EP0010792B1 - Verfahren zum Vergasen feinkörniger Brennstoffe - Google Patents

Verfahren zum Vergasen feinkörniger Brennstoffe Download PDF

Info

Publication number
EP0010792B1
EP0010792B1 EP79200567A EP79200567A EP0010792B1 EP 0010792 B1 EP0010792 B1 EP 0010792B1 EP 79200567 A EP79200567 A EP 79200567A EP 79200567 A EP79200567 A EP 79200567A EP 0010792 B1 EP0010792 B1 EP 0010792B1
Authority
EP
European Patent Office
Prior art keywords
pellets
fuel
fine
grained
coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79200567A
Other languages
English (en)
French (fr)
Other versions
EP0010792A1 (de
Inventor
Gerhard Dr.-Ing. Baron
Dieter Dr.-Phil. Sauter
Carl Dr.-Ing Hafke
Wolfgang Sindel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Publication of EP0010792A1 publication Critical patent/EP0010792A1/de
Application granted granted Critical
Publication of EP0010792B1 publication Critical patent/EP0010792B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/34Other details of the shaped fuels, e.g. briquettes
    • C10L5/36Shape
    • C10L5/38Briquettes consisting of different layers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/08Continuous processes with ash-removal in liquid state
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/40Movable grates
    • C10J3/42Rotary grates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0903Feed preparation
    • C10J2300/0906Physical processes, e.g. shredding, comminuting, chopping, sorting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0959Oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0969Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0996Calcium-containing inorganic materials, e.g. lime

Definitions

  • the invention relates to a process for the gasification of solid, baking fuels under a pressure between 5 and 150 bar with free oxygen, water vapor and / or carbon dioxide-containing gasifying agents in a fixed bed, which slowly moves downwards, to which the gasifying agents are fed from below and under which non-combustible mineral components of the fuel are removed as solid ash or liquid slag, fine-grained, baking fuels with a liquid being formed into largely spherical pellets with a diameter of 5 to 50 mm and used as gasification fuels.
  • the object of the invention is to design the pellets mentioned at the outset so that they have sufficient dimensional stability in the gasification, but without interfering with the attack of the gasification agents.
  • this is achieved in that the pellets formed from fine-grained fuel with a grain size of less than 7 mm are gassed with a closed, 0.2 to 2 mm thick covering layer of fine-grained, non-baking material, namely cement. Foreign or own ash, dolimite, bentonite, lime, montmorillonite or zeolites can be provided.
  • the casing materials are all mineral in nature.
  • the fine-grained fuel can be produced when the fuel is extracted or can also be produced by comminution.
  • a fine-grained fuel with a grain size of approximately 0.01 to 5 mm is preferably used for pelleting. Due to the pelleting, dust-like fuel can now also be used for the pressure gasification in the fixed bed, either alone or together with granular coal with a grain size above 3 mm to about 60 mm.
  • the pellets preferably make up the majority of the fuel fed to the gasification.
  • the covering layer around the pellets now ensures that the pellets in the upper part of the fixed bed, where the temperatures are relatively low, retain a sufficiently stable shape.
  • the shell layer is gas-permeable and allows volatile constituents to escape from the interior of the pellet. If the temperatures continue to rise, the covering layer is largely preserved, and slight cracks are not disadvantageous if the fuel becomes plastic and only changes into a highly viscous mass.
  • the coating layer In the case of greater softening, the coating layer must be strengthened accordingly, or catalytically active substances which reduce the baking and expanding properties of the coal can be added to the coal before pelleting.
  • the pellet casing tears open further due to the strong degassing of the coal substance, so that the coal coke which is now formed is exposed to the gasification reactions in its entire surface including the macro and microstructure. It is also an important result that the product gas from the gasification contains much less tarry constituents than was possible with the previously known gasification of baking coals under increased pressure.
  • the pelletes can be made in a known manner, e.g. in the inclined turntable or in the rotary tube.
  • the pellets can also be provided with the desired coating layer using these devices.
  • the pellets can have a diameter of 10 to 30 mm and preferably 8 to 15 mm.
  • pellets can be used to form the pellets. Suitable are, for example, water, sulfite waste liquor, water glass, molasses, starch solutions, gas water from the gasification or coking of solid fuels, or lime milk.
  • the pelleting liquid or the fine-grained one to be pelleted Solid fuel can be added to catalytically active substances to increase the reactivity. Such substances are in particular NaCl, KCI, NaC0 3 , K Z C0 3 , oxides or sulfides of molybdenum, tungsten, tin, chromium, nickel, cobalt or iron or finely ground thin-layer zeolites. These catalytically active substances are able to effect desired conversions in contact with gases and vapors from the pellets, for example to make hydrocarbons with higher boiling and lower boiling points.
  • suitable substances can be added to the pelleting liquid or the fuel to be pelletized.
  • suitable substances are, for example, Na 2 B 4 O 7 , NaN0 2 , K 2 Cr0 4 , K 2 C0 3 or KN0 3 .
  • Non-baking coal, ash e.g. from gasification or from external production, dolomite, bentonite, lime, montmorillonite. Cement or other inorganic substances can be used. Mixtures of finely ground zeolites are also particularly suitable. It is best to add these substances in fine or dusty form before the end of pelleting.
  • the covering layer of the pellets should have a thickness of approximately 0.1 to 2 mm, preferably 0.2 to 0.5 mm. For economic reasons, efforts are made to keep the coating layer as thin as possible. However, it must be sufficiently strong and thick, especially in the case of heavily baking coals, in order to prevent flowable coal from breaking through.
  • the coated pellets can be dried before being introduced into the gasification. This is best done at temperatures below the softening point of the coal, preferably between 40 and 150 ° C.
  • the pelletized fuel generally has an incombustible mineral component content of 5 to 40% by weight and preferably 10 to 30% by weight.
  • the gasification product gas can be used in a variety of ways. After cleaning and conditioning, the gas can e.g. can be used for syntheses or as a hydrogenation gas. Another possibility is to use the gas as fuel gas, if necessary after removing disruptive solid or gaseous constituents, and to use it in a combined steam-gas turbine power plant.
  • a moderately baking and expanding gas flame coal with 20% by weight ash and 8% by weight moisture was used for experiments.
  • the baking number according to Roga (ISO 335-1974) was 25, the blowing number according to DIN 51741 was 2.5.
  • the coal had a grain size between 0 and 1 mm and had an average grain diameter of 0.291 mm.
  • a pelletizing plate of 1 m in diameter with an inclination of approximately 50 ° and a speed of 20 revolutions per minute was used to form the pellets. In each case, pellets with a coating layer were produced, the diameter of which was in the range from 10 to 20 mm.
  • the pellets were dried at 110 ° C. and the compressive strength was then measured. To simulate the conditions in the fixed bed gasification, coking was carried out with shock-like heating to 800 ° C. under a nitrogen pressure of 20 bar.
  • the pelleting liquid was used as the pelleting liquid, so that the water content of the finished pellets was 15% by weight.
  • the shell layer had a thickness of 0.3 mm and consisted of finely ground own ash of the coal.
  • the point pressure resistance of the dried pellets was approx. 70 N. After the pressure coking, the pellets were not baked together, the casing had burst, the pellet core was structural. The pellets were extremely suitable for pressure gasification.
  • a 5% calcium sulfite waste liquor was used as the pelleting liquid, finely ground dolomite was used for the coating layer, the coating layer had a thickness of about 0.3 mm.
  • the point compressive strength of the dried pellets reached about 80 N, the test results after the pressure coking matched those of Example 1.
  • about 50% of the sulfur contained in the coal was bound by the dolomite layer.
  • a 20% water glass solution was used as the pelleting liquid, cement was used for the covering layer and a thickness of about 0.4 mm was achieved.
  • the dried pellets had a point compressive strength of about 60 N. After the pressure coking, the pellets did not adhere to one another and were structurally stable. The shell layer was cracked and partially chipped.
  • the pellets of Examples 2 and 2 were suitable for gasification in a fixed bed without a special loosening device having to be provided in the upper part of the gas generator.
  • the pellets produced on the pelletizing plate of the previous examples had a diameter of 10 to 20 mm.
  • Dolomite was applied with a layer thickness of 0.3 mm.
  • a 10% potassium carbonate solution was used as the pelleting liquid.
  • the pellets had a moisture content of approximately 15% by weight.
  • the pellets Before being used in coking and gasification, the pellets had a potassium carbonate content of less than 0.6% by weight.
  • a coal was used whose baking number according to Roga (ISO 335-1974) was 52, while the blowing number according to DIN 51 741 was 7.
  • the coal had a grain size between 0-1 mm with an average grain diameter of 0.264 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Vergasen fester, backender Brennstoffe unter einem Druck zwischen 5 und 150 bar mit freien Sauerstoff, Wasserdampf und/oder Kohlendioxid enthaltenden Vergasungsmitteln im Festbett, das sich langsam nach unten bewegt, dem die Vergasungsmittel von unten zugeführt und unter dem die unverbrennlichen mineralischen Bestandteile des Brennstoffs als feste Asche oder flüssige Schlacke abgezogen werden, wobei feinkörnige, backende Brennstoffe mit einer Flüssigkeit zu weitgehend kugelförmigen Pellets mit einem Durchmesser von 5 bis 50 mm geformt und als Vergasungsbrennstoffe verwendet werden.
  • Die Vergasung körniger Kohle ist bekannt und z.B. in Ullmanns Enzyklopädie der technischen Chemie. 4. Auflage (1977) Band 14, Seiten 383 bis 386, dargestellt. Einzelheiten des Vergasungsverfahrens mit festbleibender Asche sind US 3 540 867 und 3 854 895 sowie DE 22 01 278 zu entnehmen. Die Verfahrensvariante mit Abzug flüssiger Schlacke ist in GB 1 507 905, 1 508 671 und 1 512 677 erläutert. Bei diesen bekannten Verfahren wird körniger Brennstoff mit einer Korngröße etwa im Bereich von 3 bis 60 mm in die Vergasung gegeben.
  • Aus US-A-3 692 505 und DE-A-25 40 165 kennt man die Vergasung von Pellets, die vor allem Feinkohle enthalten. In FR-A-1445980 wird die Herstellung von Formkoks aus Kohlepellets beschrieben. Zum Verhindern des Zusammenbackens kann man diese Pellets vor der Verkokung mit Koksmehl überpudern.
  • Aufgabe der Erfindung ist es, die eingangs genannten Pellets so auszubilden, daß sie in der Vergasung eine ausreichende Formstabilität besitzen, ohne aber den Angriff der Vergasungsmittel störend zu behindern. Erfindungsgemäß wird dies dadurch erreicht, daß die aus feinkörnigem Brennstoff mit einer Korngröße unter 7 mm geformten Pellets vor der Vergasung mit einer geschlossenen, 0,2 bis 2 mm starken Hüllschicht aus feinkörnigem, nicht backendem Material, nämlich Zement. Fremd- oder Eigenasche, Dolimit, Bentonit, Kalk, Montmorillonit oder Zeolithen versehen werden. Die Hüllmaterialien sind also alle mineralischer Natur. Der feinkörnige Brennstoff kann bei der Gewinnung des Brennstoffs entstanden oder auch durch Zerkleinerung hergestellt sein. Bevorzugt verwendet man für die Pelletierung einen feinkörnigen Brennstoff mit einer Korngröße von etwa 0,01 bis 5 mm. Durch die Pelletierung kann nun auch staubförmiger Brennstoff für die Druckvergasung im Festbett verwendet werden, und zwar allein oder zusammen mit körniger Kohle einer Korngröße oberhalb von 3 mm bis etwa 60 mm. Vorzugsweise machen die Pellets den überwiegenden Teil des der Vergasung aufgegebenen Brennstoffs aus.
  • Gibt man körnige, backende Kohle in die Festbettvergasung, so entsteht im oberen Teil des Festbettes bei Erreichen der Erweichungstemperatur der Kohle eine wenig gasdurchlässige Zone, da die Kohlekörner zerfließen oder zumindest teigig werden. Durch Rührarme versuchte man bisher, diese Kohleschicht in der Festbettvergasung aufzulockern und damit gasdurchlässig zu machen.
  • Es hat auch nicht an Bestrebungen gefehlt, der Kohle die Backeigenschaften zu nehmen, etwa dadurch, daß man sie oxidativ bei Temperaturen von etwa 200 bis 350 °C vorbehandelte. Man strebte dabei an, das gesamte Kohlekorn u.a. auch durch Porendiffusion von Sauerstoff in der gewünschten Weise zu beeinflussen. Diesen Bemühungen war ein gewisser Erfolg beschieden, doch waren zu lange Behandlungszeiten für die Oxidation der Kohle nötig. Ein Vergasungsbetrieb mit hohen Durchsatzleistungen war deshalb wirtschaftlich nicht möglich, da ein zu großer Aufwand nötig war.
  • Durch das erfindungsgemäße Verfahren werden Schwierigkeiten dieser Art beseitigt. Die Hüllschicht um die Pellets sorgt nun dafür, daß die Pellets im oberen Teil des Festbettes, wo relativ niedrige Temperaturen herrschen, eine ausreichend stabile Form behalten. Gleichzeitig ist die Hüllschicht gasdurchlässig und läßt flüchtige Bestandteile aus dem Pelletinneren entweichen. Steigen die Temperaturen weiter, so bleibt die Hüllschicht weitgehend erhalten, wobei leichte Risse nicht nachteilig sind, wenn der Brennstoff plastisch wird und nur in eine hochviskose Masse übergeht. Bei stärkerer Erweichung ist die Hüllschicht entsprechend zu verstärken oder der Kohle können vor dem Pelletieren katalytisch wirksame Substanzen zugegeben werden, die das Back- und Blähvermögen der Kohle herabsetzen. Nach Durchlaufen der Backzone reißt die Pellethülle durch die starke Entgasung der Kohlesubstanz weiter auf, so daß der nun entstandene Kohlekoks in seiner gesamten Oberfläche einschließlich der Makro- und Mikrostruktur den Vergasungsreaktionen ausgesetzt ist. Ein wichtiges Ergebnis ist es auch, daß das Produktgas der Vergasung wesentlich weniger teerige Bestandteile enthält, als dies bei der bisher bekannten Vergasung von backenden Kohlen unter erhöhtem Druck möglich war.
  • Die Pelletes können auf bekannte Weise hergestellt werden, so z.B. im geneigten Drehteller oder auch im Drehrohr. Mit diesen Vorrichtungen lassen sich die Pellets auch mit der gewünschten Hüllschicht versehen. Die Pellets können einen Durchmesser von 10 bis 30 mm und vorzugsweise von 8 bis 15 mm aufweisen.
  • Zum Formen der Pellets kann man verschiedenartige Flüssigkeiten verwenden. Geeignet sind z.B. Wasser, Sulfitablauge, Wasserglas, Melasse, Stärkelösungen, Gaswasser aus der Vergasung oder Verkokung fester Brennstoffe, oder auch Kalkmilch. Der Pelletierflüssigkeit oder auch dem feinkörnigen, zu pelletierenden festen Brennstoff kann man katalytisch wirksame Substanzen zur Erhöhung der Reaktionsfähigkeit zusetzen. Solche Substanzen sind insbesondere NaCI, KCI, NaC03, KZC03, Oxide oder Sulfide von Molybdän, Wolfram, Zinn, Chrom, Nickel, Kobalt oder Eisen oder feingemahlene dünnschichtige Zeolithe. Diese katalytisch wirksamen Substanzen sind in der Lage, im Kontakt mit Gasen und Dämpfen aus den Pellets erwünschte Umwandlungen zu bewirken, z.B. aus schwerer siedenden leichter siedende Kohlenwasserstoffe zu machen.
  • Um die Back- und Bläheigenschaften des zu vergasenden festen Brennstoffs herabzusetzen, können der Pelletierflüssigkeit oder dem zu pelletierenden Brennstoff geeignete Substanzen zugegeben werden. Solche Substanzen sind z.B. Na2B4O7, NaN02, K2Cr04, K2C03 oder KN03.
  • Zum Erzeugen der Hüllschicht für die Pellets können nicht backende Kohle, Asche, z.B. aus der Vergasung oder aus fremder Produktion, Dolomit, Bentonit, Kalk, Montmorillonit. Zement oder andere anorganische Stoffe verwendet werden. Besonders geeignet sind auch Gemische von feingemahlenen Zeolithen. Am besten werden diese Stoffe feinkörnig oder staubförmig vor dem Ende des Pelletierens zugegeben.
  • Die Hüllschicht der Pellets soll eine Stärke von etwa 0,1 bis 2 mm, vorzugsweise von 0,2 bis 0,5 mm, aufweisen. Aus wirtschaftlichen Gründen ist man bestrebt, die Hüllschicht möglichst dünn zu halten. Sie muß aber vor allem bei stark backenden Kohlen genügend fest und dick sein, um ein Durchbrechen fließfähiger Kohle zu verhindern.
  • Gegebenenfalls kann man die mit der Hüllschicht versehenen Pellets vor dem Eintragen in die Vergasung trocknen. Dies geschieht am besten bei Temperaturen unterhalb des Erweichungspunktes der Kohle, vorzugsweise zwischen 40 und 150 °C. Der pelletierte Brennstoff hat im allgemeinen einen Gehalt an unverbrennlichen, mineralischen Bestandteilen von 5 bis 40 Gew.% und vorzugsweise von 10 bis 30 Gew.%.
  • Das Produktgas der Vergasung läßt sich auf vielfältige Weise verwenden. Nach Reinigung und Konditionierung kann das Gas z.B. für Synthesen oder als Hydriergas verwendet werden. Eine weitere Möglichkeit ist, das Gas, gegebenenfalls nach Entfernen störender fester oder gasförmiger Bestandteile, als Brenngas zu nutzen und es in einem kombinierten Dampf-Gasturbinen-Kraftwerk einzusetzen.
  • Beispiele
  • Für Versuche wurde eine mittelmäßig backende und blähende Gasflammkohle mit 20 Gew.% Asche und 8 Gew.% Feuchtigkeit verwendet. Die Backzahl nach Roga (ISO 335 -1974) betrug 25, die Blähzahl nach DIN 51741 betrug 2,5. Die Kohle lag in einer Körnung zwischen 0 und 1 mm vor und hatte einen mittleren Korndurchmesser von 0,291 mm. Zum Formen der Pellets wurde ein Pelletierteller von 1 m Durchmesser mit einer Neigung von etwa 50° und einer Drehzahl von 20 Umdrehungen pro Minute verwendet. Es wurden jeweils Pellets mit Hüllschicht hergestellt, deren Durchmesser im Bereich von 10 bis 20 mm lagen. Die Pellets wurden bei 110°C getrocknet und danach die Druckfestigkeit gemessen. Zum Simulieren der Verhältnisse in der Festbettvergasung erfolgte eine Verkokung unter schockartiger Erhitzung auf 800 °C unter einem Stickstoffdruck von 20 bar.
  • Beispiel 1
  • Als Pelletierflüssigkeit diente Wasser, so daß der Wassergehalt der fertigen Pellets bei 15 Gew.% lag. Die Hüllschicht hatte eine Dicke von 0,3 mm und bestand aus feingemahlener Eigenasche der Kohle. Die Punktdruckfestigkeit der getrockneten Pellets betrug ca. 70 N. Nach der Druckverkokung waren die Pellets nicht zusammengebacken, die Hülle war aufgeplatzt, der Pelletkern war gefügefest. Die Pellets waren für die Druckvergasung hervorragend geeignet.
  • Beispiel 2
  • Als Pelletierflüssigkeit diente eine 5 %ige Calciumsulfitablauge, für die Hüllschicht wurde feingemahlener Dolomit verwendet, die Hüllschicht hatte eine Dicke von etwa 0,3 mm. Die Punktdruckfestigkeit der getrockneten Pellets erreichte etwa 80 N, die Versuchsergebnisse nach der Druckverkokung stimmten mit denen des Beispiels 1 überein. Zusätzlich wurden durch die Dolomitschicht etwa 50 % des in der Kohle enthaltenen Schwefels gebunden.
  • Beispiel 3
  • Als Pelletierflüssigkeit diente eine 20 %ige Wasserglaslösung, für die Hüllschicht wurde Zement verwendet und eine Dicke von etwa 0,4 mm erreicht. Die getrockneten Pellets hatten einen Punktdruckfestigkeit von etwa 60 N. Nach der Druckverkokung hafteten die Pellets nicht aneinander und waren gefügefest. Die Hüllschicht war rissig und teilweise abgeplatzt. Die Pellets der Beispiele 2 und 2 waren für die Vergasung im Festbett geeignet, ohne daß im Oberteil des Gaserzeugers eine besondere Auflockerungseinrichtung hätte vorgesehen werden müssen.
  • Beispiel 4
  • Für diesen Versuch wurde ebenfalls eine mittelmäßig backende und blähende Gasflammkohle mit 22 Gew.% Asche bei 8 Gew.% Feuchtigkeit eingesetzt. Die Backzahl nach Roga (ISO 335 - 1974) betrug 25, die Blähzahl nach DIN 51 741 betrug 3. Die Kohle lag in einer Körnung zwischen 0 - 1 mm vor, wobei der mittlere Korndurchmesser 0,280 mm betrug.
  • Die auf dem Pelletierteller der vorausgegangenen Beispiele hergestellten Pellets hatten einen Durchmesser von 10 bis 20 mm. Als Hüllschicht wurde Dolomit mit einer Schichtstärke von 0,3 mm aufgetragen. Als Pelletierflüssigkeit diente eine 10%ige Kaliumcarbonatlösung. Die Pellets hatten vor dem Auftragen der Hüllschicht einen Feuchtigkeitsgehalt von ca. 15 Gew.%. Vor dem Einsatz in die Verkokung und Vergasung hatten die Pellets einen Kaliumcarbonatgehalt von unter 0,6 Gew.%.
  • Es wurde bei der Untersuchung des Produktgases festgestellt, daß von dem in der Kohle enthaltenen Teer nach ISO 647 - 1974 nur noch ca. 50 % der flüssigen Kohlenwasserstoffe den Gasraum nach Austritt aus den Pellets erreicht hatten und dass das Siedeende dieser flüssigen Kohlenwasserstoffe, das normalerweise oberhalb von 450 °C liegt, nur noch Kohlenwasserstoffe enthielt, die unterhalb 240 °C siedeten.
  • Weiterhin wurde bei einem Reaktionsfähigkeitstest unter 20 bar und einer gleichbleibenden Temperatur von 800 °C festgestellt, daß bei einem Massenstrom von 20 IN/h 3,8Vol.% C02 zersetzt wurden, während unter sonst gleichen Bedingungen, aber ohne Verwendung von Kaliumcarbonat, nur Werte von 2,3Vol.% erreicht wurden.
  • Beispiel 5
  • In einem weiteren Versuch wurde eine Kohle eingesetzt, deren Backzahl nach Roga (ISO 335 - 1974) 52 betrug, während die Blähzahl nach DIN 51 741 bei 7 lag. Die Kohle hatte eine Körnung zwischen 0 - 1 mm mit mittlerem Korndurchmesser von 0,264 mm.
  • Sie wurde nach der Pelletierung mit feinkörniger Eigenasche in einer Schichtstärke von 0,25 mm versehen. Als Pelletierflüssigkeit wurde eine 5%ige Natriumtetraboratlösung verwandt. Durch diese Maßnahme wurde das Back- und Blähvermögen der Kohle soweit herabgesetzt, daß bei der Druckverkokung ein Zusammenbacken der Pellets ausblieb. Die Reaktionsfähigkeit der so hergestellten Pellets wurde durch diese Maßnahme günstig beeinflußt.

Claims (5)

1. Verfahren zum Vergasen fester, backender Brennstoffe unter einem Druck zwischen 5 und 150 bar mit freien Sauerstoff, Wasserdampf und/ oder Kohlendioxid enthaltenden Vergasungsmitteln im Festbett, das sich langsam nach unten bewegt, dem die Vergasungsmittel von unten zugeführt und unter dem die unverbrennlichen mineralischen Bestandteile des Brennstoffs als feste Asche oder flüssige Schlacke abgezogen werden, wobei feinkörnige, backende Brennstoffe mit einer Flüssigkeit zu weitgehend kugelförmigen Pellets mit einem Durchmesser von 5 bis 50 mm geformt und als Vergasungsbrennstoffe verwendet werden, dadurch gekennzeichnet. daß die aus feinkörnigem Brennstoff mit einer Korngröße unter 7 mm geformten Pellets vor der Vergasung mit einer geschlossenen, 0,2 bis 2 mm starken Hüllschicht aus feinkörnigem, nicht backendem Material, nämlich Zement, Fremd- oder Eigenasche, Dolomit, Bentonit, Kalk, Montmorillonit oder Zeolithen versehen werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als Flüssigkeit zum Formen der Pellets Wasser, Sulfitablauge, Wasserglas, Melasse, Stärkelösungen, Gaswasser aus der Vergasung oder Verkokung fester Brennstoffe oder Kalkmilch verwendet wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Pelletierflüssigkeit oder den feinkörnigen, zu pelletierenden festen Brennstoffen katalytisch wirksame Substanzen zur Erhöhung der Reaktionsfähigkeit, insbesondere NaCl, KCI, Na2C03, K2C03 oder Oxide von Molybdän, Wolfram, Zinn, Chrom, Nickel, Kobalt oder Eisen zugesetzt werden.
4. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß der Pelletierflüssigkeit oder den feinkörnigen, zu pelletierenden. festen Brennstoffen Stoffe zugesetzt werden, welche die Back- und Bläheigenschaften des festen Brennstoffs herabsetzen, insbesondere Na2B407, NaN02, K2CrO4, K2C03 oder KN03.
5. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, daß die mit der Hüllschicht versehenen Pellets vor dem Eintragen in die Vergasung getrocknet werden, insbesondere bei Temperaturen unterhalb des Erweichungspunktes der Kohle, vorzugsweise zwischen 40 und 150 °C.
EP79200567A 1978-11-02 1979-10-08 Verfahren zum Vergasen feinkörniger Brennstoffe Expired EP0010792B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19782847416 DE2847416A1 (de) 1978-11-02 1978-11-02 Verfahren zum vergasen feinkoerniger brennstoffe
DE2847416 1978-11-02

Publications (2)

Publication Number Publication Date
EP0010792A1 EP0010792A1 (de) 1980-05-14
EP0010792B1 true EP0010792B1 (de) 1982-04-28

Family

ID=6053608

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79200567A Expired EP0010792B1 (de) 1978-11-02 1979-10-08 Verfahren zum Vergasen feinkörniger Brennstoffe

Country Status (6)

Country Link
EP (1) EP0010792B1 (de)
JP (1) JPS5562995A (de)
AU (1) AU526089B2 (de)
DE (2) DE2847416A1 (de)
PL (1) PL118394B2 (de)
ZA (1) ZA795369B (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440546A (en) * 1981-09-25 1984-04-03 Conoco Inc. Process for gasification of carbonaceous material
ZA828518B (en) * 1982-03-04 1983-09-28 Exxon Research Engineering Co Process for the gasification of coal and other mineral-containing carbonaceous solids
JPS58171480A (ja) * 1982-04-01 1983-10-08 Yasukatsu Tamai 石炭類の接触ガス化方法
ZA854014B (en) * 1984-07-19 1986-10-29 Texaco Development Corp Coal gasification process
DE3441757A1 (de) * 1984-11-15 1986-05-15 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum herstellen kohlehaltiger pellets fuer die vergasung
DE3441756A1 (de) * 1984-11-15 1986-05-15 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zum herstellen braunkohlehaltiger pellets fuer die vergasung
JPH0529503Y2 (de) * 1988-03-30 1993-07-28
JPH06214506A (ja) * 1992-10-30 1994-08-05 Kinoshita Denki Kk ラベルシート
FR2723367B1 (fr) * 1994-08-03 1996-10-25 Lafarge Fondu Int Liant pour agglomeration a froid de fines de combustible, agglomere de tels produits et procede de fabrication de tels agglomeres
BE1013395A5 (nl) * 2000-04-17 2001-12-04 Behoko Nv Vast brandbaar element voor het afbreken van een verbrandings-afzetlaag en werkwijze voor de productie van een dergelijk element.
DE102007033298A1 (de) 2007-07-18 2009-01-22 Ziegelei Hilti, Mettauer Gmbh Energieträger und Verfahren zum Brennen von Keramik
DE102012202129B4 (de) 2012-02-13 2016-07-28 Technische Universität Bergakademie Freiberg Verfahren und Einrichtung zur Festbettvergasung
AP2014007913A0 (en) 2012-02-13 2014-09-30 Air Liquide Process and device for fixed-bed pressure gasification of solid fuels

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR417929A (fr) * 1909-09-27 1910-11-25 Otto Dieffenbach Procédé de fabrication d'hydrogène
GB128273A (en) * 1917-07-09 1919-06-26 Hendrik Jacobus Prins Improvements in and relating to a Process for Preparing Hydrogen from Carbon or Carbon-containing Substances by the Action of Water or Water Vapour thereon.
CH101977A (de) * 1922-11-24 1923-11-01 Spichtin Brunner Celina Kohlenpressling für Heizzwecke.
DE1186825B (de) * 1963-10-09 1965-02-11 Bergwerksverband Gmbh Verfahren zur Herstellung von Formkoerpern aus feinkoernigen Stoffen, insbesondere Brennstoffen
FR1445980A (fr) * 1965-08-31 1966-07-15 Bergwerksverband Gmbh Procédé pour la fabrication d'agglomérés de coke sphériques
US3692505A (en) * 1971-04-05 1972-09-19 Consolidation Coal Co Fixed bed coal gasification
GB1435089A (en) * 1972-11-09 1976-05-12 Gen Electric Fixed bed coal gasification
DE2256383A1 (de) * 1972-11-17 1974-05-22 Gen Electric Zusammensetzung fuer fest-bett zur vergasung von kohle
DE2540165B2 (de) * 1975-09-09 1979-01-11 Steag Ag, 4300 Essen Aufbereitungsverfahren zur Gewinnung eines zum Betrieb eines Druckvergasers dienenden Brennstoffes aus Kohle
DE2629182C2 (de) * 1976-06-29 1978-08-10 Bergwerksverband Gmbh, 4300 Essen Verfahren zum Beschicken eines Vergasungsreaktors
DE2810125C2 (de) * 1978-03-09 1982-07-15 Steag Ag, 4300 Essen Verfahren und Anlage zur Herstellung eines stückigen Brennstoffes für die Kohledruckvergasung im Festbettreaktor

Also Published As

Publication number Publication date
AU5241279A (en) 1980-05-08
PL219362A2 (de) 1980-06-16
JPS5562995A (en) 1980-05-12
PL118394B2 (en) 1981-09-30
ZA795369B (en) 1980-09-24
AU526089B2 (en) 1982-12-16
DE2962638D1 (en) 1982-06-09
DE2847416A1 (de) 1980-05-14
JPS629279B2 (de) 1987-02-27
EP0010792A1 (de) 1980-05-14

Similar Documents

Publication Publication Date Title
EP0010792B1 (de) Verfahren zum Vergasen feinkörniger Brennstoffe
DE2631481C2 (de) Verfahren zur Herstellung von expandierbaren Perlen und deren Verwendung
AT510136A1 (de) Verfahren zur herstellung von kohlepartikeln enthaltenden presslingen
EP0011887B1 (de) Verfahren zur Erzeugung von Formkörpern aus backender Kohle für die Vergasung
DE2948893A1 (de) Verfahren zur verbesserung der bettbrenneigenschaften und zur verhinderung der koaleszenz von kohlepellets
DE3245567C2 (de) Verfahren zum Vergasen kohlehaltiger Agglomerate im Festbett
DE69611676T2 (de) Agglomerate
DE3231665C2 (de) Verfahren zur Herstellung von Kohlematerial f}r die Entschwefelung
EP0748766B1 (de) Granulat auf Basis von Erdalkalikarbonaten mit ab- und adsorptiven Substanzen
DE3100727A1 (de) "verfahren zur herstellung von aufkohlungsmitteln"
EP2593536A1 (de) Verfahren zur herstellung von kohlepartikel enthaltenden presslingen
US2585454A (en) Preparation of a sulfur-containing activated carbon
EP0192807B1 (de) Verfahren zur Herstellung reaktiver, kohlenstoffreicher Presslinge
DE2029074A1 (de) Desulfunerungsmassen auf der Basis von Zinkoxyd
EP0012457B1 (de) Verfahren zur Erzeugung von Formkörpern aus festen Brennstoffen für die Vergasung
DE2513322C3 (de) Verfahren zum Entschwefeln von Koks
DD284609A5 (de) Entschwefelndes kohlenstoffmaterial und seine herstellung
AT406690B (de) Mittel zur behandlung von roheisen- und gusseisenschmelzen zum zweck der entschwefelung
EP0030265B1 (de) Verfahren zur Entfernung von Russ aus wässrigen Suspensionen
DE2154955C3 (de) Verwendung von Braunkohlenkokspellets für die Sinterung und Verfahren zur Herstellung dieser Pellets
DE2842425A1 (de) Verfahren und vorrichtung zum herstellen von heissbriketts
DE1283807B (de) Verwendung eines Formkokses als Adsorptionsmittel fuer Schwefeloxyde aus Abgasen
EP0182403A2 (de) Verfahren zum Herstellen braunkohlehaltiger Pellets für die Vergasung
DE1517155C (de) Verfahren zum Vergasen alkalihaltiger Sulfitablaugen
DE3629228A1 (de) Verfahren zur herstellung von formlingen aus erzen und kohlenstoffhaltigem material

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL

17P Request for examination filed
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR GB NL

REF Corresponds to:

Ref document number: 2962638

Country of ref document: DE

Date of ref document: 19820609

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19840930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19841004

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19841122

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19861031

BERE Be: lapsed

Owner name: METALL-G. A.G.

Effective date: 19861031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19871031

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890701

GBPC Gb: european patent ceased through non-payment of renewal fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT