EP0017149A1 - Verwendung eines flüssigen Mittels zur Reinigung harter Oberflächen - Google Patents

Verwendung eines flüssigen Mittels zur Reinigung harter Oberflächen Download PDF

Info

Publication number
EP0017149A1
EP0017149A1 EP80101581A EP80101581A EP0017149A1 EP 0017149 A1 EP0017149 A1 EP 0017149A1 EP 80101581 A EP80101581 A EP 80101581A EP 80101581 A EP80101581 A EP 80101581A EP 0017149 A1 EP0017149 A1 EP 0017149A1
Authority
EP
European Patent Office
Prior art keywords
water
weight
mixtures
polymers
soluble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80101581A
Other languages
English (en)
French (fr)
Other versions
EP0017149B1 (de
Inventor
Jürgen Dr. Wegener
Frank Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to AT80101581T priority Critical patent/ATE6268T1/de
Publication of EP0017149A1 publication Critical patent/EP0017149A1/de
Application granted granted Critical
Publication of EP0017149B1 publication Critical patent/EP0017149B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3773(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/722Ethers of polyoxyalkylene glycols having mixed oxyalkylene groups; Polyalkoxylated fatty alcohols or polyalkoxylated alkylaryl alcohols with mixed oxyalkylele groups
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/225Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3753Polyvinylalcohol; Ethers or esters thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3776Heterocyclic compounds, e.g. lactam

Definitions

  • customary liquid, so-called all-purpose cleaning agents consist of anionic and / or nonionic surfactants, preferably of the combination of both classes of surfactants, usually additionally combined with soluble inorganic or organic builders, such as sodium and potassium pyrophosphate, tripolyphosphate, and citrate , Nitrilotriacetate, ethylenediaminetetraacetate, and additions of solvents, primarily ethylene and / or butyl glycol, ethanol or isopropanol.
  • anionic and / or nonionic surfactants preferably of the combination of both classes of surfactants, usually additionally combined with soluble inorganic or organic builders, such as sodium and potassium pyrophosphate, tripolyphosphate, and citrate , Nitrilotriacetate, ethylenediaminetetraacetate, and additions of solvents, primarily ethylene and / or butyl glycol, ethanol or isopropanol.
  • DE-AS 10 51 440 discloses liquid cleaning agents which are used for all purposes, but especially for washing textiles, and in addition to anionic and nonionic surfactants to increase the dirt-carrying capacity, including small amounts of water-soluble cellulose or starch derivatives or else water-soluble or colloidally soluble polymers, such as polyvinylpyrrolidone.
  • AT-PS 278 216 discloses liquid cleaning agents which can also contain water-soluble high-molecular substances as dirt carriers.
  • examples include water-soluble salts of polyacrylic acid and also water-soluble derivatives of cellulose such as carboxymethyl cellulose. Mixtures of anionic and nonionic surfactants are also preferably used here.
  • liquid builder-containing cleaning agents for hard surfaces with small amounts of preferably anionic surfactants in combination with small amounts of a mixture of polyvinyl alcohol and / or polyvinyl pyrrolidone and polysaccharide salt are known, which should also have an improved dirt removal capacity.
  • liquid cleaning agents for hard surfaces which, in addition to a combination of anionic and very specific nonionic surfactants, can also contain cleaning-enhancing additives in water-soluble high-molecular substances, such as polyvinyl alcohol, polyvinylpyrrolidone and carboxymethyl cellulose.
  • Addition products of 4-40, preferably 4-20 moles of ethylene oxide or ethylene oxide and propylene oxide with 1 mole of fatty alcohols, alkanediols or their C 1 -C 4 -monoalkyl ethers, alkylphenols, fatty acids, fatty amines, fatty acid amides or alkanesulfonamides can be used as nonionic surfactants.
  • polyglycol ethers with 1-4 ethylene glycol ether residues in the molecule that are not or not completely water-soluble are also of interest, in particular if they are used together with water-soluble nonionic surfactants.
  • nonionic surfactants are the readily water-soluble addition products of about 20-100 ethylene glycol ether groups and about 10-65 propylene glycol ether groups of ethylene oxide with polypropylene oxide, alkylenediamine polypropylene glycol and alkylpolypropylene glycols with 1-10 carbon atoms in the alkyl chain, in which the polypropylene glycol chain acts as a hydrophobic agent Rest acts.
  • the average molecular weight of these nonionic surfactants is preferably less than 5000.
  • Nonionic surfactants of the amine oxide type can also be used. Typical representatives are, for example, the compounds N-dodecyl-N, N-dimethylamine oxide, N-tetradecyl-N, N-dihydroxyethylamine oxide, N-hexadecyl-N, N-bis (2,3-dihydroxypropyl) amine oxide.
  • Fatty acid alkanolamides are also useful nonionic surfactants.
  • the water-soluble nonionic polymers include the polyethylene glycols, the polyvinyl alcohols and the polyvinyl pyrrolidones.
  • Cellulose ethers, polysaccharides, proteins and polyacrylamides are water-soluble, weakly anionic polymers, depending on the degree of substitution or conversion. These are understood to mean those polymers whose charge density is greater than O, but not greater than 0.5, preferably greater than O, but not greater than 0.2 and in particular greater than O, but not greater than 0.01.
  • the definition for the charge density corresponds to the following formula:
  • the polyethylene glycols mentioned are prepared in a known manner by subjecting ethylene glycols to a polycondensation process. They can also be considered as condensation polymers of ethylene oxide with ethylene glycol or water. They generally have the formula HO (-CH 2 -CH 2 -O-) n H, the degree of polymerization n in the case of the polyethylene glycols used according to the invention varying between 4,800 and 64,600. Such polymers are also commercially available and are marketed by the company, Union Carbon Carbide Corporation (UCC) under the name "P OLYO X ®".
  • UCC Union Carbon Carbide Corporation
  • Polyvinyl alcohols can be produced by hydrolysis of polyvinyl acetate. They have the general formula (-CH 2 -CH (OH) -) n and molecular weights of about 13,400 to 250,000, preferably 80,000 to 100,000. They can still contain small amounts of acetyl radicals from the hydrolysis reaction, but these should be less than 40, preferably less than 15 and in particular less than 2 and preferably 0%. Polyvinyl alcohols are traded, for example, by Wacker-Chemie under the name "Polyviol®” or by Nippon Gohsei under the name "Gohsenole®”.
  • Polyvinylpyrrolidones of the general formula are also commercially available polymers. They are marketed by the company BASF, among others, under the name "Luviskole®”. Their degree of polymerization for use according to the invention is between 100 and 9000, preferably between 350 and 7500, the molecular weights between approximately 10,000 and 1,000,000, preferably between approximately 30,000 and 850,000.
  • the cellulose ethers with a charge density greater than O, but not greater than 0.5, preferably greater than O, but not greater than 0.2 include, in particular, those whose 2% aqueous solution has a viscosity of> 50 at 20 ° C. m Pa.S, preferably of> 100 m Pa.S.
  • These include the methylcelluloses (MC), methylhydrocyethylcelluloses (MHEC), methylhydroxypropylcelluloses (MHPC), carboxymethylmethylcellulose (CMMC) and hydroxyethylcelluloses (HEC), also methylhydroxybutylcellulose (MHBC), which are traded by the Henkel company under the type collective name "Culminal®". as they are traded by Dow Chemicals under the brand name Methocel®.
  • Polysaccharides are particularly suitable in derivative form, for example as starch ethers (for example Solvitose® from W.A. Scholtens, Holland), the charge density of 0.5 to ⁇ 0.2 also being decisive here.
  • Alginates (“Algipon®” from Henkel) also belong to this class of polymers.
  • the proteins which can be used according to the invention are, for example, sodium caseinate and gelatin, both of which are sold, inter alia, by the company Milac, Hamburg.
  • Polyacrylamides ie polymers and copolymers of acrylamide with the general formula (-CH 2 -CH (CONH 2 ) -) n with molecular weights of 300,000 to 6,000,000, preferably 500,000 to 2,000,000, are marketed by Schuchardt, among others and are also suitable for use in accordance with the invention.
  • cleaning agents claimed can also be observed if they are used in the form of their aqueous solutions without any further addition. However, they are advantageously used together with other constituents customary for such cleaning agents, as indicated below by way of example.
  • alkaline organic or inorganic compounds in particular inorganic or organic complexing agents, are used as framework substances in their entirety, which are preferably present in the form of their alkali metal or amine salts, in particular the potassium salts.
  • the framework substances also include the alkali hydroxides, of which the potassium hydroxide is preferably used.
  • the alkaline polyphosphates in particular the tripolyphosphates and the pyrophosphates, are particularly suitable as inorganic complex-forming framework substances. They can be replaced in whole or in part by organic complexing agents. Further usable according to the invention.
  • Inorganic builders are, for example, the bicarbonates, carbonates, borates, silicates or orthophosphates of the alkalis.
  • the organic complexing agents of the aminopolycarboxylic acid type include, among others, nitrilotriacetic acid, ethylenediaminetetraacetic acid, N-hydroxyethyl-ethylenediamine triacetic acid, polyalkylene-polyamine-N-polycarboxylic acids.
  • di- and polyphosphonic acids examples include: methylene diphosphonic acid, 1-hydroxyethane-1,1-diphosphonic acid, propane-1,2,3-triphosphonic acid, butane-1,2,3,4-tetraphosphonic acid, polyvinylphosphonic acid, copolymers of vinylphosphonic acid and Acrylic acid, ethane-1,2-dicarboxy-1,2-diphosphonic acid, ethane-1,2-dicarboxy-1,2-dihydroxy-di-phosphonic acid, phosphonosuccinic acid, 1-aminoethane-1,1-diphosphonic acid, aminotri- (methylenephos - Phonic acid), methylamino- or ethylamino-di- (methylenephosphonic acid), and ethylenediamine-tetra- (methylenephosphonic acid).
  • N- or P-free polycarboxylic acids have recently been proposed as builders in the literature, many, if not exclusively, of polymers containing carboxyl groups.
  • a large number of these polycarboxylic acids have a complexing ability for calcium. These include, for example, citric acid, tartaric acid, 'benzenehexacarboxylic, tetrahydrofurantetracarboxylic etc.
  • Suitable acidic substances are customary inorganic or organic acids or acidic salts, such as, for example, hydrochloric acid, sulfuric acid, bisulfates or alkalis, aminosulfonic acid, phosphoric acid or other acids of phosphorus, in particular the anhydrous acids of phosphorus or their acidic salts or their acid-reacting solid compounds Urea or other lower carboxamides, partial amides of phosphoric acid. or anhydrous phosphoric acid, citric acid, tartaric acid, lactic acid and the like.
  • alkaline builders If the content of alkaline builders is not sufficient to regulate the pH, organic or inorganic compounds such as alkanolamides, namely mono-, di- or triethanolamine or ammonia, can also be added.
  • alkanolamides namely mono-, di- or triethanolamine or ammonia
  • Suitable water-soluble or water-emulsifiable organic solvents are ketones, such as acetone, methyl ethyl ketone and aliphatic, cycloaliphatic, aromatic and chlorinated hydrocarbons, and also the terpene alcohols.
  • water-soluble organic solvents can be used, in particular those with boiling points above 75 ° C., such as, for example, the ethers from identical or different polyhydric alcohols or the partial ethers from polyhydric and monohydric alcohols.
  • di- or triethylene glycol polyglycerols include, for example, di- or triethylene glycol polyglycerols and the partial ethers of ethylene glycol, propylene glycol, butyl glycol or glycerol with aliphatic monohydric alcohols containing 1-4 carbon atoms in the molecule. Isopropanol, butyl glycol, acetone or mixtures of these solvents are preferred.
  • solubilizers can be incorporated, which include, in addition to the water-soluble organic solvents such as, in particular, low molecular weight aliphatic hydrotropic substances of the lower aryl sulfonate type, for example toluene, xylene or cumene sulfonate. You can their sodium and / or potassium and / or alkylolamaine vorlie- g s in the form ..
  • the claimed agents can contain additives of colorants and fragrances, preservatives and, if desired, antimicrobial agents of any kind.
  • Suitable antimicrobial agents to be used are those compounds which are stable and effective in the liquid agents according to the invention. These are phenolic compounds of the type of the halogenated phenols with 1-5 halogen substituents, in particular chlorinated phenols; Alkyl, cycloalkyl, Aralkyl and phenylphenols with 1 to 12 carbon atoms in the alkyl radicals and with 1 to 4 halogen substituents, in particular chlorine and bromine in the molecule; Alkylene bisphenols, in particular derivatives substituted by 2-6 halogen atoms and optionally lower alkyl or trifluoromethyl groups, with an alkylene bridge member having 1-10 carbon atoms; Hydroxybenzoic acids or their esters and amides, especially anilides, which can be substituted in the benzoic acid and / or aniline residue, in particular by 2 or 3 halogen atoms and / or trifluoromethyl groups; O rthophenoxyphenols, which can be substituted by 1
  • Particularly preferred antimicrobial agents of the phenyl type are, for example, O-phenylphenol, 2-phenylphenol, 2-hydroxy-2 ', 4,4'-trichlorodiphenyl ether, 3,4', 5-tribromosalicylanilide and 3,3 ', 5,5 ', 6,6'-hexachloro-2,2'-dihydroxydiphenylmethane.
  • Other useful antimicrobial agents are the lower alcohols or diols with 3 to 5 carbon atoms substituted by both bromine and the nitro group, such as the compounds 2-bromo-2-nitropropanediol-1,3,1-bromo-1-nitro-3 , 3,3-trichloropropanol-2, 2-bromo-2-nitro-butanol-1 ..
  • bis-diguanides such as, for example, 1,6-bis- (p-chlorophenyldiguanido) hexane in the form of the hydrochloride, acetate or gluconate, and also N, N'-disubstituted 2-thioenetrahydro-1,3 , 5-thiadizines such as 3,5-dimethyl, 3,5-diallyl, 3-benzyl-5-methyl and especially 3-benzyl-5-carboxymethyl-tetrahydro-1,3,5-thiadiazine as additional antimicrobial agents.
  • bis-diguanides such as, for example, 1,6-bis- (p-chlorophenyldiguanido) hexane in the form of the hydrochloride, acetate or gluconate
  • N, N'-disubstituted 2-thioenetrahydro-1,3 , 5-thiadizines such as 3,5-dimethyl, 3,5-diallyl, 3-benzyl-5-
  • Formaldehyde-amino alcohol condensation products can preferably be used.
  • the products are prepared by reacting an aqueous solution of formaldehyde with amino alcohols, for example 2-aminoethanol, 1-amino-2-propanol, 2-amino-iso-butanol, 2 (2'-aminoethyl) aminoethanol.
  • amino alcohols for example 2-aminoethanol, 1-amino-2-propanol, 2-amino-iso-butanol, 2 (2'-aminoethyl) aminoethanol.
  • the formulation to be tested for its cleaning ability was applied to an artificially soiled white PVC plastic surface.
  • a mixture of carbon black, machine oil, a triglyceride of saturated fatty acids and low-boiling aliphatic hydrocarbons was used as artificial soiling.
  • the test area of 24 x 4.6 cm was evenly coated with 0.1 g of the artificial soiling in the central part to about 30 cm 2 and stored for one hour at room temperature before the start of the test. Then a plastic sponge was impregnated with 12 ml of the cleaning agent solution to be tested and moved mechanically back and forth on the test surface, the sponge covering both the soiled central area and the non-soiled edge zones. After 10 wiping movements under precisely defined contact pressure conditions of 2 kp, the cleaned test area was rinsed with 400 ml tap water and the loosened dirt was thereby removed. The cleaning ability, i.e. the degree of whiteness of the plastic surface cleaned in this way, was measured with a photoelectric reflection measuring device LF 90 (Dr. B.
  • a 2-year-old, naturally soiled truck tarpaulin was used as the test area, which was divided into 20 x 10 cm pieces and was independently assessed by 3 test persons by treating it evenly with a product-soaked sponge, then rinsing the area under running water and visual grading (Grade 1: residual pollution corresponds to the effect of water, Grade 3: complete dirt removal).
  • nonionic or weakly ionic polymers to a disinfectant cleaner formulation of the composition has a particularly favorable effect Remainder to 100%: polymer additive and demineralized water, since in such a formulation the use of anionic surfactants is prohibited because of the known incompatibility with quaternary ammonium compounds and the cleaning power of such products is therefore generally relatively low.
  • Table 5 show the cleaning ability against greasy soiling:
  • the disinfectant effect is not affected by the addition of polymer.
  • Example 4 an aqueous solution of worked.
  • numerous advantageous all-purpose cleaning agents can be produced.

Abstract

Das Reinigungsmittel enthält: a) 0,001 - 35. vorzugsweise 0,01 - 2 Gewichtsprozent eines nichtionischen Tensids, zum Beispiel Oxoalkohol und 7 Mol EO; b) 0,005 - 15, vorzugsweise 0,01 - 2 Gewichtsprozent eines wasserlöslichen nichtionischen, schwach anionischen oder kationischen Polymers aus der Gruppe der Polyethylenglycole, Polyvinylalkohole, Polyvinylpyrrolidone, Celluloseether, Polysaccharide, Proteine und Polyacrylamide mit mittleren Molgewichten von 5000 bis 10 000 000, vorzugsweise 20 000 bis 2 000 000 oder Gemische davon; c) 0,01 - 20, vorzugsweise 0,1 - 10 Gewichtsprozent alkalisch reagierende anorganische oder organische Gerüstsubstanzen; d) 0 - 40, vorzugsweise 0,5 - 15 Gewichtsprozent eines wasserlöslichen oder in Wasser emulgierbaren organischen Lösungsmittels, bevorzugt Isopropylalkohol, Butylglycol, Aceton oder Gemische davon; e) 0 - 20, vorzugsweise 0,5 - 2 Gewichtsprozent anorganische Neutralsalze, Harnstoff, Farbstoffe, Duftstoffe, Konservierungsmittel sowie antimikrobiell wirksame Mittel, bevorzugt quartäre Ammoniumverbindungen, zum Beispiel Benzylalkyldimethylammoniumchlorid und/oder Aldehyd-Kondensationsprodukte. Anwendung als Allzweckreinigungsmittel für Haushalt und Gewerbebetriebe. Die Reinigungswirkung der nichtionischen Tenside wird durch den Zusatz der organischen Polymeren synergistisch gesteigert, so daß sich die sonst übliche Mitverwendung anionischer Tenside, die mit quartäran Ammoniumverbindungen unverträglich sind, erübrigt.

Description

  • Moderne Fertigbauweisen, pflegeleichte Küchen-, Badezimmer- und Kellereinrichtungen, kunststoffurnierte Möbel, die zunehmende Ausstattung der Haushalte mit Tiefkühltruhen, Kühlschränken, Wasch- und Geschirrspülmaschinen, d.h. Geräten mit emaillierten oder kunststoffbeschichteten großflächigen Metallwänden haben die Nachfrage nach flüssigen Allzweckreinigungsmitteln für Haushaltszwecke in den letzten Jahren stark steigen lassen. Aber auch in Gewerbebetrieben hat die Anwendung derartiger Mittel zunehmend an Bedeutung gewonnen. Dabei wird eine möglichst einfache und problemlose Anwendbarkeit gefordert. Meist werden die Mittel als vorzugsweise wäßrige Konzentrate in den Handel gebracht. Sie lassen sich verdünnt oder unverdünnt auf ein feuchtes saugfähiges Tuch beliebiger Beschaffenheit oder einen Schwamm aufbringen, mit dem dann die harten Oberflächen aus Metall, lackiertem Holz, Kunststoff, keramischen Erzeugnissen wie Porzellan, Fliesen, Kacheln, Glas und dergleichen abgewischt werden, wodurch Staub, Fettschmutz und Flecken entfernt werden. Dabei wird gewünscht, daß diese Oberflächenbehandlung keine Reinigungsmittelflecken und -streifen zurückläßt und keine Nachbehandlung mit einem mit klarem Wasser getränkten, feuchten Tuch erfordert.
  • übliche flüssige, sogenannte Allzweckreinigungsmittel be- 'stehen bekanntlich aus anionischen und/oder nichtionischen Tensiden, vorzugsweise aus der Kombination beider Tensidklassen, meist zusätzlich kombiniert mit löslichen anorganischen oder organischen Gerüstsubstanzen, wie zum Beispiel Natrium- und Kalium-Pyrophosphat, -Tripolyphosphat, -Citrat, -Nitrilotriacetat, Ethylendiamintetraacetat, sowie Zusätzen von Lösungsmitteln, vornehmlich Ethylen-und/oder Butylglycol, Ethanol oder Isopropanol.
  • Ihre Reinigungswirkung gegen ölige und fetthaltige Anschmutzungen verdanken sie den anionischen und/oder nichtionischen Tensiden, die häufig noch durch Lösungsmittelzusatz unterstützt werden; gegen Pigmentschmutz wirkt der zumeist hohe Anteil an Gerüstsubstanzen.
  • Vom Markt her und aus der Literatur sind bereits zahlreiche derartige Reinigungsmittel bekannt. Darüber hinaus ist auch aus der Patentliteratur bekannt, diesen Reinigungsmitteln zur Verstärkung ihrer Reinigungskraft verschiedene Polymere zuzusetzen.
  • Aus der DE-AS 10 51 440 sind flüssige Reinigungsmittel bekannt, die für alle Zwecke, insbesondere jedoch zum Waschen von Textilien, eingesetzt werden und neben anionischen und nichtionischen Tensiden zur Steigerung des Schmutztragevermögens unter anderem kleine Mengen an wasserlöslichen Cellulose- oder Stärkederivaten oder auch an wasserlöslichen oder kolloidal löslichen Polymerisaten, wie Polyvinylpyrrolidon, enthalten können.
  • Aus der AT-PS 278 216 sind flüssige Reinigungsmittel bekannt, die ebenfalls wasserlösliche hochmolekulare Substanzen als Schmutzträger enthalten können. Als Beispiele werden wasserlösliche Salze der Polyacrylsäure und auch wasserlösliche Derivate der Cellulose wie Carboxymethylcellulose genannt. Auch hier werden bevorzugt Gemische anionischer und nichtionischer Tenside eingesetzt.
  • Aus der US-PS 3 591 509 sind flüssige Allzweckreiniger bekannt, die neben wasserlöslichen synthetischen oberflächenaktiven Substanzen, organischen Lösungsmitteln und gegebenenfalls wasserlöslichen Gerüstsubstanzen eine geringe Menge einer speziellen wasserlöslichen Carboxymethylcellulose, nämlich einer solchen mit einem Substitutionsgrad von etwa 1 bis etwa 2 und einem Polymerisationsgrad von etwa 1000 bis etwa 3000 sowie Wasser enthalten. Dieses Produkt wirkt verdickend und soll die Haftfestigkeit der Reinigungsmittel auf den schmutzigen Flächen verbessern.
  • Aus der DE-OS 26 10 995 sind flüssige gerüststoffhaltige Reinigungsmittel für harte Oberflächen mit geringen Mengen an vorzugsweise anionischen Tensiden in Kombination mit geringen Mengen eines Gemisches aus Polyvinylalkohol und/ oder Polyvinylpyrrolidon und Polysaccharidsalz bekannt, die ebenfalls ein verbessertes Schmutzentfernungsvermögen aufweisen sollen.
  • .Schließlich sind noch aus der DE-AS 27 09 690 flüssige Reinigungsmittel für harte Oberflächen bekannt, die neben einer Kombination aus anionischen und ganz bestimmten nichtionischen Tensiden ebenfalls reinigungsverstärkende Zusätze an wasserlöslichen hochmolekularen Substanzen, wie Polyvinylalkohol, Polyvinylpyrrolidon und Carboxymethylcellulose, enthalten können.
  • Keinem der genannten Hinweise auf den Stand der Technik ist zu entnehmen, daß geringe Mengen zahlreicher verschiedener organischer Polymerer, die jedoch gemeinsam bestimmte, weiter unten angegebene Bedingungen erfüllen, geeignet sind, die Reinigungswirksamkeit ebenfalls geringer Mengen nichtionischer Tenside in Allzweckreinigungsmitteln synergistisch zu steigern, so daß nicht nur die Mitverwendung anionischer Tenside überflüssig wird, sondern sogar eine bessere Reinigungswirkung erzielt wird, als mit entsprechenden bekannten polymerhaltigen Kombinationen aus nichtionischen und anionischen Tensiden.
  • Die vorliegende Erfindung betrifft daher flüssige Reinigungsmittel für harte Oberflächen aus wäßrigen oder wäßrigen, lösungsmittelhaltigen Lösungen nichtionischer Tenside und wasserlöslicher Polymerer, dadurch gekennzeichnet, daß sie entmineralisiertes Wasser und
    • a) 0,001 bis 35, vorzugsweise-0,1 bis 10 Gewichtsprozent eines nichtionischen Tensids,
    • b) 0,005 bis 15, vorzugsweise 0,01 bis 2 Gewichtsprozent eines wasserlöslichen nicht- ; ionischen, schwach anionischen oder ; kationischen Polymers aus der Gruppe der Polyethylenglycole, Polyvinylalkohole, Polyvinylpyrrolidone, Celluloseether, Polysaccharide, Proteine und Polyacrylamide mit mittleren Molgewichten von 5000 bis 10 000 000, vorzugsweise von 20 000 bis 2 000 000 oder Gemische dieser Polymeren,
    • c) 0,01 bis 20, vorzugsweise 0,1 bis 10 Gewichts- prozent alkalisch reagierende anorganische oder organische Gerüstsubstanzen,
    • j d) O bis 40, vorzugsweise 0,5 bis 15 Gewichtsprozent eines wasserlöslichen oder in Wasser emulgierbaren organischen Lösungsmittels und
    • e) O bis 20, vorzugsweise 0,5 bis 2 Gewichtsprozent anorganische Neutralsalze, Harnstoff, Farbstoffe, Duftstoffe, Konservierungsmittel sowie antimikrobiell wirksame Mittel enthalten.
  • Als nichtionische Tenside sind Anlagerungsprodukte von 4 - 40, vorzugsweise 4 - 20 Mol Ethylenoxid oder Ethylenoxid und Propylenoxid an 1 Mol Fettalkohole, Alkandiole beziehungsweise deren C1-C4-Monoalkylether, Alkylphenole, Fettsäuren, Fettamine, Fettsäureamide oder Alkansulfonamide verwendbar. Besonders wichtig sind die Anlagerungsprodukte von 5 - 16 Mol Ethylenoxid oder Ethylen- und Propylenoxid an Cocos- oder Talgfettalkohole, an Oleylalkohol oder an sekundäre Alkohole mit 8 - 18, vorzugsweise 12 - 18 C-Atomen, sowie an Mono- oder Dialkylphenole mit 6 - 14 C-Atomen in den Alkylresten. Neben diesen wasserlöslichen Nonionics sind aber auch nicht, beziehungsweise nicht vollständig wasserlösliche Polyglycolether mit 1 - 4 Ethylenglycoletherresten im Molekül von Interesse, insbesondere, wenn sie zusammen mit wasserlöslichen nichtionischen Tensiden eingesetzt werden.
  • Weiterhin sind als nichtionische Tenside die leicht wasserlöslichen, etwa 20 - 100 Ethylenglycolethergruppen und etwa 10 - 65 Propylenglycolethergruppen enthaltenden Anlagerungsprodukte von Ethylenoxid an Polypropylenoxid, Alkylendiaminpoly-propylenglycol und Alkylpolypropylenglycole mit 1 - 10 C-Atomen in der Alkylkette brauchbar, in denen die Polypropylenglycolkette als hydrophober Rest fungiert. Das mittlere Molgewicht dieser nichtionischen Tenside liegt vorzugsweise unter 5000.
  • Auch nichtionische Tenside vom Typ der Aminoxide sind verwendbar. Typische Vertreter sind beispielsweise die Verbindungen N-Dodecyl-N,N-dimethylaminoxid, N-Tetradecyl-N,N-dihydroxyethylaminoxid, N-Hexadecyl-N,N-bis-(2,3-dihydroxypropyl)-aminoxid.
  • Fettsäurealkanolamide sind ebenfalls brauchbare nichtionische Tenside.
  • Zu den wasserlöslichen nichtionischen Polymeren gehören die Polyethylenglycole, die Polyvinylalkohole und die Polyvinylpyrrolidone.
  • Celluloseether, Polysaccharide, Proteine und Polyacrylamide stellen dagegen je nach Substitutions- beziehungsweise Umsetzungsgrad wasserlösliche sogenannte schwach anionische Polymere dar. Darunter versteht man solche Polymere, deren Ladungsdichte größer als O, aber nicht größer als 0,5, vorzugsweise größer als O, aber nicht größer als 0,2 und insbesondere größer als O, aber nicht größer als 0,01 ist. Die Definition für die Ladungsdichte entspricht dabei folgender Formel:
    Figure imgb0001
  • Die genannten Polyethylenglycole werden in bekannter Weise dadurch hergestellt, daß man Ethylenglycole einem Polykondensationsprozeß unterwirft. Man kann sie auch als Kondensationspolymere des Ethylenoxids mit Ethylenglycol oder Wasser auffassen. Sie besitzen im allgemeinen die Formel HO(-CH2-CH2-O-)nH, wobei der Polymerisationsgrad n im Falle der erfindungsgemäß eingesetzten Polyethylenglycole zwischen 4.800 und 64.600 variieren kann. Derartige Polymere sind auch im Handel erhältlich und werden von der Firma, Union Carbon Carbide Corporation (UCC) unter dem Namen "POLYOX ® " vertrieben.
  • Polyvinylalkohole können durch Hydrolyse von Polyvinylacetat hergestellt werden. Sie besitzen die allgemeine Formel (-CH2-CH(OH)-)n und Molgewichte von etwa 13 400 bis 250 000, vorzugsweise 80 000 bis 100 000. Sie können von der Hydrolysereaktion noch geringe Anteile an Acetylresten enthalten, diese sollen jedoch weniger als 40, vorzugsweise weniger als 15 und insbesondere weniger als 2 und möglichst O % betragen. Polyvinylalkohole werden beispielsweise von der Firma Wacker-Chemie unter der Bezeichnung "Polyviol®" oder von der Firma Nippon Gohsei unter der Bezeichnung "Gohsenole®" gehandelt.
  • i Polyvinylpyrrolidone der allgemeinen Formel
    Figure imgb0002
    sind ebenfalls handelsübliche Polymere. Sie werden unter anderem von der Firma BASF unter dem Namen "Luviskole®" vertrieben. Ihr Polymerisationsgrad liegt für den erfin- .dungsgemäßen Einsatz zwischen 100 und 9000, vorzugsweise zwischen 350 und 7500, die Molgewichte zwischen etwa 10 000 und 1 000 000, vorzugsweise zwischen etwa 30 000 und 850 000.
  • Zu den Celluloseethern mit einer Ladungsdichte größer als O, aber nicht größer als 0,5, vorzugsweise größer als O, aber nicht größer als 0,2 gehören vor allem solche, deren 2-prozentige wäßrige Lösung bei 20 °C eine Viskosität von >50 m Pa.S, vorzugsweise von>100 m Pa.S aufweist. Hierzu gehören die von der Firma Henkel unter der Typensammel- bezeichnung "Culminal®" gehandelten Methylcellulosen (MC), Methylhydrocyethylcellulosen (MHEC), Methylhydroxypropylcellulosen (MHPC), Carboxymethylmethylcellulose (CMMC) und Hydroxyethylcellulosen (HEC), außerdem Methylhydroxybutylcellulose (MHBC) und Hydroxybutylcellulose, wie sie von der Dow Chemicals unter dem Markennamen Methocel® gehandelt werden.
  • Polysaccharide kommen insbesondere in Derivatform zum Beispiel als Stärkeether (zum Beispiel Solvitose®der Firma W.A. Scholtens, Holland) in Betracht, wobei auch hier die Ladungsdichte von 0,5 bis <0,2 ausschlaggebend ist. Ebenso gehören Alginate ("Algipon®" der Firma Henkel) zu dieser Polymerenklasse.
  • Bei den erfindungsgemäß einsetzbaren Proteinen handelt es sich beispielsweise um Natriumcaseinat und Gelatine, die beide unter anderem von der Firma Milac, Hamburg vertrieben werden.
  • Polyacrylamide, d.h. Polymere und Copolymere des Acrylamids mit der allgemeinen Formel (-CH2-CH(CONH2)-)n mit Molgewichten von 300 000 bis 6 000 000, vorzugsweise 500 000 bis 2 000 000 werden unter anderem von der Firma Schuchardt vertrieben und eignen sich ebenfalls für den erfindungsgemäßen Einsatz.
  • Die vorteilhaften Eigenschaften der beanspruchten Reinigungsmittel sind zwar auch dann zu beobachten, wenn sie in Form ihrer wäßrigen Lösungen ohne jeden weiteren Zusatz verwendet werden. Man verwendet sie jedoch vorteilhaft zusammen mit sonstigen für derartige Reinigungsmittel üblichen Bestandteilen wie nachfolgend beispielhaft angegeben.
  • Für die erfindungsgemäßen flüssigen Reinigungsmittel werden als Gerüstsubstanzen in ihrer Gesamtheit alkalisch reagierende anorganische oder organische Verbindungen, insbesondere anorganische oder organische Komplexbildner verwendet, die bevorzugt in Form ihrer Alkali- oder Aminsalze, insbesondere der Kaliumsalze vorliegen. Zu den Gerüstsubstanzen zählen auch die Alkalihydroxide, von denen bevorzugt das Kaliumhydroxid eingesetzt wird.
  • Als anorganische komplexbildende Gerüstsubstanzen eignen sich besonders die alkalisch reagierenden Polyphosphate, insbesondere die Tripolyphosphate sowie die Pyrophosphate. Sie können ganz oder teilweise durch organische Komplexbildner ersetzt werden. Weitere erfindungsgemäß brauchbare . anorganische Gerüstsubstanzen sind beispielsweise die Bicarbonate, Carbonate, Borate, Silikate oder Orthophosphate der Alkalien.
  • Zu den organischen Komplexbildnern vom Typ der Aminopolycarbonsäuren gehören unter anderem die Nitrilotriessigsäure, Ethylendiamintetraessigsäure, N-Hydroxyethyl-ethylendiamintriessigsäure, Polyalkylen-polyamin-N-polycarbonsäuren. Als Beispiele für Di- und Polyphosphonsäuren seien genannt: Methylendiphosphonsäure, 1-Hydroxyethan-1,1-diphosphonsäure, Propan-1,2,3-triphosphonsäure, Butan-1,2,3,4-tetraphosphonsäure, Polyvinylphosphonsäure, Mischpolymerisate aus Vinylphosphonsäure und Acrylsäure, Ethan-1,2-dicarboxy-1,2-diphosphonsäure, Ethan-1,2-dicarboxy-1,2-dihydroxy-di-phosphonsäure, Phosphonobernsteinsäure, 1-Aminoethan-1,1-diphosphonsäure, Aminotri-(methylenphos- phonsäure), Methylamino- oder Ethylamino-di-(methylenphos- phonsäure), sowie Ethylendiamin-tetra-(methylenphosphon- säure).
  • In jüngerer Zeit sind in der Literatur verschiedenste, meist N- oder P-freie Polycarbonsäuren als Gerüstsubstanzen vorgeschlagen worden, wobei es sich vielfach, wenn auch nicht ausschließlich, um Carboxylgruppen enthaltende Polymerisate handelt. Eine große Zahl dieser Polycarbonsäuren besitzen ein Komplexbildungsvermögen für Calcium. Hierzu gehören zum Beispiel Citronensäure, Weinsäure, 'Benzolhexacarbonsäure, Tetrahydrofurantetracarbonsäure usw.
  • Da Allzweckreinigungsmittel für den Haushalt im allgemeinen fast neutral bis schwach alkalisch eingestellt sind, d.h. ihre wäßrigen Gebrauchslösungen bei Anwendungskonzentrationen von 2 - 20, vorzugsweise von 5 - 15 g/1 Wasser oder wäßriger Lösung einen pH-Wert im Bereich von 7,0 bis 10,5, vorzugsweise 7,5 - 9,5, besitzen, kann zur Regulierung des pH-Wertes ein Zusatz saurer oder alkalischer Komponenten erforderlich sein.
  • Als saure Substanzen eignen sich übliche anorganische oder organische Säuren oder saure Salze, wie beispielsweise Salzsäure, Schwefelsäure, Bisulfate oder Alkalien, Aminosulfonsäure, Phosphorsäure oder andere Säuren des Phosphors, insbesondere die anhydrischen Säuren des Phosphors beziehungsweise deren saure Salze oder deren sauer reagierende feste Verbindungen mit Harnstoff oder anderen niederen Carbonsäureamiden, Teilamide der Phosphorsäure . oder der anhydrischen Phosphorsäure, Citronensäure, Weinsäure, Milchsäure und dergleichen.
  • Sofern der Gehalt an alkalischen Gerüstsubstanzen nicht zur Regulierung des pH-Wertes ausreicht, können auch noch alkalisch wirkende organische oder anorganische Verbindungen wie die Alkanolamide, nämlich Mono-, Di- oder Triethanolamin oder Ammoniak zugesetzt werden.
  • Als wasserlösliche oder mit Wasser emulgierbare organische Lösungsmittel kommen Ketone, wie Aceton, Methylethylketon sowie aliphatische, cycloaliphatische, aromatische und chlorierte Kohlenwasserstoffe, ferner die Terpenalkohole in Betracht. Weiterhin sind wasserlösliche organische Lösungsmittel verwendbar, insbesondere solche mit Siedepunkten oberhalb von 75 °C wie beispielsweise die Ether aus gleich- oder verschiedenartigen mehrwertigen Alkoholen oder die Teilether aus mehrwertigen und einwertigen Alkoholen. Hierzu gehören beispielsweise Di- oder Triethylenglycolpolyglycerine sowie die Teilether aus Ethylenglycol, Propylenglycol, Butylglycol oder Glycerin mit aliphatischen, 1 - 4.Kohlenstoffatome im Molekül enthaltenden einwertigen Alkoholen. Bevorzugt werden Isopropanol, Butylglycol, Aceton oder Gemische dieser Lösungsmittel.
  • Außerdem kann man, falls erforderlich, an sich bekannte Lösungsvermittler einarbeiten, wozu außer den wasserlöslichen organischen Lösungsmitteln wie insbesondere niedermolekularen aliphatischen hydrotropen Stoffe vom Typ der niederen Arylsulfonate beispielsweise Toluol-, Xylol- oder Cumolsulfonat gehören. Sie können auch in Form ihrer Natrium- und/oder Kalium- und/oder Alkylolaminsalze vorlie- gen..
  • Zur Regulierung der Viskosität empfiehlt sich gegebenenfalls zusätzlich zu den erfindungsgemäß eingesetzten Polymeren nach b) ein weiterer Zusatz von Polyglycerin oder Sorbit oder von anderen wasserlöslichen hochmolekularen Stoffen. Weiterhin kann sich zur Regulierung der Viskosität bzw. Lösungsvermittlung ein Zusatz von Neutralsalzen, vorzugsweise von NaCl, Na2S04 und/oder Harnstoff empfehlen.
  • Weiterhin können die beanspruchten Mittel Zusätze an Farb-und Riechstoffen, Konservierungsmitteln und gewünschtenfalls auch antimikrobiell wirksamen Mitteln beliebiger Art enthalten.
  • Als zu verwendende antimikrobielle Wirkstoffe kommen solche Verbindungen in Betracht, die in den erfindungsgemäßen flüssigen Mitteln stabil und wirksam sind. Dabei handelt es sich um phenolische Verbindungen vom Typ der i halogenierten Phenole mit 1 - 5 Halogensubstituenten, insbesondere chlorierte Phenole; Alkyl-, Cycloalkyl-, Aralkyl- und Phenylphenole mit 1 - 12 Kohlenstoffatomen in den Alkylresten und mit 1 - 4 Halogensubstituenten, insbesondere Chlor und Brom im Molekül; Alkylen-bisphenole, insbesondere durch 2 - 6 Halogenatome und gegebenenfalls niedere Alkyl- oder Trifluormethylgruppen substituierte Derivate, mit einem Alkylenbrückenglied mit 1 - 10 Kohlenstoffatomen; Hydroxybenzoesäuren beziehungsweise deren Ester und Amide, insbesondere Anilide, die im Benzoesäure-und/oder Anilinrest, insbesondere durch 2 oder 3 Halogenatome und/oder Trifluormethylgruppen substituiert sein können; Orthophenoxyphenole, die durch 1 - 7, vorzugsweise 2 - 5 Halogenatome und/oder die Hydroxyl-, Cyano-, Methoxycarbonyl- und Carboxylgruppe oder niederes Alkyl substituiert sein können. Besonders bevorzugte antimikrobielle Wirkstoffe vom Phenyltyp sind zum Beispiel O-Phenylphenol, 2-Phenylphenol, 2-Hydroxy-2',4,4'-trichlor- diphenylether, 3,4',5-Tribromsalicylanilid und 3,3',5,5', 6,6'-Hexachloro-2,2'-dihydroxydiphenylmethan.
  • Weitere brauchbare antimikrobielle Wirkstoffe sind die sowohl durch Brom als auch durch die Nitrogruppe substituierten niederen Alkohole beziehungsweise Diole mit 3 - 5 Kohlenstoffatomen wie zum Beispiel die Verbindungen 2-Brom-2-nitropropandiol-1,3,1-Brom-1-nitro-3,3,3-trichlor- propanol-2, 2-Brom-2-nitro-butanol-1..
  • Ferner eignen sich auch Bis-diguanide wie zum Beispiel das 1,6-Bis-(p-chlorphenyldiguanido)-hexan in der Form des Hydrochlorids, Acetats oder Glukonats sowie auch N,N'- disubstituierte 2-Thiön-tetrahydro-1,3,5-thiadizine wie zum Beispiel das 3,5-Dimethyl, 3,5-Diallyl-, 3-Benzyl-5-methyl- und insbesondere das 3-Benzyl-5-carboxymethyl- tetrahydro-1,3,5-thiadiazin als zusätzliche antimikrobielle Wirkstoffe.
  • Bevorzugt können Formaldehyd-Aminoalkohol-Kondensationsprodukte zum Einsatz kommen. Die Produkte werden durch Umsetzung einer wäßrigen Lösung von Formaldehyd mit Aminoalkoholen, zum Beispiel 2-Aminoethanol, 1-Amino-2-Propanol, 2-Amino-iso-butanol, 2(2'-Aminoethyl)-aminoethanol hergestellt.
  • Darüber hinaus kann es für weitere Anwendungsbereiche vorteilhaft sein, allein oder zusätzlich zu anderen als weitere antimikrobiell wirksame Substanzen solche vom Typ der quaternären Ammoniumverbindungen, beispielsweise ein Benzylalkyldimethylammoniumchlorid zuzusetzen.
  • V e r s u c h e
  • Zum Nachweis des überraschenden reinigungsverstärkenden Effektes der Kombination der beanspruchten Verbindungen wurden folgende Versuche durchgeführt:
  • 1. Prüfung des Reinigungsvermögens bei fetthaltigen Anschmutzungen
  • Auf einer künstlich angeschmutzten weißen PVC-Kunststoffoberfläche wurde die auf ihr Reinigungsvermögen zu prüfende Formulierung gegeben. Als künstliche Anschmutzung wurde ein Gemisch aus Ruß, Maschinenöl, einem Triglycerid gesättigter Fettsäuren und niedrigsiedenden aliphatischen Kohlenwasserstoffen verwendet.
  • Die Testfläche von 24 x 4,6 cm wurde im mittleren Teil auf ca. 30 cm2 gleichmäßig mit 0,1 g der künstlichen Anschmutzung beschichtet und vor Versuchsbeginn eine Stunde lang bei Raumtemperatur gelagert. Anschließend wurde ein Kunststoffschwamm mit jeweils 12 ml der zu prüfenden Reinigungsmittellösung getränkt und maschinell auf der Testfläche hin und her bewegt, wobei der Schwamm sowohl den angeschmutzten, mittleren Bereich erfaßt, als auch die nicht beschmutzten Randzonen. Nach 10 Wischbewegungen unter genau definierten Anpreßdruckbedingungen von 2 kp wurde die gereinigte Testfläche mit 400 ml Leitungswasser gespült und dadurch der gelockerte Schmutz entfernt. Das Reinigungsvermögen, d.h. der Weißgrad der so gereinigten Kunststoffoberfläche wurde mit einem photoelektrischen Reflektionsmeßgerät LF 90 (Firma Dr. B. Lange) gemessen, wobei der Weißgrad des ursprünglich angeschmutzten Teils der Testfläche der Ermittlung des Reinigungsvermögens, der Weißgrad des nicht angeschmutzten, vom Kunststoffschwamm aber miterfaßten Teils der Testfläche der Ermittlung des Schmutztragevermögens (SV) diente. Als Weiß-Standard wurde die saubere, weiße PVC-Kunststoffoberfläche zugrunde gelegt. Da bei der Messung der sauberen Oberfläche der Ausschlag des Meßgerätes auf 100 Prozent und bei der angeschmutzten Fläche auf O Prozent eingestellt wurde, konnten die abgelesenen Werte an den gereinigten Kunststoff-Flächen als "Prozent Reinigungsvermögen" (% RV) beziehungsweise als "Prozent Schmutztragevermögen" (% SV) angesehen werden. Die angegebenen % RV- beziehungsweise % SV-Werte sind gemittelte Werte aus einer 4-fach-Bestimmung.
  • 2. Prüfung der Reinigungsleistung bei stark pigmenthaltigen Anschmutzungen
  • Als Testfläche diente eine 2 Jahre alte, natürlich verschmutzte LKW-Plane, die in 20 x 10 cm große Stücke aufgeteilt und unabhängig voneinander von 3 Testpersonen durch gleichmäßiges Behandeln mit einem produktgetränkten Schwamm, anschließendes Abspülen der Fläche unter fließendem Wasser und.visuelle Benotung beurteilt wurde (Note 1: Restverschmutzung entspricht der Wirkung von Wasser, Note 3: vollständige Schmutzentfernung).
  • Beispiel 1
  • a) Mit einem üblichen Allzweck-Reinigungsmittel für harte Oberflächen der Zusammensetzung
    Figure imgb0003
    Rest auf 100 %: entmineralisiertes Wasser
    wurde geprüft, in welchem Maße sich Reinigungs- und : Schmutztragevermögen beziehungsweise Reinigungsleistung gegenüber fetthaltigen Anschmutzungen und Pigmentschmutz durch Zugabe von je 0,5 % eines Polymeren zur vorstehend angegebenen Rezeptur steigern läßt. Wie der nachfolgenden Tabelle 1 zu entnehmen ist, ergab sich bei unverdünnter Anwendung erwartungsgemäß gegenüber Fettschmutz ein geringfügiger Anstieg, nicht jedoch gegenüber Pigmentschmutz.
  • b) Durch Herausnahme des Aniontensids und Ersatz durch Wasser in der vorstehend genannten Rezeptur wurde erfindungsgemäß in Kombination mit den beanspruchten Polymeren eine erhebliche Steigerung des Reinigungs-und des Schmutztragevermögens gegenüber Fettschmutz, sowie eine Steigerung der Reinigungsleistung gegenüber Pigmentschmutz erzielt; vergleiche Tabelle 2.
    Figure imgb0004
  • Beispiel 2
  • a) Mit einem üblichen Allzweck-Reinigungsmittel der Zusammensetzung
    Figure imgb0005
    Rest auf 100 %: entmineralisiertes Wasser
    wurde entsprechend Beispiel 1 untersucht, in welcher Weise sich das Reinigungs- und Schmutztragevermögen sowie die Reinigungsleistung dieser alkalischen Formulierung durch Polymerzusätze steigern läßt. Auch hier wurde erwartungsgemäß eine Steigerung erzielt, wie die nachfolgende Tabelle 3 zeigt.
  • b) Auch hier führte der Zusatz von nicht- oder schwachionogenen Polymeren bei gleichzeitigem Ersatz das Aniontensidanteils durch Wasser zu ausgeprägten Steigerungseffekten von Reinigungs- und Schmutztragevermögen und Reinigungsleistung; vergleiche Tabelle 4.
    Figure imgb0006
  • Beispiel 3
  • Besonders günstig wirkt sich der erfindungsgemäße Zusatz von nicht- oder schwachionogenen Polymeren zu einer Desinfektionsreiniger-Formulierung der Zusammensetzung
    Figure imgb0007
    Rest auf 100 %: Polymerzusatz und entmineralisiertes Wasser aus, da sich bei einer derartigen Formulierung der Einsatz von Aniontensiden wegen der hierbei auftretenden bekannten Unverträglichkeit mit quartären Ammoniumverbindungen verbietet und das Reinigungsvermögen derartiger Produkte daher im allgemeinen relativ niedrig ist. Die nachfolgend angegebenen Versuchsergebnisse in Tabelle 5 geben das .Reinigungsvermögen gegenüber fetthaltigen Anschmutzungen wieder:
    Figure imgb0008
  • Beispiel 3 / Tabelle 5
  • Die Desinfektionswirkung wird durch den Polymerzusatz nicht beeinträchtigt.
  • Beispiel 4
  • Mit einem wäßrigen Allzweck-Reinigungsmittel mit einem Gehalt an
    Figure imgb0009
    wurde ebenfalls eine bedeutende Steigerung der Reinigungsleistung gegenüber bekannten Allzweck-Reinigungsmitteln erzielt.
  • Beispiel 5
  • Wie in Beispiel 4 wurde mit entsprechend gutem Ergebnis mit einer wäßrigen Lösung von
    Figure imgb0010
    gearbeitet. Im Rahmen der eingesetzten Mengen der Bestandteile und unter Einsatz verschiedener erfindungsgemäßer Polymerer lassen sich zahlreiche vorteilhafte Allzweck- Reinigungsmittel herstellen.

Claims (6)

1. Flüssiges Reinigungsmittel für harte Oberflächen aus wäßrigen oder wäßrigen, lösungsmittelhaltigen Lösungen nichtionischer Tenside und wasserlöslicher Polymerer, dadurch gekennzeichnet, daß sie entmineralisiertes Wasser und
a) 0,001 bis 35, vorzugsweise 0,1 bis 10 Gewichtsprozent eines nichtionischen Tensids,
b) 0,005 bis 15, vorzugsweise 0,01 bis 2 Gewichtsprozent eines wasserlöslichen nicht- ionischen, schwach anionischen oder kationischen Polymers aus der Gruppe der Polyethylenglycole, Polyvinylalkohole, Polyvinylpyrrolidone, Celluloseether, Polysaccharide, Proteine und Polyacrylamide mit mittleren Molgewichten von 5000 bis 10 000 000, vorzugsweise von 20 000 bis 2 000 000 oder Gemische dieser Polymeren,
c) 0,01 bis 20, vorzugsweise 0,1 bis 10 Gewichtsprozent alkalisch reagierende anorganische oder organische Gerüstsubstanzen,
d) O bis 40, vorzugsweise 0,5 bis 15 Gewichtsprozent eines wasserlöslichen oder in Wasser emulgierbaren organischen Lösungsmittels und
e) O bis 20, vorzugsweise 0,5 bis 2 Gewichtsprozent anorganische Neutralsalze, Harnstoff, Farbstoffe, Duftstoffe, Konservierungsmittel sowie antimikrobiell wirksame Mittel enthalten.
2. Reinigungsmittel nach Anspruch 1, dadurch gekennzeichnet, daß als schwach anionische Polymere solche eingesetzt werden, deren Ladungsdichte, d.h. das Verhältnis der Anzahl dissoziierbarer Gruppen pro Makromolekül zum Polymerisationsgrad n größer als O, aber nicht größer als 0,5, vorzugsweise größer als O, aber nicht größer als 0,2 und insbesondere größer als O, aber nicht größer als 0,01 ist.
3. Reinigungsmittel nach Anspruch 1 und 2, dadurch gekennzeichnet, daß sie als wasserlösliche oder in Wasser emulgierbare organische Lösungsmittel Isopropanol, Butylglycol, Aceton oder Gemische dieser Lösungsmittel enthalten.
4. Reinigungsmittel nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß sie als antimikrobiell wirksame Mittel Aldehyd-Kondensationsprodukte und/oder quartäre Ammoniumverbindungen enthalten.
5. Reinigungsmittel nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die mittleren Molgewichte der nichtionischen Tenside unterhalb von 5000 liegen.
6. Reinigungsmittel nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß sie als nichtionische Tenside Trialkylaminoxide enthalten.
EP80101581A 1979-03-31 1980-03-26 Verwendung eines flüssigen Mittels zur Reinigung harter Oberflächen Expired EP0017149B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80101581T ATE6268T1 (de) 1979-03-31 1980-03-26 Verwendung eines fluessigen mittels zur reinigung harter oberflaechen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19792913049 DE2913049A1 (de) 1979-03-31 1979-03-31 Fluessiges reinigungsmittel
DE2913049 1979-03-31

Publications (2)

Publication Number Publication Date
EP0017149A1 true EP0017149A1 (de) 1980-10-15
EP0017149B1 EP0017149B1 (de) 1984-02-15

Family

ID=6067140

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80101581A Expired EP0017149B1 (de) 1979-03-31 1980-03-26 Verwendung eines flüssigen Mittels zur Reinigung harter Oberflächen

Country Status (3)

Country Link
EP (1) EP0017149B1 (de)
AT (1) ATE6268T1 (de)
DE (2) DE2913049A1 (de)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2544329A1 (fr) * 1983-04-15 1984-10-19 Oreal Composition lavante et moussante a base d'agents tensio-actifs non ioniques et de polymeres anioniques
GB2172009A (en) * 1985-03-05 1986-09-10 Drew Chem Corp Rinse water additive
EP0244006A1 (de) * 1986-04-22 1987-11-04 Unilever N.V. Allzweck-Reinigerzusammensetzung
EP0262358A1 (de) * 1986-08-21 1988-04-06 Henkel Kommanditgesellschaft auf Aktien Glasreinigungsmittel in Tablettenform
EP0268064A2 (de) * 1986-10-18 1988-05-25 Henkel Kommanditgesellschaft auf Aktien Wässriges Geschirrvorbehandlungsmittel
EP0295590A2 (de) * 1987-06-19 1988-12-21 Henkel Kommanditgesellschaft auf Aktien Flüssiges Reinigungsmittel für harte Oberflächen
EP0353408A2 (de) * 1988-08-01 1990-02-07 Ecolab Inc. Nicht filmbildende feste Hochleistungs-Bodenreinigungsmittel
EP0359491A2 (de) * 1988-09-12 1990-03-21 Unilever Plc Flüssige Reinigungsmittel
EP0359492A2 (de) * 1988-09-12 1990-03-21 Unilever Plc Verdickte Flüssigkeiten
EP0408279A2 (de) * 1989-07-11 1991-01-16 Unilever Plc Wäscheweichmacher
EP0420802A2 (de) * 1989-09-26 1991-04-03 Ciba-Geigy Ag Wässriges, lagerstabiles, gering schäumendes Netzmittel
WO1991008283A2 (en) * 1989-11-28 1991-06-13 Unilever N.V. Thickened composition
EP0467472A2 (de) * 1990-07-16 1992-01-22 Colgate-Palmolive Company Flüssige Zusammensetzung mit schmutzabweisendem Polymer zum Reinigen harter Oberflächen
EP0607529A2 (de) * 1993-01-20 1994-07-27 Hüls Aktiengesellschaft Wässriges Weichspülmittel für die Behandlung von Textilien
EP0957156A1 (de) * 1998-05-15 1999-11-17 The Procter & Gamble Company Flüssige, saure Reinigungszusammensetzung für harte Oberflächen
EP0982394A1 (de) * 1998-08-27 2000-03-01 The Procter & Gamble Company Flüssige neutrales oder alkalisches Reinigungsmittel für harte Oberflächen
WO2001085889A1 (en) * 2000-05-12 2001-11-15 Unilever N.V. Process and composition for providing shine to a hard surface
US6718992B1 (en) 1998-08-27 2004-04-13 Sergio Cardola Liquid neutral to alkaline hard-surface cleaning composition
EP1667536A2 (de) * 2003-10-03 2006-06-14 Eco Holdings, LLC Verfahren zur herstellung von natürlichen tensiden sowie zusammensetzungen, die auf natürlichen tensiden beruhen
DE102004063765A1 (de) * 2004-12-29 2006-07-13 Henkel Kgaa Schaumverstärkter Reiniger
WO2008059453A1 (en) * 2006-11-14 2008-05-22 The Procter & Gamble Company Liquid hard surfaces cleaning compositions
WO2014012868A1 (de) * 2012-07-19 2014-01-23 Henkel Ag & Co. Kgaa Stabiles, flüssiges waschmittel mit vergrauungsinhibierender leistung
EP2875108B1 (de) * 2012-07-19 2018-11-14 Henkel AG & Co. KGaA Flüssiges waschmittel mit farbübertragungsinhibierung

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1164469B (it) * 1982-11-09 1987-04-08 Mira Lanza Spa Composizione detergente concentrata sotto forma di liquido viscoso rapidamente solubile in acqua adatta alla preparazione mediante diluizione di detersivi liquidi pronti per l'uso
DE3320727A1 (de) * 1983-06-09 1984-12-13 Henkel KGaA, 4000 Düsseldorf Verwendung von fettsaeurecyanamiden als tenside zum reinigen von harten oberflaechen
US4690779A (en) * 1983-06-16 1987-09-01 The Clorox Company Hard surface cleaning composition
DE3726912A1 (de) * 1987-08-13 1989-02-23 Henkel Kgaa Fluessige mittel zum reinigen harter oberflaechen
DE4209923A1 (de) * 1992-03-27 1993-09-30 Henkel Kgaa Flüssige Reinigungsmittel für harte Oberflächen
US6762162B1 (en) 2003-06-18 2004-07-13 S. C. Johnson & Son, Inc. Disinfecting cationic polymer cleaner comprising an acrylate cationic polymer
DE102005020799A1 (de) * 2005-04-28 2006-11-02 Karl Spiegl Reinigungsvorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE773574Q (fr) * 1965-02-16 1972-01-31 Unilever Nv Copolymeres dans des compositions detergentes non ioniques sechees par pulverisation
DE2327861A1 (de) * 1973-06-01 1975-01-02 Henkel & Cie Gmbh Waschmittel
DE2610995A1 (de) * 1975-03-18 1976-10-07 Procter & Gamble Reinigungsmittel fuer harte oberflaechen
FR2339672A1 (fr) * 1976-02-02 1977-08-26 Procter & Gamble Compositions detergentes contenant un agent tensioactif non ionique et un ether cellulosique
DE2745275A1 (de) * 1976-10-11 1978-04-13 Unilever Nv Fluessige reinigungsmittelzusammensetzung
DE2850256A1 (de) * 1977-11-28 1979-05-31 Kao Corp Fluessige reinigungsmittelmischung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU458526B2 (en) * 1972-04-12 1975-02-27 The Dow Chemical Company Cleaning composition for glass and reflective surfaces
DE2648304A1 (de) * 1975-10-31 1977-05-05 Procter & Gamble Europ Fluessiges reinigungsmittel
GB1562793A (en) * 1975-11-07 1980-03-19 Unilever Ltd Cleaning composition
DE2709690B1 (de) * 1977-03-05 1978-05-11 Henkel Kgaa Fluessiges Reinigungsmittel
DE2840463C2 (de) * 1978-09-16 1983-12-22 Henkel KGaA, 4000 Düsseldorf Verwendung eines flüssigen Mittels zum Reinigen harter Oberflächen
DE2840464C3 (de) * 1978-09-16 1981-04-09 Henkel KGaA, 4000 Düsseldorf Reinigungsmittel für Fenster, Spiegel und reflektierende Oberflächen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE773574Q (fr) * 1965-02-16 1972-01-31 Unilever Nv Copolymeres dans des compositions detergentes non ioniques sechees par pulverisation
DE2327861A1 (de) * 1973-06-01 1975-01-02 Henkel & Cie Gmbh Waschmittel
DE2610995A1 (de) * 1975-03-18 1976-10-07 Procter & Gamble Reinigungsmittel fuer harte oberflaechen
FR2339672A1 (fr) * 1976-02-02 1977-08-26 Procter & Gamble Compositions detergentes contenant un agent tensioactif non ionique et un ether cellulosique
DE2745275A1 (de) * 1976-10-11 1978-04-13 Unilever Nv Fluessige reinigungsmittelzusammensetzung
DE2850256A1 (de) * 1977-11-28 1979-05-31 Kao Corp Fluessige reinigungsmittelmischung

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657690A (en) * 1983-04-15 1987-04-14 L'oreal Washing and foaming composition based on non-ionic surface-active agents and anionic polymers
FR2544329A1 (fr) * 1983-04-15 1984-10-19 Oreal Composition lavante et moussante a base d'agents tensio-actifs non ioniques et de polymeres anioniques
GB2172009A (en) * 1985-03-05 1986-09-10 Drew Chem Corp Rinse water additive
EP0244006A1 (de) * 1986-04-22 1987-11-04 Unilever N.V. Allzweck-Reinigerzusammensetzung
US4759868A (en) * 1986-04-22 1988-07-26 Lever Brothers Company General-purpose cleaning composition
EP0262358A1 (de) * 1986-08-21 1988-04-06 Henkel Kommanditgesellschaft auf Aktien Glasreinigungsmittel in Tablettenform
EP0268064A2 (de) * 1986-10-18 1988-05-25 Henkel Kommanditgesellschaft auf Aktien Wässriges Geschirrvorbehandlungsmittel
EP0268064A3 (en) * 1986-10-18 1990-12-27 Henkel Kommanditgesellschaft Auf Aktien Aqueous composition for the pretreatment of dishes
EP0295590A3 (de) * 1987-06-19 1990-09-12 Henkel Kommanditgesellschaft auf Aktien Flüssiges Reinigungsmittel für harte Oberflächen
EP0295590A2 (de) * 1987-06-19 1988-12-21 Henkel Kommanditgesellschaft auf Aktien Flüssiges Reinigungsmittel für harte Oberflächen
EP0353408A2 (de) * 1988-08-01 1990-02-07 Ecolab Inc. Nicht filmbildende feste Hochleistungs-Bodenreinigungsmittel
EP0353408A3 (de) * 1988-08-01 1991-04-03 Ecolab Inc. Nicht filmbildende feste Hochleistungs-Bodenreinigungsmittel
EP0359492A3 (de) * 1988-09-12 1990-09-05 Unilever Plc Verdickte Flüssigkeiten
EP0359491A3 (de) * 1988-09-12 1990-09-05 Unilever Plc Flüssige Reinigungsmittel
EP0359492A2 (de) * 1988-09-12 1990-03-21 Unilever Plc Verdickte Flüssigkeiten
EP0359491A2 (de) * 1988-09-12 1990-03-21 Unilever Plc Flüssige Reinigungsmittel
AU625804B2 (en) * 1988-09-12 1992-07-16 Unilever Plc Thickened non-aqueous-liquid composition comprising polyalkoxylated material
EP0408279A2 (de) * 1989-07-11 1991-01-16 Unilever Plc Wäscheweichmacher
EP0408279A3 (en) * 1989-07-11 1991-10-23 Unilever Plc Fabric softening composition
EP0420802A2 (de) * 1989-09-26 1991-04-03 Ciba-Geigy Ag Wässriges, lagerstabiles, gering schäumendes Netzmittel
EP0420802A3 (en) * 1989-09-26 1991-05-15 Ciba-Geigy Ag Aqueous, storage stable, low foaming wetting agent
US5286405A (en) * 1989-11-28 1994-02-15 Lever Brothers Company, Division Of Conopco, Inc. Polymer-thickened liquid abrasive cleaning compositions
WO1991008283A2 (en) * 1989-11-28 1991-06-13 Unilever N.V. Thickened composition
WO1991008283A3 (en) * 1989-11-28 1991-08-22 Unilever Plc Thickened composition
EP0467472A2 (de) * 1990-07-16 1992-01-22 Colgate-Palmolive Company Flüssige Zusammensetzung mit schmutzabweisendem Polymer zum Reinigen harter Oberflächen
EP0467472A3 (en) * 1990-07-16 1993-06-02 Colgate-Palmolive Company Hard surface liquid cleaning composition with anti-soiling polymer
GR910100312A (en) * 1990-07-16 1992-08-26 Colgate Palmolive Co Liquid cleaning composition for rough surfaces
EP0607529A2 (de) * 1993-01-20 1994-07-27 Hüls Aktiengesellschaft Wässriges Weichspülmittel für die Behandlung von Textilien
EP0607529A3 (de) * 1993-01-20 1995-03-22 Huels Chemische Werke Ag Wässriges Weichspülmittel für die Behandlung von Textilien.
US5447643A (en) * 1993-01-20 1995-09-05 Huels Aktiengesellschaft Aqueous fabric softener for the treatment of textile
US6537957B1 (en) 1998-05-15 2003-03-25 The Procter & Gamble Company Liquid acidic hard surface cleaning composition
WO1999060086A1 (en) * 1998-05-15 1999-11-25 The Procter & Gamble Company Liquid acidic hard surface cleaning composition
EP0957156A1 (de) * 1998-05-15 1999-11-17 The Procter & Gamble Company Flüssige, saure Reinigungszusammensetzung für harte Oberflächen
EP0982394A1 (de) * 1998-08-27 2000-03-01 The Procter & Gamble Company Flüssige neutrales oder alkalisches Reinigungsmittel für harte Oberflächen
WO2000012661A1 (en) * 1998-08-27 2000-03-09 The Procter & Gamble Company Liquid neutral to alkaline hard-surface cleaning composition
US6718992B1 (en) 1998-08-27 2004-04-13 Sergio Cardola Liquid neutral to alkaline hard-surface cleaning composition
WO2001085889A1 (en) * 2000-05-12 2001-11-15 Unilever N.V. Process and composition for providing shine to a hard surface
EP1667536A2 (de) * 2003-10-03 2006-06-14 Eco Holdings, LLC Verfahren zur herstellung von natürlichen tensiden sowie zusammensetzungen, die auf natürlichen tensiden beruhen
EP1667536A4 (de) * 2003-10-03 2007-12-05 Eco Holdings Llc Verfahren zur herstellung von natürlichen tensiden sowie zusammensetzungen, die auf natürlichen tensiden beruhen
DE102004063765A1 (de) * 2004-12-29 2006-07-13 Henkel Kgaa Schaumverstärkter Reiniger
WO2008059453A1 (en) * 2006-11-14 2008-05-22 The Procter & Gamble Company Liquid hard surfaces cleaning compositions
EP1927651A1 (de) * 2006-11-14 2008-06-04 The Procter and Gamble Company Flüssige Renigungsmittel für harte Oberflächen
US8163687B2 (en) 2006-11-14 2012-04-24 The Procter & Gamble Company Liquid hard surfaces cleaning compositions
WO2014012868A1 (de) * 2012-07-19 2014-01-23 Henkel Ag & Co. Kgaa Stabiles, flüssiges waschmittel mit vergrauungsinhibierender leistung
EP2875108B1 (de) * 2012-07-19 2018-11-14 Henkel AG & Co. KGaA Flüssiges waschmittel mit farbübertragungsinhibierung

Also Published As

Publication number Publication date
DE3066542D1 (en) 1984-03-22
EP0017149B1 (de) 1984-02-15
DE2913049A1 (de) 1980-10-16
ATE6268T1 (de) 1984-03-15

Similar Documents

Publication Publication Date Title
EP0017149B1 (de) Verwendung eines flüssigen Mittels zur Reinigung harter Oberflächen
EP0009193B1 (de) Flüssiges Reinigungsmittel für harte Oberflächen
DE2709690C2 (de)
EP0303188A2 (de) Flüssige Mittel zum Reinigen harter Oberflächen
EP0248185B1 (de) Flüssige wässrige Reinigungsmittel für harte Oberflächen
US4058489A (en) Detergent composition having textile softening and antistatic effect
DE2613790A1 (de) Waschmittel
DE2029598A1 (de)
EP0295590A2 (de) Flüssiges Reinigungsmittel für harte Oberflächen
DE1801411A1 (de) Gerueststoffe fuer Wasch- und Reinigungsmittel
DE3431003A1 (de) Fluessiges reinigungsmittel
EP0131138B1 (de) Verwendung von Fettsäurecyanamidsalzen als Tenside zum Reinigen von harten Oberflächen
DE2552353B2 (de) Fluessige waessrige waschmittelzusammensetzung
EP0632823A1 (de) Flüssige reinigungsmittel für harte oberflächen.
DE1617172B2 (de) Seif enzusam mensetzungen
WO1991009926A1 (de) Flüssiges reinigungsmittel für harte oberflächen
EP0197480A2 (de) Verfahren zum manuellen Reinigen von Gegenständen mit harten Oberflächen
DE2532802C2 (de) Wollwaschmittel
DE2544242A1 (de) Verfahren zum waschen von textilien, sowie mittel zur durchfuehrung des verfahrens
DE3838533A1 (de) Fluessiges reinigungsmittel fuer harte oberflaechen
DE3530506A1 (de) Zum waschen und weichmachen von textilien in waschwasser einer erhoehten temperatur von mindestens 60(grad)c geeignete waschmittelzusammensetzung
DE1954080C3 (de) Polyglykolätherurethane und deren Verwendung als Netz-, Wasch- und Reinigungsmittel
AT281242B (de) Flüssiges Waschmittel
DE3001937C2 (de) Geschirrspülmittel
DE3830536A1 (de) Wasserhaltige fluessige waschmittelzubereitungen fuer textile materialien

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR IT NL

17P Request for examination filed

Effective date: 19810219

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR IT NL

REF Corresponds to:

Ref document number: 6268

Country of ref document: AT

Date of ref document: 19840315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3066542

Country of ref document: DE

Date of ref document: 19840322

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19900216

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19900222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19900301

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19900319

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19900330

Year of fee payment: 11

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19900331

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19910326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19910331

Ref country code: BE

Effective date: 19910331

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 19910331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19911001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19911129

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19920101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST