EP0036961B1 - Behälter zur Lagerung von Tritium - Google Patents

Behälter zur Lagerung von Tritium Download PDF

Info

Publication number
EP0036961B1
EP0036961B1 EP81101561A EP81101561A EP0036961B1 EP 0036961 B1 EP0036961 B1 EP 0036961B1 EP 81101561 A EP81101561 A EP 81101561A EP 81101561 A EP81101561 A EP 81101561A EP 0036961 B1 EP0036961 B1 EP 0036961B1
Authority
EP
European Patent Office
Prior art keywords
container
container according
cartridge
filler
tritium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81101561A
Other languages
English (en)
French (fr)
Other versions
EP0036961A2 (de
EP0036961A3 (en
Inventor
Josef Knieper
Heinz Printz
Robert Dr. Dipl.-Chem. Wölfle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Kernforschungsanlage Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH, Kernforschungsanlage Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP0036961A2 publication Critical patent/EP0036961A2/de
Publication of EP0036961A3 publication Critical patent/EP0036961A3/de
Application granted granted Critical
Publication of EP0036961B1 publication Critical patent/EP0036961B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/02Treating gases

Definitions

  • the invention relates to a container for storing tritium, which is bound to an adsorbent with molecular sieve properties after prior oxidation to HTO or T 2 0.
  • US-A 3754141 explains how radioactive material is stored in a cartridge which is surrounded by a PVC film.
  • Magnesium oxide is provided as a filler between this film and the outer container. This magnesium oxide is not suitable for the storage of tritium because it cannot prevent diffusion of the tritium and hydrogen.
  • US-A 4031 921 discloses a three-layer pipeline. This is said to be tight against the diffusion of hydrogen and tritium. However, the materials are especially designed so that the pipeline is resistant to temperatures from 300 to 700 ° C.
  • the invention has for its object to provide a container for the storage of tritium, which is completely tight for storage on the one hand, but from which the tritium can be recovered even after prolonged storage.
  • the container consists of a corrosion-resistant metal which is impervious to hydrogen diffusion and at least one cartridge made of pure aluminum is provided in it, in which the adsorbent is enclosed and which is surrounded by a filler made of fire-retardant plastic , a separating layer being provided between the cartridge and the filler.
  • a corrosion-resistant metal which is impervious to hydrogen diffusion
  • the adsorbent is enclosed and which is surrounded by a filler made of fire-retardant plastic , a separating layer being provided between the cartridge and the filler.
  • the molecular sieve contains zeolites which, for the present application, have the highest possible selectivity for water vapor and a high temperature resistance in the loaded state up to over 300 ° C.
  • the container can consist of, for example, pure aluminum, titanium or stainless steel, since these metals are particularly tight against hydrogen diffusion and are also corrosion-resistant.
  • Pure aluminum is particularly characterized because it has a very low permeation rate for HT, high flexibility and thus low risk of breakage, insensitivity to radiolysis, incombustibility and insensitivity to water due to the formation of a coherent oxide layer, which should have a thickness of 50 to 60 ⁇ . This layer can be anodized to a value of 5 to 6 ⁇ m, which results in additional permeation inhibition.
  • the container should be provided with a blind flange or welded for a secure and completely tight seal.
  • the welding is preferably carried out by means of an electron beam in a vacuum.
  • the resulting cavity offers a high level of security against pressure increases in the interior through radiolysis or decomposition gases at high temperatures.
  • the container is coated with glass fiber reinforced plastic, for example polyester, phenol or epoxy resin. This increases the mechanical strength even more and further improves the resistance to aggressive liquids or gases.
  • the molecular sieve should have a cartridge made of pure aluminum as a covering, which is provided with an oxide layer of 50 to 60 ⁇ in thickness and optionally with an anodization.
  • Quick fasteners are used to fill the cartridge in the manner of the known quick connector fasteners. These closures are designed in such a way that they only open automatically if there are suitable connections. Otherwise they are sealed vacuum-tight so that there is no risk of contamination. In addition, they can be opened at any time without risk of contamination, for example to dilute the tritium to a smaller specific final storage activity or to remove it in a controlled manner by passing an inert gas stream through it. When passing the inert gas stream, the amount and concentration of the tritium can be controlled by setting a selected temperature in the range from -190 ° C to + 300 ° C. The withdrawal quantity can be dosed exactly as desired.
  • molecular sieves can also be enclosed in one container. It is then expedient to provide predetermined breaking points in the areas between the molecular sieves so that they can also be removed individually from the container. The remaining molecular sieves are then still covered and can be deposited again.
  • the filler consist of polyester, epoxy or phenolic resin, and / or gypsum and / or cement. These substances, in particular the last three, do not promote or maintain combustion.
  • a separating wax layer should be provided between the molecular sieve and the filler. Due to the softer consistency of the separating wax, the molecular sieve, especially if it is equipped with quick connector closures, is protected from damage when opened later, since the separating wax prevents a direct connection with the filler. Both filler as well Release wax can absorb small amounts of tritium that have stuck to the caps of the cartridge during the process.
  • the multi-layer structure provides optimal protection against external corrosion due to the different chemical vulnerability.
  • a larger number of the device according to the invention can also be introduced into 200 l waste containers, filled with concrete and then transported to final storage, for example in a salt mine.
  • a molecular sieve 1 shows a molecular sieve 1, consisting of a molecular sieve filling 1 a and a cartridge 2 enveloping it made of pure aluminum, the cartridge 2 being provided with quick-release fasteners 3, 4.
  • the cartridge 2 is coated with a release wax layer 5, so that the cartridge 2 does not enter into a connection with the filler 6, in which the molecular sieve 1 is embedded.
  • the outer envelope is formed by a container 7, for example also made of pure aluminum, which is closed with a lid 8. The closure point is sealed with a weld 9.
  • Fig. 2 shows a device for storing tritium, in which three molecular sieves 10, 11, 12 are embedded in cartridge form. These molecular sieves 10, 11, 12 are also each surrounded by a separating wax layer 13 and by a filler 14, for example plastic or gypsum, and by a container 15 made of pure aluminum.
  • the container 15 is additionally coated with a multi-layer, glass fiber reinforced plastic layer 16 and sealed by means of a blind flange with a metal seal 17.
  • the plastic layer 16 seals the container 15 gas and liquid-tight and provides good protection against aggressive liquids or gases.
  • the container 15 can be sawed open for subsequent separation or reopening, the molecular sieves 10, 11, 12 being exposed.
  • predetermined breaking points 18, 19 can be provided on the container 15.
  • the quick fasteners 20 can be connected to a gas or flushing line.
  • the tritium can be dissolved out of the molecular sieves 10, 11, 12 again by passing an inert gas through it.
  • the closures are designed as so-called quick connector closures, which open automatically when the appropriate connections are made and otherwise close absolutely vacuum-tight.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

  • Die Erfindung betrifft einen Behälter zur Lagerung von Tritium, das an einem Adsorbens mit Molekularsiebeigenschaften nach vorheriger Oxidierung zu HTO bzw. T20 gebunden ist.
  • In der US-A 4178 350 ist die Entfernung von Tritium aus einem Gas mittels eines Molekularsiebes beschrieben. Über eine anschliessende Lagerung sagt diese Druckschrift jedoch nichts aus.
  • In der US-A 3754141 ist erläutert, wie radioaktives Material in einer Patrone eingelagert ist, die von einem PVC-Film umgeben ist. Zwischen diesem Film und dem Aussenbehälterist Magnesiumoxid als Füllstoff vorgesehen. Dieses Magnesiumoxid ist für die Einlagerung von Tritium nicht geeignet, da es eine Diffusion des Tritiums und Wasserstoffs nicht verhindern kann.
  • Schliesslich ist in der US-A 4031 921 eine dreischichtig aufgebaute Rohrleitung offenbart. Diese soll zwar gegen die Diffusion von Wasserstoff und Tritium dicht sein. Die Materialien sind jedoch insbesondere daraufhin ausgelegt, dass die Rohrleitung beständig gegen die Temperaturen von 300 bis 700°C ist.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Behälter für die Einlagerung von Tritium zu schaffen, der einerseits für die Lagerung vollkommen dicht ist, aus dem das Tritium aber auch nach längerer Lagerung wiedergewonnen werden kann.
  • Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass der Behälter aus einem gegen Wasserstoffdiffusion dichten, korrosionsfesten Metall besteht und in ihm zumindest eine mit einem Verschluss versehene Patrone aus Reinaluminium angeordnet ist, in der das Adsorbens eingeschlossen ist und die von einem Füllstoff aus feuerhemmendem Kunststoff umgeben ist, wobei zwischen Patrone und Füllstoff eine Trennschicht vorgesehen ist. Ein solcher Behälter hat sich als absolut dicht gegen die Diffusion von Tritium und Wasserstoff erwiesen, ist also für eine lange Lagerung von Tritium geeignet. Andererseits besteht die Möglichkeit, die Patrone wieder aus dem Behälter herauszulösen und das Tritium dann wiederzugewinnen.
  • In Ausbildung der Erfindung ist vorgesehen, dass das Molekularsieb Zeolithe enthält, die für den vorliegenden Anwendungszweck eine möglichst hohe Selektivität für Wasserdampf und eine hohe Temperaturbeständigkeit in beladenem Zustand bis über 300°C besitzt.
  • Der Behälter kann aus beispielsweise Reinaluminium, Titan oder Edelstahl bestehen, da diese Metalle gegen Wasserstoffdiffusion besonders dicht und zudem korrosionsfest sind. Dabei zeichnet sich insbesondere Reinaluminium aus, weil es eine sehr niedrige Permeationsrate für HT, hohe Biegsamkeit und somit niedrige Bruchgefahr, Unempfindlichkeit gegen Radiolyse, Unbrennbarkeit sowie Unempfindlichkeit gegen Wasser infolge Ausbildung einer zusammenhängenden Oxidschicht aufweist, die eine Dicke von 50 bis 60 Ä haben sollte. Diese Schicht kann durch Eloxieren noch auf Werte von 5 bis 6 µm verstärkt werden, wodurch eine zusätzliche Permeationshemmung bewirkt wird.
  • Zur sicheren und völlig dichten Verschliessung sollte der Behälter mit einem Blindflansch versehen oder zugeschweisst sein. Die Verschweissung erfolgt vorzugsweise durch Elektronenstrahl im Vakuum. Der dabei entstandene Hohlraum bietet eine hohe Sicherheit vor Druckanstieg im Innenraum durch Radiolyse oder Zersetzungsgase bei hohen Temperaturen.
  • Als zusätzliche Sicherungsmassnahme kann vorgesehen sein, dass der Behälter mit glasfaserverstärktem Kunststoff, beispielsweise Polyester-, Phenol- oder Epoxidharz, ummantelt wird. Hierdurch wird die mechanische Festigkeit noch mehr erhöht und die Beständigkeit gegen aggressive Flüssigkeiten oder Gase weiter verbessert.
  • Das Molekularsieb sollte eine Patrone aus Reinaluminium als Umhüllung haben, die mit einer Oxidschicht von 50 bis 60 Ä Dicke und gegebenenfalls mit einer Eloxierung versehen ist.
  • Zur Befüllung der Patrone dienen Schnellverschlüsse nach Art der bekannten Quickconnectorverschlüsse. Diese Verschlüsse sind so ausgebildet, dass sie sich nur dann automatisch öffnen, wenn dazu passende Anschlüsse angebracht sind. Ansonsten sind sie vakuumdicht verschlossen, so dass keine Kontaminationsgefahr besteht. Ausserdem lassen sie sich jederzeit ohne Kontaminationsgefahr öffnen, beispielsweise um das Tritium auf eine kleinere spezifische Endlagerungsaktivität zu verdünnen oder mittels Durchleiten eines Inertgasstromes kontrolliert zu entnehmen. Beim Durchleiten des Inertgasstromes können Menge und Konzentration des Tritiums mittels Einstellung einer gewählten Temperatur im Bereich von -190°C bis +300°C gesteuert werden. Dabei kann die Entnahmemenge je nach Wunsch genau dosiert werden.
  • Es besteht die Möglichkeit, dass in einem Behälter auch mehrere Molekularsiebe eingeschlossen werden. Dann ist es zweckmässig, Sollbruchstellen in den Bereichen zwischen den Molekularsieben vorzusehen, damit sie auch einzeln aus dem Behälter entnommen werden können. Die verbleibenden Molekularsiebe sind dann weiterhin ummantelt und können wieder abgelagert werden.
  • Nach einem weiteren Merkmal der Erfindung ist vorgeschlagen, dass der Füllstoff aus Polyester-, Epoxid- oder Phenolharz, und/oder Gips und/oder Zement besteht. Diese Stoffe, insbesondere die drei letztgenannten, fördern oder unterhalten die Verbrennung nicht.
  • Zusätzlich sollte zwischen dem Molekularsieb und dem Füllstoff eine Trennwachsschicht vorgesehen werden. Durch die weichere Konsistenz des Trennwachses wird das Molekularsieb, insbesondere wenn es mit Quickconnectorverschlüssen versehen ist, bei einer späteren Öffnung vor Beschädigungen geschützt, da der Trennwachs eine direkte Verbindung mit dem Füllstoff verhindert. Sowohl Füllstoff als auch Trennwachs können kleinere Tritiummengen aufnehmen, die an den Verschlüssen der Patrone während des Vorganges haften geblieben sind. Der Mehrschichtenaufbau bildet wegen der verschiedenartigen chemischen Angreifbarkeit einen optimalen Schutz vor äusserer Korrosion.
  • Es können auch eine grössere Anzahl von der erfindungsgemässen Vorrichtung in 200-I-Abfallbehälter eingebracht, mit Beton verfüllt und dann zur Endlagerung, beispielsweise in ein Salzbergwerk, transportiert werden.
  • In der Zeichnung ist die Erfindung anhand von Ausführungsbeispielen näher veranschaulicht.
  • Es zeigen:
    • Fig. 1 eine Vorrichtung zur Lagerung von Tritium mit einem Molekularsieb im Längsschnitt und
    • Fig. 2 eine Vorrichtung mit drei Molekularsieben im Längsschnitt.
  • Fig. 1 zeigt ein Molekularsieb 1, bestehend aus einer Molekularsiebfüllung 1a und einer diese umhüllenden Patrone 2 aus Reinaluminium, wobei die Patrone 2 mit Schnellverschlüssen 3, 4 versehen ist. Die Patrone 2 ist mit einer Trennwachsschicht 5 umhüllt, damit die Patrone 2 keine Verbindung mit dem Füllstoff 6 eingeht, in den das Molekularsieb 1 eingelagert ist. Die äussere Umhüllung wird durch einen Behälter 7, beispielsweise ebenfalls aus Reinaluminium, gebildet, der mit einem Deckel 8 verschlossen ist. Die Verschlussstelle ist mit einer Schweissnaht 9 abgedichtet.
  • Fig. 2 zeigt eine Vorrichtung zur Lagerung von Tritium, in die drei Molekularsiebe 10, 11, 12 in Patronenform eingebettet sind. Auch diese Molekularsiebe 10, 11, 12 sind jeweils von einer Trennwachsschicht 13 und von einem Füllstoff 14, beispielsweise Kunststoff oder Gips, sowie von einem Behälter 15 aus Reinaluminium umschlossen. Der Behälter 15 ist zusätzlich noch mit einer mehrlagigen, glasfaserverstärkten Kunststoffschicht 16 ummantelt und mittels eines Blindflansches mit einer Metalldichtung 17 abgedichtet. Die Kunststoffschicht 16 schliesst den Behälter 15 gas- und flüssigkeitsdicht ab und bildet einen guten Schutz gegen aggressive Flüssigkeiten oder Gase.
  • Zur nachträglichen Trennung bzw. Wiederöffnung kann der Behälter 15 aufgesägt werden, wobei die Molekularsiebe 10, 11, 12 freigelegt werden. Zur Erleichterung des Auftrennens können Sollbruchstellen 18, 19 am Behälter 15 vorgesehen werden.
  • Sobald die Molekularsiebe 10, 11, 12 freigelegt sind, können die Schnellverschlüsse 20 an eine Gas- oder Spülleitung angeschlossen werden. Mittels Hindurchleiten eines Inertgases kann das Tritium wieder aus den Molekularsieben 10, 11, 12 herausgelöst werden. Die Verschlüsse sind dabei als sogenannte Quickconnectorverschlüsse ausgebildet, die sich automatisch öffnen, wenn die dazu passenden Anschlüsse angebracht werden und ansonsten absolut vakuumdicht schliessen.

Claims (12)

1. Behälter zur Lagerung von Tritium, das an einem Adsorbens mit Molekularsiebeigenschaften nach vorheriger Oxidierung zu HTO bzw. T20 gebunden ist, dadurch gekennzeichnet, dass der Behälter (7, 15) aus einem gegen Wasserstoffdiffusion dichten, korrosionsfesten Metall besteht und in ihm zumindest eine mit einem Verschluss versehene Patrone (2) aus Reinaluminium angeordnet ist, in der das Adsorbens eingeschlossen ist und die von einem Füllstoff (6, 14) aus feuerhemmendem Kunststoff umgeben ist, wobei zwischen Patrone (2) und Füllstoff (6, 14) eine Trennschicht (5,13) vorgesehen ist.
2. Behälter nach Anspruch 1, dadurch gekennzeichnet, dass das Molekularsieb (1, 10, 11, 12) eine hohe Selektivität für Wasserdampf und eine hohe Temperaturbeständigkeit in beladenem Zustand bis über 300°C besitzt.
3. Behälter nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Behälter (7, 15) aus Reinaluminium oder Edelstahl besteht.
4. Behälter nach Anspruch 3, dadurch gekennzeichnet, dass der aus Reinaluminium bestehende Behälter (7, 15) mit einer Oxidschicht von 50 bis 60 Ä, gegebenenfalls verstärkt durch eine Eloxierung, versehen ist.
5. Behälter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Behälter (7, 15) zugeschweisst oder mit einem Blindflansch versehen ist.
6. Behälter nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass der Behälter (15) mit glasfaserverstärktem Kunststoff, beispielsweise Polyester-, Phenol- oder Epoxidharz ummantelt ist.
7. Behälter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Patrone (2) eine Oxidschicht von 50 bis 60 Ä Dicke, gegebenenfalls verstärkt durch eine Eloxierung, hat.
8. Behälter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Patrone (2) Schnellverschlüsse nach Art der Quickconnectorverschlüsse aufweist.
9. Behälter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass in einem Behälter (15) mehrere Molekularsiebe (10, 11, 12) eingeschlossen sind.
10. Behälter nach Anspruch 9, dadurch gekennzeichnet, dass der Behälter (15) Sollbruchstellen (18, 19) in den Bereichen zwischen den Molekularsieben (10, 11, 12) aufweist.
11. Behälter nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass der Füllstoff (6, 14) aus Polyester-, Phenol- oder Epoxidharz besteht.
12. Behälter nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die Trennschicht als Wachsschicht ausgebildet ist.
EP81101561A 1980-03-26 1981-03-05 Behälter zur Lagerung von Tritium Expired EP0036961B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803011602 DE3011602A1 (de) 1980-03-26 1980-03-26 Verfahren und vorrichtung zur endlagerung von tritium, insbesondere tritiumabfaellen aus kernkraftwerken, mit der moeglichkeit der tritiumrueckgewinnung
DE3011602 1980-03-26

Publications (3)

Publication Number Publication Date
EP0036961A2 EP0036961A2 (de) 1981-10-07
EP0036961A3 EP0036961A3 (en) 1982-01-13
EP0036961B1 true EP0036961B1 (de) 1985-06-12

Family

ID=6098336

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81101561A Expired EP0036961B1 (de) 1980-03-26 1981-03-05 Behälter zur Lagerung von Tritium

Country Status (5)

Country Link
US (1) US4424903A (de)
EP (1) EP0036961B1 (de)
JP (1) JPS5712399A (de)
CA (1) CA1148671A (de)
DE (2) DE3011602A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3142646C2 (de) * 1981-10-28 1985-10-17 Deutsche Gesellschaft für Wiederaufarbeitung von Kernbrennstoffen mbH, 3000 Hannover Brennelementbehälter zum Transportieren und/oder Lagern von Kernreaktorbrennelementen
JPS5985999A (ja) * 1982-11-08 1984-05-18 秩父セメント株式会社 多重型容器およびその製造方法
DE3310041A1 (de) * 1983-03-19 1984-09-20 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur bestimmung der (pfeil hoch)3(pfeil hoch)h-konzentration von luftfeuchte
DE3330460A1 (de) * 1983-08-24 1985-03-07 Kernforschungszentrum Karlsruhe Gmbh, 7500 Karlsruhe Verfahren zur fixierung radioaktiver, gasfoermiger bestandteile von abgasen
FR2583208B1 (fr) * 1985-06-07 1992-04-24 Commissariat Energie Atomique Procede et dispositif pour le traitement de dechets trities solides non organiques
DE3525772C1 (de) * 1985-07-19 1986-09-04 Gkss - Forschungszentrum Geesthacht Gmbh, 2054 Geesthacht Verfahren zur endlagerreifen Konditionierung von Tritium
DE3642975C1 (de) * 1986-12-17 1988-02-11 Wiederaufarbeitung Von Kernbre Verfahren zur Herstellung eines zur Endlagerung tritiumhaltiger Abwaesser geeigneten Festprodukts
DE3726770C2 (de) * 1987-08-12 1993-11-11 Ieg Ind Engineering Gmbh Filtereinrichtung zum Ausfiltern leichtflüchtiger Verunreinigungen aus einem Luftstrom
FR2620262B1 (fr) * 1987-09-09 1989-11-17 Commissariat Energie Atomique Procede et installation de traitement de dechets organiques solides contamines par du tritium
US4950426A (en) * 1989-03-31 1990-08-21 Westinghouse Electric Corp. Granular fill material for nuclear waste containing modules
JP2547453B2 (ja) * 1989-09-28 1996-10-23 動力灯・核燃料開発事業団 放射性金属廃棄物の減容処理方法
GB9017038D0 (en) * 1990-08-03 1990-09-19 Alcan Int Ltd Controlled hydrogen generation from composite powder material
US5464988A (en) * 1994-11-23 1995-11-07 The United States Of America As Represented By The Department Of Energy Tritium waste package
US6348153B1 (en) 1998-03-25 2002-02-19 James A. Patterson Method for separating heavy isotopes of hydrogen oxide from water
FR2859042B1 (fr) * 2003-08-19 2005-11-18 Framatome Anp Procede et installation de traitement de metaux alcalins charges en tritium ou de composants souilles par des metaux alcalins charges en tritium
US6984327B1 (en) 2004-11-23 2006-01-10 Patterson James A System and method for separating heavy isotopes of hydrogen oxide from water
DE102011085480A1 (de) * 2011-10-28 2013-05-02 Volkmar Gräf Behältersystem zur endlagerung von radioaktivem abfall und/oder giftmüll
FR2984003B1 (fr) * 2011-12-12 2014-01-10 Commissariat Energie Atomique Procede et dispositif de reduction du degazage de dechets trities issus de l'industrie nucleaire
CN105976871B (zh) * 2016-06-06 2017-07-18 中国工程物理研究院核物理与化学研究所 一种聚变‑裂变混合堆聚变靶室产物的处理方法
CN105976884B (zh) * 2016-06-29 2017-11-07 中国工程物理研究院材料研究所 一种含氚废水的处理装置及处理方法
US10639123B2 (en) * 2016-07-06 2020-05-05 Medtronic Vascular, Inc. Biomatter capture mechanism and method
CN106297932B (zh) * 2016-08-30 2017-11-10 中国工程物理研究院材料研究所 一种含氚废水处理系统及处理方法
CN109637688A (zh) * 2018-12-25 2019-04-16 中国原子能科学研究院 一种防氚渗透的放射性固体废物储存桶
FR3126148A1 (fr) * 2021-08-11 2023-02-17 Max Sardou LINER c’est-à-dire:enveloppeinterne deRESERVOIRCOMPOSITEpour GAZà HAUTE PRESSION

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432666A (en) * 1964-03-13 1969-03-11 Atomic Energy Authority Uk Containers for transporting radioactive and/or fissile materials
US3754141A (en) * 1972-07-12 1973-08-21 Atomic Energy Commission Shipping and storage container for high power density radioactive materials
JPS5073098A (de) * 1973-11-02 1975-06-17
US3935467A (en) * 1973-11-09 1976-01-27 Nuclear Engineering Co., Inc. Repository for fissile materials
DE2741661A1 (de) * 1977-09-16 1979-03-22 Strahlen Umweltforsch Gmbh Verfahren zur umkleidung von abfallfaessern mit einer auslaugsicheren, geschlossenen huelle
US4158639A (en) * 1977-11-14 1979-06-19 Autoclave Engineers, Inc. Method of storing gases
JPS54120400A (en) * 1978-03-10 1979-09-18 Kobe Steel Ltd Sealing method of radioactive waste gas by zeolite
US4315831A (en) * 1976-08-13 1982-02-16 Commissariat A L'energie Atomique Process for the conditioning of solid radioactive waste with large dimensions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2138241A1 (de) * 1971-07-30 1973-02-08 Nukem Gmbh Verfahren zur bindung von restgasen von kerntechnischen anlagen, insbesondere zur entfernung von wasserstoffgas aus luft
US4178350A (en) * 1973-08-27 1979-12-11 Engelhard Minerals & Chemicals Corp. Removal of tritium and tritium-containing compounds from a gaseous stream
US4031921A (en) * 1975-09-09 1977-06-28 The United States Of America As Represented By The United States Energy Research And Development Administration Hydrogen-isotope permeation barrier

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3432666A (en) * 1964-03-13 1969-03-11 Atomic Energy Authority Uk Containers for transporting radioactive and/or fissile materials
US3754141A (en) * 1972-07-12 1973-08-21 Atomic Energy Commission Shipping and storage container for high power density radioactive materials
JPS5073098A (de) * 1973-11-02 1975-06-17
US3935467A (en) * 1973-11-09 1976-01-27 Nuclear Engineering Co., Inc. Repository for fissile materials
US4315831A (en) * 1976-08-13 1982-02-16 Commissariat A L'energie Atomique Process for the conditioning of solid radioactive waste with large dimensions
DE2741661A1 (de) * 1977-09-16 1979-03-22 Strahlen Umweltforsch Gmbh Verfahren zur umkleidung von abfallfaessern mit einer auslaugsicheren, geschlossenen huelle
US4158639A (en) * 1977-11-14 1979-06-19 Autoclave Engineers, Inc. Method of storing gases
JPS54120400A (en) * 1978-03-10 1979-09-18 Kobe Steel Ltd Sealing method of radioactive waste gas by zeolite

Also Published As

Publication number Publication date
DE3170920D1 (en) 1985-07-18
DE3011602A1 (de) 1981-10-08
US4424903A (en) 1984-01-10
JPS5712399A (en) 1982-01-22
EP0036961A2 (de) 1981-10-07
CA1148671A (en) 1983-06-21
EP0036961A3 (en) 1982-01-13

Similar Documents

Publication Publication Date Title
EP0036961B1 (de) Behälter zur Lagerung von Tritium
DE2141607A1 (de) Vorrichtung zur Verringerung der Konzentration eines in einer Flüssigkeit gelösten Gases
DE2157133A1 (de) Behälter für radioaktive Materialien
DE2854358A1 (de) Transportbehaelter fuer radioaktive materialien
CH640795A5 (de) Zweikomponenten-klebepatrone.
EP0092679B1 (de) Behälter zur Aufnahme von radioaktiven Stoffen
DE3015494A1 (de) Befestigung von strom- und messleitungsdurchfuehrungen fuer kernreaktoranlagen
DE2441999A1 (de) Verfahren zur staendigen kontrolle des zweischalen-reaktorgefaesses eines reaktors und reaktor zur anwendung dieses verfahrens
DE2737532C2 (de) Verfahren zum Schutz der Hüllrohre von Kernreaktorbrennstäben
DE3103526A1 (de) "mehrschichtiger transport- und lagerbehaelter fuer radioaktive abfaelle"
DE1601185A1 (de) Austauschersystem
DE1204343B (de) Kernreaktor-Brennstoffelement
DE3030030C2 (de)
DE2828138A1 (de) Behaelter zum transportieren von radioaktiven brennelementen
EP0499918A2 (de) Behälter mit Inliner
DE3142674A1 (de) "tankcontainer"
EP0091175A1 (de) Verfahren zur sicheren Lagerung von gefährlichem, den Menschen und/oder die Umwelt gefährendem Material und für dieses Verfahren geeignete Schutzhülle
DE2856243A1 (de) Verfahren und anordnungen zur hemmung der freigabe von tritium aus behaeltern
DE3028040C2 (de) Anordnung zur Lagerung von radioaktiven Abfallflüssigkeiten
DE7920754U1 (de) Rueckholbarer endlagerbehaelter aus beton zur aufnahme von faessern mit radioaktivem inhalt
DE102004035277B4 (de) Mehrsperrenbehälter für radioaktiven Müll
DE1764119C (de) Brennelementlade und entladegerat fur einen Kernreaktor
DE2332629A1 (de) Absperrorgan fuer gasfuehrende leitungen
DE3212651A1 (de) Verfahren zur sicheren lagerung von gefaehrlichem, den menschen und/oder die umwelt gefaehrdendem material
DE202021001670U1 (de) Bodenabschlussprofil zur Befestigung einer Auskleidungsfolie bei betonierten Rundbehältern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): CH DE FR GB

17P Request for examination filed

Effective date: 19820303

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB LI

REF Corresponds to:

Ref document number: 3170920

Country of ref document: DE

Date of ref document: 19850718

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19900228

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900315

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900404

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900517

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19910305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19910331

Ref country code: CH

Effective date: 19910331

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST