RU2632791C1 - Способ стимуляции скважин путём закачки газовых композиций - Google Patents
Способ стимуляции скважин путём закачки газовых композиций Download PDFInfo
- Publication number
- RU2632791C1 RU2632791C1 RU2016143266A RU2016143266A RU2632791C1 RU 2632791 C1 RU2632791 C1 RU 2632791C1 RU 2016143266 A RU2016143266 A RU 2016143266A RU 2016143266 A RU2016143266 A RU 2016143266A RU 2632791 C1 RU2632791 C1 RU 2632791C1
- Authority
- RU
- Russia
- Prior art keywords
- gas
- injection
- composition
- gas composition
- volume
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 59
- 238000000034 method Methods 0.000 title claims abstract description 41
- 230000000638 stimulation Effects 0.000 title description 10
- 239000007789 gas Substances 0.000 claims abstract description 44
- 238000002347 injection Methods 0.000 claims abstract description 31
- 239000007924 injection Substances 0.000 claims abstract description 31
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 28
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 26
- 238000005755 formation reaction Methods 0.000 claims abstract description 26
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 14
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000003112 inhibitor Substances 0.000 claims abstract description 4
- 239000003960 organic solvent Substances 0.000 claims abstract description 4
- 239000003209 petroleum derivative Substances 0.000 claims abstract description 4
- 239000003345 natural gas Substances 0.000 claims abstract description 3
- 230000035699 permeability Effects 0.000 claims abstract description 3
- HOWJQLVNDUGZBI-UHFFFAOYSA-N butane;propane Chemical compound CCC.CCCC HOWJQLVNDUGZBI-UHFFFAOYSA-N 0.000 claims description 17
- 239000008235 industrial water Substances 0.000 claims description 3
- 230000004936 stimulating effect Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 14
- 230000000694 effects Effects 0.000 abstract description 7
- 239000000126 substance Substances 0.000 abstract 1
- 239000011435 rock Substances 0.000 description 15
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000000930 thermomechanical effect Effects 0.000 description 4
- 230000033558 biomineral tissue development Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 108020005351 Isochores Proteins 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000003631 expected effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000008398 formation water Substances 0.000 description 1
- 239000000383 hazardous chemical Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007306 turnover Effects 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/25—Methods for stimulating production
- E21B43/26—Methods for stimulating production by forming crevices or fractures
- E21B43/2605—Methods for stimulating production by forming crevices or fractures using gas or liquefied gas
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/58—Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
- C09K8/594—Compositions used in combination with injected gas, e.g. CO2 orcarbonated gas
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/166—Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
- E21B43/168—Injecting a gaseous medium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S507/00—Earth boring, well treating, and oil field chemistry
- Y10S507/922—Fracture fluid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S507/00—Earth boring, well treating, and oil field chemistry
- Y10S507/935—Enhanced oil recovery
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
Изобретение относится к нефтегазодобывающей промышленности и направлено на повышение экономической эффективности добычи углеводородов и вовлечение в разработку новых категорий запасов путем стимуляции скважин. Способ стимуляции скважин путем закачки газовой композиции в призабойную зону пласта, при котором формируют газовую композицию из трех потоков, включающую ПБТ смесь, природный газ или попутный нефтяной газ и азот, которые смешивают перед закачкой, при этом осуществляют управление потоками с возможностью изменения мольного состава компонентов газовой композиции, скорости и объема ее закачки из условия обеспечения значения температуры газовой композиции T1 меньше критической и давления закачки Р1 больше критического. Возможно перед закачкой газовой композиции прокачивать через колонну НКТ буферный азот или ПБТ смесь для обеспечения повышенной фазовой проницаемости пласта. Дополнительно в качестве финальной оторочки возможна закачка в скважину пачки технической воды высокой минерализации с добавлением ингибиторов гидратообразования в объеме колонны НКТ. Для карбонатных пластов в поток газовой композиции дополнительно вводят соляно-кислотную оторочку в смеси с взаимным органическим растворителем. Изобретение позволяет реализовать технологически эффективную и экономически целесообразную альтернативу традиционному методу ГРП на основе технической воды. Новый способ газовой стимуляции ПЗП скважин выступает как современный высокотехнологичный конкурент традиционным методам стимуляции скважин. 4 з.п. ф-лы, 2 ил.
Description
Изобретение относится к нефтегазодобывающей промышленности и направлено на повышение экономической эффективности добычи углеводородов и вовлечение в разработку новых категорий запасов путем стимуляции скважин.
Известна классическая технология стимуляции вертикальных скважин путем гидравлического разрыва пласта (ГРП). В процессе проведения данного геолого-технологического мероприятия (ГТМ), на забое скважины формируется давление, которое превышает предел прочности горной породы по одному из направлений в текущих условиях анизотропных горизонтальных стрессов. Инициация и дальнейший рост техногенной трещины, соединяющей ствол скважины с призабойной зоной пласта (ПЗП), сопровождается заполнением трещины (закреплением от схлопывания) специальной насыпной твердой фазой (керамический проппант или песок). Несущей средой для проппанта выступает жидкий раствор, основным ингредиентом которого является вода с различными спецдобавками, включая так называемые гелирующие, повышающие вязкость и, как следствие, несущие свойства раствора. Проппантный вариант ГРП применяется, в основном, к терригенным разрезам. В связи с освоением так называемых сланцевых запасов углеводородов большое распространение получила модификация основного метода ГРП для горизонтальных скважин, так называемый многостадийный ГРП (МГРП) - последовательное создание (десятков) техногенных дискретных трещин, расположенных поперечно оси горизонтального ствола скважины.
В случае с карбонатными продуктивными породами наиболее эффективным способом стимуляции скважин является метод кислотного ГРП КГРП, который заключается в промывке ПЗП под давлением специальными кислотными составами, обеспечивающими растворение пустотного пространства в объеме карбонатной породы по геометрии простирания трещины ГРП и создание так называемых «червоточин». Карбонатные резервуары в большинстве своем обладают естественной трещиноватостью, возникшей как следствие природных геомеханических процессов (тектоническое сжатие, сдвиг). Таким образом, техногенная трещина (система «червоточин») выступает в роли высокопроводящего канала, соединяющего ствол скважины с сетью природных трещин.
Современная технология большеобъемных ГРП предполагает закачку до нескольких тысяч м3 раствора технической воды с химическими реагентами, что влечет за собой экологические и технологические риски. Экологические риски связаны с необходимостью отбора и последующего сброса значительных объемов технической воды с опасностью загрязнения природных источников водоснабжения; технологические риски - с необходимостью выноса на поверхность большей части закачанных объемов неуглеводородных жидкостей в процессе освоения скважины после ГРП. В поисках решения данных проблем на протяжении последних десятилетий было предложено несколько модификаций технологии ГРП с использованием в качестве носителя проппанта сжиженных газов различной природы: углеводороды, такие как пропан С3Н8; бутан С4Н10; диоксид углерода СО2; инертные газы, такие как азот N2; и другие. Использование в качестве несущего агента газов в сжиженном состоянии направлено на устранение необходимости перекачки значительных объемов технической воды.
Использование пропан-бутанового (ПБТ) конденсата в качестве прямой альтернативы технической воде, как несущего агента, сопряжено со следующими технологическими проблемами: сложная логистика оборота сотен м3 ПБТ конденсата при проведении одной скважино-операции газового ГРП; давления закачки ПБТ конденсата в среднем на 50 атм выше аналогичных по технической воде на каждые 1000 м по глубине геологического разреза. Указанные проблемы значительно сужают область применения данного метода.
Использование инертных газов, таких как азот, в сжиженном состоянии предполагает проведение технологических операций в области температур ниже -100°С. При взаимодействии криогенного флюида высокого давления с горными породами, находящимися при температурах согласно регионального геотермального градиента, возникают критические термомеханические напряжения, зачастую превосходящие предел прочности горных пород в условиях значительных обжимных горизонтальных стрессов. Использование сжиженных газов при столь низких температурах требует защиты стандартного скважинного оборудования от воздействия криогенного шока при контакте с жидким азотом, например путем проведения всей операции через специальные гибкие насосно-компрессорные трубы (SPE 51067, «Cryogenic Nitrogen as а Hydraulic Fracturing Fluid in the Devonian Shale», 1998 г.).
Известен способ реализации ГРП путем закачки в качестве основного несущего агента ПБТ смеси в термобарических условиях, соответствующих жидкостному фазовому состоянию (патент US N 2013161016 А1, МПК E21B 43/26, опубл. 27.06.2013 г.). Согласно изобретению дополнительно применяется источник азота высокого давления, который используется в качестве буферного газа продувки системы перед закачкой взрыво- и пожароопасной углеводородной смеси, а также в качестве буферного газа для впрыска проппанта в поток ПБТ конденсата высокого давления. Методы и аппараты, описанные в изобретении, предлагают технологически эффективный и безопасный способ проведения операций газового ГРП.
Недостатком данного способа является необходимость развивать при закачке с устья давления, значительно превышающие таковые при традиционном ГРП на технической воде. Так, в примере, приведенном в описании изобретения, рассчитаны устьевые давления закачки на уровне 45 МПа, необходимые для достижения давления гидроразрыва на глубине порядка 2500 м. При проведении аналогичных операций в варианте МГРП потребный расход пропан-бутанового конденсата может достигать 1000 м, что, как уже было замечено, сопряжено со значительными логистическими расходами.
Известен способ подбора и закачки газовых композиций (патент US №3368627А, МПК Е21В 43/16, опубликовано 13.02.1968 г.). Описываемая технология предполагает приготовление газовой композиции в составе: углекислого газа (СО2) и нормальных алканов (С2-С6), в основном пропан-бутан, таким образом, что конечная смесь газов имеет критическую температуру газовой композиции Ткр ниже пластовой температуры Тпл целевого геологического объекта, но выше температуры транспорта вдоль ствола скважины от устья до забоя (Туст, Тзаб), а критическое давление Ркр соответственно не превышает давления транспорта газовой композиции на забой (Руст, Рзаб). При этом предлагается смешивать основные сжиженные компоненты: углекислый газ и углеводородный (УВ) конденсат непосредственно на устье скважины. В результате закачки газовой композиции под высоким давлением в возможной комбинации с проппантным (песочным) наполнителем или в смеси с кислотой ожидаются эффекты, характерные для ГРП или кислотного ГРП. В результате контакта с более теплым пластом и разрядки скважины со стороны устья газовая композиция переходит большей своей частью в область газообразного состояния и естественным образом выносит на поверхность все продукты реакции после проведенного ГТМ, значительно облегчая тем самым процесс освоения скважины.
Недостатками данного способа являются высокие целевые давления закачки композиции и технологические риски, связанные с оборотом (закачка/добыча) значительных объемов углекислого газа.
Задачей изобретения является реализация технологически эффективной безводной альтернативы ГРП в виде газовой стимуляции ПЗП скважины.
Задачей изобретения является реализация технологически эффективной безводной альтернативы ГРП в виде газовой стимуляции ПЗП скважины - газовый термический разрыв пласта (ГазТРП) на основе специально подобранных газовых композиций (ГК).
Техническим результатом изобретения является повышение продуктивности скважины за счет операции ГазТРП с минимальным использованием технической воды и опасных химических реагентов при характерных температурах технологических процессов выше -30°С с максимальным использованием наиболее доступных компонент на нефтегазовом промысле.
Указанный технический результат достигается способом стимуляции скважин путем закачки газовой композиции в призабойную зону пласта, при котором формируют газовую композицию из трех потоков, включающую пропан-бутановую смесь, природный газ или попутный нефтяной газ и азот, которые смешивают перед закачкой, при этом осуществляют управление потоками с возможностью изменения мольного состава компонентов газовой композиции, скорости и объема ее закачки при условии обеспечения значения температуры газовой композиции менее ее критического значения Ткр и давления закачки более критического давления данной композиции Ркр.
Согласно изобретению перед закачкой газовой композиции предварительно прокачивают через колонну насосно-компрессорных труб азот под давлением до 35 мПа, для создания буферной зоны.
Согласно изобретению перед закачкой газовой композиции предварительно прокачивают через колонну насосно-компрессорных труб пропан-бутановую смесь с заполнением объема призабойной зоны для обеспечения повышенной фазовой проницаемости пласта.
Согласно изобретению дополнительно в качестве финальной оторочки в скважину закачивают пачку технической воды высокой минерализации, с оторочки в скважину закачивают пачку технической воды высокой минерализации с добавлением ингибиторов гидратообразования в объеме колонны насосно-компрессорных труб.
Согласно изобретению для карбонатных пластов в поток газовой композиции дополнительно вводят соляно-кислотную оторочку в смеси с взаимным органическим растворителем.
Технический результат изобретения достигается благодаря следующему.
При закачке в пласт ГК в виде специально подобранной комбинации компонентов, обеспечивающей близость ее критических давлений и температур к области пластовых температур и давлений, происходит охлаждение и последующий разогрев ПЗП до исходной пластовой температуры, при этом развивается внутрипоровое давление, сопоставимое с пределом прочности горных пород. Прирост давления в процессе разогрева достигает 30 МПа и более, что вполне достаточно для достижения критических внутрипоровых давлений 45-75 МПа. Область критических термомеханических напряжений, формируемая в процессе закачки и тепловой реакции ГК, приводит к формированию области массивной трещиноватости призабойной зоны пласта скважины (ОМТ ПЗП). Данный тип изменения фильтрационных свойств ПЗП имеет потенциал многократного повышения коэффициента продуктивности скважины.
Указанный эффект отличает предложенное техническое решение от классического ГРП, при котором формируется несколько дискретных трещин.
Сущность изобретения поясняется чертежами, где на фиг. 1 приведены совмещенные кривые фазовых равновесий и линии изохор газовых композиций с различным составом, обеспечивающим различные значения критического давления и температуры, на фиг. 2 - принципиальная схема установки для формирования ГК, закачиваемой в скважину.
Принцип подбора состава ГК заключается в том, чтобы максимально эффективно использовать закон изменения теплофизических свойств ГК в процессе закачки и в контакте с породой в ПЗП скважины. На фиг. 1 приведены примеры диаграмм фазовых состояний для трех различных ГК в следующем соотношении компонент ПБТ: СН4: N2: Состав 1 - 40:30:30 мольных долей, Ткр=+60°С, Ркр=15.5 МПа; Состав 2 - 30:40:30 мольных долей, Ткр=+30°С, Ркр=17.6 МПа; Состав 3 - 25:45:30 мольных долей, Ткр=0°С, Ркр=17.8 МПа. На основании проведенных расчетов исходя из известных теплофизических характеристик горных пород и параметров ГК было установлено, что Состав 1 является оптимальным для продуктивных интервалов с характерной пластовой температурой более +60°С; Состав 2 - для продуктивных интервалов с характерной пластовой температурой от +30°С до +60°С; Состав 3 - для продуктивных интервалов с характерной пластовой температурой до +30°С.
Изменения теплофизических свойств в приведенных ГК показаны на термобарической плоскости точками: - Состав 1, Δ - Состав 2, о - Состав 3. Из картины изменения свойств (фиг. 1) следует, что газовые композиции в процессе разогрева до пластовых температур способны достичь значений внутрипоровых давлений, достаточных для формирования критических геомеханических напряжений, обеспечивающих формирование области массивной трещиноватости. Масштаб плотности ГК в потоке 450-500 кг/м3 приведен на фиг. 1.
Установка (фиг. 2) содержит буферную емкость 1 с ПБТ смесью (рабочее давление до 2 МПа), которая подключена к насосу высокого давления 2 (24-35 МПа) с системой охлаждения 3. Система охлаждения работает при низких температурах окружающей среды по схеме аппарата воздушного охлаждения, при умеренных и высоких температурах - по холодильному циклу с использованием в качестве хладагента ПБТ конденсата. Поток природного или попутного нефтяного газа (ПГ/ПНГ) отбирают от локальных источников с минимальной предварительной подготовкой на узле подготовки сырьевого газа (УПСГ) 4 в виде осушки от водяного конденсата. Поток ПГ/ПНГ поступает на компрессор 5, проходит через аппарат воздушного охлаждения (АВО) 6 и подается на узел смешения 7, где смешивается с потоком ПБТ конденсата высокого давления. Мобильный азотогенерирующий блок 8 обеспечивает поток азота высокого давления 24-35 МПа (ВД) для впрыска в узел смешения 9, где образуется ГК с заданным соотношением компонент, а также вспомогательный поток низкого давления до 2 МПа (НД), с целью продувки и заполнения технологического оборудования в процессе проведения операций. Таким образом, в установке одновременно формируют три потока. Управление потоками осуществляют посредством установленного на каждой линии перед соответствующим узлом смешения устройства управления потоком 10, состоящим из стандартных элементов: электромагнитный регулировочный клапан, ПИД-регулятор и контроллер системы управления.
Примеры реализации способа
Пример 1
Подготовка скважины под закачку ГК для стимуляции ПЗП скважины включает все необходимые операции перед проведением известных типов ГТМ, в том числе спуск колонны НКТ с пакерной компоновкой, рассчитанных на противостояние высоким давлениям на забое в процессе проведения стимуляции. Осуществляют формирование ГК в соответствии с описанной выше работой установки (фиг. 2). При этом обеспечивают заданные расходы компонентов, а также скорость и объем закачки для охвата зоной реакции целевой области ПЗП скважины. В процессе транспорта на забой ГК испытывает естественный разогрев за счет теплообмена через затрубное пространство колонны НКТ с горными породами. Для всех геологических пластов с температурой +60°С и выше оптимальная температура ГК на забое находится в интервале (+20°С, +30°С). Данный уровень обеспечивает достаточный температурный контраст для достижения термомеханического эффекта при контакте с горными породами, кроме того, данные температуры минимизируют риски гидратообразования при контакте с пластовыми водами в призабойной зоне при всех значимых уровнях давлений. По необходимости могут быть использованы гибкие НКТ с меньшим диаметром и дополнительной теплоизоляцией. Скорость и объем закачки рассчитывают из фактических теплофизических свойств целевого продуктивного интервала и расчетного эффекта достижения критических термомеханических напряжений.
Пример 2
Перед процессом закачки ГК осуществляют заполнение колонны НКТ буферным азотом высокого давления, далее переключают процесс на закачку в НКТ и призабойную зону ПБТ смеси с целью создания максимального забойного давления в начальный период закачки, достижения максимальной флюидальной проводимости ПЗП и последующих темпов закачки ГК. Затем формируют ГК по аналогии с примером 1 и осуществляют ее закачку для стимуляции скважины.
Проведен расчет для эффективной проницаемой толщины продуктивного интервала Нэфф=10 м и эффективной пористости породы 10%. Охват охлажденным фронтом ГК ПЗП радиусом Rохв=5 м достигается при объеме прокачки в пластовых условиях порядка 1000 м3. При этом температурный фронт [+20°С, +30°С] ГК продвигается на заданное расстояние Rохв в объеме горных пород. В зависимости от фактической приемистости скважины по компонентам ГК время закачки может занять от нескольких часов до суток. По окончании закачки заданного объема ГК скважину закрывают на реакцию.
Для повышения эффективности и безопасности при проведении операции в качестве финальной оторочки может закачиваться пачка технической воды высокой минерализации с добавлением ингибиторов гидратообразования в объеме колонны НКТ. Время реакции ПЗП скважины рассчитывают перед проведением технологической операции по специальным шаблонам, контрольные параметры давления и температуры на устье и забое скважины по системе телеметрии поступают в центр управления технологической операцией.
Процесс газовой стимуляции ПЗП скважины достигает своей главной цели в процессе разогрева ПЗП до исходной пластовой температуры. При этом развивается внутрипоровое давление, сопоставимое с пределом прочности горных пород. Для количественной оценки эффекта используется баротермический коэффициент dP/dT=(МПа/К) изменения давления при изменении температуры и фиксированном объеме. Характерная величина баротермического коэффициента порядка 1 МПа/К развивается в объеме горных пород при достижении закритической температуры ГК с учетом объемно-взвешенного отношения коэффициента теплового расширения горной породы, насыщенной газовым конденсатом, и сжимаемости среды. При этом прирост давления в процессе разогрева достигает 30 МПа и более, что вполне достаточно для достижения критических внутрипоровых давлений 45-75 МПа. Это приводит к формированию области массивной трещиноватости ПЗП скважины, обеспечивающей ее эффективную стимуляцию.
Простейшие оценки повышения продуктивности скважины проводят по формуле Дюпюи для радиального притока. При эффективном значении скина S=0, ожидаемый коэффициент увеличения продуктивности равен 1.5-2. Если значение скин-фактора принимает отрицательные значения, ожидаемый эффект растет кратно, вследствие эффекта синергии фильтрационных каналов ОМТ ПЗП и системы природных трещин и перфорационных каналов значительной протяженности.
Для карбонатных пластов применяют закачку ГК в комбинации с кислотной обработкой ПЗП, по аналогии с кислотным ГРП. С этой целью в поток ГК впрыскивают соляно-кислотную оторочку в смеси с взаимным органическим растворителем, таким, как одноатомные спирты.
Таким образом, предложенное изобретение ГазТРП позволяет реализовать технологически эффективную и экономически целесообразную альтернативу традиционному методу ГРП на основе технической воды. Новый способ газовой стимуляции ПЗП скважин выступает не просто в качестве экологически привлекательной альтернативы, но и как современный высокотехнологичный конкурент хорошо зарекомендовавшим себя традиционным методам стимуляции скважин.
Claims (5)
1. Способ стимуляции скважин путем закачки газовой композиции в призабойную зону пласта, при котором формируют газовую композицию из трех потоков, включающую пропан-бутановую смесь, природный газ или попутный нефтяной газ и азот, которые смешивают перед закачкой, при этом осуществляют управление потоками с возможностью изменения мольного состава компонентов газовой композиции, скорости и объема ее закачки при условии обеспечения значения температуры газовой композиции менее ее критического значения и давления закачки более критического давления данной композиции.
2. Способ по п. 1, отличающийся тем, что перед закачкой газовой композиции предварительно прокачивают через колонну насосно-компрессорных труб азот под давлением до 35 мПа, для создания буферной зоны.
3. Способ по п. 1, отличающийся тем, что перед закачкой газовой композиции предварительно прокачивают через колонну насосно-компрессорных труб пропан-бутановую смесь с заполнением объема призабойной зоны для обеспечения повышенной фазовой проницаемости пласта.
4. Способ по п. 1, отличающийся тем, что дополнительно в качестве финальной оторочки в скважину закачивают пачку технической воды высокой минерализации с добавлением ингибиторов гидратообразования в объеме колонны насосно-компрессорных труб.
5. Способ по п. 1, отличающийся тем, что для карбонатных пластов в поток газовой композиции дополнительно вводят соляно-кислотную оторочку в смеси с взаимным органическим растворителем.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016143266A RU2632791C1 (ru) | 2016-11-02 | 2016-11-02 | Способ стимуляции скважин путём закачки газовых композиций |
PCT/RU2017/000784 WO2018084743A1 (ru) | 2016-11-02 | 2017-10-26 | Способ стимуляции скважин путём закачки газовых композиций |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016143266A RU2632791C1 (ru) | 2016-11-02 | 2016-11-02 | Способ стимуляции скважин путём закачки газовых композиций |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2632791C1 true RU2632791C1 (ru) | 2017-10-09 |
Family
ID=60040968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016143266A RU2632791C1 (ru) | 2016-11-02 | 2016-11-02 | Способ стимуляции скважин путём закачки газовых композиций |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2632791C1 (ru) |
WO (1) | WO2018084743A1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2696739C1 (ru) * | 2018-12-21 | 2019-08-05 | Общество с ограниченной ответственностью "Г4-Групп" | Способ стимуляции нефтегазового пласта закачкой композиции сжиженных газов |
RU2754209C2 (ru) * | 2020-01-21 | 2021-08-30 | Александр Юрьевич Мильков | Способ стимуляции нефтяных и газовых пластов |
RU2784087C1 (ru) * | 2022-04-20 | 2022-11-23 | Закрытое акционерное общество "Алойл" | Способ поддержания пластового давления с использованием газовых композиций |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110439544B (zh) * | 2019-07-31 | 2023-06-23 | 中国石油大学(北京) | 一种基于真三轴酸化压裂的室内实验装置及酸化压裂模拟方法 |
CN111502651B (zh) * | 2020-06-30 | 2020-09-22 | 西南石油大学 | 一种缝洞型油藏高压注水离散介质模型的研究方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3368627A (en) * | 1966-03-21 | 1968-02-13 | Dow Chemical Co | Method of well treatment employing volatile fluid composition |
US4558740A (en) * | 1983-05-27 | 1985-12-17 | Standard Oil Company | Injection of steam and solvent for improved oil recovery |
RU2060378C1 (ru) * | 1993-04-06 | 1996-05-20 | Александр Константинович Шевченко | Способ разработки нефтяного пласта |
EA012171B1 (ru) * | 2005-04-22 | 2009-08-28 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Двухбарьерная система для in situ процесса конверсии углеводородов |
US20130161016A1 (en) * | 2006-03-03 | 2013-06-27 | Gasfrac Energy Services Inc. | Liquified petroleum gas fracturing system |
RU2494233C2 (ru) * | 2007-11-19 | 2013-09-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Система и способ добычи нефти и/или газа |
-
2016
- 2016-11-02 RU RU2016143266A patent/RU2632791C1/ru not_active IP Right Cessation
-
2017
- 2017-10-26 WO PCT/RU2017/000784 patent/WO2018084743A1/ru active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3368627A (en) * | 1966-03-21 | 1968-02-13 | Dow Chemical Co | Method of well treatment employing volatile fluid composition |
US4558740A (en) * | 1983-05-27 | 1985-12-17 | Standard Oil Company | Injection of steam and solvent for improved oil recovery |
RU2060378C1 (ru) * | 1993-04-06 | 1996-05-20 | Александр Константинович Шевченко | Способ разработки нефтяного пласта |
EA012171B1 (ru) * | 2005-04-22 | 2009-08-28 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Двухбарьерная система для in situ процесса конверсии углеводородов |
US20130161016A1 (en) * | 2006-03-03 | 2013-06-27 | Gasfrac Energy Services Inc. | Liquified petroleum gas fracturing system |
RU2494233C2 (ru) * | 2007-11-19 | 2013-09-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Система и способ добычи нефти и/или газа |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2696739C1 (ru) * | 2018-12-21 | 2019-08-05 | Общество с ограниченной ответственностью "Г4-Групп" | Способ стимуляции нефтегазового пласта закачкой композиции сжиженных газов |
RU2754209C2 (ru) * | 2020-01-21 | 2021-08-30 | Александр Юрьевич Мильков | Способ стимуляции нефтяных и газовых пластов |
RU2784087C1 (ru) * | 2022-04-20 | 2022-11-23 | Закрытое акционерное общество "Алойл" | Способ поддержания пластового давления с использованием газовых композиций |
RU2797165C1 (ru) * | 2023-02-10 | 2023-05-31 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки высоковязкой нефти башкирского объекта |
RU2824108C1 (ru) * | 2024-01-29 | 2024-08-06 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ повышения нефтеотдачи высоковязкой нефти карбонатного коллектора |
Also Published As
Publication number | Publication date |
---|---|
WO2018084743A1 (ru) | 2018-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2632791C1 (ru) | Способ стимуляции скважин путём закачки газовых композиций | |
US7559373B2 (en) | Process for fracturing a subterranean formation | |
US9920608B2 (en) | Method of improving hydraulic fracturing by decreasing formation temperature | |
US8061427B2 (en) | Well product recovery process | |
US10717924B2 (en) | Supercritical carbon dioxide emulsified acid | |
US11008842B2 (en) | Methods for hydraulic fracturing | |
CA2990160C (en) | Well testing | |
RU2544343C1 (ru) | Способ гидроразрыва низкопроницаемого пласта с глинистыми прослоями и подошвенной водой | |
US10087737B2 (en) | Enhanced secondary recovery of oil and gas in tight hydrocarbon reservoirs | |
US9556719B1 (en) | Methods for recovering hydrocarbons from shale using thermally-induced microfractures | |
RU2457323C1 (ru) | Способ гидроразрыва низкопроницаемого пласта с глинистыми прослоями | |
WO2016090089A1 (en) | Hydrocarbon recovery using complex water and carbon dioxide emulsions | |
Pandey et al. | New fracture-stimulation designs and completion techniques result in better performance of shallow Chittim Ranch wells | |
CN115478827A (zh) | 一种水合物储层水平井套管不固井完井分段压裂方法 | |
WO2019022763A1 (en) | HYDROLYSABLE OILS FOR ACIDIFYING AND REDUCING INTERFACIAL VOLTAGE FOR UNDERGROUND TREATMENTS | |
US11781411B2 (en) | Methods and systems for reducing hydraulic fracture breakdown pressure via preliminary cooling fluid injection | |
RU2451174C1 (ru) | Способ гидравлического разрыва пласта | |
Gruber et al. | Carbonated hydrocarbons for improved gas well fracturing results | |
CA3085548C (en) | Use of liquid natural gas for well treatment operations | |
RU2741644C1 (ru) | Способ разработки месторождений трудноизвлекаемых углеводородов | |
CA2716446A1 (en) | Effective horizontal drilling through a hydrocarbon reservoir | |
WO2014122496A1 (en) | System and method for temporarily sealing a bore hole | |
Wang et al. | Evaluation and optimization of gas volume on CO2 huff and puff by multiple horizontal wells in fault-block reservoirs with edge aquifers | |
RU2013526C1 (ru) | Способ временной изоляции газоносного пласта | |
RU2776539C1 (ru) | Способ термохимической обработки нефтяного пласта с трудноизвлекаемыми запасами |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20201103 |