeschlossen ist. Ein Molekularsieb enthält in einer Umhüllung Zeolithe, die für den vorliegenden Anwendungszweck eine möglichst hohe Selektivität für Wasserdampf und eine hohe Temperaturbeständigkeit in beladenem Zustand bis über 3oo C haben sollten.
  • Der Behälter kann aus beispielsweise Reinaluminium, Titan oder Edelstahl bestehen, da diese Metalle gegen Wasserstoffdiffusion besonders dicht und zudem korrosionsfest sind. Dabei zeichnet sich insbesondere Reinaluminium aus, weil es eine sehr niedrige Permeationsrate für HT, hohe Biegsamkeit und somit niedrige Bruchgefahr, Unempfindlichkeit gegen Radiolyse; Unbrennbarkeit sowie Unempfindlichkeit gegen Wasser infolge Ausbildung einer zusammenhängenden Oxidschicht aufweist, die eine Dicke von 5o bis 60 A haben sollte. Diese Schicht kann durch Eloxieren noch auf Werte von 5 bis 6 um verstärkt werden, wodurch eine zusätzliche Permeationshemmung bewirkt wird.
  • Zur sicheren und völlig dichten Verschließung sollte der Behälter mit einem Blindflansch versehen oder zugeschweißt sein. Die Verschweißung erfolgt vorzugsweise durch Elektronenstrahl im Vakuum. Der dabei entstehende Hohlraum bietet eine hohe Sicherheit vor Druckanstieg im Innenraum durch Radiolyse oder Zersetzungsgase bei hohen Temperaturen.
  • Als zusätzliche Sicherungsmaßnahme kann vorgesehen sein, daß der Behälter mit glasfaserverstärktem Kunststoff, beispielsweise Polyester-, Phenol- oder Epoxidharz, oder mit Material von der Art, wie es bei der Herstellung von Hitzeschilden an Raumkapseln zur Anwendung kommt, ummantelt wird. Hierdurch wird die mechanische-Festigkeit noch mehr erhöht und die Beständigkeit gegen agressive Flüssigkeiten oder Gase weiter verbessert.
  • Das Molekularsieb sollte eine Pätrone aus Reinaluminium als Umhüllung haben. Dabei kann auch die Patrone mit einer Oxidschicht von 5o bis 60 & Dicke gegebenenfalls mit einer Eloxierung versehen sein.
  • Zur Befüllung der Patrone dienen Schnellverschlüsse nach Art der bekannten Quickconnectorverschlüsse. Diese Verschlüsse sind so ausgebildet, daß sie sich nur dann automatisch öffnen, wenn dazu passende Anschlüsse angebracht sind. Ansonsten sind sie vakuumdicht verschlossen, so daß keine Kontaminationsgefahr besteht. Außerdem lassen sie sich jederzeit ohne Kontaminationsgefahr öffnen, beispielsweise um das Tritium auf eine kleinere spezifische Endlagerungsaktivität zu verdünnen oder mittels Durchleiten eines Inertgasstromes kontrolliert zu entnehmen. Beim Durchleiten des Inertgasstromes können Menge und Konzentration des Tritium mittels Einstellung einer gewählten Temperatur im Bereich von -19o°C bis +3oo°C gesteuert werden. Dabei kann die Entnahmemenge je nach Wunsch genau dosiert werden.
  • Es besteht die Möglichkeit, daß in einem Behälter auch mehrere Molekularsiebe eingeschlossen werden. Dann ist es zweckmäßig, Sollbruchstellen in den Bereichen zwichen den Molekularsieben vorzusehen, damit sie auch einzeln aus dem Behälter entnommen werden können. Die verbleibenden Molekularsiebe sind dann weiterhin ummantelt und können wieder abgelagert werden.
  • Nach einem weiteren Merkmal der Erfindung ist vorgeschlagen, daß der Füllstoff aus Kunststoff, beispielsweise Polyester-, Epoxid- oder Phenolharz, und/oder Gips und/oder Zement besteht. Diese Stoffe, insbesondere die drei letztgenannten, fördern oder unterhalten die Verbrennung nicht.
  • Zusätzlich sollte zwischen dem Molekularsieb und dem Füllstoff eine Trennwachschicht vorgesehen werden. Durch die weichere Konsistenz des Trennwachses wird das Molekularsieb, insbesondere wenn es mit Quickconnectorverschlüssen versehen ist, bei einer späteren Öffnung vor Beschädigungen geschützt, da der Trennwachs eine direkt Verbindung mit dem Füllstoff verhindert. Sowohl Füllstoff als auch Trennwachs können kleiner Tritiummengen aufnehmen, die an den Verschlüssen der Patrone während des Vorganges haften geblieben sind. Der Mehrschichtenaufbau bildet wegen der verschiedenartigen chemischen Angreifbarkeit einen optimalen Schutz vor äußerer Korrosion.
  • Es können auch eine größere Anzahl von der erfindungsgemäßen Vorrichtung in 2oo 1-Abfallbehälter eingebracht, mit Beton verfüllt und dann zur Endlagerung, beispielsweise in ein Salzbergwerk, transportiert werden.
  • In der Zeichnung ist die Erfindung an Hand von Ausführungsbeispielen näher veranschaulicht. Es zeigen:
    • Fig. 1 eine Vorrichtung zur Lagerung von Tritium mit einem Molekularsieb im Längsschnitt und
    • Fig. 2 eine Vorrichtung mit drei Molekularsieben im Längsschnitt.
  • Fig. 1 zeigt ein Molekularsieb 1, bestehend aus einer Molekularsiebfüllung la und einer diese umhüllenden Patrone 2 aus Reinaluminium, wobei die Patrone 2 mit Schnellverschlüssen 3, 4 versehen ist. Die Patrone 2 ist mit einer Trennwachsschicht 5 umhüllt, damit die Patrone 2 keine Verbindung mit dem Füllstoff 6 eingeht, in den das Molekularsiebl eingelagert ist. Die äußere Umhüllung wird durch einen Behälter 7, beispielsweise ebenfalls aus Reinaluminium, gebildet, der mit einem Deckel 8 verschlossen ist. Die Verschlußstelle ist mit einer Schweißnaht 9 abgedichtet.
  • Fig. 2 zeigt eine Vorrichtung zur Lagerung von Tritium, in die drei Molekularsiebe lo, 11, 12 in Patronenform eingebettet sind. Auch diese Molekularsiebe lo, 11, 12 sind jeweils von einer Trenwachsschicht 13 und von einem Füllstoff 14, beispielsweise Kunststoff oder Gips, sowie von einem Behälter 15 aus Reinaluminium umschlossen. Der Behälter 15 ist zusätzlich noch mit einer mehrlagigen, glasfaserverstärkten Kunststoffschicht 16 ummantelt und mittels eines Blindflansches mit einer Metalldichtung 17 abgedichtet. Die Kunststoffschicht 16 schließt den Behälter 15 gas- und flüssigkeitsdicht ab und bildet einen guten Schutz gegen aggresive Flüssigkeiten oder Gase.
  • Zur nachträglichen Trennung bzw. Wiederöffnung kann der Behälter 15 aufgesägt werden, wobei die Molekularsiebe lo, 11, 12 freigelegt werden. Zur Erleichterung des Auftrennens können Sollbruchstellen 18, 19 am Behälter 15 vorgesehen werden.
  • Sobald die Molekularsiebe lo, 11, 12 freigelegt sind, können die Schnellverschlüsse lo an eine Gas- oder Spülleitung angeschlossen werden. Mittels Hindurchleiten eines Inertgases kann das Tritium wieder aus den Molekularsieben lo, 11, 12 herausgelöst werden. Die Verschlüsse sind dabei als sogenannte Quickconnectorverschlüsse ausgebildet, die sich automatisch öffnen, wenn die dazu passenden Anschlüsse angebracht werden und ansonsten absolut vakuumdicht schließen.

Claims (16)

1. Verfahren zur Lagerung von Tritium, insbesondere von Tritiumabfällen aus Kernkraftwerken, dadurch gekennzeichnet, daß das Tritium zu HTO bzw. T20 oxidiert, an einem Adsorbens mit Molekularsiebeigenschaften gebunden und das Adsorbens dann von einem gegen Wasserstoffdiffusion dichten, korrosionsfesten Metallbehälter umgeben wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Oxidation des Tritiums durch Oxidation von HT oder tritiierten organischen Verbindungen an erhitztem Kupferoxid erfolgt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das oxidierte Tritium unter trockenem Inertgas an dem Adsorbens gebunden wird.
4. Vorrichtung zur Lagerung von Tritium unter Durchführung des Verfahrens nach einem der Ansprüche 1 bis 3, gekennzeichnet durch einen aus einem gegen Wasserstoffdiffusion dichten Metall bestehenden Behälter (7, 15), in den ein Molekularsieb (1, 10, 11, 12), beladen mit Tritium in Form von HTO bzw. T20 und umhüllt von einem Füllstoff (6, 14) , eingeschlossen ist.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß das Molekularsieb (1, 10, 11, 12) eine hohe Selektivität für Wasserdampf und eine hohe Temperaturbeständigkeit in beladenem Zustand bis über 300o Celsius besitzt.
6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der Behälter (7, 15) aus Reinaluminium, Titan oder Edelstahl besteht.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß der aus Reinaluminium bestehende Behälter (7, 15) mit einer Oxidschicht von 50 bis 60 Ä, gegebenefalls verstärkt durch eine Eloxierung, versehen ist.
8. Vorrichtung nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß der Behälter (7, 15) zugeschweißt oder mit einem Blindflansch versehen ist.
9. Vorrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß der Behälter (15) mit glasfaserverstärktem Kunststoff, beispielsweise Polyester-,Phenol- oder Epoxidharz, oder mit Material von der Art, wie es bei der Herstellung von Hitzeschilden bei Raumkapseln zur Anwendung kommt, ummantelt ist.
lo. Vorrichtung nach einem der Ansprüche.4 bis 9, dadurch gekennzeichnet, daß das Molekularsieb (1, lo, 11, 12) eine Patrone (2) aus Reinaluminium als Umhüllung aufweist.
11. Vorrichtung nach Anspruch lo, dadurch gekennzeichnet, daß die Patrone (2) eine Oxidschicht von 5o bis 6o Ä Dicke, gegebenenfalls verstärkt durch eine Eloxierung, hat.
12. Vorrichtung nach Anspruch lo oder 11, dadurch gekennzeichnet, daß die Patrone (2) Schnellverschlüsse nach Art der Quickconhectorverschlüsse aufweist.
13. Vorrichtung nach einem der Ansprüche 4 bis 12, dadurch gekennzeichnet, daß in einem Behälter (15) mehrere Molekularsiebe (lo, 11, 12) eingeschlossen sind.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß der Behälter (15) Sollbruchstellen (18, 19) in den Bereichen zwischen den Molekularsieben (lo, 11, 12) aufweist.
15. Vorrichtung nach einem der Ansprüche 4 bis 15, dadurch gekennzeichnet, daß der Füllstoff (6, 14) aus Kunststoff, beispielsweise Polyester-, Phenol- oder Epoxidharz, und/oder Gips und/oder Zement besteht.
16. Vorrichtung nach einem der Ansprüche 4 bis 15, dadurch gekennzeichnet, daß zwischen dem Molekularsieb (1, lo, 11, 12) und dem Füllstoff (6, 14) eine Trennwachsschicht (5, 13) vorgesehen ist.
EP81101561A 1980-03-26 1981-03-05 Behälter zur Lagerung von Tritium Expired EP0036961B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803011602 DE3011602A1 (de) 1980-03-26 1980-03-26 Verfahren und vorrichtung zur endlagerung von tritium, insbesondere tritiumabfaellen aus kernkraftwerken, mit der moeglichkeit der tritiumrueckgewinnung
DE3011602 1980-03-26

Publications (3)

Publication Number Publication Date
EP0036961A2 true EP0036961A2 (de) 1981-10-07
EP0036961A3 EP0036961A3 (en) 1982-01-13
EP0036961B1 EP0036961B1 (de) 1985-06-12

Family

ID=6098336

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81101561A Expired EP0036961B1 (de) 1980-03-26 1981-03-05 Behälter zur Lagerung von Tritium

Country Status (5)

Country Link
US (1) US4424903A (de)
EP (1) EP0036961B1 (de)
JP (1) JPS5712399A (de)
CA (1) CA1148671A (de)
DE (2) DE3011602A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0119512A2 (de) * 1983-03-19 1984-09-26 Kernforschungszentrum Karlsruhe Gmbh Verfahren zur Bestimmung der 3H-Konzentration von Luftfeuchte
EP0139955A2 (de) * 1983-08-24 1985-05-08 Kernforschungszentrum Karlsruhe Gmbh Verfahren zur Fixierung radioaktiver, gasförmiger Bestandteile von Abgasen
US4567014A (en) * 1981-10-28 1986-01-28 Deutsche Gesellschaft Fur Wiederaufarbeitung Von Kernbrennstoffen Mbh Container for transporting and storing nuclear reactor fuel elements
US4594513A (en) * 1982-11-08 1986-06-10 Chichibu Cement Co., Ltd. Multiplex design container having a three-layered wall structure and a process for producing the same
EP0204634A1 (de) * 1985-06-07 1986-12-10 Commissariat A L'energie Atomique Verfahren und Einrichtung zum Behandeln von nichtorganischen festen Tritium enthaltenden Abfällen
WO2013060326A1 (de) * 2011-10-28 2013-05-02 Graef Volkmar Behältersystem zur zwischen- oder endlagerung von radioaktivem abfall und/oder giftmüll

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3525772C1 (de) * 1985-07-19 1986-09-04 Gkss - Forschungszentrum Geesthacht Gmbh, 2054 Geesthacht Verfahren zur endlagerreifen Konditionierung von Tritium
DE3642975C1 (de) * 1986-12-17 1988-02-11 Wiederaufarbeitung Von Kernbre Verfahren zur Herstellung eines zur Endlagerung tritiumhaltiger Abwaesser geeigneten Festprodukts
DE3726770C2 (de) * 1987-08-12 1993-11-11 Ieg Ind Engineering Gmbh Filtereinrichtung zum Ausfiltern leichtflüchtiger Verunreinigungen aus einem Luftstrom
FR2620262B1 (fr) * 1987-09-09 1989-11-17 Commissariat Energie Atomique Procede et installation de traitement de dechets organiques solides contamines par du tritium
US4950426A (en) * 1989-03-31 1990-08-21 Westinghouse Electric Corp. Granular fill material for nuclear waste containing modules
JP2547453B2 (ja) * 1989-09-28 1996-10-23 動力灯・核燃料開発事業団 放射性金属廃棄物の減容処理方法
GB9017038D0 (en) * 1990-08-03 1990-09-19 Alcan Int Ltd Controlled hydrogen generation from composite powder material
US5464988A (en) * 1994-11-23 1995-11-07 The United States Of America As Represented By The Department Of Energy Tritium waste package
US6348153B1 (en) 1998-03-25 2002-02-19 James A. Patterson Method for separating heavy isotopes of hydrogen oxide from water
FR2859042B1 (fr) * 2003-08-19 2005-11-18 Framatome Anp Procede et installation de traitement de metaux alcalins charges en tritium ou de composants souilles par des metaux alcalins charges en tritium
US6984327B1 (en) 2004-11-23 2006-01-10 Patterson James A System and method for separating heavy isotopes of hydrogen oxide from water
FR2984003B1 (fr) * 2011-12-12 2014-01-10 Commissariat Energie Atomique Procede et dispositif de reduction du degazage de dechets trities issus de l'industrie nucleaire
CN105976871B (zh) * 2016-06-06 2017-07-18 中国工程物理研究院核物理与化学研究所 一种聚变‑裂变混合堆聚变靶室产物的处理方法
CN105976884B (zh) * 2016-06-29 2017-11-07 中国工程物理研究院材料研究所 一种含氚废水的处理装置及处理方法
US9827063B1 (en) * 2016-07-06 2017-11-28 Medtronic Vascular, Inc. Hybrid sealed tray for long catheter delivery systems
CN106297932B (zh) * 2016-08-30 2017-11-10 中国工程物理研究院材料研究所 一种含氚废水处理系统及处理方法
CN109637688B (zh) * 2018-12-25 2024-09-06 中国原子能科学研究院 一种防氚渗透的放射性固体废物储存桶
FR3126148A1 (fr) * 2021-08-11 2023-02-17 Max Sardou LINER c’est-à-dire:enveloppeinterne deRESERVOIRCOMPOSITEpour GAZà HAUTE PRESSION

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432666A (en) * 1964-03-13 1969-03-11 Atomic Energy Authority Uk Containers for transporting radioactive and/or fissile materials
DE2138241A1 (de) * 1971-07-30 1973-02-08 Nukem Gmbh Verfahren zur bindung von restgasen von kerntechnischen anlagen, insbesondere zur entfernung von wasserstoffgas aus luft
US3754141A (en) * 1972-07-12 1973-08-21 Atomic Energy Commission Shipping and storage container for high power density radioactive materials
JPS5073098A (de) * 1973-11-02 1975-06-17
US3935467A (en) * 1973-11-09 1976-01-27 Nuclear Engineering Co., Inc. Repository for fissile materials
US4031921A (en) * 1975-09-09 1977-06-28 The United States Of America As Represented By The United States Energy Research And Development Administration Hydrogen-isotope permeation barrier
DE2741661A1 (de) * 1977-09-16 1979-03-22 Strahlen Umweltforsch Gmbh Verfahren zur umkleidung von abfallfaessern mit einer auslaugsicheren, geschlossenen huelle
US4158639A (en) * 1977-11-14 1979-06-19 Autoclave Engineers, Inc. Method of storing gases
JPS54120400A (en) * 1978-03-10 1979-09-18 Kobe Steel Ltd Sealing method of radioactive waste gas by zeolite
US4178350A (en) * 1973-08-27 1979-12-11 Engelhard Minerals & Chemicals Corp. Removal of tritium and tritium-containing compounds from a gaseous stream
US4315831A (en) * 1976-08-13 1982-02-16 Commissariat A L'energie Atomique Process for the conditioning of solid radioactive waste with large dimensions

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432666A (en) * 1964-03-13 1969-03-11 Atomic Energy Authority Uk Containers for transporting radioactive and/or fissile materials
DE2138241A1 (de) * 1971-07-30 1973-02-08 Nukem Gmbh Verfahren zur bindung von restgasen von kerntechnischen anlagen, insbesondere zur entfernung von wasserstoffgas aus luft
FR2147995A1 (en) * 1971-07-30 1973-03-11 Nukem Gmbh Gas treatment plant - for tritium removal esp from neutron generators
US3754141A (en) * 1972-07-12 1973-08-21 Atomic Energy Commission Shipping and storage container for high power density radioactive materials
US4178350A (en) * 1973-08-27 1979-12-11 Engelhard Minerals & Chemicals Corp. Removal of tritium and tritium-containing compounds from a gaseous stream
JPS5073098A (de) * 1973-11-02 1975-06-17
US3935467A (en) * 1973-11-09 1976-01-27 Nuclear Engineering Co., Inc. Repository for fissile materials
US4031921A (en) * 1975-09-09 1977-06-28 The United States Of America As Represented By The United States Energy Research And Development Administration Hydrogen-isotope permeation barrier
US4315831A (en) * 1976-08-13 1982-02-16 Commissariat A L'energie Atomique Process for the conditioning of solid radioactive waste with large dimensions
DE2741661A1 (de) * 1977-09-16 1979-03-22 Strahlen Umweltforsch Gmbh Verfahren zur umkleidung von abfallfaessern mit einer auslaugsicheren, geschlossenen huelle
US4158639A (en) * 1977-11-14 1979-06-19 Autoclave Engineers, Inc. Method of storing gases
JPS54120400A (en) * 1978-03-10 1979-09-18 Kobe Steel Ltd Sealing method of radioactive waste gas by zeolite

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4567014A (en) * 1981-10-28 1986-01-28 Deutsche Gesellschaft Fur Wiederaufarbeitung Von Kernbrennstoffen Mbh Container for transporting and storing nuclear reactor fuel elements
US4594513A (en) * 1982-11-08 1986-06-10 Chichibu Cement Co., Ltd. Multiplex design container having a three-layered wall structure and a process for producing the same
EP0119512A2 (de) * 1983-03-19 1984-09-26 Kernforschungszentrum Karlsruhe Gmbh Verfahren zur Bestimmung der 3H-Konzentration von Luftfeuchte
EP0119512A3 (en) * 1983-03-19 1985-07-31 Kernforschungszentrum Karlsruhe Gmbh Method of determining the tritium concentration of humid air
EP0139955A2 (de) * 1983-08-24 1985-05-08 Kernforschungszentrum Karlsruhe Gmbh Verfahren zur Fixierung radioaktiver, gasförmiger Bestandteile von Abgasen
EP0139955A3 (en) * 1983-08-24 1986-05-28 Kernforschungszentrum Karlsruhe Gmbh Process for determining gaseaos radioactive components from exhaust gases
EP0204634A1 (de) * 1985-06-07 1986-12-10 Commissariat A L'energie Atomique Verfahren und Einrichtung zum Behandeln von nichtorganischen festen Tritium enthaltenden Abfällen
FR2583208A1 (fr) * 1985-06-07 1986-12-12 Commissariat Energie Atomique Procede et dispositif pour le traitement de dechets trities solides non organiques
WO2013060326A1 (de) * 2011-10-28 2013-05-02 Graef Volkmar Behältersystem zur zwischen- oder endlagerung von radioaktivem abfall und/oder giftmüll

Also Published As

Publication number Publication date
EP0036961B1 (de) 1985-06-12
US4424903A (en) 1984-01-10
DE3011602A1 (de) 1981-10-08
JPS5712399A (en) 1982-01-22
DE3170920D1 (en) 1985-07-18
CA1148671A (en) 1983-06-21
EP0036961A3 (en) 1982-01-13

Similar Documents

Publication Publication Date Title
EP0036961A2 (de) Behälter zur Lagerung von Tritium
DE69710901T2 (de) Verfahren und vorrichtung zur rückextraktion von metallchelaten
DE2549304A1 (de) Packung zur lagerung festen toxischen materials und packungsverfahren
DE2141607A1 (de) Vorrichtung zur Verringerung der Konzentration eines in einer Flüssigkeit gelösten Gases
DE2741661A1 (de) Verfahren zur umkleidung von abfallfaessern mit einer auslaugsicheren, geschlossenen huelle
DE2231976A1 (de) Verfahren zur herstellung von radioaktivem molybdaen-99-spaltprodukt
DE2922382A1 (de) Verfahren zur einkapselung von verbrauchtem kernbrennstoff in eine dessen langzeitlagerung ermoeglichende sicherheitshuelle
DE2839759A1 (de) Verschluss von lagerbohrungen zur endlagerung radioaktiver abfaelle und verfahren zum anbringen des verschlusses
DE2418518A1 (de) Speichervorrichtung fuer radioaktiven abfall
DE2363845C2 (de) Einrichtung zur Verringerung der Gefahren, die infolge eines Niederschmelzens eines Kernreaktor-Cores entstehen können
CH640795A5 (de) Zweikomponenten-klebepatrone.
DE3015494A1 (de) Befestigung von strom- und messleitungsdurchfuehrungen fuer kernreaktoranlagen
DE2441999A1 (de) Verfahren zur staendigen kontrolle des zweischalen-reaktorgefaesses eines reaktors und reaktor zur anwendung dieses verfahrens
DE2527686C2 (de) Kernbrennelement mit einem zylindrischen Behälter
WO2010084122A1 (de) Verfahren und anordnung zum gasdichten umschliessen zumindest eines brennstabs
DE3214880A1 (de) Behaelter zur aufnahme von radioaktiven stoffen
DE3027999A1 (de) Verfahren zum herstellen eines gefaesses fuer kernbrennstoff und kernbrennstoffgefaess
DE2737532C2 (de) Verfahren zum Schutz der Hüllrohre von Kernreaktorbrennstäben
DE2722472A1 (de) Verfahren zur einlagerung von nuklearabfaellen, die als feststoffschuettung anfallen
DE1204343B (de) Kernreaktor-Brennstoffelement
DE102013113785A1 (de) Behälter
EP2418652A2 (de) Verfahren und Anordnung zum gasdichten Umschließen zumindest eines Brennstabs
DE2842198B2 (de) Kernbrennstoffelement
DE3003329A1 (de) Kernbrennstoffelement
DE3028057A1 (de) Kernbrennstoffgefaess und verfahren zu seiner herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB

17P Request for examination filed

Effective date: 19820303

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 3170920

Country of ref document: DE

Date of ref document: 19850718

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900315

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900404

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900517

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910331

Ref country code: CH

Effective date: 19910331

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST