EA011226B1 - Система низкотемпературного контроля для подземных барьеров - Google Patents
Система низкотемпературного контроля для подземных барьеров Download PDFInfo
- Publication number
- EA011226B1 EA011226B1 EA200702298A EA200702298A EA011226B1 EA 011226 B1 EA011226 B1 EA 011226B1 EA 200702298 A EA200702298 A EA 200702298A EA 200702298 A EA200702298 A EA 200702298A EA 011226 B1 EA011226 B1 EA 011226B1
- Authority
- EA
- Eurasian Patent Office
- Prior art keywords
- temperature
- wells
- formation
- fiber optic
- freezing
- Prior art date
Links
- 230000004888 barrier function Effects 0.000 title claims description 54
- 238000012544 monitoring process Methods 0.000 title abstract description 9
- 239000000835 fiber Substances 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims abstract description 38
- 230000008014 freezing Effects 0.000 claims description 124
- 238000007710 freezing Methods 0.000 claims description 124
- 230000015572 biosynthetic process Effects 0.000 claims description 108
- 239000012530 fluid Substances 0.000 claims description 59
- 229930195733 hydrocarbon Natural products 0.000 claims description 31
- 150000002430 hydrocarbons Chemical class 0.000 claims description 31
- 238000001816 cooling Methods 0.000 claims description 29
- 238000012545 processing Methods 0.000 claims description 16
- 239000013307 optical fiber Substances 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 7
- 239000000446 fuel Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- 238000004458 analytical method Methods 0.000 claims description 3
- 238000005755 formation reaction Methods 0.000 description 104
- 239000000463 material Substances 0.000 description 20
- 230000008569 process Effects 0.000 description 19
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 17
- 238000011065 in-situ storage Methods 0.000 description 17
- 238000000197 pyrolysis Methods 0.000 description 16
- 238000012546 transfer Methods 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 229910001868 water Inorganic materials 0.000 description 15
- 230000001681 protective effect Effects 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 12
- 239000004215 Carbon black (E152) Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 239000002826 coolant Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 229910000851 Alloy steel Inorganic materials 0.000 description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 235000011114 ammonium hydroxide Nutrition 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 125000006850 spacer group Chemical group 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000013021 overheating Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 239000008398 formation water Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000003027 oil sand Substances 0.000 description 2
- -1 pyrobitumen Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000010963 304 stainless steel Substances 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 229910000589 SAE 304 stainless steel Inorganic materials 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012184 mineral wax Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- WFIZEGIEIOHZCP-UHFFFAOYSA-M potassium formate Chemical compound [K+].[O-]C=O WFIZEGIEIOHZCP-UHFFFAOYSA-M 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/30—Specific pattern of wells, e.g. optimising the spacing of wells
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/08—Production of synthetic natural gas
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/04—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/17—Interconnecting two or more wells by fracturing or otherwise attacking the formation
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2401—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2214/00—Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
- H05B2214/03—Heating of hydrocarbons
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Resistance Heating (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- General Induction Heating (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Surface Heating Bodies (AREA)
- Processing Of Solid Wastes (AREA)
- Lubricants (AREA)
- Pipe Accessories (AREA)
- Auxiliary Devices For And Details Of Packaging Control (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Air-Conditioning For Vehicles (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Communication Control (AREA)
- Control Of Combustion (AREA)
- Control Of Temperature (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Enzymes And Modification Thereof (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Изобретение предлагает систему контроля температуры подземной низкотемпературной зоны, которая включает в себя множество замораживающих скважин (114), выполненных с возможностью формирования низкотемпературной зоны; по меньшей мере одну контрольную скважину; один или несколько лазеров; оптоволоконный кабель (146), соединённый по меньшей мере с одним лазером (142) и анализатором (144), соединённым с оптоволоконным кабелем. Часть оптоволоконного кабеля расположена по меньшей мере в одной контрольной скважине. По меньшей мере один лазер выполнен с возможностью вводить световые импульсы по меньшей мере в один конец оптоволоконного кабеля. Анализатор выполнен с возможностью принимать обратные сигналы от световых импульсов. Изобретение также относится к способам контроля температуры подземной низкотемпературной зоны.
Description
Настоящее изобретение относится в общем к способам и системам, обеспечивающим низкотемпературный барьер вокруг по меньшей мере части подземной области обработки. Область обработки может использоваться для добычи углеводородов, водорода и (или) других продуктов. Варианты осуществления относятся к способам и системам для определения температурного профиля низкотемпературного барьера.
Уровень техники
Для обработки пластов могут использоваться внутрипластовые процессы. Во время некоторых внутрипластовых процессов в пласт могут быть введены флюиды или они могут быть образованы в пласте. Введённые или образованные флюиды, возможно, должны содержаться в области обработки, чтобы минимизировать или устранить воздействие на смежные области внутрипластового процесса. Во время некоторых внутрипластовых процессов барьер может быть сформирован вокруг всей или части области обработки, чтобы предотвратить перемещения флюида из области обработки или в область обработки.
Низкотемпературная зона может быть использована для изолирования выбранных областей пласта для многих целей. В некоторых системах грунт замораживается для исключения миграции флюидов из обрабатываемой области во время ликвидации загрязнений. Патенты США № 4860544 на имя Кпед е! а1., 4974425 на имя Кпед е! а1.; 5507149 на имя Эа511 е! а1., 6796139 на имя Вгйеу е! а1., 6854929 на имя Ушедаг е! а1. и патентная заявка И82004/0140095 описывают системы с замораживающими скважинами для замораживания грунта. В заявке И82004/001950 раскрыта система для контроля температуры в нескольких стволах скважин в подземном пласте.
Для формирования низкотемпературного барьера отдельные обособленные скважины могут быть образованы в пласте, где должен быть сформирован барьер. В стволах скважин может быть размещен трубопровод. Низкотемпературная теплопередающая среда может циркулировать по трубопроводу, чтобы снизить температуру рядом со скважинами. Низкотемпературная зона вокруг скважин может распространяться в направлении от них. В конечном счёте, низкотемпературные зоны, образованные двумя смежными скважинами, смыкаются. Температура низкотемпературных зон может быть достаточно низкой, чтобы заморозить пластовый флюид так, чтобы был сформирован практически непроницаемый барьер. Расстояние между скважинами может быть приблизительно от 1 до 3 м или более.
Расстояние между скважинами может быть функцией от нескольких факторов, в том числе состава пласта и его свойств, пластового флюида и его свойств, времени для формирования барьера, и температуры и свойств низкотемпературной теплопередающей среды. В общем, очень холодная температура низкотемпературной теплопередающей среды обеспечивает большее пространство и (или) более быстрое формирование барьера. Очень холодная температура может быть равна - 20°С или менее.
Во время формирования низкотемпературной зоны температура пласта в замораживающих скважинах и (или) рядом с ними может указывать на изменение пласта с низкотемпературным барьером. После завершения барьера температура пласта в замораживающих скважинах и (или) рядом с ними или в контрольных скважинах, смежных с замораживающими скважинами, может указывать возможные проблемные области, которые могут привести к образованию разрывов в барьере. Желательно иметь систему для контроля температуры в замораживающих скважинах и (или) рядом с замораживающими скважинами в пласте.
Сущность изобретения
В некоторых вариантах осуществления изобретение касается системы для контроля температуры подземной низкотемпературной зоны, которая включает в себя множество замораживающих скважин, выполненных с возможностью формирования низкотемпературной зоны; по меньшей мере одну контрольную скважину; один или более лазеров; оптоволоконный кабель, соединённый с по меньшей мере одним лазером, причём часть оптоволоконного кабеля расположена в по меньшей мере одной контрольной скважине и по меньшей мере один лазер выполнен с возможностью введения световых импульсов в по меньшей мере один конец оптоволоконного кабеля; и анализатор, соединённый с оптоволоконным кабелем, причём анализатор выполнен с возможностью получения обратных сигналов от световых импульсов.
Изобретение также предлагает в комбинации с вышеописанным изобретением компьютер, соединённый с анализатором; и систему охлаждения пласта с циркуляцией охладителя, соединённую с компьютером, причём система охлаждения пласта с циркуляцией охладителя выполнена с возможностью подачи охладителя в замораживающие скважины, а компьютер выполнен с возможностью оценки данных температурного профиля, полученных из анализатора.
Изобретение также касается способов контроля температуры низкотемпературного подземного барьера с помощью одного или нескольких из описанных изобретений, включающих в себя этапы, на которых передают свет через оптоволоконный кабель и анализируют анализатором один или более обратных сигналов из оптоволоконного кабеля для того, чтобы оценить температурный профиль вдоль оптоволоконного кабеля.
В дальнейших вариантах осуществления элементы из конкретных вариантов осуществления могут быть объединены с элементами из других вариантов осуществления. Например, элементы из одного ва
- 1 011226 рианта осуществления могут быть объединены с элементами из любого другого варианта осуществления.
В дальнейших вариантах осуществления обработка пласта выполняется с помощью любых из описанных способов и(или) систем.
В дальнейших вариантах осуществления дополнительные признаки могут быть добавлены к конкретным вариантам осуществления, описанным здесь.
Краткое описание чертежей
Преимущества данного изобретения могут стать очевидными специалистам с выгодой от последующего подробного описания и ссылки на сопровождающие чертежи, на которых фиг. 1 показывает условный вид варианта осуществления части системы для процесса внутрипластовой конверсии для обработки пласта, содержащего углеводороды;
фиг. 2 изображает вариант осуществления замораживающей скважины для системы охлаждения с циркулирующей средой, причём вид в разрезе замораживающей скважины представлен ниже поверхности земли;
фиг. 3 - вид защитного кожуха, связанного с корпусом замораживающей скважины;
фиг. 4 - условное представление оптоволоконной кабельной системы, используемой для контроля температуры в замораживающих скважинах и около них.
Хотя изобретение чувствительно к различным модификациям и альтернативным формам, конкретные варианты осуществления показаны посредством примера на чертежах и могут быть подробно описаны здесь. Чертежи выполнены не в масштабе. Однако должно быть понятно, что чертежи и подробное описание не предназначены для ограничения изобретения конкретной раскрытой формой, но напротив, намерение состоит в том, чтобы охватить все модификации, эквиваленты и альтернативы, попадающие в сущность и объём данного изобретения, как определено в приложенной формуле изобретения.
Подробное описание
Нижеследующее описание в общем относится к системам и способам обработки углеводородов в пластах. Пласты могут обрабатываться с помощью внутрипластовых процессов конверсии для того, чтобы получить углеводородные продукты, водород и другие продукты. Замораживающие скважины могут использоваться для того, чтобы формировать барьер вокруг всей или части подвергаемого воздействию пласта для осуществления внутрипластового процесса конверсии. Оптоволоконная система измерения температуры может использоваться для того, чтобы контролировать температуру замораживающих скважин и (или) частей пласта, смежных с барьером, сформированным замораживающими скважинами.
«Углеводороды» в общем определяются как молекулы, сформированные прежде всего атомами углерода и водорода. Углеводороды могут также включать в себя другие элементы, такие как - но, не ограничиваясь ими - галогены, элементы металлов, азот, кислород и (или) сера. Углеводороды могут быть но, не ограничиваясь ими - керогеном, асфальтом, пиробитумом, нефтепродуктами, естественными минеральными восками и асфальтитами. Углеводороды могут быть локализованы в минеральных матрицах или граничить с ними в земле. Матрицы могут включать в себя - но, не ограничиваясь ими - осадочную породу, пески, силициты, карбонаты, диатомиты и другие пористые среды. «Углеводородные флюиды» являются флюидами, которые включают в себя углеводороды. Углеводородные флюиды могут включать в себя, вовлекать или быть вовлечёнными в неуглеводородные флюиды, такие как водород, азот, угарный газ, углекислый газ, сероводород, вода и аммиак.
«Пласт» включает в себя один или несколько содержащих углеводороды слоёв, один или несколько неуглеводородных слоев, покрывающий слой и (или) подстилающий слой. «Покрывающий слой» и (или) «подстилающий слой» включают в себя один или несколько различных типов непроницаемых материалов. Для примера, покрывающий и (или) подстилающий слой могут включать в себя скальную породу, сланец, щебень или влажный/плотный карбонат. В некоторых вариантах осуществления внутрипластовых процессов конверсии покрывающий и (или) подстилающий слой могут включать в себя слой, содержащий углеводороды, или слои, содержащие углеводороды, которые являются относительно непроницаемыми и не подвергаются воздействию температуры в ходе внутрипластового процесса конверсии, что приводит к существенным характерным изменениям покрывающего и(или) подстилающего слоя, содержащих углеводород.
Например, подстилающий слой может содержать сланец или щебень, но подстилающий слой не нагревается до температур пиролиза во время внутрипластового процесса конверсии. В некоторых случаях покрывающий и (или) подстилающий слой могут быть до некоторой степени проницаемыми.
«Пластовыми флюидами» называются флюиды, находящиеся в пласте, они могут включать пиролизный флюид, синтез-газ, подвижный углеводород и воду (пар). Пластовые флюиды могут включать в себя как жидкие углеводороды, так и не жидкие углеводороды. Термин «подвижный флюид» относится к флюидам в пласте, содержащем углеводород, которые способны течь в результате тепловой обработки пласта. «Добытыми флюидами» называются пластовые флюиды, удалённые из пласта.
«Источником тепла» является любая система, обеспечивающая тепло для по меньшей мере части пласта, по существу, за счёт теплопроводности и (или) излучения. Например, источник тепла может включать в себя электронагреватели, такие как изолированный проводник, протяжённый элемент и (или) проводник, расположенный в трубе. Источник тепла может также включать в себя системы, которые вы
- 2 011226 рабатывают тепло путём сжигания топлива, находящегося вне пласта или в пласте. Эти системы могут быть поверхностными горелками, скважинными газовыми горелками, беспламенными распределёнными камерами сгорания и естественными распределёнными камерами сгорания. В некоторых применениях тепло, подводимое или выработанное в одном или несколько тепловых источниках, может подводиться от других источников энергии. Другие источники энергии могут непосредственно нагревать пласт или энергия может передаваться теплоносителю, который прямо или косвенно нагревает пласт. Понятно, что один или несколько тепловых источников, которые нагревают пласт, могут использовать различные источники энергии. Таким образом, например, для заданного пласта некоторые источники тепла передают тепло от электрических резистивных нагревателей, некоторые источники тепла могут обеспечивать тепло за счёт сжигания топлива, а некоторые источники тепла могут получать тепло от одного или нескольких других источников энергии (например, за счёт химических реакций, солнечной энергии, ветровой энергии, биомассы или других источников возобновляемой энергии). Химическая реакция может включать в себя экзотермическую реакцию (например, реакция окисления). Источник тепла может также включать в себя нагреватель, который обеспечивает нагрев в зоне, ближайшей к нагреваемому месту и (или) окружающей его, такой как нагревательная скважина.
«Нагреватель» представляет собой любую систему или источник тепла для генерации тепла в скважине или в области вблизи скважины. Нагреватели могут быть - но, не ограничиваясь ими - электронагревателями, горелками, камерами сгорания, которые реагируют с материалом в пласте или добытым из пласта и (или) их комбинаций.
«Внутрипластовый процесс конверсии» относится к процессу нагревания содержащего углеводород пласта с помощью источников тепла для того, чтобы поднять температуру по меньшей мере части пласта выше температуры пиролиза, с тем, чтобы в пласте образовался пиролизный флюид.
Термин «ствол скважины» относится к отверстию в пласте, выполненному путём бурения или введения трубопровода в пласт. Ствол скважины обычно имеет круглое поперечное сечение или другую форму поперечного сечения. Термины «скважина» и «отверстие» используются здесь, когда ссылаются на отверстие в пласте, и могут использоваться взаимозаменяемо с термином «ствол скважины».
«Пиролиз» представляет собой разрушение химических связей в результате приложения нагрева. Например, пиролиз может включать в себя преобразование соединения в одно или несколько других веществ только путём нагрева. Тепло может передаваться в участок пласта, чтобы вызвать пиролиз. В некоторых пластах части пласта и (или) другие материалы в пласте могут стимулировать пиролиз через каталитическую активность.
«Пиролизный флюид» или «продукты пиролиза» относятся к флюиду, полученному в ходе пиролиза углеводородов. Флюид, полученный в результате реакции пиролиза, может смешиваться с другими флюидами в пласте. Смесь будет рассматриваться как пиролизный флюид или продукт пиролиза. Как используется здесь, «зона пиролиза» относится к объёму пласта (например, относительно проницаемого пласта, такого как пласт нефтеносного песка), который вызывает реакцию или реагирует с образованием пиролизного флюида.
«Теплопроводность» представляет собой свойство материала, которое описывает скорость, с которой тепло распространяется в установившемся состоянии между двумя поверхностями материала для заданной разности температур между этими двумя поверхностями.
Углеводороды или другие желательные продукты в пласте могут быть добыты с помощью различных внутрипластовых процессов. Некоторые внутрипластовые процессы, которые можно использовать для добычи углеводороды или желательных продуктов, представляют собой такие внутрипластовые процессы конверсии как разбавление паром, разбавление огнём, паровой гравитационный дренаж и другие решения, используемые в горной промышленности. Во время некоторых внутрипластовых процессов барьеры могут быть необходимы или желательны. Барьеры могут предотвратить попадание флюида, такого как пластовая вода, в область обработки. Барьеры могут также предотвратить нежелательный выход флюида из области обработки. Предотвращение нежелательного выхода флюида из области обработки может минимизировать или устранить воздействие внутрипластового процесса на участках, смежных с областью обработки.
На фиг. 1 изображен вариант осуществления части системы 100 внутрипластовой конверсии для обработки содержащего углеводород пласта. Система 100 внутрипластовой конверсии может включать в себя барьерные скважины 102. Барьерные скважины 102 используются для образования барьера вокруг области обработки. Барьер предотвращает поток флюида в область обработки и (или) из области обработки. Барьерные скважины включают в себя - но, не ограничиваясь ими - водопонижающие скважины, скважины пониженного давления, улавливающие скважины, нагнетательные скважины, цементированные скважины, замораживающие скважины или их комбинации. В варианте осуществления, изображенном на фиг. 1, барьерные скважины 102 показаны только вдоль одной стороны источников 104 тепла, но барьерные скважины обычно окружают все используемые источники 104 тепла или могут использоваться для нагрева области обработки пласта.
Источники 104 тепла размещены по меньшей мере в части пласта. Источники 104 тепла могут включать в себя нагреватели, такие как изолированные проводники, нагреватели типа проводник в трубе,
- 3 011226 поверхностные горелки, беспламенные распределённые камеры сгорания и (или) естественные распределённые камеры сгорания. Источники 104 тепла могут также включать в себя другие типы нагревателей. Источники 104 тепла обеспечивают тепло для по меньшей мере части пласта, чтобы нагреть углеводороды в пласте. Энергия может подводиться к источникам 104 тепла через подводящие линии 106. Подводящие линии 106 могут конструктивно различаться в зависимости от источника тепла или источников тепла, используемых для нагрева пласта. Подводящие линии 106 для источников тепла могут передавать электричество для электронагревателей, могут транспортировать топливо для камер сгорания или могут транспортировать теплоноситель, который циркулирует в пласте.
Эксплуатационные скважины 108 используются для того, чтобы удалять пластовый флюид из пласта. В некоторых вариантах осуществления эксплуатационные скважины 108 могут включать в себя один или несколько источников тепла. Источник тепла в эксплуатационной скважине может нагревать одну или несколько частей пласта в эксплуатационной скважине или около эксплуатационной скважины. Источник тепла в эксплуатационной скважине может подавить конденсацию и отток пластового флюида, отводимого из пласта.
Пластовый флюид, добываемый из эксплуатационных скважин 108, может транспортироваться по коллекторному трубопроводу 110 к обрабатывающему оборудованию 112. Пластовые флюиды могут также быть получены из источников 104 тепла. Например, флюид может добываться из источников 104 тепла для того, чтобы управлять давлением в пласте, граничащем с источниками тепла. Флюид, добытый из источников 104 тепла, может транспортироваться по трубам или трубопроводам к коллекторному трубопроводу 110, или же добытый флюид транспортироваться по трубам или трубопроводам непосредственно к оборудованию обработки 112. Оборудование обработки 112 может включать в себя блоки сепарации, реакционные блоки, блоки для повышения качества, топливные блоки, турбины, резервуары для хранения и (или) другие системы и блоки для того, чтобы обрабатывать полученные пластовые флюиды. Оборудование обработки может вырабатывать транспортное топливо из по меньшей мере части углеводородов, добытых из пласта.
Некоторые скважины, сформированные в пласте, могут использоваться для того, чтобы облегчить формирование барьера по периметру вокруг области обработки. Барьер по периметру может быть - но не ограничен этим - низкотемпературным или замороженным барьером, образованным замораживающими скважинами, водопонижающими скважинами, цементной стеной, образованной в пласте, барьером из серного цемента, барьером, образованным гелем, полученным в пласте, барьером, образованным осаждением солей в пласте, барьером, образованным реакцией полимеризации в пласте и (или) листами, вогнанными в пласт. Источники тепла, эксплуатационные скважины, нагнетательные скважины, водопонижающие скважины и (или) контрольные скважины могут быть установлены в области обработки, определённой барьером до установки барьера, одновременно с ним или после установки барьера.
Низкотемпературная зона вокруг по меньшей мере части области обработки может быть образована замораживающими скважинами. В варианте осуществления охладитель, циркулирующий через замораживающие скважины, создает низкотемпературные зоны вокруг каждой замораживающей скважины. Замораживающие скважины размещены в пласте так, чтобы низкотемпературные зоны накладывались и образовывали низкотемпературную зону вокруг области обработки. Низкотемпературная зона, образованная замораживающими скважинами, поддерживается при температуре ниже температуры замерзания водного флюида в пласте. Водный флюид, попадающий в низкотемпературную зону, замерзает и образует замороженный барьер. В других вариантах осуществления замороженный барьер образуется группой управляемых замораживающих скважин. Холодная текучая среда, такая как жидкий азот, вводится в замораживающие скважины, чтобы сформировать низкотемпературные зоны вокруг замораживающих скважин. Жидкость пополняется по мере необходимости.
В некоторых вариантах осуществления два или более рядов замораживающих скважин располагают вокруг всей или части периметра области обработки для того, чтобы образовать широкую взаимосвязанную низкотемпературную зону. Широкие низкотемпературные зоны могут быть образованы смежными областями в пласте, где есть высокая скорость потока водной текучей среды в пласте. Широкий барьер может гарантировать, что не произойдёт сквозного прорыва замороженного барьера, установленного замораживающими скважинами.
Вокруг сторон области обработки могут быть установлены вертикально размещённые замораживающие скважины и (или) горизонтально размещённые замораживающие скважины. Если покрывающий слой или подстилающий слой пласта позволяют флюиду течь в область обработки или из области обработки, могут применяться горизонтально размещённые замораживающие скважины для того, чтобы сформировать верхний и (или) нижний барьер для области обработки. В некоторых вариантах осуществления верхний барьер и (или) нижний барьер, возможно, не нужен, если верхний слой и (или) нижний слой по меньшей мере практически непроницаемы. Если образован верхний барьер замораживания, то части источников тепла, эксплуатационных скважин, нагнетательных скважин и (или) водопонижающих скважин, которые проходят через низкотемпературную зону, созданную замораживающими скважинами и формирующими верхний барьер замораживания, могут быть изолированы, и (или) тепло может быть подведено таким образом, чтобы низкотемпературная зона не повлияла на функционирование источни
- 4 011226 ков тепла, эксплуатационных скважин, нагнетательных скважин и (или) водопонижающих скважин, проходящих через низкотемпературную зону.
Интервал между смежными замораживающими скважинами может быть функцией от множества различных факторов. Эти факторы могут включать в себя - но, не ограничиваясь ими - физические свойства материала пласта, тип системы охлаждения, «холодильные» и тепловые свойства охладителя, скорость потока материала в или из области обработки, время образования низкотемпературной зоны и экономические соображения. Уплотнённый или частично уплотнённый материал пласта может позволить устанавливать больший интервал между замораживающими скважинами. Расстояние между замораживающими скважинами в уплотнённом или частично уплотнённом материале пласта может составлять от 3 до 20 м, от 4 до 15 м или от 5 до 10 м. В варианте осуществления интервал между смежными замораживающими скважинами составляет 5 м. Интервал между замораживающими скважинами в неуплотнённом или, по существу, неуплотнённом материале пласта, таком как нефтеносный песок, возможно, должен быть меньшим, чем интервал в уплотнённом материале пласта. Расстояние между замораживающими скважинами в неуплотнённом материале может быть от 1 до 5 м.
Замораживающие скважины должны быть размещены в пласте так, чтобы было минимальное отклонение в ориентации одной замораживающей скважины относительно соседней замораживающей скважины. Избыточное отклонение создаёт большее расстояние между соседними замораживающими скважинами, что, возможно, не позволит создать связанную низкотемпературную зону между соседними замораживающими скважинами. Факторы, которые влияют на способ введения замораживающих скважин в грунт, включают в себя - но, не ограничиваясь ими - время установки замораживающей скважины, глубину, на которую замораживающие скважины должны быть введены, свойства пласта, требуемую ориентацию скважин и экономику.
Стволы скважин относительно малой глубины для замораживающих скважин могут пробиваться и (или) путём вибрации вводиться в некоторые пласты. Стволы скважин для замораживающих скважин могут пробиваться и (или) вводиться путём вибрации в пласты на глубину от 1 до 100 м без избыточного отклонения в ориентации замораживающих скважин относительно соседних замораживающих скважин в некоторых типах пластов.
Стволы скважин для замораживающих скважин, помещённых глубоко в пласты, или стволы скважин для замораживающих скважин, размещаемых в пластах со слоями, которые являются трудными для вбивания или ввода через них скважин путём вибрации, могут быть размещены в пластах направленным бурением и (или) с использованием забойной системы. Акустические сигналы, электрические сигналы, магнитные сигналы и (или) другие сигналы, полученные в первом стволе скважине, могут использоваться, чтобы вести бурение соседних скважин так, чтобы был выдержан требуемый интервал между соседними скважинами. Тщательный контроль интервала между скважинами для замораживающих скважин является важным фактором для уменьшения времени завершения формирования барьера в пласте.
После формирования стволов скважин для замораживающих скважин стволы скважины могут быть заполнены водой рядом с частью пласта, которую необходимо охладить, чтобы сформировать часть барьера замораживания. Вода может вытеснить бурильную жидкость, остающуюся в стволе скважины. Вода может вытеснить природный газ во впадины, смежные с пластом. В некоторых вариантах осуществления скважина заполняется водой из трубопровода до уровня покрывающего слоя. В некоторых вариантах осуществления скважина заполняется водой по секциям. Ствол скважины может обрабатываться по секциям, имеющим длины 6, 10, 14, 17 м или больше. Давление воды в стволе скважины поддерживается ниже давления разрушения пласта. В некоторых вариантах осуществления вода или часть воды удаляется из ствола скважины, и замораживающая скважина размещается в пласте.
Фиг. 2 изображает вариант осуществления замораживающей скважины 114. Замораживающая скважина 114 может включать в себя корпус 116, впускной трубопровод 118, распорные детали 120 и насадку 122. Распорные детали 120 могут позиционировать впускной трубопровод 118 в корпусе 116 так, чтобы между корпусом и трубопроводом было сформировано кольцевое пространство. Распорные детали 120 могут способствовать образованию турбулентного потока охладителя в кольцевом пространстве между впускным трубопроводом 118 и корпусом 116, но распорные детали могут также вызвать существенное падение давления текучей среды. Турбулентный поток текучей среды в кольцевом пространстве может быть стимулирован приданием шероховатости внутренней поверхности корпуса 116, приданием шероховатости внешней поверхности впускного трубопровода 118 и (или) при наличии небольшого поперечного сечения области кольцевого пространства, что обеспечивает высокую скорость охладителя в кольцевом пространстве. В некоторых вариантах осуществления распорные детали не используются. Устьевое оборудование 124 может удерживать корпус 116 в стволе скважины 126.
Охладитель пласта может протекать по холодной стороне трубопровода 128 из блока охлаждения к впускному трубопроводу 118 замораживающей скважины 114. Охладитель пласта может протекать через кольцевое пространство между впускным трубопроводом 118 и корпусом 116 к тёплой стороне трубопровода 130. Тепло может передаваться от пласта к корпусу 116 и от корпуса к охладителю пласта в кольцевом пространстве. Впускной трубопровод 118 может быть изолирован, чтобы предотвратить передачу тепла к охладителю пласта во время прохода охладителя пласта в замораживающую скважину 114.
- 5 011226
В варианте осуществления впускной трубопровод 118 представляет собой трубу из полиэтилена высокой плотности. При низких температурах некоторые полимеры могут проявлять большое температурное сжатие. Например, начальная длина 260 м полиэтиленового трубопровода при температуре приблизительно -25°С может сократиться на 6 м или более. Если используется трубопровод из полиэтилена высокой плотности или другой полимерный трубопровод, то большое температурное сжатие материала должно быть принято во внимание при определении конечной глубины замораживающей скважины. Например, замораживающая скважина должна быть пробурена глубже, чем необходимо, и трубопровод может сжаться во время использования. В некоторых вариантах осуществления впускной трубопровод 118 является изолированной металлической трубой. В некоторых вариантах осуществления изоляция может быть покрытием из полимера таким как - но, не ограничиваясь ими - поливинилхлоридом, полиэтиленом высокой плотности и (или) пенопластом.
Замораживающая скважина 114 может быть введена в пласт с помощью установки гибких насоснокомпрессорных труб. В варианте осуществления корпус 116 и впускной трубопровод 118 намотаны на одном барабане. Установка гибких насосно-компрессорных труб вводит корпус и впускной трубопровод в пласт. В варианте осуществления корпус 116 намотан на первом барабане, а впускной трубопровод 118 намотан на втором барабане. Установка гибких насосно-компрессорных труб вводит корпус 116 в пласт. Затем гибкие насосно-компрессорные трубы используются для того, чтобы ввести впускной трубопровод 118 в корпус. В других вариантах осуществления замораживающая скважина собирается по секциям в месте расположения скважины и вводится в пласт.
Изолированная секция замораживающей скважины 114 может быть установлена смежно с покрывающим слоем 132. Неизолированная секция замораживающей скважины 114 может быть размещена смежно со слоем или слоями 134, где должна быть сформирована низкотемпературная зона. В некоторых вариантах осуществления неизолированные секции замораживающей скважины могут быть помещены смежно только с водоносными слоями или другими водопроницаемыми частями пласта, что позволило бы флюиду течь в или из области обработки. Части пласта, куда неизолированные секции замораживающей скважины должны быть помещены, могут быть определены с помощью анализа колонки грунта и (или) каротажными методами.
В некоторых вариантах осуществления с корпусом связывают защитный кожух, когда корпус вводится в пласт. Защитный кожух может быть и-образным. Поворотный переходник вблизи конца корпуса может приводиться в соответствие с и-поворотом в защитном кожухе. Волокно может быть вставлено в защитный кожух. Фиг. 3 изображает часть корпуса 116 с защитным кожухом 136, соединённым с корпусом полосками 138. Защитный кожух 136 может быть трубкой из нержавеющей стали или другой трубкой.
Различные типы систем охлаждения могут использоваться для того, чтобы сформировать низкотемпературную зону. Определение соответствующей системы охлаждения может быть основано на многих факторах, в том числе - но, не ограничиваясь ими - тип замораживающей скважины; расстояние между соседними замораживающими скважинами; охладитель; время формирования низкотемпературной зоны; глубина низкотемпературной зоны; температурный перепад, которому будет подвергнут охладитель; химические и физические свойства охладителя; экологические проблемы, связанные с возможными выбросами, утечками или пролитием охладителя; экономика; образование водных потоков в пласте; состав и свойства пластовой воды, включая соленость и различные свойства пласта, такие как теплопроводность, способность тепловой диффузии и теплоёмкость.
Система охлаждения с циркулирующей текучей средой может использовать жидкий охладитель (охладитель пласта), который циркулирует через замораживающие скважины. Некоторые требуемые свойства для охладителя пласта: низкая рабочая температура, низкая вязкость при рабочей температуре и около нее, высокая плотность, высокая удельная теплоёмкость, высокая теплопроводность, низкая цена, коррозионностойкость и низкая токсичность. Низкая рабочая температура охладителя пласта позволяет образовывать большую низкотемпературную зону вокруг замораживающих скважин. Низкая рабочая температура охладителя пласта должна быть -20°С или ниже. Охладители пласта, имеющие низкие рабочие температуры по меньшей мере -60°С, могут включать в себя водный аммиак, растворы муравьинокислого калия, такие как Эупа1спс® НС-50 (Эупа1спс® Неа! ТгапГег Р1шб§ (Уайтхолл, Штат Пенсильвания, США)) или ΕΒΕΕΖίυΜ® (Кет1га СйеткаИ (Хельсинки, Финляндия)); силиконовые теплопередающие жидкости, такие как 8у11йегтХЕТ® (Ωο\ν Сотшпд Сотротайоп (Мидленд, Мичиган, США)); углеводородные охладители, такие как пропилен и хлорофтороуглероды, такие как В-22. Водный аммиак представляет собой раствор аммиака и воды с весовым процентом содержания аммиака между 20 и 40%. Водный аммиак имеет некоторые свойства и особенности, которые позволяют использовать водный аммиак как желательный охладитель пласта. Такие свойства и особенности включают в себя - но, не ограничиваясь ими - очень низкую точку замерзания, низкую вязкость, реальную доступность и низкую цену.
Охладитель пласта, который способен охлаждать водный пластовый флюид ниже температуры замерзания, может быть использован, чтобы сформировать низкотемпературную зону вокруг области обработки. Следующее уравнение (уравнение Сенджера) может использоваться, чтобы моделировать время
- 6 011226 ίι, необходимое для сформирования замораживающего барьера радиусом К вокруг замораживающей скважины, имеющей поверхностную температуру Т,:
(1)
где
В этих уравнениях кГ - теплопроводность замороженного материала; с,,г и с,;|| - объёмная теплоемкость замороженного и незамороженного материала, соответственно; го - радиус замораживающей скважины; ν, - разность температур между поверхностной температурой Т8 замораживающей скважины и точкой То замерзания воды; νο - разность температур между температурой Тд окружающего грунта и точкой То замерзания воды; Ь - объёмная скрытая теплота замерзания пласта; К - радиус замороженнойнезамороженной поверхности, и КА - радиус, на котором нет никакого влияния от охлаждающего трубопровода. Уравнение Сенджера может обеспечить оценку с завышенной погрешностью времени формирования замороженного барьера радиусом К, потому что это уравнение не учитывает влияния охлаждения от других замораживающих скважин. Температура охладителя пласта является регулируемой переменной, которая может значительно влиять на интервал между замораживающими скважинами.
Уравнение 1 подразумевает, что большая низкотемпературная зона может быть сформирована при использовании охладителя, имеющего очень низкую начальную температуру. Желательно использование охладителя пласта, имеющего низкую начальную температуру -30°С или ниже. Охладители пласта, имеющие начальные температуры более высокие чем -30°С, могут также использоваться, но с такими охладителями пласта требуются более длительные времена для соединения низкотемпературных зон, образованных отдельными замораживающими скважинами. Кроме того, такие охладители пласта требуют использования меньших интервалов между замораживающими скважинами и (или) большего числа замораживающих скважин.
Физические свойства материала, используемого для строительства замораживающих скважин, могут быть фактором при определении самой холодной температуры охладителя пласта, используемого для формирования низкотемпературной зоны вокруг области обработки. Углеродистая сталь может использоваться как конструкционный материал для замораживающих скважин. Стальные сплавы А333 сорта 6 А8ТМ (Американское общество по испытанию материалов) и стальные сплавы А333 сорта 3 А8ТМ могут использоваться для низкотемпературных приложений. Стальные сплавы А333 сорта 6 А8ТМ, как правило, не содержат или содержат немного никеля и имеют низкую границу диапазона рабочей температуры -50°С. Стальные сплавы А333 сорта 3 А8ТМ, как правило, содержат никель и имеют намного более низкую границу диапазона рабочей температуры. Никель в сплаве А333 сорта 3 А8ТМ добавляет эластичность при низких температурах, но также и значительно увеличивает стоимость металла. В некоторых вариантах осуществления самая низкая температура охладителя лежат от -35 до -55°С, от -38 до -47°С или от -40С до -45°С, чтобы обеспечить использование стальных сплавов А333 сорта 6 А8ТМ для строительства корпусов для замораживающих скважин. Нержавеющие стали, такие как нержавеющая сталь 304, могут использоваться для того, чтобы сформировать замораживающие скважины, но стоимость нержавекщей стали обычно намного больше, чем стоимость стальных сплавов А333 сорта 6 А8ТМ.
В некоторых вариантах осуществления металл, используемый для формирования корпусов замораживающих скважин, может быть в виде трубы. В некоторых вариантах осуществления металл, используемый для формирования корпусов замораживающих скважин, может быть в форме листа. Листовой металл может быть сварен по длине, чтобы образовать трубу, и (или) гибкую НКТ. Формирование корпусов из листового металла может улучшить экономичность системы, обеспечивая гибкой НКТ и уменьшая оборудование и трудовые ресурсы, необходимые для создания и установки корпусов, используя трубу.
Блок охлаждения может использоваться для уменьшения температуры охладителя пласта до низкой рабочей температуры. В некоторых вариантах осуществления блок охлаждения может использовать цикл испарения аммиака. Блоки охлаждения доступны от Соо1 Мап 1пс. (Милуоки, Висконсин, США), Сайпсг Кейтдегайои апб МапнГасШппд (Миннеаполис, Миннесота, США) и других поставщиков. В некоторых вариантах осуществления может быть использована каскадная система охлаждения с аммиаком на первой стадии и с углекислым газом на второй стадии. Циркулирующий через замораживающие скважины охладитель может содержать 30 вес.% аммиака в воде (водный аммиак). Альтернативно, может использоваться одностадийная система охлаждения с углекислым газом.
Система контроля температуры может быть установлена в стволах замораживающих скважин и (или) в контрольных скважинах, смежных с замораживающими скважинами, чтобы контролировать тем
- 7 011226 пературный профиль замораживающих скважин и (или) низкотемпературной зоны, образованной замораживающими скважинами. Эта система контроля может использоваться для того, чтобы контролировать развитие образования низкотемпературной зоны. Система контроля может использоваться для того, чтобы определить расположение высокотемпературных областей мест возможных прорывов или мест прорывов после того, как образована низкотемпературная зона. Периодический контроль температурного профиля замораживающих скважин и (или) низкотемпературной зоны, созданной замораживающими скважинами, позволяет обеспечить дополнительное охлаждение для возможных областей аварии прежде, чем случится прорыв. Дополнительное охлаждение может обеспечиваться в прорывах или вблизи прорывов и в высокотемпературных областях для того, чтобы гарантировать целостность низкотемпературной зоны вокруг области обработки. Дополнительное охлаждение можно обеспечивать, увеличивая поток охладителя через выбранные замораживающие скважины, устанавливая дополнительную замораживающую скважину или дополнительные замораживающие скважины и (или) подводя криогенную жидкость, такую как жидкий азот, к высокотемпературным областям. Обеспечение дополнительного охлаждения возможных областей аварии прежде, чем случится прорыв, намного эффективнее и выгоднее, чем устранение прорыва, подогрева части области обработки, которая была охлаждена притоком флюида и (или) восстановления области за пределами прорванного замороженного барьера.
В некоторых вариантах осуществления перемещающаяся термопара может использоваться для того, чтобы контролировать температурный профиль выбранных замораживающих скважин или контрольных скважин. В некоторых вариантах осуществления система контроля температуры включает в себя термопары, размещенные в отдельных местах в стволах замораживающих скважин, в замораживающих скважинах и (или) в контрольных скважинах. В некоторых вариантах осуществления система контроля температуры включает в себя оптоволоконную систему контроля температуры.
Оптоволоконные системы контроля температуры доступны от 8еп5огпе1 (Лондон, Великобритания), 8еи5а (Хьюстон, Техас, США), Ьипа Еиетду (Блексбург, Вирджиния, США), Ьюк Тсе11по1оду СМВН (Кёльн, Германия), ОхГогб Е1ес1гошс5 Иб. (Хемпшир, Великобритания), и 8аЬеи§ 8еп5ог Зуйепъ (Калабасас, Калифорния, США). Оптоволоконная система контроля температуры включает в себя систему передачи и обработки данных и один или несколько оптоволоконных кабелей. Система передачи и обработки данных включает в себя один или несколько лазеров для направления света в оптоволоконный кабель и один или несколько компьютеров с программным обеспечением и периферийными устройствами для приёма, анализа и вывода данных. Система передачи и обработки данных может быть соединена с одним или несколькими оптоволоконными кабелями.
Отдельный оптоволоконный кабель может быть длиной в несколько километров. Оптоволоконный кабель может быть установлен во многих замораживающих скважинах и (или) контрольных скважинах. В некоторых вариантах осуществления два оптоволоконных кабеля могут быть установлены в каждой замораживающей скважине и (или) контрольной скважине. Два оптоволоконных кабеля могут быть соединены вместе. Использование двух оптоволоконных кабелей в скважине обеспечивает компенсацию оптических потерь, которые происходят в скважинах, и обеспечивает лучшую точность измеряемых температурных профилей.
Волокно оптоволоконного кабеля может размещаться в полимерной трубе. Полимерная труба может быть заполнена теплопередающей средой. Теплопередающая среда может быть гелем или жидкостью, которая не замораживается при температуре используемого для охлаждения пласта охладителя или ниже неё. В некоторых вариантах осуществления теплопередающая среда в полимерной трубе является той же самой, что и охладитель пласта, например жидкость производства «Пуиа1еие» Неа1 ТгаикГет Е1шб§, или раствор аммиака. В некоторых вариантах осуществления волокно помещают в трубу с помощью теплопередающей среды. Использование теплопередающей среды для введения волокна в полимерную трубу удаляет влагу из полимерной трубы.
Полимерная труба и волокно могут размещаться в защитном кожухе, таком как четвертьдюймовая труба из нержавеющей стали 304, чтобы сформировать оптоволоконный кабель. Защитный кожух может быть предварительно напряжен для того, чтобы выдержать температурное сжатие при низких температурах. Защитный кожух может быть заполнен теплопередающей средой. В некоторых вариантах осуществления полимерная труба помещается в защитный кожух с теплопередающей средой. Использование теплопередающей среды для введения полимерной трубы и волокна в защитный кожух удаляет влагу в защитном кожухе. В некоторых вариантах осуществления два волокна расположены в одной и той же трубе из нержавеющей стали. В некоторых вариантах осуществления волокно размещается непосредственно в защитном кожухе без размещения в полимерной трубе.
В некоторых вариантах осуществления оптоволоконный кабель привязывают к корпусу замораживающей скважины, когда корпус вставляется в пласт. Оптоволоконный кабель может быть намотан вокруг корпуса смежно с частями пласта, которые должны быть доведены до низкой температуры, чтобы образовать низкотемпературную зону. Намотка оптоволоконного кабеля вокруг корпуса обеспечивает большую длину оптоволоконного кабеля вблизи областей, которые должны быть доведены до низкой температуры. Большая длина позволяет получить лучшее разрешение температурного профиля для областей, которые должны быть доведены до низких температур. В некоторых вариантах осуществления
- 8 011226 оптоволоконный кабель размещается в корпусе замораживающей скважины.
На фиг. 4 показана оптоволоконная система контроля температуры. Система 140 передачи и обработки данных включает в себя лазер 142 и анализатор 144. Лазер 142 выдаёт короткие интенсивные световые импульсы в оптоволоконный кабель 146. Оптоволоконный кабель 146 расположен в ряде замораживающих скважин 114 и контрольных скважин 148. Оптоволоконный кабель 146 может быть привязан к корпусам замораживающих скважин, когда корпуса устанавливаются в пласте. В некоторых вариантах осуществления оптоволоконный кабель привязан к вспомогательным элементам и вставлен в контрольную скважину. В некоторых вариантах осуществления защитный кожух оптоволоконного кабеля может быть подвешен в контрольной скважине без дополнительной опоры. Обратное излучение и отражение света в оптоволоконном кабеле 146 может измеряться как функция времени с помощью анализатора 144 системы 140 передачи и обработки данных. Анализ данных обратного излучения и отражения света даёт температурный профиль по длине оптоволоконного кабеля 146.
В некоторых вариантах осуществления система передачи и обработки данных является двусторонней системой. Система передачи и обработки данных может включать в себя один или несколько лазеров, которые посылают световые импульсы в каждый конец оптоволоконного кабеля. В некоторых вариантах осуществления лазер один. Лазер посылает импульсы в каждый конец оптоволоконного кабеля попеременно. Обратные сигналы, полученные системой передачи и обработки данных, позволяют обеспечивать компенсацию затухания сигнала в волоконном световоде.
В некоторых вариантах осуществления компьютерная система 150 управления соединена с оптоволоконной системой контроля температуры и системой охлаждения пласта с циркуляцией охладителя. Система охлаждения пласта с циркуляцией охладителя может включать в себя систему 152 охлаждения. Система 152 охлаждения направляет охлаждённый охладитель пласта к устьевым отверстиям 124 замораживающих скважин 114 через трубопровод 154. В некоторых вариантах осуществления охладитель пласта проходит вниз по впускному трубопроводу замораживающей скважины и вверх через кольцевое пространство между впускным трубопроводом и корпусом замораживающей скважины. Охладитель пласта затем проходит по трубопроводу к следующей замораживающей скважине.
Компьютерная система 150 управления может обеспечивать автоматический контроль низкотемпературной зоны, созданной замораживающими скважинами 114. Компьютерная система 150 управления может периодически выключать поток охладителя пласта к ряду замораживающих скважин на заданное время. Например, компьютерная система 150 управления может выключать поток охладителя пласта в определённую группу замораживающих скважин каждые 60 дней сроком на два дня и активировать систему 140 передачи и обработки данных для того, чтобы контролировать температурный профиль вблизи выключенных замораживающих скважин. Температурный профиль замораживающих скважин без потока охладителя пласта будет повышаться.
Компьютерная система 150 управления может контролировать скорость повышения температуры. Если имеется проблемный район, температурный профиль вблизи проблемного района покажет более высокую скорость изменения, чем температурный профиль соседний областей. Если происходит большее, чем ожидаемое повышение температуры в двух соседних скважинах, приблизительно на одной и той же глубине, или вблизи них, компьютерная система управления может сигнализировать оператору системы, что имеется проблема. Расположение проблемного района может быть вычислено/смоделировано/оценено путём сравнения повышения температуры между соседними скважинами. Например, если повышение температуры в первой скважине в два раза больше, чем повышение температуры во второй скважине, то расположение проблемного района ближе к первой скважине. Можно обеспечить проблемным районам дополнительное охлаждение и (или) дополнительный контроль. Дополнительное охлаждение можно обеспечить, увеличивая поток охладителя пласта к проблемному району и (или) устанавливая одну или несколько дополнительных замораживающих скважин. Если никакие проблемы не обнаружены в течение заданного времени, компьютерная система возобновляет поток охладителя пласта к конкретной группе замораживающих скважин и начинает испытание другой группы замораживающих скважин. Использование компьютерной системы 150 управления для контроля низкотемпературной зоны, образованной замораживающими скважинами, обеспечивает обнаружение и установление проблем прежде, чем произойдет прорыв барьера, сформированного замораживающими скважинами.
В некоторых вариантах осуществления оптоволоконная система контроля температуры использует системы бриллюэновского или комптоновского рассеивания. Такие системы обеспечивают пространственное разрешение 1 м и температурное разрешение 0,1 °С. При достаточном усреднении и температурной калибровке точность систем может доходить до 0,5°С.
В некоторых вариантах осуществления оптоволоконная система контроля температуры может быть брэгговской системой, которая использует оптоволоконный кабель, протравленный с образованием близко расположенных брэгговских решеток. Брэгговские решетки могут быть сформированы с приращениями в 1 фут вдоль выбранных длин волокна. Волокна с брэгговскими решетками доступны от Типа Епсгду. Брэгговская система требует только одножильного оптического кабеля, который нужно размес
- 9 011226 тить в каждой скважине, подлежащей контролю. Брэгговская система позволяет измерять температуру волокна за несколько секунд.
Оптоволоконная система контроля температуры может использоваться для того, чтобы обнаружить расположение прорыва или возможного прорыва в замороженном барьере. Поиск возможных прорывов может быть выполнен через запланированные интервалы, например каждые два или три месяца. Чтобы определить расположение прорыва или возможного прорыва, прекращают поток охладителя пласта к представляющим интерес замораживающим скважинам. В некоторых вариантах осуществления прекращают подачу охладителя пласта ко всем замораживающим скважинам. Повышение температурных профилей, а также скорости изменения температурных профилей, определяемые оптоволоконной системой контроля температуры для каждой замораживающей скважины, может использоваться для определения расположения любого прорыва или мест перегрева в низкотемпературной зоне, поддерживаемой замораживающими скважинами. Температурный профиль, контролируемый оптоволоконной системой контроля температуры, для двух замораживающих скважин, ближайших к участку перегрева или потоку текучей среды, покажет самое быстрое и самое большое повышение температуры. Изменение температуры в несколько градусов Цельсия в температурных профилях замораживающих скважин, ближайших к проблемной области, может быть достаточным для того, чтобы изолировать место проблемной области. Время выключения потока циркулирующей текучей среды в замораживающих скважинах, представляющих интерес для обнаружения прорыва, потенциальных прорывов и участков перегрева, может быть порядка нескольких часов или дней, в зависимости от размещения скважин и величины расхода текучей среды, влияющей на низкотемпературную зону.
Оптоволоконные системы контроля температуры могут также использоваться для контроля температуры в нагретых частях пласта в ходе внутрипластовых процессов конверсии. Волокно оптоволоконного кабеля, используемого в нагретой части пласта, может быть покрыто отражающим материалом для того, чтобы облегчить удержание сигнала или сигналов, передаваемых по волокну. В некоторых вариантах осуществления волокно покрывают золотом, медью, никелем, алюминием и (или) их сплавами. Покрытие должно быть сформировано из материала, который способен выдержать химические и температурные условия в нагретой части пласта. Например, золотое покрытие позволяет использовать оптический датчик до температур 700°С. В некоторых вариантах осуществления волокно покрывают алюминием. Волокно может быть погружено в или протянуто через ванну жидкого алюминия. Волокно с покрытием затем охлаждается, чтобы гарантировать закрепление алюминия на волокне. Золотое или алюминиевое покрытие может снижать водородное затемнение волоконного световода.
Дальнейшие изменения и альтернативные варианты осуществления различных аспектов изобретения могут быть очевидны специалистам с учётом этого описания. Соответственно, это описание должно рассматриваться только как пояснительное и с целью пояснения специалистам общего способа использования изобретения. Должно быть понятно, что формы изобретения, показанные и описанные здесь, должны быть приняты скорее как предпочтительные в настоящее время варианты осуществления. Элементы и материалы, поясняющие и описанные здесь, могут быть заменены на другие, части и процессы могут быть пересмотрены, и некоторые признаки изобретения могут использоваться независимо, как было бы очевидно специалисту после получения выгод от этого описания изобретения. Изменения могут быть сделаны в описанных здесь элементах без отхода от сущности и объёма изобретения, как оно описано в нижеследующей формуле изобретения. Помимо этого, должно быть понятно, что элементы, описанные здесь независимо, в некоторых вариантах осуществления могут быть объединены.
Claims (21)
- ФОРМУЛА ИЗОБРЕТЕНИЯ1. Система, предназначенная для контроля температуры подземной низкотемпературной зоны, содержащей множество замораживающих скважин, содержащая один или более лазеров;оптоволоконный кабель, соединённый по меньшей мере с одним лазером, причём часть оптоволоконного кабеля расположена по меньшей мере в одной замораживающей скважине, и при этом по меньшей мере один лазер выполнен с возможностью передавать световые импульсы в первый конец оптоволоконного кабеля; и анализатор, присоединённый к оптоволоконному кабелю, причём анализатор выполнен с возможностью принимать обратные сигналы от указанных световых импульсов.
- 2. Система по п.1, дополнительно содержащая компьютерную систему управления, соединённую с анализатором; и систему охлаждения пласта с циркуляцией охладителя, соединённую с компьютерной системой управления, причём система охлаждения пласта с циркуляцией охладителя выполнена с возможностью подавать охладитель в замораживающие скважины, а компьютерная система управления выполнена с возможностью оценивать данные температурного профиля, полученные из анализатора.
- 3. Система по п.2, в которой компьютерная система управления выполнена с возможностью автоматически регулировать поток охладителя к замораживающим скважинам.- 10 011226
- 4. Система по любому из пп.1-3, в которой оптоволоконный кабель расположен по меньшей мере в контрольной скважине.
- 5. Система по любому из пп.1-4, в которой оптоволоконный кабель содержит волокно и металлическую трубу, при этом волокно расположено в металлической трубе.
- 6. Система по любому из пп.1-5, в которой часть оптоволоконного кабеля, примыкающего к низкотемпературной зоне, свернута кольцом.
- 7. Система по любому из пп.1-6, в которой по меньшей мере часть оптоволоконного кабеля включает в себя брэгговские решетки.
- 8. Система по любому из пп.1-7, в которой по меньшей мере один лазер выполнен с возможностью передавать световые импульсы во второй конец оптоволоконного кабеля.
- 9. Система по п.8, в которой обратные сигналы от света, передаваемого во второй конец оптоволоконного кабеля, позволяют обеспечить компенсацию затухания сигнала.
- 10. Система по любому из пп.1-9, в которой один непрерывный оптоволоконный кабель проходит через множество скважин.
- 11. Способ контроля температуры низкотемпературного подземного барьера с использованием системы по любому из пп.1-10, содержащий этапы, на которых передают свет через оптоволоконный кабель; и анализируют один или более обратных сигналов из оптоволоконного кабеля анализатором для оценки температурного профиля вдоль оптоволоконного кабеля.
- 12. Способ по п.11, в котором этап анализа включает в себя оценку температурного профиля в замораживающей скважине, используемой для формирования подземного низкотемпературного барьера.
- 13. Способ по любому из пп.11 или 12, содержащий дополнительно этап, на котором сообщают температурный профиль.
- 14. Способ по любому из пп.11-13, содержащий дополнительно этап, на котором прекращают циркуляцию охладителя.
- 15. Способ по любому из пп.11-14, содержащий дополнительно этап, на котором оценивают температурные профили скважин на основе информации, полученной из оптоволоконных кабелей после прекращения циркуляции.
- 16. Способ по любому из пп.11-15, содержащий дополнительно этап, на котором определяют расположение прорывов путем анализа температурных профилей.
- 17. Способ по п.16, содержащий дополнительно этап, на котором сообщают о расположении прорыва.
- 18. Способ по любому из пп.11-17, содержащий дополнительно этап, на котором нагревают пласт, по меньшей мере, частично окружённый барьером.
- 19. Способ по п.18, содержащий дополнительно этап, на котором получают флюиды из пласта, причём указанные флюиды содержат углеводороды.
- 20. Способ по п.19, содержащий дополнительно этап, на котором получают транспортное топливо и/или другую композицию из по меньшей мере части углеводородов.
- 21. Способ обработки пласта с помощью системы по любому из пп.1-9 или способа по любому из пп.10-20.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67408105P | 2005-04-22 | 2005-04-22 | |
PCT/US2006/014778 WO2006115945A1 (en) | 2005-04-22 | 2006-04-21 | Low temperature monitoring system for subsurface barriers |
Publications (2)
Publication Number | Publication Date |
---|---|
EA200702298A1 EA200702298A1 (ru) | 2008-04-28 |
EA011226B1 true EA011226B1 (ru) | 2009-02-27 |
Family
ID=36655240
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EA200702307A EA011905B1 (ru) | 2005-04-22 | 2006-04-21 | Способ конверсии in situ с использованием нагревающей системы с замкнутым контуром |
EA200702303A EA014760B1 (ru) | 2005-04-22 | 2006-04-21 | Система и способ нагрева пласта |
EA200702297A EA012900B1 (ru) | 2005-04-22 | 2006-04-21 | Способы соединения подземных нагревателей под землей |
EA200702305A EA012171B1 (ru) | 2005-04-22 | 2006-04-21 | Двухбарьерная система для in situ процесса конверсии углеводородов |
EA200702301A EA012901B1 (ru) | 2005-04-22 | 2006-04-21 | Низкотемпературные барьеры для использования с внутрипластовыми процессами |
EA200702299A EA013555B1 (ru) | 2005-04-22 | 2006-04-21 | Нагреватели с ограничением температуры с изменяемыми по длине характеристиками |
EA200702298A EA011226B1 (ru) | 2005-04-22 | 2006-04-21 | Система низкотемпературного контроля для подземных барьеров |
EA200702304A EA012077B1 (ru) | 2005-04-22 | 2006-04-21 | Способы и системы для добычи флюида с использованием процесса конверсии in situ |
EA200702302A EA014258B1 (ru) | 2005-04-22 | 2006-04-21 | Нагреватель с ограничением температуры, содержащий неферромагнитный проводник |
EA200702300A EA012767B1 (ru) | 2005-04-22 | 2006-04-21 | Система и способ для нагрева углеводородсодержащего пласта |
EA200702306A EA012554B1 (ru) | 2005-04-22 | 2006-04-21 | Система нагрева подземного пласта с нагревателем, соединенным в трехфазное соединение звездой |
EA200702296A EA014031B1 (ru) | 2005-04-22 | 2006-04-24 | Способ получения метана |
Family Applications Before (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EA200702307A EA011905B1 (ru) | 2005-04-22 | 2006-04-21 | Способ конверсии in situ с использованием нагревающей системы с замкнутым контуром |
EA200702303A EA014760B1 (ru) | 2005-04-22 | 2006-04-21 | Система и способ нагрева пласта |
EA200702297A EA012900B1 (ru) | 2005-04-22 | 2006-04-21 | Способы соединения подземных нагревателей под землей |
EA200702305A EA012171B1 (ru) | 2005-04-22 | 2006-04-21 | Двухбарьерная система для in situ процесса конверсии углеводородов |
EA200702301A EA012901B1 (ru) | 2005-04-22 | 2006-04-21 | Низкотемпературные барьеры для использования с внутрипластовыми процессами |
EA200702299A EA013555B1 (ru) | 2005-04-22 | 2006-04-21 | Нагреватели с ограничением температуры с изменяемыми по длине характеристиками |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EA200702304A EA012077B1 (ru) | 2005-04-22 | 2006-04-21 | Способы и системы для добычи флюида с использованием процесса конверсии in situ |
EA200702302A EA014258B1 (ru) | 2005-04-22 | 2006-04-21 | Нагреватель с ограничением температуры, содержащий неферромагнитный проводник |
EA200702300A EA012767B1 (ru) | 2005-04-22 | 2006-04-21 | Система и способ для нагрева углеводородсодержащего пласта |
EA200702306A EA012554B1 (ru) | 2005-04-22 | 2006-04-21 | Система нагрева подземного пласта с нагревателем, соединенным в трехфазное соединение звездой |
EA200702296A EA014031B1 (ru) | 2005-04-22 | 2006-04-24 | Способ получения метана |
Country Status (14)
Country | Link |
---|---|
US (1) | US7831133B2 (ru) |
EP (12) | EP1871978B1 (ru) |
CN (12) | CN101163851A (ru) |
AT (5) | ATE435964T1 (ru) |
AU (13) | AU2006240043B2 (ru) |
CA (12) | CA2605720C (ru) |
DE (5) | DE602006007693D1 (ru) |
EA (12) | EA011905B1 (ru) |
IL (12) | IL186203A (ru) |
IN (1) | IN266867B (ru) |
MA (12) | MA29719B1 (ru) |
NZ (12) | NZ562247A (ru) |
WO (12) | WO2006116096A1 (ru) |
ZA (13) | ZA200708023B (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2605790C2 (ru) * | 2011-11-18 | 2016-12-27 | Дженерал Электрик Компани | Система и способ оценки влагосодержания потока пара |
Families Citing this family (123)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
NZ532091A (en) | 2001-10-24 | 2005-12-23 | Shell Int Research | In situ recovery from a hydrocarbon containing formation using barriers |
WO2004038175A1 (en) | 2002-10-24 | 2004-05-06 | Shell Internationale Research Maatschappij B.V. | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
CA2579496A1 (en) | 2004-04-23 | 2005-11-03 | Shell Internationale Research Maatschappij B.V. | Subsurface electrical heaters using nitride insulation |
US7694523B2 (en) | 2004-07-19 | 2010-04-13 | Earthrenew, Inc. | Control system for gas turbine in material treatment unit |
US7024796B2 (en) | 2004-07-19 | 2006-04-11 | Earthrenew, Inc. | Process and apparatus for manufacture of fertilizer products from manure and sewage |
US7685737B2 (en) | 2004-07-19 | 2010-03-30 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
US7024800B2 (en) | 2004-07-19 | 2006-04-11 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
EA011905B1 (ru) | 2005-04-22 | 2009-06-30 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ конверсии in situ с использованием нагревающей системы с замкнутым контуром |
AU2006239988B2 (en) | 2005-04-22 | 2010-07-01 | Shell Internationale Research Maatschappij B.V. | Reduction of heat loads applied to frozen barriers and freeze wells in subsurface formations |
AU2006306471B2 (en) | 2005-10-24 | 2010-11-25 | Shell Internationale Research Maatschapij B.V. | Cogeneration systems and processes for treating hydrocarbon containing formations |
US7610692B2 (en) | 2006-01-18 | 2009-11-03 | Earthrenew, Inc. | Systems for prevention of HAP emissions and for efficient drying/dehydration processes |
AU2007240367B2 (en) | 2006-04-21 | 2011-04-07 | Shell Internationale Research Maatschappij B.V. | High strength alloys |
JP5330999B2 (ja) | 2006-10-20 | 2013-10-30 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 流体によるタールサンド地層の複数部分中での炭化水素の移動 |
DE102007040606B3 (de) * | 2007-08-27 | 2009-02-26 | Siemens Ag | Verfahren und Vorrichtung zur in situ-Förderung von Bitumen oder Schwerstöl |
US8622133B2 (en) | 2007-03-22 | 2014-01-07 | Exxonmobil Upstream Research Company | Resistive heater for in situ formation heating |
WO2008131171A1 (en) | 2007-04-20 | 2008-10-30 | Shell Oil Company | Parallel heater system for subsurface formations |
US7697806B2 (en) * | 2007-05-07 | 2010-04-13 | Verizon Patent And Licensing Inc. | Fiber optic cable with detectable ferromagnetic components |
CA2686830C (en) | 2007-05-25 | 2015-09-08 | Exxonmobil Upstream Research Company | A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant |
CA2700732A1 (en) | 2007-10-19 | 2009-04-23 | Shell Internationale Research Maatschappij B.V. | Cryogenic treatment of gas |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8297355B2 (en) * | 2008-08-22 | 2012-10-30 | Texaco Inc. | Using heat from produced fluids of oil and gas operations to produce energy |
DE102008047219A1 (de) | 2008-09-15 | 2010-03-25 | Siemens Aktiengesellschaft | Verfahren zur Förderung von Bitumen und/oder Schwerstöl aus einer unterirdischen Lagerstätte, zugehörige Anlage und Betriebsverfahren dieser Anlage |
US9561068B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US9561066B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
US10064697B2 (en) | 2008-10-06 | 2018-09-04 | Santa Anna Tech Llc | Vapor based ablation system for treating various indications |
CN102238920B (zh) | 2008-10-06 | 2015-03-25 | 维兰德.K.沙马 | 用于组织消融的方法和装置 |
WO2010045097A1 (en) | 2008-10-13 | 2010-04-22 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US20100200237A1 (en) * | 2009-02-12 | 2010-08-12 | Colgate Sam O | Methods for controlling temperatures in the environments of gas and oil wells |
US20100258291A1 (en) | 2009-04-10 | 2010-10-14 | Everett De St Remey Edward | Heated liners for treating subsurface hydrocarbon containing formations |
FR2947587A1 (fr) | 2009-07-03 | 2011-01-07 | Total Sa | Procede d'extraction d'hydrocarbures par chauffage electromagnetique d'une formation souterraine in situ |
CN102031961A (zh) * | 2009-09-30 | 2011-04-27 | 西安威尔罗根能源科技有限公司 | 井眼温度测量探头 |
US9466896B2 (en) | 2009-10-09 | 2016-10-11 | Shell Oil Company | Parallelogram coupling joint for coupling insulated conductors |
US8816203B2 (en) | 2009-10-09 | 2014-08-26 | Shell Oil Company | Compacted coupling joint for coupling insulated conductors |
US8356935B2 (en) | 2009-10-09 | 2013-01-22 | Shell Oil Company | Methods for assessing a temperature in a subsurface formation |
US8602103B2 (en) | 2009-11-24 | 2013-12-10 | Conocophillips Company | Generation of fluid for hydrocarbon recovery |
US8863839B2 (en) | 2009-12-17 | 2014-10-21 | Exxonmobil Upstream Research Company | Enhanced convection for in situ pyrolysis of organic-rich rock formations |
RU2012147629A (ru) * | 2010-04-09 | 2014-05-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способы формирования барьеров в подземных углеводородсодержащих пластах |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
EP2556721A4 (en) * | 2010-04-09 | 2014-07-02 | Shell Oil Co | INSULATION BLOCKS AND METHOD FOR INSTALLING THEM IN INSULATED LADDER HEATERS |
US8875788B2 (en) | 2010-04-09 | 2014-11-04 | Shell Oil Company | Low temperature inductive heating of subsurface formations |
US8939207B2 (en) | 2010-04-09 | 2015-01-27 | Shell Oil Company | Insulated conductor heaters with semiconductor layers |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8502120B2 (en) | 2010-04-09 | 2013-08-06 | Shell Oil Company | Insulating blocks and methods for installation in insulated conductor heaters |
US8464792B2 (en) | 2010-04-27 | 2013-06-18 | American Shale Oil, Llc | Conduction convection reflux retorting process |
US8408287B2 (en) * | 2010-06-03 | 2013-04-02 | Electro-Petroleum, Inc. | Electrical jumper for a producing oil well |
US8476562B2 (en) | 2010-06-04 | 2013-07-02 | Watlow Electric Manufacturing Company | Inductive heater humidifier |
RU2444617C1 (ru) * | 2010-08-31 | 2012-03-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой нефти методом парогравитационного воздействия на пласт |
AT12463U1 (de) * | 2010-09-27 | 2012-05-15 | Plansee Se | Heizleiteranordnung |
US8857051B2 (en) | 2010-10-08 | 2014-10-14 | Shell Oil Company | System and method for coupling lead-in conductor to insulated conductor |
US8943686B2 (en) | 2010-10-08 | 2015-02-03 | Shell Oil Company | Compaction of electrical insulation for joining insulated conductors |
US8732946B2 (en) | 2010-10-08 | 2014-05-27 | Shell Oil Company | Mechanical compaction of insulator for insulated conductor splices |
CN103314179A (zh) * | 2010-12-21 | 2013-09-18 | 雪佛龙美国公司 | 提高地下储层的油采收率的系统和方法 |
RU2473779C2 (ru) * | 2011-03-21 | 2013-01-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет" (С(А)ФУ) | Способ глушения фонтана флюида из скважины |
RU2587459C2 (ru) * | 2011-04-08 | 2016-06-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Системы для соединения изолированных проводников |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
EP2520863B1 (en) * | 2011-05-05 | 2016-11-23 | General Electric Technology GmbH | Method for protecting a gas turbine engine against high dynamical process values and gas turbine engine for conducting said method |
US9010428B2 (en) * | 2011-09-06 | 2015-04-21 | Baker Hughes Incorporated | Swelling acceleration using inductively heated and embedded particles in a subterranean tool |
CN104011327B (zh) * | 2011-10-07 | 2016-12-14 | 国际壳牌研究有限公司 | 利用地下地层中的绝缘导线的介电性能来确定绝缘导线的性能 |
CA2850741A1 (en) | 2011-10-07 | 2013-04-11 | Manuel Alberto GONZALEZ | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
JO3141B1 (ar) | 2011-10-07 | 2017-09-20 | Shell Int Research | الوصلات المتكاملة للموصلات المعزولة |
JO3139B1 (ar) | 2011-10-07 | 2017-09-20 | Shell Int Research | تشكيل موصلات معزولة باستخدام خطوة اختزال أخيرة بعد المعالجة الحرارية. |
CN102505731A (zh) * | 2011-10-24 | 2012-06-20 | 武汉大学 | 一种毛细-引射协同作用的地下水采集系统 |
US9080441B2 (en) | 2011-11-04 | 2015-07-14 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
CN102434144A (zh) * | 2011-11-16 | 2012-05-02 | 中国石油集团长城钻探工程有限公司 | 一种油田用“u”形井采油方法 |
CA2898956A1 (en) | 2012-01-23 | 2013-08-01 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US9488027B2 (en) | 2012-02-10 | 2016-11-08 | Baker Hughes Incorporated | Fiber reinforced polymer matrix nanocomposite downhole member |
RU2496979C1 (ru) * | 2012-05-03 | 2013-10-27 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой нефти и/или битума методом закачки пара в пласт |
EP2945556A4 (en) | 2013-01-17 | 2016-08-31 | Virender K Sharma | METHOD AND DEVICE FOR TISSUE REMOVAL |
US9291041B2 (en) * | 2013-02-06 | 2016-03-22 | Orbital Atk, Inc. | Downhole injector insert apparatus |
US9403328B1 (en) | 2013-02-08 | 2016-08-02 | The Boeing Company | Magnetic compaction blanket for composite structure curing |
US10501348B1 (en) | 2013-03-14 | 2019-12-10 | Angel Water, Inc. | Water flow triggering of chlorination treatment |
RU2527446C1 (ru) * | 2013-04-15 | 2014-08-27 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ ликвидации скважины |
US9382785B2 (en) | 2013-06-17 | 2016-07-05 | Baker Hughes Incorporated | Shaped memory devices and method for using same in wellbores |
CN103321618A (zh) * | 2013-06-28 | 2013-09-25 | 中国地质大学(北京) | 油页岩原位开采方法 |
CA2917263C (en) * | 2013-07-05 | 2021-12-14 | Nexen Energy Ulc | Solvent addition to improve efficiency of hydrocarbon production |
RU2531965C1 (ru) * | 2013-08-23 | 2014-10-27 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ ликвидации скважины |
WO2015060919A1 (en) | 2013-10-22 | 2015-04-30 | Exxonmobil Upstream Research Company | Systems and methods for regulating an in situ pyrolysis process |
BR112016005923B1 (pt) * | 2013-10-28 | 2021-06-29 | Halliburton Energy Services, Inc | Método de conectar a um furo de poço existente no fundo de poço e sistema de poço |
MY190960A (en) * | 2013-10-31 | 2022-05-24 | Reactor Resources Llc | In-situ catalyst sulfiding, passivating and coking methods and systems |
US9394772B2 (en) | 2013-11-07 | 2016-07-19 | Exxonmobil Upstream Research Company | Systems and methods for in situ resistive heating of organic matter in a subterranean formation |
CN103628856A (zh) * | 2013-12-11 | 2014-03-12 | 中国地质大学(北京) | 一种高产水煤层气区块的阻水产气布井方法 |
GB2523567B (en) | 2014-02-27 | 2017-12-06 | Statoil Petroleum As | Producing hydrocarbons from a subsurface formation |
WO2015153705A1 (en) * | 2014-04-01 | 2015-10-08 | Future Energy, Llc | Thermal energy delivery and oil production arrangements and methods thereof |
GB2526123A (en) * | 2014-05-14 | 2015-11-18 | Statoil Petroleum As | Producing hydrocarbons from a subsurface formation |
US20150360322A1 (en) * | 2014-06-12 | 2015-12-17 | Siemens Energy, Inc. | Laser deposition of iron-based austenitic alloy with flux |
RU2569102C1 (ru) * | 2014-08-12 | 2015-11-20 | Общество с ограниченной ответственностью Научно-инженерный центр "Энергодиагностика" | Способ ликвидации отложений и предотвращения их образования в нефтяной скважине и устройство для его реализации |
US9451792B1 (en) * | 2014-09-05 | 2016-09-27 | Atmos Nation, LLC | Systems and methods for vaporizing assembly |
CA2967325C (en) | 2014-11-21 | 2019-06-18 | Exxonmobil Upstream Research Company | Method of recovering hydrocarbons within a subsurface formation |
WO2016085869A1 (en) * | 2014-11-25 | 2016-06-02 | Shell Oil Company | Pyrolysis to pressurise oil formations |
US20160169451A1 (en) * | 2014-12-12 | 2016-06-16 | Fccl Partnership | Process and system for delivering steam |
CN105043449B (zh) * | 2015-08-10 | 2017-12-01 | 安徽理工大学 | 监测冻结壁温度、应力及变形的分布式光纤及其埋设方法 |
WO2017039617A1 (en) * | 2015-08-31 | 2017-03-09 | Halliburton Energy Services, Inc | Monitoring system for cold climate |
CN105257269B (zh) * | 2015-10-26 | 2017-10-17 | 中国石油天然气股份有限公司 | 一种蒸汽驱与火驱的联合采油方法 |
US10125604B2 (en) * | 2015-10-27 | 2018-11-13 | Baker Hughes, A Ge Company, Llc | Downhole zonal isolation detection system having conductor and method |
RU2620820C1 (ru) * | 2016-02-17 | 2017-05-30 | Общество с ограниченной ответственностью "ЛУКОЙЛ-ПЕРМЬ" | Индукционный скважинный нагреватель |
US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions |
RU2630018C1 (ru) * | 2016-06-29 | 2017-09-05 | Общество с ограниченной ответчственностью "Геобурсервис", ООО "Геобурсервис" | Способ ликвидации, предотвращения образования отложений и интенсификации добычи нефти в нефтегазодобывающих скважинах и устройство для его реализации |
US11486243B2 (en) * | 2016-08-04 | 2022-11-01 | Baker Hughes Esp, Inc. | ESP gas slug avoidance system |
RU2632791C1 (ru) * | 2016-11-02 | 2017-10-09 | Владимир Иванович Савичев | Способ стимуляции скважин путём закачки газовых композиций |
CN107289997B (zh) * | 2017-05-05 | 2019-08-13 | 济南轨道交通集团有限公司 | 一种岩溶裂隙水探测系统及方法 |
US10626709B2 (en) * | 2017-06-08 | 2020-04-21 | Saudi Arabian Oil Company | Steam driven submersible pump |
CN107558950A (zh) * | 2017-09-13 | 2018-01-09 | 吉林大学 | 用于油页岩地下原位开采区域封闭的定向堵漏方法 |
JP2021525598A (ja) | 2018-06-01 | 2021-09-27 | サンタ アナ テック エルエルシーSanta Anna Tech Llc | 多段階蒸気ベースのアブレーション処理方法並びに蒸気発生及びデリバリー・システム |
US10927645B2 (en) * | 2018-08-20 | 2021-02-23 | Baker Hughes, A Ge Company, Llc | Heater cable with injectable fiber optics |
CN109379792B (zh) * | 2018-11-12 | 2024-05-28 | 山东华宁电伴热科技有限公司 | 一种油井加热电缆及油井加热方法 |
CN109396168B (zh) * | 2018-12-01 | 2023-12-26 | 中节能城市节能研究院有限公司 | 污染土壤原位热修复用组合换热器及土壤热修复系统 |
CN109399879B (zh) * | 2018-12-14 | 2023-10-20 | 江苏筑港建设集团有限公司 | 一种吹填泥被的固化方法 |
FR3093588B1 (fr) * | 2019-03-07 | 2021-02-26 | Socomec Sa | Dispositif de récupération d’energie sur au moins un conducteur de puissance et procédé de fabrication dudit dispositif de récupération |
US11708757B1 (en) * | 2019-05-14 | 2023-07-25 | Fortress Downhole Tools, Llc | Method and apparatus for testing setting tools and other assemblies used to set downhole plugs and other objects in wellbores |
US11136514B2 (en) * | 2019-06-07 | 2021-10-05 | Uop Llc | Process and apparatus for recycling hydrogen to hydroprocess biorenewable feed |
WO2021116374A1 (en) * | 2019-12-11 | 2021-06-17 | Aker Solutions As | Skin-effect heating cable |
DE102020208178A1 (de) * | 2020-06-30 | 2021-12-30 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Aufheizen eines Brennstoffzellensystems, Brennstoffzellensystem, Verwendung eines elektrischen Heizelements |
CN112485119B (zh) * | 2020-11-09 | 2023-01-31 | 临沂矿业集团有限责任公司 | 一种矿用提升绞车钢丝绳静拉力试验车 |
EP4113768A1 (en) * | 2021-07-02 | 2023-01-04 | Nexans | Dry-mate wet-design branch joint and method for realizing a subsea distribution of electric power for wet cables |
US12037870B1 (en) | 2023-02-10 | 2024-07-16 | Newpark Drilling Fluids Llc | Mitigating lost circulation |
WO2024188630A1 (en) * | 2023-03-10 | 2024-09-19 | Shell Internationale Research Maatschappij B.V. | Mineral insulated cable, method of manufacturing a mineral insulated cable, and method and system for heating a substance |
WO2024188629A1 (en) * | 2023-03-10 | 2024-09-19 | Shell Internationale Research Maatschappij B.V. | Mineral insulated cable, method of manufacturing a mineral insulated cable, and method and system for heating a substance |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040011950A1 (en) * | 2002-05-31 | 2004-01-22 | Harkins Gary O. | Parameter sensing apparatus and method for subterranean wells |
US20040140095A1 (en) * | 2002-10-24 | 2004-07-22 | Vinegar Harold J. | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
Family Cites Families (269)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US326439A (en) * | 1885-09-15 | Protecting wells | ||
US345586A (en) * | 1886-07-13 | Oil from wells | ||
US2734579A (en) * | 1956-02-14 | Production from bituminous sands | ||
SE126674C1 (ru) | 1949-01-01 | |||
US94813A (en) * | 1869-09-14 | Improvement in torpedoes for oil-wells | ||
SE123138C1 (ru) | 1948-01-01 | |||
US2732195A (en) | 1956-01-24 | Ljungstrom | ||
US48994A (en) * | 1865-07-25 | Improvement in devices for oil-wells | ||
US438461A (en) * | 1890-10-14 | Half to william j | ||
CA899987A (en) | 1972-05-09 | Chisso Corporation | Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current | |
SE123136C1 (ru) | 1948-01-01 | |||
US760304A (en) * | 1903-10-24 | 1904-05-17 | Frank S Gilbert | Heater for oil-wells. |
US1342741A (en) * | 1918-01-17 | 1920-06-08 | David T Day | Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks |
US1269747A (en) | 1918-04-06 | 1918-06-18 | Lebbeus H Rogers | Method of and apparatus for treating oil-shale. |
GB156396A (en) | 1919-12-10 | 1921-01-13 | Wilson Woods Hoover | An improved method of treating shale and recovering oil therefrom |
US1457479A (en) * | 1920-01-12 | 1923-06-05 | Edson R Wolcott | Method of increasing the yield of oil wells |
US1510655A (en) * | 1922-11-21 | 1924-10-07 | Clark Cornelius | Process of subterranean distillation of volatile mineral substances |
US1634236A (en) * | 1925-03-10 | 1927-06-28 | Standard Dev Co | Method of and apparatus for recovering oil |
US1646599A (en) * | 1925-04-30 | 1927-10-25 | George A Schaefer | Apparatus for removing fluid from wells |
US1666488A (en) * | 1927-02-05 | 1928-04-17 | Crawshaw Richard | Apparatus for extracting oil from shale |
US1681523A (en) * | 1927-03-26 | 1928-08-21 | Patrick V Downey | Apparatus for heating oil wells |
US1913395A (en) * | 1929-11-14 | 1933-06-13 | Lewis C Karrick | Underground gasification of carbonaceous material-bearing substances |
US2244255A (en) * | 1939-01-18 | 1941-06-03 | Electrical Treating Company | Well clearing system |
US2244256A (en) * | 1939-12-16 | 1941-06-03 | Electrical Treating Company | Apparatus for clearing wells |
US2319702A (en) | 1941-04-04 | 1943-05-18 | Socony Vacuum Oil Co Inc | Method and apparatus for producing oil wells |
US2365591A (en) * | 1942-08-15 | 1944-12-19 | Ranney Leo | Method for producing oil from viscous deposits |
US2423674A (en) * | 1942-08-24 | 1947-07-08 | Johnson & Co A | Process of catalytic cracking of petroleum hydrocarbons |
US2390770A (en) * | 1942-10-10 | 1945-12-11 | Sun Oil Co | Method of producing petroleum |
US2484063A (en) * | 1944-08-19 | 1949-10-11 | Thermactor Corp | Electric heater for subsurface materials |
US2472445A (en) * | 1945-02-02 | 1949-06-07 | Thermactor Company | Apparatus for treating oil and gas bearing strata |
US2481051A (en) * | 1945-12-15 | 1949-09-06 | Texaco Development Corp | Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations |
US2444755A (en) * | 1946-01-04 | 1948-07-06 | Ralph M Steffen | Apparatus for oil sand heating |
US2634961A (en) | 1946-01-07 | 1953-04-14 | Svensk Skifferolje Aktiebolage | Method of electrothermal production of shale oil |
US2466945A (en) * | 1946-02-21 | 1949-04-12 | In Situ Gases Inc | Generation of synthesis gas |
US2497868A (en) * | 1946-10-10 | 1950-02-21 | Dalin David | Underground exploitation of fuel deposits |
US2939689A (en) * | 1947-06-24 | 1960-06-07 | Svenska Skifferolje Ab | Electrical heater for treating oilshale and the like |
US2786660A (en) * | 1948-01-05 | 1957-03-26 | Phillips Petroleum Co | Apparatus for gasifying coal |
US2548360A (en) | 1948-03-29 | 1951-04-10 | Stanley A Germain | Electric oil well heater |
US2685930A (en) * | 1948-08-12 | 1954-08-10 | Union Oil Co | Oil well production process |
US2757738A (en) * | 1948-09-20 | 1956-08-07 | Union Oil Co | Radiation heating |
US2630307A (en) * | 1948-12-09 | 1953-03-03 | Carbonic Products Inc | Method of recovering oil from oil shale |
US2595979A (en) * | 1949-01-25 | 1952-05-06 | Texas Co | Underground liquefaction of coal |
US2642943A (en) * | 1949-05-20 | 1953-06-23 | Sinclair Oil & Gas Co | Oil recovery process |
US2593477A (en) * | 1949-06-10 | 1952-04-22 | Us Interior | Process of underground gasification of coal |
US2670802A (en) * | 1949-12-16 | 1954-03-02 | Thermactor Company | Reviving or increasing the production of clogged or congested oil wells |
US2714930A (en) * | 1950-12-08 | 1955-08-09 | Union Oil Co | Apparatus for preventing paraffin deposition |
US2695163A (en) * | 1950-12-09 | 1954-11-23 | Stanolind Oil & Gas Co | Method for gasification of subterranean carbonaceous deposits |
US2630306A (en) * | 1952-01-03 | 1953-03-03 | Socony Vacuum Oil Co Inc | Subterranean retorting of shales |
US2757739A (en) * | 1952-01-07 | 1956-08-07 | Parelex Corp | Heating apparatus |
US2780450A (en) * | 1952-03-07 | 1957-02-05 | Svenska Skifferolje Ab | Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ |
US2777679A (en) * | 1952-03-07 | 1957-01-15 | Svenska Skifferolje Ab | Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ |
US2789805A (en) * | 1952-05-27 | 1957-04-23 | Svenska Skifferolje Ab | Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member |
GB774283A (en) * | 1952-09-15 | 1957-05-08 | Ruhrchemie Ag | Process for the combined purification and methanisation of gas mixtures containing oxides of carbon and hydrogen |
US2780449A (en) * | 1952-12-26 | 1957-02-05 | Sinclair Oil & Gas Co | Thermal process for in-situ decomposition of oil shale |
US2825408A (en) * | 1953-03-09 | 1958-03-04 | Sinclair Oil & Gas Company | Oil recovery by subsurface thermal processing |
US2771954A (en) * | 1953-04-29 | 1956-11-27 | Exxon Research Engineering Co | Treatment of petroleum production wells |
US2703621A (en) * | 1953-05-04 | 1955-03-08 | George W Ford | Oil well bottom hole flow increasing unit |
US2743906A (en) * | 1953-05-08 | 1956-05-01 | William E Coyle | Hydraulic underreamer |
US2803305A (en) * | 1953-05-14 | 1957-08-20 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2914309A (en) * | 1953-05-25 | 1959-11-24 | Svenska Skifferolje Ab | Oil and gas recovery from tar sands |
US2902270A (en) * | 1953-07-17 | 1959-09-01 | Svenska Skifferolje Ab | Method of and means in heating of subsurface fuel-containing deposits "in situ" |
US2890754A (en) * | 1953-10-30 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2890755A (en) * | 1953-12-19 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2841375A (en) * | 1954-03-03 | 1958-07-01 | Svenska Skifferolje Ab | Method for in-situ utilization of fuels by combustion |
US2794504A (en) * | 1954-05-10 | 1957-06-04 | Union Oil Co | Well heater |
US2793696A (en) * | 1954-07-22 | 1957-05-28 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2923535A (en) | 1955-02-11 | 1960-02-02 | Svenska Skifferolje Ab | Situ recovery from carbonaceous deposits |
US2801089A (en) * | 1955-03-14 | 1957-07-30 | California Research Corp | Underground shale retorting process |
US2862558A (en) * | 1955-12-28 | 1958-12-02 | Phillips Petroleum Co | Recovering oils from formations |
US2819761A (en) * | 1956-01-19 | 1958-01-14 | Continental Oil Co | Process of removing viscous oil from a well bore |
US2857002A (en) * | 1956-03-19 | 1958-10-21 | Texas Co | Recovery of viscous crude oil |
US2906340A (en) * | 1956-04-05 | 1959-09-29 | Texaco Inc | Method of treating a petroleum producing formation |
US2991046A (en) | 1956-04-16 | 1961-07-04 | Parsons Lional Ashley | Combined winch and bollard device |
US2997105A (en) | 1956-10-08 | 1961-08-22 | Pan American Petroleum Corp | Burner apparatus |
US2932352A (en) * | 1956-10-25 | 1960-04-12 | Union Oil Co | Liquid filled well heater |
US2804149A (en) * | 1956-12-12 | 1957-08-27 | John R Donaldson | Oil well heater and reviver |
US2942223A (en) * | 1957-08-09 | 1960-06-21 | Gen Electric | Electrical resistance heater |
US2906337A (en) * | 1957-08-16 | 1959-09-29 | Pure Oil Co | Method of recovering bitumen |
US2954826A (en) * | 1957-12-02 | 1960-10-04 | William E Sievers | Heated well production string |
US2994376A (en) * | 1957-12-27 | 1961-08-01 | Phillips Petroleum Co | In situ combustion process |
US3051235A (en) | 1958-02-24 | 1962-08-28 | Jersey Prod Res Co | Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation |
US2911047A (en) * | 1958-03-11 | 1959-11-03 | John C Henderson | Apparatus for extracting naturally occurring difficultly flowable petroleum oil from a naturally located subterranean body |
US2958519A (en) * | 1958-06-23 | 1960-11-01 | Phillips Petroleum Co | In situ combustion process |
US2974937A (en) * | 1958-11-03 | 1961-03-14 | Jersey Prod Res Co | Petroleum recovery from carbonaceous formations |
US2998457A (en) * | 1958-11-19 | 1961-08-29 | Ashland Oil Inc | Production of phenols |
US2970826A (en) * | 1958-11-21 | 1961-02-07 | Texaco Inc | Recovery of oil from oil shale |
US3097690A (en) | 1958-12-24 | 1963-07-16 | Gulf Research Development Co | Process for heating a subsurface formation |
US2969226A (en) * | 1959-01-19 | 1961-01-24 | Pyrochem Corp | Pendant parting petro pyrolysis process |
US3150715A (en) | 1959-09-30 | 1964-09-29 | Shell Oil Co | Oil recovery by in situ combustion with water injection |
US3170519A (en) * | 1960-05-11 | 1965-02-23 | Gordon L Allot | Oil well microwave tools |
US3058730A (en) | 1960-06-03 | 1962-10-16 | Fmc Corp | Method of forming underground communication between boreholes |
US3138203A (en) | 1961-03-06 | 1964-06-23 | Jersey Prod Res Co | Method of underground burning |
US3057404A (en) | 1961-09-29 | 1962-10-09 | Socony Mobil Oil Co Inc | Method and system for producing oil tenaciously held in porous formations |
US3194315A (en) * | 1962-06-26 | 1965-07-13 | Charles D Golson | Apparatus for isolating zones in wells |
US3272261A (en) | 1963-12-13 | 1966-09-13 | Gulf Research Development Co | Process for recovery of oil |
US3332480A (en) | 1965-03-04 | 1967-07-25 | Pan American Petroleum Corp | Recovery of hydrocarbons by thermal methods |
US3358756A (en) * | 1965-03-12 | 1967-12-19 | Shell Oil Co | Method for in situ recovery of solid or semi-solid petroleum deposits |
US3262741A (en) | 1965-04-01 | 1966-07-26 | Pittsburgh Plate Glass Co | Solution mining of potassium chloride |
US3278234A (en) | 1965-05-17 | 1966-10-11 | Pittsburgh Plate Glass Co | Solution mining of potassium chloride |
US3362751A (en) | 1966-02-28 | 1968-01-09 | Tinlin William | Method and system for recovering shale oil and gas |
DE1615192B1 (de) | 1966-04-01 | 1970-08-20 | Chisso Corp | Induktiv beheiztes Heizrohr |
US3410796A (en) | 1966-04-04 | 1968-11-12 | Gas Processors Inc | Process for treatment of saline waters |
US3372754A (en) * | 1966-05-31 | 1968-03-12 | Mobil Oil Corp | Well assembly for heating a subterranean formation |
US3399623A (en) | 1966-07-14 | 1968-09-03 | James R. Creed | Apparatus for and method of producing viscid oil |
NL153755C (nl) | 1966-10-20 | 1977-11-15 | Stichting Reactor Centrum | Werkwijze voor het vervaardigen van een elektrisch verwarmingselement, alsmede verwarmingselement vervaardigd met toepassing van deze werkwijze. |
US3465819A (en) | 1967-02-13 | 1969-09-09 | American Oil Shale Corp | Use of nuclear detonations in producing hydrocarbons from an underground formation |
NL6803827A (ru) | 1967-03-22 | 1968-09-23 | ||
US3542276A (en) * | 1967-11-13 | 1970-11-24 | Ideal Ind | Open type explosion connector and method |
US3485300A (en) | 1967-12-20 | 1969-12-23 | Phillips Petroleum Co | Method and apparatus for defoaming crude oil down hole |
US3578080A (en) | 1968-06-10 | 1971-05-11 | Shell Oil Co | Method of producing shale oil from an oil shale formation |
US3537528A (en) | 1968-10-14 | 1970-11-03 | Shell Oil Co | Method for producing shale oil from an exfoliated oil shale formation |
US3593789A (en) | 1968-10-18 | 1971-07-20 | Shell Oil Co | Method for producing shale oil from an oil shale formation |
US3565171A (en) | 1968-10-23 | 1971-02-23 | Shell Oil Co | Method for producing shale oil from a subterranean oil shale formation |
US3554285A (en) | 1968-10-24 | 1971-01-12 | Phillips Petroleum Co | Production and upgrading of heavy viscous oils |
US3629551A (en) | 1968-10-29 | 1971-12-21 | Chisso Corp | Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current |
US3513249A (en) * | 1968-12-24 | 1970-05-19 | Ideal Ind | Explosion connector with improved insulating means |
US3614986A (en) | 1969-03-03 | 1971-10-26 | Electrothermic Co | Method for injecting heated fluids into mineral bearing formations |
US3542131A (en) | 1969-04-01 | 1970-11-24 | Mobil Oil Corp | Method of recovering hydrocarbons from oil shale |
US3547192A (en) | 1969-04-04 | 1970-12-15 | Shell Oil Co | Method of metal coating and electrically heating a subterranean earth formation |
US3529075A (en) * | 1969-05-21 | 1970-09-15 | Ideal Ind | Explosion connector with ignition arrangement |
US3572838A (en) | 1969-07-07 | 1971-03-30 | Shell Oil Co | Recovery of aluminum compounds and oil from oil shale formations |
US3614387A (en) * | 1969-09-22 | 1971-10-19 | Watlow Electric Mfg Co | Electrical heater with an internal thermocouple |
US3679812A (en) | 1970-11-13 | 1972-07-25 | Schlumberger Technology Corp | Electrical suspension cable for well tools |
US3893918A (en) | 1971-11-22 | 1975-07-08 | Engineering Specialties Inc | Method for separating material leaving a well |
US3757860A (en) | 1972-08-07 | 1973-09-11 | Atlantic Richfield Co | Well heating |
US3761599A (en) | 1972-09-05 | 1973-09-25 | Gen Electric | Means for reducing eddy current heating of a tank in electric apparatus |
US3794113A (en) | 1972-11-13 | 1974-02-26 | Mobil Oil Corp | Combination in situ combustion displacement and steam stimulation of producing wells |
US4199025A (en) | 1974-04-19 | 1980-04-22 | Electroflood Company | Method and apparatus for tertiary recovery of oil |
US4037655A (en) | 1974-04-19 | 1977-07-26 | Electroflood Company | Method for secondary recovery of oil |
US3894769A (en) | 1974-06-06 | 1975-07-15 | Shell Oil Co | Recovering oil from a subterranean carbonaceous formation |
US4029360A (en) | 1974-07-26 | 1977-06-14 | Occidental Oil Shale, Inc. | Method of recovering oil and water from in situ oil shale retort flue gas |
US3933447A (en) | 1974-11-08 | 1976-01-20 | The United States Of America As Represented By The United States Energy Research And Development Administration | Underground gasification of coal |
US3950029A (en) | 1975-06-12 | 1976-04-13 | Mobil Oil Corporation | In situ retorting of oil shale |
US4199024A (en) | 1975-08-07 | 1980-04-22 | World Energy Systems | Multistage gas generator |
US4037658A (en) | 1975-10-30 | 1977-07-26 | Chevron Research Company | Method of recovering viscous petroleum from an underground formation |
US4018279A (en) | 1975-11-12 | 1977-04-19 | Reynolds Merrill J | In situ coal combustion heat recovery method |
US4017319A (en) | 1976-01-06 | 1977-04-12 | General Electric Company | Si3 N4 formed by nitridation of sintered silicon compact containing boron |
US4487257A (en) | 1976-06-17 | 1984-12-11 | Raytheon Company | Apparatus and method for production of organic products from kerogen |
US4083604A (en) | 1976-11-15 | 1978-04-11 | Trw Inc. | Thermomechanical fracture for recovery system in oil shale deposits |
US4169506A (en) | 1977-07-15 | 1979-10-02 | Standard Oil Company (Indiana) | In situ retorting of oil shale and energy recovery |
US4119349A (en) | 1977-10-25 | 1978-10-10 | Gulf Oil Corporation | Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale |
US4228853A (en) | 1978-06-21 | 1980-10-21 | Harvey A Herbert | Petroleum production method |
US4446917A (en) | 1978-10-04 | 1984-05-08 | Todd John C | Method and apparatus for producing viscous or waxy crude oils |
US4311340A (en) | 1978-11-27 | 1982-01-19 | Lyons William C | Uranium leeching process and insitu mining |
JPS5576586A (en) * | 1978-12-01 | 1980-06-09 | Tokyo Shibaura Electric Co | Heater |
US4457365A (en) | 1978-12-07 | 1984-07-03 | Raytheon Company | In situ radio frequency selective heating system |
US4232902A (en) | 1979-02-09 | 1980-11-11 | Ppg Industries, Inc. | Solution mining water soluble salts at high temperatures |
US4289354A (en) | 1979-02-23 | 1981-09-15 | Edwin G. Higgins, Jr. | Borehole mining of solid mineral resources |
US4290650A (en) | 1979-08-03 | 1981-09-22 | Ppg Industries Canada Ltd. | Subterranean cavity chimney development for connecting solution mined cavities |
CA1168283A (en) | 1980-04-14 | 1984-05-29 | Hiroshi Teratani | Electrode device for electrically heating underground deposits of hydrocarbons |
CA1165361A (en) | 1980-06-03 | 1984-04-10 | Toshiyuki Kobayashi | Electrode unit for electrically heating underground hydrocarbon deposits |
US4401099A (en) * | 1980-07-11 | 1983-08-30 | W.B. Combustion, Inc. | Single-ended recuperative radiant tube assembly and method |
US4385661A (en) | 1981-01-07 | 1983-05-31 | The United States Of America As Represented By The United States Department Of Energy | Downhole steam generator with improved preheating, combustion and protection features |
US4382469A (en) * | 1981-03-10 | 1983-05-10 | Electro-Petroleum, Inc. | Method of in situ gasification |
GB2110231B (en) * | 1981-03-13 | 1984-11-14 | Jgc Corp | Process for converting solid wastes to gases for use as a town gas |
US4384614A (en) * | 1981-05-11 | 1983-05-24 | Justheim Pertroleum Company | Method of retorting oil shale by velocity flow of super-heated air |
US4401162A (en) | 1981-10-13 | 1983-08-30 | Synfuel (An Indiana Limited Partnership) | In situ oil shale process |
US4549073A (en) | 1981-11-06 | 1985-10-22 | Oximetrix, Inc. | Current controller for resistive heating element |
US4418752A (en) | 1982-01-07 | 1983-12-06 | Conoco Inc. | Thermal oil recovery with solvent recirculation |
US4441985A (en) | 1982-03-08 | 1984-04-10 | Exxon Research And Engineering Co. | Process for supplying the heat requirement of a retort for recovering oil from solids by partial indirect heating of in situ combustion gases, and combustion air, without the use of supplemental fuel |
CA1196594A (en) | 1982-04-08 | 1985-11-12 | Guy Savard | Recovery of oil from tar sands |
US4460044A (en) | 1982-08-31 | 1984-07-17 | Chevron Research Company | Advancing heated annulus steam drive |
US4485868A (en) | 1982-09-29 | 1984-12-04 | Iit Research Institute | Method for recovery of viscous hydrocarbons by electromagnetic heating in situ |
US4498531A (en) * | 1982-10-01 | 1985-02-12 | Rockwell International Corporation | Emission controller for indirect fired downhole steam generators |
US4609041A (en) | 1983-02-10 | 1986-09-02 | Magda Richard M | Well hot oil system |
US4886118A (en) * | 1983-03-21 | 1989-12-12 | Shell Oil Company | Conductively heating a subterranean oil shale to create permeability and subsequently produce oil |
US4545435A (en) * | 1983-04-29 | 1985-10-08 | Iit Research Institute | Conduction heating of hydrocarbonaceous formations |
EP0130671A3 (en) | 1983-05-26 | 1986-12-17 | Metcal Inc. | Multiple temperature autoregulating heater |
US4538682A (en) * | 1983-09-08 | 1985-09-03 | Mcmanus James W | Method and apparatus for removing oil well paraffin |
US4572229A (en) * | 1984-02-02 | 1986-02-25 | Thomas D. Mueller | Variable proportioner |
US4637464A (en) * | 1984-03-22 | 1987-01-20 | Amoco Corporation | In situ retorting of oil shale with pulsed water purge |
US4570715A (en) * | 1984-04-06 | 1986-02-18 | Shell Oil Company | Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature |
US4577691A (en) | 1984-09-10 | 1986-03-25 | Texaco Inc. | Method and apparatus for producing viscous hydrocarbons from a subterranean formation |
JPS61104582A (ja) * | 1984-10-25 | 1986-05-22 | 株式会社デンソー | シ−ズヒ−タ |
FR2575463B1 (fr) * | 1984-12-28 | 1987-03-20 | Gaz De France | Procede de production du methane a l'aide d'un catalyseur thioresistant et catalyseur pour la mise en oeuvre de ce procede |
US4662437A (en) | 1985-11-14 | 1987-05-05 | Atlantic Richfield Company | Electrically stimulated well production system with flexible tubing conductor |
CA1253555A (en) | 1985-11-21 | 1989-05-02 | Cornelis F.H. Van Egmond | Heating rate variant elongated electrical resistance heater |
CN1010864B (zh) * | 1985-12-09 | 1990-12-19 | 国际壳牌研究有限公司 | 安装电加热器到井中的方法和装置 |
CN1006920B (zh) * | 1985-12-09 | 1990-02-21 | 国际壳牌研究有限公司 | 小型井的温度测量方法 |
US4716960A (en) | 1986-07-14 | 1988-01-05 | Production Technologies International, Inc. | Method and system for introducing electric current into a well |
CA1288043C (en) | 1986-12-15 | 1991-08-27 | Peter Van Meurs | Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil |
US4793409A (en) | 1987-06-18 | 1988-12-27 | Ors Development Corporation | Method and apparatus for forming an insulated oil well casing |
US4852648A (en) | 1987-12-04 | 1989-08-01 | Ava International Corporation | Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead |
US4974425A (en) | 1988-12-08 | 1990-12-04 | Concept Rkk, Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US4860544A (en) | 1988-12-08 | 1989-08-29 | Concept R.K.K. Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US5152341A (en) | 1990-03-09 | 1992-10-06 | Raymond S. Kasevich | Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes |
CA2015460C (en) | 1990-04-26 | 1993-12-14 | Kenneth Edwin Kisman | Process for confining steam injected into a heavy oil reservoir |
US5050601A (en) | 1990-05-29 | 1991-09-24 | Joel Kupersmith | Cardiac defibrillator electrode arrangement |
US5042579A (en) | 1990-08-23 | 1991-08-27 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers |
US5066852A (en) | 1990-09-17 | 1991-11-19 | Teledyne Ind. Inc. | Thermoplastic end seal for electric heating elements |
US5065818A (en) | 1991-01-07 | 1991-11-19 | Shell Oil Company | Subterranean heaters |
US5626190A (en) | 1991-02-06 | 1997-05-06 | Moore; Boyd B. | Apparatus for protecting electrical connection from moisture in a hazardous area adjacent a wellhead barrier for an underground well |
CN2095278U (zh) * | 1991-06-19 | 1992-02-05 | 中国石油天然气总公司辽河设计院 | 油井电加热装置 |
US5133406A (en) | 1991-07-05 | 1992-07-28 | Amoco Corporation | Generating oxygen-depleted air useful for increasing methane production |
US5420402A (en) * | 1992-02-05 | 1995-05-30 | Iit Research Institute | Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles |
CN2183444Y (zh) * | 1993-10-19 | 1994-11-23 | 刘犹斌 | 深井石油电磁加热器 |
US5507149A (en) | 1994-12-15 | 1996-04-16 | Dash; J. Gregory | Nonporous liquid impermeable cryogenic barrier |
EA000057B1 (ru) * | 1995-04-07 | 1998-04-30 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Система скважин для добычи вязкой нефти |
US5730550A (en) * | 1995-08-15 | 1998-03-24 | Board Of Trustees Operating Michigan State University | Method for placement of a permeable remediation zone in situ |
US5759022A (en) * | 1995-10-16 | 1998-06-02 | Gas Research Institute | Method and system for reducing NOx and fuel emissions in a furnace |
US5619611A (en) | 1995-12-12 | 1997-04-08 | Tub Tauch-Und Baggertechnik Gmbh | Device for removing downhole deposits utilizing tubular housing and passing electric current through fluid heating medium contained therein |
GB9526120D0 (en) | 1995-12-21 | 1996-02-21 | Raychem Sa Nv | Electrical connector |
CA2177726C (en) * | 1996-05-29 | 2000-06-27 | Theodore Wildi | Low-voltage and low flux density heating system |
US5782301A (en) | 1996-10-09 | 1998-07-21 | Baker Hughes Incorporated | Oil well heater cable |
US6039121A (en) | 1997-02-20 | 2000-03-21 | Rangewest Technologies Ltd. | Enhanced lift method and apparatus for the production of hydrocarbons |
MA24902A1 (fr) | 1998-03-06 | 2000-04-01 | Shell Int Research | Rechauffeur electrique |
US6540018B1 (en) | 1998-03-06 | 2003-04-01 | Shell Oil Company | Method and apparatus for heating a wellbore |
US6248230B1 (en) * | 1998-06-25 | 2001-06-19 | Sk Corporation | Method for manufacturing cleaner fuels |
US6130398A (en) * | 1998-07-09 | 2000-10-10 | Illinois Tool Works Inc. | Plasma cutter for auxiliary power output of a power source |
NO984235L (no) | 1998-09-14 | 2000-03-15 | Cit Alcatel | Oppvarmingssystem for metallrør for rõoljetransport |
DE69930290T2 (de) * | 1998-09-25 | 2006-12-14 | Tesco Corp., Calgary | System, vorrichtung und verfahren zur installierung von steuerleitungen in einer erdbohrung |
US6609761B1 (en) | 1999-01-08 | 2003-08-26 | American Soda, Llp | Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale |
JP2000340350A (ja) | 1999-05-28 | 2000-12-08 | Kyocera Corp | 窒化ケイ素製セラミックヒータおよびその製造方法 |
US6257334B1 (en) | 1999-07-22 | 2001-07-10 | Alberta Oil Sands Technology And Research Authority | Steam-assisted gravity drainage heavy oil recovery process |
US6633236B2 (en) | 2000-01-24 | 2003-10-14 | Shell Oil Company | Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters |
US7259688B2 (en) | 2000-01-24 | 2007-08-21 | Shell Oil Company | Wireless reservoir production control |
US20020036085A1 (en) | 2000-01-24 | 2002-03-28 | Bass Ronald Marshall | Toroidal choke inductor for wireless communication and control |
US7170424B2 (en) | 2000-03-02 | 2007-01-30 | Shell Oil Company | Oil well casting electrical power pick-off points |
OA12225A (en) | 2000-03-02 | 2006-05-10 | Shell Int Research | Controlled downhole chemical injection. |
MY128294A (en) | 2000-03-02 | 2007-01-31 | Shell Int Research | Use of downhole high pressure gas in a gas-lift well |
US6632047B2 (en) * | 2000-04-14 | 2003-10-14 | Board Of Regents, The University Of Texas System | Heater element for use in an in situ thermal desorption soil remediation system |
US6918444B2 (en) | 2000-04-19 | 2005-07-19 | Exxonmobil Upstream Research Company | Method for production of hydrocarbons from organic-rich rock |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US20030085034A1 (en) | 2000-04-24 | 2003-05-08 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce pyrolsis products |
US20030075318A1 (en) | 2000-04-24 | 2003-04-24 | Keedy Charles Robert | In situ thermal processing of a coal formation using substantially parallel formed wellbores |
US20030066642A1 (en) | 2000-04-24 | 2003-04-10 | Wellington Scott Lee | In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
ATE313695T1 (de) * | 2000-04-24 | 2006-01-15 | Shell Int Research | Elektrische bohrlochheizvorrichtung und verfahren |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
WO2002057805A2 (en) * | 2000-06-29 | 2002-07-25 | Tubel Paulo S | Method and system for monitoring smart structures utilizing distributed optical sensors |
US6585046B2 (en) | 2000-08-28 | 2003-07-01 | Baker Hughes Incorporated | Live well heater cable |
US20020112987A1 (en) | 2000-12-15 | 2002-08-22 | Zhiguo Hou | Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts |
US20020112890A1 (en) | 2001-01-22 | 2002-08-22 | Wentworth Steven W. | Conduit pulling apparatus and method for use in horizontal drilling |
US20020153141A1 (en) | 2001-04-19 | 2002-10-24 | Hartman Michael G. | Method for pumping fluids |
ATE314556T1 (de) * | 2001-04-24 | 2006-01-15 | Shell Int Research | Ölgewinnung durch verbrennung an ort und stelle |
WO2002086029A2 (en) | 2001-04-24 | 2002-10-31 | Shell Oil Company | In situ recovery from a relatively low permeability formation containing heavy hydrocarbons |
US7055600B2 (en) | 2001-04-24 | 2006-06-06 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
CN100545415C (zh) | 2001-04-24 | 2009-09-30 | 国际壳牌研究有限公司 | 现场处理含烃地层的方法 |
US20030029617A1 (en) | 2001-08-09 | 2003-02-13 | Anadarko Petroleum Company | Apparatus, method and system for single well solution-mining |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
ATE402294T1 (de) | 2001-10-24 | 2008-08-15 | Shell Int Research | Vereisung von böden als vorwegmassnahme zu deren thermischer behandlung |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
NZ532091A (en) * | 2001-10-24 | 2005-12-23 | Shell Int Research | In situ recovery from a hydrocarbon containing formation using barriers |
US6679326B2 (en) | 2002-01-15 | 2004-01-20 | Bohdan Zakiewicz | Pro-ecological mining system |
WO2003062596A1 (en) * | 2002-01-22 | 2003-07-31 | Weatherford/Lamb, Inc. | Gas operated pump for hydrocarbon wells |
US6958195B2 (en) * | 2002-02-19 | 2005-10-25 | Utc Fuel Cells, Llc | Steam generator for a PEM fuel cell power plant |
WO2004018828A1 (en) * | 2002-08-21 | 2004-03-04 | Presssol Ltd. | Reverse circulation directional and horizontal drilling using concentric coil tubing |
US7048051B2 (en) | 2003-02-03 | 2006-05-23 | Gen Syn Fuels | Recovery of products from oil shale |
US6796139B2 (en) | 2003-02-27 | 2004-09-28 | Layne Christensen Company | Method and apparatus for artificial ground freezing |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
RU2349745C2 (ru) | 2003-06-24 | 2009-03-20 | Эксонмобил Апстрим Рисерч Компани | Способ обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды (варианты) |
US7147057B2 (en) | 2003-10-06 | 2006-12-12 | Halliburton Energy Services, Inc. | Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore |
US7337841B2 (en) | 2004-03-24 | 2008-03-04 | Halliburton Energy Services, Inc. | Casing comprising stress-absorbing materials and associated methods of use |
CA2579496A1 (en) | 2004-04-23 | 2005-11-03 | Shell Internationale Research Maatschappij B.V. | Subsurface electrical heaters using nitride insulation |
AU2006239988B2 (en) * | 2005-04-22 | 2010-07-01 | Shell Internationale Research Maatschappij B.V. | Reduction of heat loads applied to frozen barriers and freeze wells in subsurface formations |
EA011905B1 (ru) | 2005-04-22 | 2009-06-30 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ конверсии in situ с использованием нагревающей системы с замкнутым контуром |
AU2006306471B2 (en) | 2005-10-24 | 2010-11-25 | Shell Internationale Research Maatschapij B.V. | Cogeneration systems and processes for treating hydrocarbon containing formations |
US7124584B1 (en) | 2005-10-31 | 2006-10-24 | General Electric Company | System and method for heat recovery from geothermal source of heat |
EP1984599B1 (en) | 2006-02-16 | 2012-03-21 | Chevron U.S.A., Inc. | Kerogen extraction from subterranean oil shale resources |
AU2007240367B2 (en) | 2006-04-21 | 2011-04-07 | Shell Internationale Research Maatschappij B.V. | High strength alloys |
JP5330999B2 (ja) | 2006-10-20 | 2013-10-30 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 流体によるタールサンド地層の複数部分中での炭化水素の移動 |
US20080216321A1 (en) | 2007-03-09 | 2008-09-11 | Eveready Battery Company, Inc. | Shaving aid delivery system for use with wet shave razors |
WO2008131171A1 (en) | 2007-04-20 | 2008-10-30 | Shell Oil Company | Parallel heater system for subsurface formations |
CA2700732A1 (en) | 2007-10-19 | 2009-04-23 | Shell Internationale Research Maatschappij B.V. | Cryogenic treatment of gas |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
-
2006
- 2006-04-21 EA EA200702307A patent/EA011905B1/ru not_active IP Right Cessation
- 2006-04-21 DE DE602006007693T patent/DE602006007693D1/de active Active
- 2006-04-21 EA EA200702303A patent/EA014760B1/ru not_active IP Right Cessation
- 2006-04-21 DE DE602006007450T patent/DE602006007450D1/de active Active
- 2006-04-21 IN IN4144CHN2007 patent/IN266867B/en unknown
- 2006-04-21 EP EP06750964.6A patent/EP1871978B1/en not_active Not-in-force
- 2006-04-21 DE DE602006007974T patent/DE602006007974D1/de active Active
- 2006-04-21 EP EP06751034A patent/EP1871987B1/en not_active Not-in-force
- 2006-04-21 EA EA200702297A patent/EA012900B1/ru not_active IP Right Cessation
- 2006-04-21 CA CA2605720A patent/CA2605720C/en not_active Expired - Fee Related
- 2006-04-21 EP EP06751032A patent/EP1871983B1/en not_active Not-in-force
- 2006-04-21 EA EA200702305A patent/EA012171B1/ru not_active IP Right Cessation
- 2006-04-21 AU AU2006240043A patent/AU2006240043B2/en not_active Ceased
- 2006-04-21 AT AT06750975T patent/ATE435964T1/de not_active IP Right Cessation
- 2006-04-21 AT AT06751032T patent/ATE437290T1/de not_active IP Right Cessation
- 2006-04-21 WO PCT/US2006/015105 patent/WO2006116096A1/en active Application Filing
- 2006-04-21 EA EA200702301A patent/EA012901B1/ru not_active IP Right Cessation
- 2006-04-21 CN CN200680013092.0A patent/CN101163851A/zh active Pending
- 2006-04-21 NZ NZ562247A patent/NZ562247A/en not_active IP Right Cessation
- 2006-04-21 CN CN200680013320.4A patent/CN101163856B/zh not_active Expired - Fee Related
- 2006-04-21 CA CA2606210A patent/CA2606210C/en not_active Expired - Fee Related
- 2006-04-21 AU AU2006240173A patent/AU2006240173B2/en not_active Ceased
- 2006-04-21 DE DE602006013437T patent/DE602006013437D1/de active Active
- 2006-04-21 EP EP06758470A patent/EP1880078A1/en not_active Withdrawn
- 2006-04-21 NZ NZ562239A patent/NZ562239A/en not_active IP Right Cessation
- 2006-04-21 CN CN200680013322.3A patent/CN101163853B/zh not_active Expired - Fee Related
- 2006-04-21 WO PCT/US2006/015104 patent/WO2006116095A1/en active Application Filing
- 2006-04-21 WO PCT/US2006/015095 patent/WO2006116087A1/en active Application Filing
- 2006-04-21 CA CA2606295A patent/CA2606295C/en not_active Expired - Fee Related
- 2006-04-21 AU AU2006239997A patent/AU2006239997B2/en not_active Ceased
- 2006-04-21 EP EP06750749A patent/EP1871981A1/en not_active Withdrawn
- 2006-04-21 EA EA200702299A patent/EA013555B1/ru not_active IP Right Cessation
- 2006-04-21 CA CA2606176A patent/CA2606176C/en not_active Expired - Fee Related
- 2006-04-21 AU AU2006239958A patent/AU2006239958B2/en not_active Ceased
- 2006-04-21 AU AU2006240175A patent/AU2006240175B2/en not_active Ceased
- 2006-04-21 NZ NZ562240A patent/NZ562240A/en not_active IP Right Cessation
- 2006-04-21 EP EP06750975A patent/EP1871985B1/en not_active Not-in-force
- 2006-04-21 AU AU2006239962A patent/AU2006239962B8/en not_active Ceased
- 2006-04-21 NZ NZ562243A patent/NZ562243A/en not_active IP Right Cessation
- 2006-04-21 WO PCT/US2006/015166 patent/WO2006116130A1/en active Application Filing
- 2006-04-21 AU AU2006239961A patent/AU2006239961B2/en not_active Ceased
- 2006-04-21 EP EP06751031A patent/EP1871986A1/en not_active Withdrawn
- 2006-04-21 CN CN200680013093.5A patent/CN101300401B/zh not_active Expired - Fee Related
- 2006-04-21 NZ NZ562241A patent/NZ562241A/en not_active IP Right Cessation
- 2006-04-21 EA EA200702298A patent/EA011226B1/ru not_active IP Right Cessation
- 2006-04-21 EA EA200702304A patent/EA012077B1/ru not_active IP Right Cessation
- 2006-04-21 WO PCT/US2006/015084 patent/WO2006116078A1/en active Application Filing
- 2006-04-21 CN CN200680013090.1A patent/CN101163854B/zh not_active Expired - Fee Related
- 2006-04-21 EA EA200702302A patent/EA014258B1/ru not_active IP Right Cessation
- 2006-04-21 AT AT06751034T patent/ATE427410T1/de not_active IP Right Cessation
- 2006-04-21 CA CA2605729A patent/CA2605729C/en not_active Expired - Fee Related
- 2006-04-21 WO PCT/US2006/015167 patent/WO2006116131A1/en active Application Filing
- 2006-04-21 WO PCT/US2006/015106 patent/WO2006116097A1/en active Application Filing
- 2006-04-21 EP EP06750751A patent/EP1871990B1/en not_active Not-in-force
- 2006-04-21 NZ NZ562252A patent/NZ562252A/en not_active IP Right Cessation
- 2006-04-21 EA EA200702300A patent/EA012767B1/ru not_active IP Right Cessation
- 2006-04-21 CA CA2606216A patent/CA2606216C/en not_active Expired - Fee Related
- 2006-04-21 CN CN200680013123.2A patent/CN101163860B/zh not_active Expired - Fee Related
- 2006-04-21 CN CN200680013122.8A patent/CN101163852B/zh not_active Expired - Fee Related
- 2006-04-21 AU AU2006239999A patent/AU2006239999B2/en not_active Ceased
- 2006-04-21 NZ NZ562249A patent/NZ562249A/en not_active IP Right Cessation
- 2006-04-21 WO PCT/US2006/014778 patent/WO2006115945A1/en active Application Filing
- 2006-04-21 WO PCT/US2006/014776 patent/WO2006115943A1/en active Application Filing
- 2006-04-21 AT AT06750976T patent/ATE463658T1/de not_active IP Right Cessation
- 2006-04-21 AU AU2006239996A patent/AU2006239996B2/en not_active Ceased
- 2006-04-21 CN CN200680013121.3A patent/CN101163858B/zh not_active Expired - Fee Related
- 2006-04-21 EP EP06750974A patent/EP1871980A1/en not_active Withdrawn
- 2006-04-21 EA EA200702306A patent/EA012554B1/ru not_active IP Right Cessation
- 2006-04-21 CN CN200680013312.XA patent/CN101163859B/zh not_active Expired - Fee Related
- 2006-04-21 NZ NZ562244A patent/NZ562244A/en not_active IP Right Cessation
- 2006-04-21 NZ NZ562251A patent/NZ562251A/en not_active IP Right Cessation
- 2006-04-21 CA CA2606217A patent/CA2606217C/en not_active Expired - Fee Related
- 2006-04-21 CA CA2605724A patent/CA2605724C/en not_active Expired - Fee Related
- 2006-04-21 CA CA2606181A patent/CA2606181C/en not_active Expired - Fee Related
- 2006-04-21 CA CA2606218A patent/CA2606218C/en not_active Expired - Fee Related
- 2006-04-21 CA CA2606165A patent/CA2606165C/en not_active Expired - Fee Related
- 2006-04-21 CN CN200680013101.6A patent/CN101163855B/zh not_active Expired - Fee Related
- 2006-04-21 NZ NZ562242A patent/NZ562242A/en not_active IP Right Cessation
- 2006-04-21 AU AU2006239963A patent/AU2006239963B2/en not_active Ceased
- 2006-04-21 AU AU2006240033A patent/AU2006240033B2/en not_active Ceased
- 2006-04-21 EP EP06750969A patent/EP1871979A1/en not_active Withdrawn
- 2006-04-21 US US11/409,523 patent/US7831133B2/en not_active Expired - Fee Related
- 2006-04-21 AT AT06750751T patent/ATE434713T1/de not_active IP Right Cessation
- 2006-04-21 EP EP06750976A patent/EP1871982B1/en not_active Not-in-force
- 2006-04-21 WO PCT/US2006/015101 patent/WO2006116092A1/en active Search and Examination
- 2006-04-21 CN CN200680013103.5A patent/CN101163857B/zh not_active Expired - Fee Related
- 2006-04-21 NZ NZ562248A patent/NZ562248A/en not_active IP Right Cessation
- 2006-04-21 DE DE602006006042T patent/DE602006006042D1/de active Active
- 2006-04-21 WO PCT/US2006/015169 patent/WO2006116133A1/en active Application Filing
- 2006-04-24 EA EA200702296A patent/EA014031B1/ru not_active IP Right Cessation
- 2006-04-24 EP EP06758505A patent/EP1871858A2/en not_active Withdrawn
- 2006-04-24 CA CA2605737A patent/CA2605737C/en active Active
- 2006-04-24 NZ NZ562250A patent/NZ562250A/en not_active IP Right Cessation
- 2006-04-24 AU AU2006239886A patent/AU2006239886B2/en not_active Ceased
- 2006-04-24 CN CN200680013130.2A patent/CN101163780B/zh not_active Expired - Fee Related
- 2006-04-24 WO PCT/US2006/015286 patent/WO2006116207A2/en active Application Filing
-
2007
- 2007-09-18 ZA ZA200708023A patent/ZA200708023B/en unknown
- 2007-09-18 ZA ZA200708022A patent/ZA200708022B/xx unknown
- 2007-09-18 ZA ZA200708020A patent/ZA200708020B/xx unknown
- 2007-09-18 ZA ZA200708021A patent/ZA200708021B/xx unknown
- 2007-09-20 ZA ZA200708089A patent/ZA200708089B/xx unknown
- 2007-09-20 ZA ZA200708090A patent/ZA200708090B/xx unknown
- 2007-09-20 ZA ZA200708087A patent/ZA200708087B/xx unknown
- 2007-09-20 ZA ZA200708088A patent/ZA200708088B/xx unknown
- 2007-09-21 ZA ZA200708134A patent/ZA200708134B/xx unknown
- 2007-09-21 ZA ZA200708136A patent/ZA200708136B/xx unknown
- 2007-09-21 ZA ZA200708135A patent/ZA200708135B/xx unknown
- 2007-09-21 ZA ZA200708137A patent/ZA200708137B/xx unknown
- 2007-09-24 IL IL186203A patent/IL186203A/en not_active IP Right Cessation
- 2007-09-24 IL IL186213A patent/IL186213A/en not_active IP Right Cessation
- 2007-09-24 IL IL186207A patent/IL186207A/en not_active IP Right Cessation
- 2007-09-24 IL IL186214A patent/IL186214A/en not_active IP Right Cessation
- 2007-09-24 IL IL186204A patent/IL186204A/en not_active IP Right Cessation
- 2007-09-24 IL IL186208A patent/IL186208A/en not_active IP Right Cessation
- 2007-09-24 IL IL186211A patent/IL186211A/en not_active IP Right Cessation
- 2007-09-24 IL IL186206A patent/IL186206A/en not_active IP Right Cessation
- 2007-09-24 IL IL186209A patent/IL186209A/en not_active IP Right Cessation
- 2007-09-24 IL IL186210A patent/IL186210A/en not_active IP Right Cessation
- 2007-09-24 IL IL186212A patent/IL186212A/en not_active IP Right Cessation
- 2007-09-24 IL IL186205A patent/IL186205A/en not_active IP Right Cessation
- 2007-09-28 ZA ZA200708316A patent/ZA200708316B/xx unknown
- 2007-11-21 MA MA30404A patent/MA29719B1/fr unknown
- 2007-11-21 MA MA30400A patent/MA29470B1/fr unknown
- 2007-11-21 MA MA30403A patent/MA29473B1/fr unknown
- 2007-11-21 MA MA30407A patent/MA29476B1/fr unknown
- 2007-11-21 MA MA30399A patent/MA29469B1/fr unknown
- 2007-11-21 MA MA30401A patent/MA29471B1/fr unknown
- 2007-11-21 MA MA30406A patent/MA29475B1/fr unknown
- 2007-11-21 MA MA30408A patent/MA29477B1/fr unknown
- 2007-11-21 MA MA30398A patent/MA29468B1/fr unknown
- 2007-11-21 MA MA30409A patent/MA29478B1/fr unknown
- 2007-11-21 MA MA30405A patent/MA29474B1/fr unknown
- 2007-11-21 MA MA30402A patent/MA29472B1/fr unknown
-
2011
- 2011-03-09 AU AU2011201030A patent/AU2011201030B2/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040011950A1 (en) * | 2002-05-31 | 2004-01-22 | Harkins Gary O. | Parameter sensing apparatus and method for subterranean wells |
US20040140095A1 (en) * | 2002-10-24 | 2004-07-22 | Vinegar Harold J. | Staged and/or patterned heating during in situ thermal processing of a hydrocarbon containing formation |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2605790C2 (ru) * | 2011-11-18 | 2016-12-27 | Дженерал Электрик Компани | Система и способ оценки влагосодержания потока пара |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EA011226B1 (ru) | Система низкотемпературного контроля для подземных барьеров | |
US9399905B2 (en) | Leak detection in circulated fluid systems for heating subsurface formations | |
US9127523B2 (en) | Barrier methods for use in subsurface hydrocarbon formations | |
CN101443531B (zh) | 确定岩石渗滤特性的方法 | |
Johnston et al. | Interpretation of Steam Drive Pilots in the Belridge Diatomite | |
CA2793883A1 (en) | Barrier methods for use in subsurface hydrocarbon formations | |
Laurence et al. | Using real-time fibre optic distributed temperature data for optimising reservoir performance | |
CA2792292A1 (en) | Leak detection in circulated fluid systems for heating subsurface formations | |
Sasaki et al. | Heat transfer and phase change in deep CO2 injector for CO2 geological storage | |
Weingarten et al. | Confinement of wastes injected below thawed permafrost: A 12 year update from the North Slope of Alaska |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s) |
Designated state(s): AM AZ BY KG MD TJ TM |
|
MM4A | Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s) |
Designated state(s): KZ RU |