EP0021028B1 - Verfahren zur Herstellung eines wasserdurchlässigen Spiel- und/oder Sportstättenbelags - Google Patents

Verfahren zur Herstellung eines wasserdurchlässigen Spiel- und/oder Sportstättenbelags Download PDF

Info

Publication number
EP0021028B1
EP0021028B1 EP19800102773 EP80102773A EP0021028B1 EP 0021028 B1 EP0021028 B1 EP 0021028B1 EP 19800102773 EP19800102773 EP 19800102773 EP 80102773 A EP80102773 A EP 80102773A EP 0021028 B1 EP0021028 B1 EP 0021028B1
Authority
EP
European Patent Office
Prior art keywords
weight
water
sand
permeable
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP19800102773
Other languages
English (en)
French (fr)
Other versions
EP0021028A2 (de
EP0021028A3 (en
Inventor
Klaus Dr. Gorke
Josef Schoppen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huels AG
Original Assignee
Chemische Werke Huels AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemische Werke Huels AG filed Critical Chemische Werke Huels AG
Publication of EP0021028A2 publication Critical patent/EP0021028A2/de
Publication of EP0021028A3 publication Critical patent/EP0021028A3/de
Application granted granted Critical
Publication of EP0021028B1 publication Critical patent/EP0021028B1/de
Expired legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C13/00Pavings or foundations specially adapted for playgrounds or sports grounds; Drainage, irrigation or heating of sports grounds
    • E01C13/06Pavings made in situ, e.g. for sand grounds, clay courts E01C13/003
    • E01C13/065Pavings made in situ, e.g. for sand grounds, clay courts E01C13/003 at least one in situ layer consisting of or including bitumen, rubber or plastics

Definitions

  • sands (1) primarily mean the mineral sediments consisting mainly of quartz (SIO,). However, depending on their origin and origin, they can also contain granules of feldspar, mica, magnetite, titanite, hornblende, garnet, tourmaline and the like [see. Römpps Chemie-Lexikon, 7th edition (1975), 3056/57]. What is important is only the maximum grain size and the grain size distribution, i.e. a maximum grain size of 10 mm (1.2) and a maximum of 12% by weight of a grain size of 2 to 10 mm (1.3). If such sands do not occur naturally, they can easily be obtained by a sieving process or by mixing suitable sieve fractions.
  • the water content of the sands is determined by e.g. B. Fire drying to a maximum of 1 wt .-% (1.1).
  • the sands can be colored powder, such as. B. red lead, iron oxides, chromium oxide and soot, colored mineral powder or glass fibers, are added.
  • the amount of color powder depends, of course, primarily on the desired color of the playground and sports facility surface. It is generally up to 1% by weight, based on sand.
  • Suitable binders (2) which are added to the sands for consolidation in an amount of 3 to 6% by weight, based on 1, are primarily liquid polybutadienes.
  • copolymers of butadiene (1,3) with other 1,3-dienes such as. B. isoprene, 2,3-dimethylbutadiene and piperylene, or with vinyl aromatic compounds, such as e.g. Styrene, a-methylstyrene, vinyltoluene and divinylbenzene can be used.
  • the content of comonomers in the copolymers of 1,3-butadiene should not exceed 50 mol%.
  • the maximum viscosity of the binders that can be used is 2000 mPa s / 20 ° C (2.1); the viscosity is preferably 500 to 1500 mPa s / 20 ° C.
  • the microstructure of the homopolymers and copolymers of butadiene (1,3) is critical in that it is necessary for at least 30% of the double bonds (2.2) to have cis-1,4 structures. In the case of homopolymers and copolymers, more than 50% of the double bonds should preferably have cis-1,4 structures.
  • additives and auxiliaries such as wetting agents, siccatives, skin contraceptives and, if appropriate, odor-improving substances, are added to the binder (s).
  • Suitable wetting agents are anionic emulsifiers, such as fatty acid salts and alkylarylsulfonates, or cationic emulsifiers, such as alkylamine polyglycol ethers or distearyl dimethylammonium salts, but especially nonionic emulsifiers, such as fatty alcohol polyethylene glycol ethers, fatty acid polyalkylene glycols 3-carbonyl or alkylphenol-6-glycol groups or alkylphenol polyglycols or alkylphenol polyglycols with 3 to 6 alkylglycol groups or alkylphenol polyglycols with alkylphenol polyglycol or alkylphenol polyglycol groups or alkylphenol polyglycols with 3 to 6 alkylglycol glycols or alkylphenol polyglycols or alkylphenol polyglycol groups or alkylphenol polyglycols with 6 to 6 alkylglycol groups or alkylphenol polyglycols
  • siccatives e.g. Salts or compounds of cobalt, nickel or iron, in particular cobalt compounds soluble in aliphatic or aromatic solvents, such as e.g. As cobalt octoate, cobalt naphthenate or cobalt oleate, are suitable, which can also be used in the form of their solutions in aliphatic or aromatic solvents.
  • the amount of desiccants to be used depends on the desired crosslinking time; as a rule, their proportion is about 0.01 to 0.2%, preferably 0.08 to 0.18%, based on the amount by weight of binder (2) used, the quantities indicated for the desiccants only relating to their metal content Respectively.
  • Such substances are e.g. Peppermint oil and rose oil. They are generally used in an amount of 0.01 to 1% by weight, preferably 0.05 to 0.5% by weight, based on the binder (2).
  • the preparation of the homogeneous mixture (3) from sand, binder and optionally color powder is carried out in a suitable mixing unit, e.g. a compulsory mixer.
  • the compulsory mixer is characterized by the fact that 2 shafts with mixing arms work in opposite directions in a mixing drum and the mix cannot therefore wind around the mixer.
  • the mixture is intimately mixed when e.g. the color of the mixture appears uniform.
  • the mixing time required for this is generally 1 to 10, preferably 3 to 6, minutes.
  • the homogeneous mixture of screed consistency which therefore does not flow by itself, is applied in a layer thickness of 0.5 to 4.0 cm, preferably 1.0 to 2.5 cm, on a water-permeable, bituminous bound and compacted substructure of at least 2 cm, preferably 2 to 5 cm, of a screed-like thickness (4), optionally smoothing it (5) and allowing it to harden (6).
  • the curing time is 0.5 to 24 hours. An aging period of up to 30 days can follow.
  • ballast layer As a substructure e.g. such, consisting of drainage and an approx. 20 to 40 cm thick, compacted ballast layer as well as another water permeable, bituminous bound and compressed ballast layer of 2 to 5 cm thickness located above it.
  • the bituminous gravel layer can e.g. B. in a known manner with a paver using experience has shown a narrow grain distribution of, for example, 2 to 8 mm grain without fine fraction and a bitumen fraction below 15% by weight, based on crushed stone.
  • the method according to the invention can preferably be used commercially in the production of water-permeable and crack-resistant coverings on tennis courts.
  • commercially available total herbicides can also be added to the screed-like masses in amounts of up to about 1% by weight, based on 2.
  • the binder consists of 95.9% by weight of a liquid polybutadiene with a double bond distribution of 72% cis-1.4, 27% trans-1.4, 1% vinyl, and a viscosity of 764 mPa s / 20 ° C, 1.4 %
  • a nonylphenol polyethylene glycol ether 2.6% by weight of co-octoate solution, 6% by weight of cobalt and 0.1% by weight of a commercially available skin-preventing agent (ASCININ'- 'R).
  • the mixture produced in this way has a very good screed consistency and is entered into a shape of the inside dimensions 4 x 4 x 16 cm. After curing and aging for 17 days, a bending tensile strength of 3.9 n / mm 2 and a compressive strength of 9.2 N / mm 2 are measured. The irrigation shows that the test specimens are permeable to water and retain their strength.
  • Example 1 99% by weight of sand from Example 1 are mixed with 1% by weight of the binder from Example 1 as in Example 1 and applied. After curing and aging for 17 days, a bending tensile strength of only 0.5 and a compressive strength of only 1.5 N / mm 2 are measured. The irrigation shows that the test specimens are permeable to water, but lose their strength.
  • Example 1 92% by weight of sand from Example 1 are mixed with 8% by weight of the binder from Example 1 as in Example 1. The mixture flows like a sludge and can no longer be processed.
  • the irrigation shows that the test specimens are permeable to water and retain their strength.
  • An area of 100 m 2 on the substructure described in Example 1 shows no crack formation after 1 year.
  • the irrigation shows that the test specimens are permeable to water and retain their strength.
  • An area of 100 m 2 on the substructure described in Example 1 shows no crack formation after 1 year.
  • Example 1 95.8% by weight of sand from Example 1, 0.2% by weight of a commercially available iron oxide pigment (iron oxide red AKF) and 4% by weight of binder from Example 1 are mixed and applied as in Example 1.
  • the mixture has a very good processability. After curing and aging, a bending tensile strength of 4.5 N / mm 2 and a compressive strength of 9.6 N / mm 2 are measured. The irrigation shows that the test specimens are permeable to water and retain their strength.
  • An area of 100 m 2 on the substructure described in Example 1 shows no crack formation after 1 year.
  • Example 1 3% by weight of glass fibers of about 25 to 50 mm in length and about 0.1 mm in thickness are mixed and applied in the screed mixture from Example 1 as in Example 1.
  • the mixture has a very good processability. After curing and aging, a bending tensile strength of 11.8 N / mm 2 and a compressive strength of 8.2 N / mm 2 are measured. The irrigation shows that the test specimens are permeable to water and retain their strength.
  • An area of 100 m 2 on the substructure described in Example 1 shows no crack formation after 1 year.
  • Example 1 96% by weight of sand from Example 1 are mixed and applied with 3% by weight of the binder from Example 1 and 1% by weight of commercial soybean oil as in Example 1.
  • the mixture has a very good processability. After curing and aging, a bending tensile strength of 4.5 N / mm 2 and a compressive strength of 10.6 N / m m2 are measured .
  • the irrigation shows that the test specimens are permeable to water and retain their strength.
  • An area of 100M2 on the substructure described in Example 1 shows no crack formation after 1 year.
  • Example 1 96% by weight of sand from Example 1 are mixed with 4% by weight of binder as in Example 1 and applied.
  • the binder consists of 95.9% by weight of a liquid polybutadiene (double bond distribution: 87% vinyl and 13% trans-1.4, viscosity 4750 mPas / 20 ° C.) and 4.1% by weight of the additives from Example 1.
  • the bending tensile strength is only approx. 0.5 N / mm 2 and the compressive strength is only approx. 0.2 N / mm 2 .
  • the material has remained soft on the inside.
  • Example 1 96% by weight of sand from Example 1 are mixed with 4% by weight of binder as in Example 1 and applied.
  • the binder consists of 95.9% by weight of a liquid polybutadiene (double bond distribution: 35% cis-1.4, 30% trans-1.4, 35% vinyl, viscosity 268 mPa s / 20 ° C.) and 4.1 % By weight of the additives from Example 1.
  • the screed-like mixture can be processed very well. After curing and aging, the bending tensile strength is 2.6 N / mm 2 and the compressive strength is 6.2 N / mm 2. When it is irrigated, it can be seen that the test specimens are permeable to water and retain their strength.
  • An area of 100 m 2 on the substructure described in Example 1 shows no crack formation after 1 year.

Description

  • Es ist bekannt, Sand oder ähnliches Erdreich mit chemischen Mitteln zu verfestigen [Strasse und Autobahn (1958), Heft 10; Bitumen-Teere-Asphalte-Peche und verwandte Stoffe (1960), Heft 9, Seiten 358-363; Neue Landschaft (1970), Heft 9, Seite 431; DE-C-1 813 080 und 2 044 777].
  • Allen diesen Verfahren ist der Nachteil gemeinsam, dass grosse Mengen Wasser mitverwendet werden müssen. Die Abbindung kann erst dann erfolgen, wenn dieses Wasser verdunstet ist, was je nach Bodentemperatur lange Zeiten in Anspruch nehmen kann.
  • Die Mitverwendung von Wasser hat weiterhin den Nachteil, dass beim Abmischen von Sand oder ähnlichem Erdreich sehr schnell schlammartige Massen entstehen, die sich nur schwer verarbeiten lassen. In der Regel benötigt man 1 bis 20 Gew.-% Bindemittel, bezogen auf Sand, um eine genügende Bindung der Körner untereinander zu erzielen und damit die Festigkeit der Mischung zu gewährleisten. Bei ca. 8 Gew.-% flüssigen Bindemittels oder Wasser beginnt jedoch Sand bereits zu fliessen, d.h. bei einer ca.50%igen Dispersion eines Bindemittels in Wasser kann man maximal 3 bis 4 Gew.-% Bindemittel ohne Fliesseffekte einmischen unter der Voraussetzung, dass der Sand oder das Erdreich von Haus aus keinerlei Wasser enthält, was aber praktisch nicht erreichbar ist.
  • Aus der DE-A-1 301 277 ist zwar bereits ein Verfahren zur Verfestigung von Böden mit Hilfe eines öligen Homo- oder Mischpolymerisats von 1,3-Dienen als Bindemittel bekannt, bei dem die trocknenden Polyenöle auch in unverdünntem Zustand eingesetzt werden können, jedoch werden die nach diesem Verfahren behandelten Böden nicht nur verfestigt, sondern auch gleichzeitig für Wasser und andere Flüssigkeiten undurchlässig gemacht (vgl. Spalte 1, Zeilen 4-6).
  • Aufgabe der vorliegenden Erfindung war es nun, ein Verfahren zu entwickeln, das die aufgezeigten Nachteile der Verfahren des Standes der Technik ganz oder teilweise überwindet. Das heisst, es galt ein Verfahren bereitzustellen, mit dem es möglich ist, wasserdurchlässige und darüber hinaus rissbeständige Spiel- und/oder Sportstättenbeläge, vorzugsweise Beläge auf Tennisplätzen, mit Hilfe einer nicht fliessenden Mischung aus Sand und einem Zusatz und Hilfsstoffe enthaltenden Polyenöls herzustellen.
  • Diese Aufgabe wurde überraschenderweise durch die im Patentanspruch beschriebene Kombination verfahrenskritischer Massnahmen gelöst.
  • Unter Sande (1) werden im Rahmen dieser Erfindung in erster Linie die hauptsächlich aus Quarz (SIO,) bestehenden mineralischen Sedimente verstanden. Sie können jedoch auch - je nach Herkunft und Entstehung - Körnchen aus Feldspat, Glimmer, Magnetit, Titanit, Hornblende, Granat, Turmalin und dergleichen enthalten [s. Römpps Chemie-Lexikon, 7. Auflage (1975), 3056/ 57]. Wichtig ist nur die maximale Korngrösse und die Korngrössenverteilung, d.h. eine maximale Korngrösse von 10 mm (1.2) und ein Anteil von maximal 12 Gew.-% einer Korngrösse von 2 bis 10 mm (1.3). Sofern solche Sande nicht natürlich vorkommen, kann man sie leicht durch ein Siebverfahren oder durch Mischen geeigneter Siebfraktionen erhalten. Vor dem Einsatz bei dem erfindungsgemässen Verfahren ist der Wassergehalt der Sande durch z. B. Feuertrocknung auf maximal 1 Gew.-% (1.1) einzustellen. Bereits bei diesem Verfahrensschritt können den Sanden Farbpulver, wie z. B. Mennige, Eisenoxide, Chromoxid und Russ, farbige Mineralpulver oder Glasfasern, zugesetzt werden. Die Menge an Farbpulver richtet sich natürlich in erster Linie nach der gewünschten Farbe des Spiel- und Sportstättenbelags. Sie beträgt im allgemeinen bis zu 1 Gew.-%, bezogen auf Sand.
  • Geeignete Bindemittel (2), die den Sanden zur Verfestigung in einer Menge von 3 bis 6 Gew.-%, bezogen auf 1, zugesetzt werden, sind in erster Linie flüssige Polybutadiene. Daneben können aber auch Copolymere des Butadiens-(1,3) mit anderen 1,3-Dienen, wie z. B. Isopren, 2,3-Dimethylbutadien und Piperylen, oder mit vinylaromatischen Verbindungen, wie z.B. Styrol, a-Methylstyrol, Vinyltoluol und Divinylbenzol, eingesetzt werden. Der Gehalt an Comonomeren in den Copolymerisaten des Butadiens-(1,3) soll 50 Mol- % nicht überschreiten.
  • Die maximale Viskosität der einsetzbaren Bindemittel beträgt 2000 mPa s/20°C (2.1); vorzugsweise beträgt die Voskosität 500 bis 1500 mPa s/ 20 °C.
  • Die Mikrostruktur der Homo- und Copolymerisate des Butadiens-(1,3) ist insofern kritisch, weil es erforderlich ist, dass mindestens 30% der Doppelbindungen (2.2) cis-1,4-Strukturen besitzen. Vorzugsweise sollen bei den Homo- und Copolymerisaten mehr als 50% der Doppelbindungen cis-1,4-Strukturen haben.
  • Es ist im Rahmen der vorliegenden Erfindung natürlich auch möglich, neben den genannten Bindemitteln im begrenzten Masse (ca. 30 Gew.-%, bezogen auf den Gesamtgehalt an Bindemittel) vegetabilische trocknende Öle, wie z.B. Leinöl, Sojaöl und Holzöl, einzusetzen.
  • Vorzugsweise vor dem Vermischen mit dem Sand werden dem oder den Bindemittel(n) bestimmte Zusatz- und Hilfsstoffe, wie Netzmittel, Sikkative, Hautverhütungsmittel und gegebenenfalls geruchsverbessernde Stoffe, zugesetzt.
  • Als Netzmittel sind z.B. anionenaktive Emulgatoren, wie fettsaure Salze und Alkylarylsulfonate, oder kationenaktive Emulgatoren, wie Alkylaminpolyglykolether oder Distearyl-dimethylammonium-Salze, insbesondere aber nichtionogene Emulgatoren, wie z.B. Fettalkoholpolyethylenglykolether, Fettsäurepolyalkylenglykolester oder Alkylphenolpolyglykolether mit 6 bis 12 Kohlenstoffatomen in der Alkylgruppe und 3 bis 80 Ethylenoxid-Einheiten, geeignet, wobei sich insbesondere p-Nonyl-phenolpolyglykolether mit 4 bis 16, vorzugsweise 6 bis 10 angelagerten Ethylenoxid-Einheiten bewährt haben. Sie werden in Mengen von 0,5 bis 10Gew.-%, vorzugsweise 1 bis 5 Gew.-%, bezogen auf 2, eingesetzt.
  • Als Sikkative sind z.B. Salze oder Verbindungen des Cobalts, Nickels oder Eisens, insbesondere in aliphatischen oder aromatischen Lösemitteln lösliche Cobaltverbindungen, wie z. B. Cobaltoctoat, Cobaltnaphthenat oder Cobaltoleat, geeignet, die auch in Form ihrer Lösungen in aliphatischen oder aromatischen Lösemitteln eingesetzt werden können. Die zu verwendende Menge an Sikkativen richtet sich nach der angestrebten Vernetzungszeit; in der Regel liegt ihr Anteil bei etwa 0,01 bis 0,2%, vorzugsweise bei 0,08 bis 0,18%, bezogen auf die eingesetzte Gewichtsmenge an Bindemittel (2), wobei sich die Mengenangaben für die Sikkative nur auf deren Metallanteil beziehen.
  • Als Hautverhütungsmittel dienen in erster Linie flüchtige Ketoxime, wie z. B. das Handelsprodukt Ascinin, 3 R, die im allgemeinen in einer Menge von 0,02 bis 2 Gew.-%, vorzugsweise 0,05 bis 0,5 Gew.-%, bezogen auf das Bindemittel (2), zugesetzt werden.
  • Da der Eigengeruch des flüssigen Polybutadiens in manchen Fällen als nicht angenehm empfunden wird, ist es angebracht, einen oder mehrere geruchsverbessernde Stoffe zuzusetzen. Solche Stoffe sind z.B. Pfefferminzöl und Rosenöl. Sie werden im allgemeinen in einer Menge von 0,01 bis 1 Gew.-%, vorzugsweise von 0,05 bis 0,5 Gew.-%, bezogen auf das Bindemittel (2) eingesetzt.
  • Die Herstellung der homogenen Mischung (3) aus Sand, Bindemittel und gegebenenfalls Farbpulver wird in einem geeigneten Mischaggregat, wie z.B. einem Zwangsmischer, vorgenommen.
  • Der Zwangsmischer ist dadurch charakterisiert, dass 2 Wellen mit Rührarmen gegenläufig in einer Mischtrommel arbeiten und das Mischgut sich somit nicht um die Rührer wickeln kann.
  • Die Mischung ist dann innig vermischt, wenn z.B. der Farbton der Mischung einheitlicherscheint. Die dafür erforderliche Mischzeit beträgt im allgemeinen 1 bis 10, vorzugsweise 3 bis 6, Minuten.
  • Anschliessend trägt man die homogene Mischung von Estrich-Konsistenz, die also nicht von selbst fliesst, in einer Schichtdicke von 0,5 bis 4,0 cm, vorzugsweise 1,0 bis 2,5 cm, auf einen wasserdurchlässigen, bituminös gebundenen und verdichteten Unterbau von mindestens 2 cm, vorzugsweise 2 bis 5 cm, Dicke estrichartig auf (4), glättet sie gegebenenfalls (5) und lässt sie aushärten (6). Je nach Bodentemperatur beträgt die Aushärtezeit 0,5 bis 24 Stunden. Eine Alterungszeit bis zu 30 Tagen kann sich anschliessen.
  • Als Unterbau kann z.B. ein solcher, bestehend aus Drainage und einer ca. 20 bis 40 cm dicken, verdichteten Schotterschicht sowie einer weiteren, sich darüber befindlichen wasserdurchlässigen, bituminös gebundenen und verdichteten Schotterschicht von 2 bis 5 cm Dicke, dienen.
  • Die bituminös gebundene Schotterschicht kann z. B. in bekannter Weise mit einem Strassenfertiger unter Verwendung einer erfahrungsgemäss engen Kornverteilung von beispielsweise 2 bis 8 mm Korn ohne Feinanteil und einem Bitumenanteil unter 15Gew.-%, bezogen auf Schotter, erstellt werden.
  • Das erfindungsgemässe Verfahren ist bevorzugt bei der Herstellung von wasserdurchlässigen und rissbeständigen Belägen auf Tennisplätzen gewerblich anwendbar. Als Vorbeugung gegen einen späteren unerwünschten Bewuchs kann man den estrichartigen Massen auch handelsübliche Totalherbizide in Mengen bis zu ca. 1 Gew.- %, bezogen auf 2, beifügen.
  • Das erfindungsgemässe Verfahren wird anhand der nachfolgenden Beispiele und Vergleichsbeispiele näher erläutert.
  • Die darin angegebenen Kenngrössen wurden folgendermassen bestimmt:
    • Wassergehalt des Sandes: Durch Differenzwägung nach Trocknung bis zur Gewichtskonstanz bei 105°C.
  • Korngrösse und Korngrössenverteilung nach DIN 4226.
  • Viskosität des Bindemittels nach DIN 53 015.
    • cis-1,4-Gehalt des Bindemittels: IR-spektroskopisch
  • Wasserdurchlässigkeit und Rissbeständigkeit durch qualitative makorskopische Beurteilung.
  • Biegezugfestigkeit und Druckfestigkeit des Belags nach DIN 1164.
  • Beispiel 1
  • 96 Gew.-% trockener Rheinsand (feuergetrocknet, Wassergehalt 0,45 Gew.-%) mit der Korngruppenverteilung unter 0,04mm 0,1 Gew.-%, 0,04 bis 0,08 mm 0,3 Gew.-%, 0,08 bis 0,16 mm 3 Gew.-%, 0,16 bis 0,25 mm 13,1 Gew.-%, 0,25 bis 0,5 mm 52,6 Gew.-%, 0,5 bis 1,0 mm 21,9 Gew.-%, 1,0 bis 1,6 mm 4 Gew.-%, 1,6 bis 2 mm 1,9 Gew.- %, 2 bis 4 mm 3,0 Gew.-% und 4 bis 8 mm 0,1 Gew.-%, werden mit 4 Gew.-% Bindemittel in einem Zwangsmischer vermischt. Das Bindemittel besteht aus 95,9 Gew.-% eines flüssigen Polybutadiens der Doppelbindungsverteilung 72% cis-1,4, 27% trans-1,4, 1% Vinyl, und der Viskosität 764 mPa s/20°C, 1,4 Gew.-% eines Nonylphenolpolyethylenglykolethers, 2,6 Gew.-% Co-Octoatlösung, 6 Gew.-% Cobalt enthaltend und 0,1 Gew.- % eines handelsüblichen Hautverhütungsmittels (ASCININ'-' R).
  • Die so hergestellte Mischung hat eine sehr gute Estrichkonsistenz und wird in eine Form der Innenabmessung 4 x 4 x 16 cm eingegeben. Nach der Aushärtung und Alterung über 17 Tage misst man eine Biegezugfestigkeit von 3,9 n/mm2 und eine Druckfestigkeit von 9,2 N/mm2. Bei der Beregnung zeigt sich, dass die Prüfkörper wasserdurchlässig sind und ihre Festigkeit behalten.
  • Eine Fläche von 100 m2 auf einem verdichteten Unterbau (Kornverteilung 3 bis 7 mm 100%, Bitumengehalt 8 Gew.-%, bezogen auf Schotter, Dichte 3 cm) zeigt auch nach 1 Jahr keinerlei Rissbildung.
  • Vergleichsbeispiel 1
  • 99Gew.-% Sand aus Beispiel 1 werden mit 1 Gew.-% des Bindemittels aus Beispiel 1 wie in Beispiel 1 gemischt und aufgetragen. Nach der Aushärtung und Alterung über 17 Tage misst man eine Biegezugfestigkeit von nur 0,5 und eine Druckfestigkeit von nur 1,5 N/mm2. Bei der Be regnung zeigt sich, dass die Prüfkörper zwar wasserdurchlässig sind, aber ihre Festigkeit einbüssen.
  • Vergleichsbeispiel 2
  • 92 Gew.-% Sand aus Beispiel 1 werden mit 8 Gew.-% des Bindemittels aus Beispiel 1 wie in Beispiel 1 gemischt. Die Mischung fliesst wie ein Schlamm und ist nicht mehr verarbeitbar.
  • Beispiel 2
  • 95 Gew.-% trockener Quarzsand (feuergetrocknet, Wassergehalt 0,7 Gew.-%) mit der Kornverteilung 0 bis 0,06mm 0,5 Gew.-%, 0,06 bis 0,09 mm 1,1 Gew.-%, 0,09 bis 0,2 mm 52,1 Gew.- %, 0,2 bis 0,63 mm 46,3 Gew.-% werden mit 5 Gew.-% des Bindemittels aus Beispiel 1 wie in Beispiel 1 gemischt und aufgetragen. Die Mischung hat eine sehr gute Verarbeitbarkeit und wird wie in Beispiel 1 verarbeitet. Nach der Aushärtung und Alterung über 17 Tage misst man eine Biegezugfestigkeit von 10,7 N/mm2 und eine Druckfestigkeit von 24,5 N/mm2.
  • Bei der Beregnung zeigt sich, dass die Prüfkörper wasserdurchlässig sind und ihre Festigkeit behalten.
  • Eine Fläche von 100 m2 auf dem im Beispiel 1 beschriebenen Unterbau zeigt nach 1 Jahr keinerlei Rissbildung.
  • Beispiel 3
  • 96 Gew.-% trockener Mauersand (feuergetrocknet, Wassergehalt 0,2 Gew.-%) mit der Kornverteilung unter 0,04 mm 0,1 Gew.-%, 0,04 bis 0,06 mm 0,1 Gew.-%, 0,06 bis 0,09 mm 0,2 Gew.- %, 0,09 bis 0,2 mm 5,4 Gew.-%, 0,2 bis 0,6 mm 93,5 Gew.-%, 0,6 bis 1 mm 0,5 Gew.-%, 1,0 bis 5,0 mm 0,2 Gew.-%, werden mit 4 Gew.-% des Bindemittels aus Beispiel 1 wie in Beispiel 1 gemischt und verarbeitet. Nach Aushärtung und Alterung misst man eine Biegezugfestigkeit von 5,1 N/mm2 und eine Druckfestigkeit von 12,2 N/ mm2.
  • Bei der Beregnung zeigt sich, dass die Prüfkörper wasserdurchlässig sind und ihre Festigkeit behalten.
  • Eine Fläche von 100 m2 auf dem im Beispiel 1 beschriebenen Unterbau zeigt nach 1 Jahr keinerlei Rissbildung.
  • Beispiel 4
  • 95,8 Gew.-% Sand aus Beispiel 1, 0,2 Gew.-% eines handelsüblichen Eisenoxidpigments (Eisenoxidrot AKF) und 4 Gew.-% Bindemittel aus Beispiel 1 werden wie in Beispiel 1 gemischt und aufgetragen. Die Mischung hat eine sehr gute Verarbeitbarkeit. Nach Aushärtung und Alterung misst man eine Biegezugfestigkeit von 4,5 N/mm2 und eine Druckfestigkeit von 9,6 N/mm2. Bei der Beregnung zeigt sich, dass die Prüfkörper wasserdurchlässig sind und ihre Festigkeit behalten.
  • Eine Fläche von 100 m2 auf dem im Beispiel 1 beschriebenen Unterbau zeigt nach 1 Jahr keinerlei Rissbildung.
  • Beispiel 5
  • In die Estrichmischung aus Beispiel 1 werden 3 Gew.-% Glasfasern von ca. 25 bis 50 mm Länge und ca. 0,1 mm Dicke wie in Beispiel 1 eingemischt und aufgetragen. Die Mischung hat eine sehr gute Verarbeitbarkeit. Nach Aushärtung und Alterung misst man eine Biegezugfestigkeit von 11,8 N/mm2 und eine Druckfestigkeit von 8,2 N/ mm2. Bei der Beregnung zeigt sich, dass die Prüfkörper wasserdurchlässig sind und ihre Festigkeit behalten.
  • Eine Fläche von 100 m2 auf dem im Beispiel 1 beschriebenen Unterbau zeigt nach 1 Jahr keinerlei Rissbildung.
  • Beispiel 6
  • 96 Gew.-% Sand aus Beispiel 1 werden mit 3 Gew.-% des Bindemittels aus Beispiel 1 und 1 Gew.-% Sojaöl des Handels wie in Beispiel 1 vermischt und aufgetragen. Die Mischung hat eine sehr gute Verarbeitbarkeit. Nach Aushärtung und Alterung misst man eine Biegezugfestigkeit von 4,5 N/mm2 und eine Druckfestigkeit von 10,6 N/ mm2.
  • Bei der Beregnung zeigt sich, dass die Prüfkörper wasserdurchlässig sind und ihre Festigkeit behalten.
  • Eine Fläche von 100M2 auf dem im Beispiel 1 beschriebenen Unterbau zeigt nach 1 Jahr keinerlei Rissbildung.
  • Vergleichsbeispiel 3
  • 96 Gew.-% Sand aus Beispiel 1 werden mit 4 Gew.-% Bindemittel wie in Beispiel 1 vermischt und aufgetragen. Das Bindemittel besteht aus 95,9 Gew.-% eines flüssigen Polybutadiens (Doppelbindungsverteilung: 87% Vinyl und 13% trans-1,4, Viskosität 4750 mPa s/20°C) und 4,1 Gew.-% der Zusätze aus Beispiel 1.
  • Nach Aushärtung und Alterung beträgt die Biegezugfestigkeit nur ca. 0,5 N/mm2 und die Druckfestigkeit nur ca. 0,2 N/mm2. Bei der Prüfung stellt sich heraus, dass das Material innen noch weich geblieben ist.
  • Beispiel 7
  • 96 Gew.-% Sand aus Beispiel 1 werden mit 4 Gew.-% Bindemittel wie in Beispiel 1 vermischt und aufgetragen. Das Bindemittel besteht aus 95,9 Gew.-% eines flüssigen Polybutadiens (Doppelbindungsverteilung: 35% cis-1,4, 30% trans-1,4, 35% Vinyl, Viskosität 268 mPa s/20°C) und 4,1 Gew.-% der Zusätze aus Beispiel 1.
  • Die estrichartige Mischung lässt sich sehr gut verarbeiten. Nach Aushärtung und Alterung beträgt die Biegezugfestigkeit 2,6 N/mm2 und die Druckfestigkeit 6,2 N/mm2. Bei der Beregnung zeigt sich, dass die Prüfkörper wasserdurchlässig sind und ihre Festigkeit behalten.
  • Eine Fläche von 100 m2 auf dem im Beispiel 1 beschriebenen Unterbau zeigt nach 1 Jahr keinerlei Rissbildung.
  • Vergleichsbeispiel 4
  • 96Gew.-% Sand aus Beispiel 1, welcher 4,5 Gew.-% Wasser enthält (normal «trocken»), werden mit 4 Gew.-% Bindemittel aus Beispiel 1 wie in Beispiel 1 vermischt. Die Mischung fliesst schlammartig und ist nicht im Rahmen des erfindungsgemässen Verfahrens zu verarbeiten.

Claims (1)

  1. Verfahren zur Herstellung eines wasserdurchlässigen Spiel- und/oder Sportstättenbelages auf der Basis einer Mischung aus Sand und einem unter dem Einfluss von Luftsauerstoff vernetzenden und dadurch aushärtenden, flüssigen Homo-und/oder Copolymerisat des Butadiens-(1,3), dadurch gekennzeichnet, dass man
    1. getrocknete Sande und Kies mit
    1.1 einem Wassergehalt von maximal 1 Gew.- %, bezogen auf 1,
    1.2 einer maximalen Korngrösse von 10 mm und
    1.3 einem Anteil von maximal 12Gew.-%, Grobsand und Kies. einer Korngrösse von 2 bis 10 mm und mindestens 88% Feinsand und Feinstsand, jeweils bezogen auf 1, mit
    2. 3 bis 6 Gew.-%, bezogen auf 1, eines Zusatz- und Hilfsstoffes, wie Netzmittel, Sikkative, Hautverhütungsmittel und gegebenenfalls geruchsverbessernde Stoffe, enthaltenden flüssigen Homo- und/oder Copolymerisats des Butadiens-(1,3) mit
    2.1 einer maximalen Viskosität von 2000 mPa s/ 20°C und
    2.2 mindestens 30% cis-1,4-Doppelbindungen
    3. innig miteinander vermischt und
    4. die gegebenenfalls Farbpulver enthaltende Mischung auf einen wasserdurchlässigen, bituminös gebundenen und verdichteten Unterbau von mindestens 2 cm Dicke in bekannter Weise estrichartig aufträgt,
    5. gegebenenfalls glättet und
    6. aushärten lässt.
EP19800102773 1979-06-21 1980-05-20 Verfahren zur Herstellung eines wasserdurchlässigen Spiel- und/oder Sportstättenbelags Expired EP0021028B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2925005 1979-06-21
DE19792925005 DE2925005A1 (de) 1979-06-21 1979-06-21 Verfahren zur herstellung eines wasserdurchlaessigen spiel- und/oder sportstaettenbelags

Publications (3)

Publication Number Publication Date
EP0021028A2 EP0021028A2 (de) 1981-01-07
EP0021028A3 EP0021028A3 (en) 1981-02-25
EP0021028B1 true EP0021028B1 (de) 1983-09-21

Family

ID=6073753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19800102773 Expired EP0021028B1 (de) 1979-06-21 1980-05-20 Verfahren zur Herstellung eines wasserdurchlässigen Spiel- und/oder Sportstättenbelags

Country Status (2)

Country Link
EP (1) EP0021028B1 (de)
DE (1) DE2925005A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3109392A1 (de) * 1981-03-12 1982-10-21 Wolfgang 4790 Paderborn Neubauer "bodenbelag fuer sportstaetten und verfahren zu seiner herstellung"
DE3148561C2 (de) * 1981-12-08 1985-08-08 J.F. Adolff Ag, 7150 Backnang Sportfeld-Belagsbahn sowie Verfahren zum Belegen eines Sportfelds mit derartigen Belagsbahnen
GB9603057D0 (en) * 1995-11-07 1996-04-10 Castlefield Greenway Building Building material
DE10001814B4 (de) * 2000-01-18 2005-03-03 Wolfgang Bacher Bodenmischung für die Tretschicht eines Reitbodens nebst Verfahren zur Herstellung der Tretschicht eines Reitbodens
GB2415700A (en) * 2004-07-02 2006-01-04 Tarmac Recycling Ltd Building material derived from plastics
DE102005002468B4 (de) * 2005-01-18 2009-03-12 Stremmer Sand + Kies Gmbh Tretschicht für Reitplätze

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB233786A (en) * 1924-02-15 1925-05-15 Arthur Kelway Bamber Improvements in tennis courts, badminton courts, sports grounds and the like
DE1124862B (de) * 1956-04-09 1962-03-01 Bruno Weber & Sohn Belagsmasse fuer Spiel- und Sportplaetze
FR1266752A (fr) * 1959-08-03 1961-07-17 Exxon Research Engineering Co Production de mélanges thermoplastiques de particules solides liées par une ou des polyoléfines linéaires
FR1291636A (fr) * 1961-03-14 1962-04-27 Routiere Colas Soc Procédé pour le revêtement de terrains et revêtements ainsi obtenus
DE1301277B (de) * 1963-09-14 1969-08-14 Basf Ag Verfahren zum Verfestigen von Boeden
FR2099605B3 (de) * 1970-07-25 1974-04-05 Invernizzi Luigi
FR2132523B3 (de) * 1971-04-06 1974-02-15 Basse Georges
GB1373214A (en) * 1971-11-04 1974-11-06 Ici Ltd Composite materials
FR2188596A5 (en) * 1972-06-12 1974-01-18 Technosport Soil coverings for sports grounds - contg. polyurethane resin, gives resilient surfaces
DE2233197A1 (de) * 1972-07-06 1974-01-24 Wolfer & Goebel Kg Kunstharzmoertel zur ausbesserung von fahrbahnschaeden
IT1021122B (it) * 1973-09-06 1978-01-30 Schering Ag Masse di resina sintetica
DE2823375A1 (de) * 1978-05-29 1979-12-06 August Quakernack Strassen Und Verfahren zur herstellung eines sport- und spielflaechenbelages und belag

Also Published As

Publication number Publication date
DE2925005A1 (de) 1981-02-12
EP0021028A2 (de) 1981-01-07
EP0021028A3 (en) 1981-02-25

Similar Documents

Publication Publication Date Title
DE2549794C3 (de) Masse für die Herstellung von Decken und Belägen für Straßen und Flugplätze, Industriefußböden, Kanäle und Staudämme sowie Verfahren zu ihrer Herstellung
EP0021028B1 (de) Verfahren zur Herstellung eines wasserdurchlässigen Spiel- und/oder Sportstättenbelags
EP0556194B1 (de) Lufttrocknende bindemittel
DE3808250A1 (de) Strassenbelag aus einem asphaltmischgut mit einer eishemmenden komponente
DE2623556A1 (de) Halbstarrer belag fuer verkehrsflaechen und verfahren zu seiner herstellung
DE1594805C3 (de) Verwendung einer Belagmasse aus Zweikomponenten-Kunstharz, bituminösem Bindemittel und vernetztem Kautschuk für die Herstellung von Überzugsschichten hoher Rückfederung für Verkehrsflächen, Estriche und Industrieböden
DE645498C (de) Verfahren zur Erzeugung eines bituminoesen Gemisches
DE640931C (de) Verfahren zur Herstellung einer farbigen Belagmasse fuer Strassenbauzwecke
AT142916B (de) Verfahren zur Herstellung von Straßenbaumaterial.
CH479773A (de) Verfahren zur Herstellung einer bituminösen Belagmasse
DE1917501C3 (de) Pechzusammensetzungen
DE1303810C2 (de) Verfahren zur herstellung von bitumen und fuellerstaub mit einer teilchengroesse bis 90 mikron sowie gesteinsstoffe enthaltenden strassenbaumassen
EP0319702A2 (de) Belag für Tragschichten und Verfahren zur Herstellung desselben
DE804423C (de) Verfahren zur Herstellung hydraulisch-Bituminoes gebundener Baustoffe, insbesondere Strassenbaustoffe
DE811238C (de) Verfahren zur Herstellung gefaerbter bituminoeser Fahrbahndecken und Verkehrsmarkierungen
DE2321783A1 (de) Bitumenmaterial zur herstellung von strassendecken
DE615501C (de) Verfahren zum Herstellen einer bituminoesen Strassendecke, insbesondere Schotterdecke, aus Hartpech, Gesteinsmehl und Fluxoel
WO2003011976A2 (de) Asphalt für bodenbeläge
DE528718C (de) Verfahren zur Herstellung einer insbesondere zum Bekleiden von Strassendecken geeigneten Masse
DE1813626A1 (de) Oberflaechenbehandlung bituminoeser Verkehrsflaechen
DE609008C (de) Verfahren zum Herstellen von Strassenbaustoffen durch Vermischen von Asphalt- oder Teermassen als Bindemittel mit Steinsplitt o. dgl.
DE466567C (de) Verfahren zur Herstellung hartzaeher Kunstasphaltmassen fuer Strassenbauzwecke
DE609740C (de) Verfahren zur Herstellung von Bauteilen, wie Betonstrassendecken, Kunststeinen u. dgl.
AT131591B (de) Verfahren zur Erzeugung von Straßenbaumaterial.
AT137687B (de) Verfahren zur Herstellung bituminöser Straßenbaustoffe.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): BE FR GB IT LU NL

AK Designated contracting states

Designated state(s): BE FR GB IT LU NL

17P Request for examination filed

Effective date: 19810115

ITF It: translation for a ep patent filed

Owner name: SOCIETA' ITALIANA BREVETTI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE FR GB IT LU NL

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840503

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19840531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19840531

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840630

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19850531

BERE Be: lapsed

Owner name: CHEMISCHE WERKE HULS A.G.

Effective date: 19850520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19851201

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19860131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881118