CN101300401B - 用于通过现场转化工艺生产流体的方法及系统 - Google Patents
用于通过现场转化工艺生产流体的方法及系统 Download PDFInfo
- Publication number
- CN101300401B CN101300401B CN200680013093.5A CN200680013093A CN101300401B CN 101300401 B CN101300401 B CN 101300401B CN 200680013093 A CN200680013093 A CN 200680013093A CN 101300401 B CN101300401 B CN 101300401B
- Authority
- CN
- China
- Prior art keywords
- stratum
- fluid
- gaslift
- chamber
- pipeline
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 193
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000006243 chemical reaction Methods 0.000 title description 22
- 230000008569 process Effects 0.000 title description 15
- 238000011065 in-situ storage Methods 0.000 title description 2
- 238000003860 storage Methods 0.000 claims abstract description 48
- 238000004519 manufacturing process Methods 0.000 claims abstract description 31
- 238000010438 heat treatment Methods 0.000 claims abstract description 26
- 230000015572 biosynthetic process Effects 0.000 claims description 109
- 229930195733 hydrocarbon Natural products 0.000 claims description 88
- 150000002430 hydrocarbons Chemical class 0.000 claims description 88
- 239000004215 Carbon black (E152) Substances 0.000 claims description 79
- 238000002347 injection Methods 0.000 claims description 41
- 239000007924 injection Substances 0.000 claims description 41
- 239000012808 vapor phase Substances 0.000 claims description 10
- 239000000446 fuel Substances 0.000 claims description 5
- 238000005345 coagulation Methods 0.000 claims description 2
- 230000015271 coagulation Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 description 109
- 238000005755 formation reaction Methods 0.000 description 89
- 239000007788 liquid Substances 0.000 description 32
- 238000000197 pyrolysis Methods 0.000 description 29
- 239000011435 rock Substances 0.000 description 24
- 239000003921 oil Substances 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 229910001868 water Inorganic materials 0.000 description 18
- 239000000463 material Substances 0.000 description 15
- 238000012423 maintenance Methods 0.000 description 12
- 239000012071 phase Substances 0.000 description 12
- 238000005086 pumping Methods 0.000 description 12
- 238000003786 synthesis reaction Methods 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 230000008901 benefit Effects 0.000 description 8
- 238000013461 design Methods 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 238000011084 recovery Methods 0.000 description 7
- 230000008439 repair process Effects 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000009833 condensation Methods 0.000 description 4
- 230000005494 condensation Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000008020 evaporation Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000008676 import Effects 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000003203 everyday effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 239000004852 Asphaltite Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 230000005520 electrodynamics Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 210000003746 feather Anatomy 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000004058 oil shale Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000010458 rotten stone Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- -1 shale Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000007669 thermal treatment Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/30—Specific pattern of wells, e.g. optimising the spacing of wells
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/08—Production of synthetic natural gas
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/04—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/17—Interconnecting two or more wells by fracturing or otherwise attacking the formation
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2401—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2214/00—Aspects relating to resistive heating, induction heating and heating using microwaves, covered by groups H05B3/00, H05B6/00
- H05B2214/03—Heating of hydrocarbons
Landscapes
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Resistance Heating (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
- General Induction Heating (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
- Surface Heating Bodies (AREA)
- Processing Of Solid Wastes (AREA)
- Lubricants (AREA)
- Pipe Accessories (AREA)
- Auxiliary Devices For And Details Of Packaging Control (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
- Air-Conditioning For Vehicles (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Hydrogen, Water And Hydrids (AREA)
- Communication Control (AREA)
- Control Of Combustion (AREA)
- Control Of Temperature (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Enzymes And Modification Thereof (AREA)
- Exposure Or Original Feeding In Electrophotography (AREA)
- Thermotherapy And Cooling Therapy Devices (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明提供了一种系统,包括:多个用于对地层的一部分进行加热的热源(102);至少一个位于地层中的生产井(106);一泵系统;以及一与泵系统连接的生产管道。生产井的底部设有一位于地层的下伏岩层中的贮槽,该下伏岩层位于地层的受热部分之下。流体允许从地层的加热部流入贮槽内。与生产管道相结合的泵系统将贮槽中的流体运出地层。本发明还提供了一种用于从地层中取走一部分流体的方法。
Description
技术领域
本发明总体上涉及用于从诸如含烃地层一类的各种地下地层生产烃、氢、和/或其他产品的方法和系统。具体实施方式涉及防止流体在生产井中回流。
背景技术
从地下地层中获得的烃经常被用来做能源、原料和消费品。由于担心可用烃类资源枯竭以及所生产的烃类物质总产量下降,促使人们开发出各种方法,以更为有效地采收、加工和/或利用现有的烃类资源。其中,可用现场处理工艺来从地下地层中取走烃类原料。地下地层中的烃类原料的化学和/或物理性能可能需要进行转化,以便更容易将烃类原料从地下地层中取走。化学和物理变化可包括生产可取出的流体的现场反应、地层中的烃类原料的成分变化、溶解度变化、密度变化、相变和/或粘度变化。流体可为气体、液体、乳状液、浆液和/或与液体流的流动特性相似的固体颗粒流,但并不限于此。
美国专利4,637,464公开了一种方法,所述方法在地下洞腔中燃烧碎油页岩以生产油,油流至位于洞腔底部处的贮槽,从该处将油抽吸至地面。
美国专利4,457,365公开了一种方法,所述方法利用RF加热电极加热包含油页岩的地层并且在地层底部的贮槽中收集所产生的油,从该处将油抽吸至地面。
如上所述,业已投入巨大的精力来开发各种方法和系统,以便经济可行地从含烃地层中采集烃、氢和/或其他产品。不过目前仍有许多含烃地层,不能经济地从这些含烃地层采集烃、氢和/或其他产品。因此,仍然需要用于从各种含烃地层中采集烃、氢和/或其他产品的改进的方法和系统。
发明内容
根据本发明的一个方面,提供了一种用于生产地层流体的方法,包括:
使用多个热源来加热地层的一部分;
允许地层流体流到生产井中的位于地层的受热部分之下的贮槽;以及
抽吸贮槽中的地层流体以从地层中取走地层流体的一部分,
其特征在于,抽吸地层流体的步骤循环地包括:
使地层流体通过贮槽中的气举室底部的止回阀进入气举室;
待足够多的流体进入气举室后,打开提升用气体注入阀以使加压的提升用气体进入气举室的顶部;
使得转向口允许提升用气体通过封隔器或回流密封组件进入气举室的顶部;
使得气举室中的总压力增加以使得底部的止回阀关闭,并迫使流体进入汲取管的底部,然后向上进入管道,并流出气举室;
使得提升用气体注入阀一直保持开放,直至注入足够的提升用气体,以将气举室中的流体抽空至一收集装置中;
关闭提升用气体注入阀,并允许气举室再次充满流体;
其中,所述封隔器或回流密封组件位于所述受热部分之上,以防止产出的流体流到所述管道与所述受热部分上方的井套管之间的环形空间中。
优选地,所述方法还包括防止凝结的蒸气相地层流体与所述地层的受热部分接触。
优选地,所述方法用于生产包含烃的合成物。
优选地,所述合成物用于生产运输燃料。
根据本发明的一个方面,还提供了一种用于生产地层流体的系统,包括:
多个配置成用于加热地层的一部分的热源;
至少一个位于地层中的生产井,其中,生产井的底部是位于地层的受热部分下方的贮槽,允许来自地层的受热部分的流体流入贮槽;
其特征在于,所述生产井包括:
位于所述贮槽中的气举室,允许地层流体通过气举室底部的止回阀进入气举室;
提升用气体注入阀,在足够多的流体进入气举室后,打开提升用气体注入阀以使加压的提升用气体进入气举室的顶部;
转向口,所述转向口允许提升用气体通过封隔器或回流密封组件进入气举室的顶部;
位于气举室底部的止回阀,通过使得气举室中的总压力增加而使得所述止回阀关闭,并迫使流体进入汲取管的底部,然后向上进入管道,并流出气举室;
其中使得提升用气体注入阀一直保持开放,直至注入足够的提升用气体,以将气举室中的流体抽空至一收集装置中,这时关闭提升用气体注入阀并允许气举室再次充满流体;以及
与所述气举室连接的所述管道,其中,所述管道配置成用于将所述气举室中的流体输送出地层;
其中,所述封隔器或回流密封组件位于所述受热部分之上,以防止产出的流体流到所述管道与所述受热部分上方的井套管之间的环形空间中。
优选地,贮槽位于地层的下伏岩层中。
优选地,贮槽位于地层的温度比地层的受热部分低的一部分中。
优选地,贮槽位于用于加热地层受热部分的最深的加热器之下至少5米处。
优选地,所述系统还包括配置成用于将蒸气相地层流体输送出地层的第二生产管道。
优选地,所述系统还包括分流器,所述分流器配置成用于防止来自第二生产管道的凝结物与地层的受热部分接触。
在另外的实施方式中,特定实施方式中的技术特征可与其他实施方式的技术特征相结合。举例来说,一个实施方式中的技术特征可与任何其他实施方式的技术特征相结合。
在另外的实施方式中,利用文中描述的任何方法、系统或热源对地层进行处理。
在另外的实施方式中,可在文中描述的具体实施方式中增加其他的技术特征。
附图说明
结合下面的具体实施方式,并参照附图,本领域技术人员可清楚本发明的优点,其中:
图1示出了加热含烃地层的各阶段的图表;
图2示出了一用于处理含烃地层的现场转化系统的一部分的具体实施方式的概图;
图3示出了生产井中的分流装置的一实施方式的示意图;
图4示出了生产井中的折流器的一实施方式的示意图;
图5示出了生产井中的折流器的一实施方式的示意图。
图6示出了一双同心杆式泵系统的实施方式;
图7示出了具有两相分离器的双同心杆式泵系统的实施方式;
图8示出了具有气体/蒸气罩和贮槽的双同心杆式泵系统的实施方式;
图9示出了气举系统的实施方式;
图10示出了具有一附加生产管道的汇集室式气举系统的实施方式;
图11示出了具有一注入气供气管道的汇集室式气举系统的实施方式;
图12示出了具有一附加止回阀的汇集室式气举系统的实施方式;
图13示出了一汇集室式气举系统的实施方式,其允许气体/蒸气流混合到生产管道中,而无需单独的用于气体的气体/蒸气管道;
图14示出了一汇集室式气举系统的实施方式,其具有位于一封隔器/回流密封组件之下的一止回阀/孔口组件;
图15示出了具有同心管道的一汇集室式气举系统的实施方式;
图16示出了具有气体/蒸气罩和贮槽的汇集室式气举系统的实施方式。
虽然通过附图中的实施例示出了本发明的具体实施方式,并且可能在文中作了详细描述,但是对本发明易于进行各种更改和替换。附图可不按比例进行绘制。然而,应该理解的是,附图及对其的具体描述的目的并不在于将本发明限定在所公开的特殊形式中,与此相反,本发明将涵盖如本发明的主旨和范围内的所有改动方案、等同方案以及替换方案。
具体实施方式
下面,概略地描述用于处理地层中的烃的系统及方法。这种地层经过处理可生产烃类产品、氢及其他产品。
“烃类”总体上定义为主要由碳和氢原子形成的分子。烃类还可含有其他元素,例如卤素、金属元素、氮、氧和/或硫,但并不限于此。烃可为例如油母岩质、沥青、焦性沥青、油类、天然石蜡和石沥青,但并不限于此。烃可存在于地球上的矿物母岩中或其附近。母岩可包括沉积岩、砂、沉积石英岩、黑金刚石、硅藻岩及其他多孔介质,但不限于此。“烃流体”为含烃的流体。烃流体可含有、载有非烃流体,例如氢、氮、一氧化碳、二氧化碳、硫化氢、水和氨,或载于这样的非烃流体中。
“地层”包括一层或多层含烃层、一层或多层不含烃层、上覆岩层(overburden)、和/或下伏岩层(underburden)。“上覆岩层”和/或“下伏岩层”包括一或多种不同的不可渗透的材料。举例来说,上覆岩层和/或下伏岩层可包括岩石、页岩、泥岩或湿的/致密的黑金刚石。在现场转化工艺的一些实施方式中,上覆岩层和/或下伏岩层可包括一层含烃层或多层含烃层,它们相对不渗透,并且不受现场转化工艺中使上覆岩层和/或下伏岩层的含烃层特征发生显著变化的温度的影响。举例来说,下伏岩层可包含页岩或泥岩,但是不让下伏岩层在现场转化工艺中加热至热解温度。在有些情况下,上覆岩层和/或下伏岩层可具有一定的渗透性。
“地层流体”是指存于地层中的流体,可包含热解流体、合成气、流通烃和水(蒸汽)。地层流体可包含烃流体以及不含烃流体。术语“流通流体”是指存在于含烃地层中的流体,因为地层经过热处理的结果,该流体能够流动。“产出流体”是指从地层取走的地层流体。
“热源”是指基本上通过传导式和/或辐射式传热方式对地层的至少一部分供热的任何系统。举例来说,热源可包括诸如绝缘导体、细长形构件、和/或置于管道内的导体一类的电加热器。热源也可包括通过燃烧地层外或地层中的燃料而发热的系统。该系统可为表面燃烧器(surface burner)、井底气体燃烧器(downhole gas burner)、无焰分布燃烧室式燃烧器(flameless distributed combustors)、与天然分布燃烧室式燃烧器(natural distributed combustors)。在一些实施方式中,提供给一或多个热源或在一或多个热源中产生的热量可通过其它能源供给。其它能源可直接对地层进行加热,或者可用该能源传送直接或间接加热地层的介质。应当理解,一或多个对地层施加热量的热源可使用各种不同的能源。就此举例来说,对于特定的地层,有些热源可通过电阻加热器供热,有些热源可通过燃烧供热,而有些热源可通过一或多个其它的能源供热(例如,化学反应、太阳能、风能、生物物质、或其它再生能源)。化学反应可包括放热反应(比如氧化反应)。热源还可包括对靠近诸如加热井一类的加热位置或其周围的区域供热的加热器。
“加热器”是指在井或近井眼区域中发热的任何系统或热源。加热器可为电热器、燃烧器、与地层中的材料或地层中产生的材料起反应的燃烧器、和/或其组合,但不限于此。
“现场转化工艺”是指通过热源对含烃地层进行加热以使得地层的至少一部分的温度升至高于热解温度从而在地层中产生热解流体的过程。
术语“井眼”是指通过钻孔或将管道插入地层的方式而在地层中产生的孔。井眼可基本上为圆形截面,或另外的截面形状。如文中所用,当术语“井”和“开口”指的是地层中的开口时,该术语可与术语“井眼”交替使用。
“热解”是指由于热的作用而使化学键断开。举例来说,热解可包括仅通过加热将一化合物转变成一或多个其它的物质。可将热传给一段地层以产生热解。在有些地层中,地层的一部分和/或地层中的其它材料可通过催化活性而促成热解。
“热解流体”或“热解产物”指的是基本上在烃的热解过程中产生的流体。因热解反应而产生的流体可与地层中的其它流体混合。混合物可认为是热解流体或热解产品。如文中所用,“热解区”是指已反应或正在反应以形成热解流体的那块地层(例如,焦油砂矿地层一类的渗透性较强的地层)的体积。
“裂化”是指包含有机化合物的分解和分子复合以产生比初始存在的更多的分子数的过程。在裂化过程中,会发生一系列反应,同时伴随有氢原子在分子间的转移。例如,石脑油可经过热裂化反应而形成乙烯和H2。
“热叠加”是指通过两个或多个热源对选定的地层段供热,从而地层的温度,至少是热源之间的一个位置处的地层的温度受到热源的影向。
“可凝结烃”是指在25℃时、一个绝对大气压下凝结的烃类。可凝结烃可包括碳数大于4的烃的混合物。不凝结烃是指在25℃时、一个绝对大气压下不凝结的烃。不凝结烃可包括碳数小于5的烃。
地层中的烃可用多种方式进行处理以形成多种不同的产品。在某些实施方式中,地层中的烃分阶段进行处理。图1示出了加热含烃地层的各阶段。图1还示出了来自地层中的地层流体的每吨相当石油桶数(y轴)表示的产量(“Y”)相对于摄氏温度(x轴)表示的受热地层的温度(“T”)的实施例。
在阶段1加热期间甲烷发生脱附,水发生汽化。通过阶段1的地层加热可尽快完成。举例来说,当含烃地层开始加热时,地层中的烃释放出所吸附的甲烷。放出的甲烷可由地层产生。如果进一步加热含烃地层,则含烃地层中的水会蒸发。在有些含烃地层中,地层中水的孔隙度可占10%~50%。在其它地层中,水的孔隙度或大或小。地层中的水通常在160℃~250℃、绝对压力在600kPa~7000kPa的条件下蒸发。在一些实施方式中,蒸发的水使得地层中的吸湿度改变,和/或使得地层压力增加。吸湿度的变化和/或压力的增加可能影响地层内的热解反应或其它反应。在某些实施方式中,蒸发的水由地层产生。在其它的实施方式中,蒸发的水用于地层中和地层外部的萃取和/或蒸馏。除去地层中的水并增加地层的孔隙度使得孔隙容积中用于烃的存储空间增大。
在某些实施方式中,在阶段1加热之后,地层进一步被加热,从而地层中的温度达到(至少是)初始裂解温度(例如阶段2所示的温度范围的下端的温度)。地层中的烃在整个阶段2中可被热解。热解温度范围根据地层中烃的类型而有所不同。热解温度范围可包括250℃和900℃之间的温度。用于生产所需产品的热解温度范围可仅贯穿整个热解温度范围的一部分。在一些实施方式中,用于生产所需产品的热解温度范围可为250℃和400℃之间的温度,或270℃和350℃之间的温度。如果地层中烃的温度从250℃慢慢地升高至400℃,则当温度接近400℃时,热解产物的生产基本上可以完成。烃的平均温度可在用于生产所需产品的热解温度范围内,按小于每天5℃、每天2℃、每天1℃、或每天0.5℃的速度升温。用多个热源对含烃地层进行加热可在热源周围形成温度梯度,使得地层中的烃在热解温度范围内慢慢升温。
用于所需产品的热解温度范围内的增温率会影响含烃地层中所产生的地层流体的质量和数量。在所需产品的热解温度范围内慢慢升温可防止地层中的大链型分子流动。在所需产品的热解温度范围内慢慢升温可限制产生非所需产品的流动烃之间发生反应。在所需产品的热解温度范围内缓慢升温可使得地层中产出高质量、高API重度的烃。在所需产品的热解温度范围内缓慢升温可使得地层中大量的烃作为烃产品被取出。
在一些现场转化实施方式中,地层的一部分被加热至所需温度,而不是在一温度范围内缓慢加温。在一些实施方式中,所需温度为300℃、325℃、或350℃。所需温度也可选择其它温度。多个热源的热叠加使得在地层中较快且较有效地形成所需的温度。来自热源的能量输入地层可调整成将地层中的温度基本保持在所需温度上。地层被加热的部分基本保持在所需温度上直至热解减弱,这样会使得从地层中生产所需地层流体变得不经济。地层经受热解的部分可包括仅通过一个热源传热而达到热解温度范围的区域。
在某些实施方式中,包含热解流体的地层流体是从地层中产生的。随着地层温度升高,产出的地层流体内的可冷凝烃类含量会减小。高温条件下,地层主要会产出甲烷和/或氢气。如果含烃地层在整个热解范围内始终受热,则地层在接近热解范围上限时仅会产生少量氢气。待可用氢全部耗尽后,地层内一般会出现极小量的流体产物。
烃类经热解后,地层内可能仍然存在大量的碳和一些氢。地层中保留的大部分碳会以合成气的形式从地层中产生。合成气的产生会发生的图1所示的阶段3加热中。阶段3可包括将含烃地层加热至足以允许合成气产生的温度。例如,合成气可能在约400℃~约1200℃、约500℃~约1100℃、或约550℃~约1000℃的温度范围内产生。当合成气产生流体导入地层时地层的受热部分的温度决定地层中所产生的合成气的成分。生成的合成气可通过一生产井或多个生产井而从地层中取走。
从含烃地层中产生的流体总能含量在整个热解和合成气产生过程中可保持相对固定。在较低地层温度下的热解过程中,大部分产出流体可为具有高能含量的可凝结烃。而热解温度较高的情况下,较少的地层流体会含有可凝结烃。从地层中更多地可生成非凝结地层流体。每单位体积的产出流体的能含量在主要产生不凝结地层流体的过程中会稍微减弱。在合成气产生过程中,每单位体积生产合成气的能含量相比热解流体的能含量显著减弱。不过,合成气的产出量在许多情况下基本上是增加的,藉此弥补能含量的减小。
图2示出了用于处理含烃地层的现场转化系统的一个实施方式的示意图。现场转化系统可包括阻挡层井100。阻挡层井用于在处理区域周围形成阻挡层。该阻挡层防止流体流入和/或流出处理区域。阻挡层井包括脱水井、真空井、捕捉井、注入井、泥浆井、冻结井或其组合,但不限于此。在一些实施方式中,阻挡层井100为脱水井。脱水井可去除液态水,或阻止液态水进入部分待加热或正加热的地层中。在图2所示的实施方式中,图示阻挡层井100仅沿热源102的一侧延伸,但是阻挡层井通常围绕在所有使用的或待使用的热源周围,以加热地层的处理区域。
热源102位于地层的至少一部分内。热源102可包括诸如绝缘导体、管道内导体加热器、表面燃烧器、无焰分布燃烧室式燃烧器、和/或自然分布燃烧器一类的加热器。热源102也可包括其它类型的加热器。热源102向至少地层的一部分供热,以加热地层中的烃。能量可通过补给线104供给热源102。根据用于加热地层的热源种类或热源,补给线104的结构可以不同。热源的补给线104可为电热器输电、为燃烧器运输燃料、或传送地层中循环的热交换流体。
生产井106用于从地层中取走地层流体。在一些实施方式中,生产井106可包括一或多个热源。生产井中的一个热源可在生产井上或其附近加热地层的一部分或多部分。生产井中的一个热源可阻止正从地层中取出的地层流体冷凝和回流。
从生产井106中产出的地层流体可通过收集管108输送至处理设备110。地层流体也可从热源102产出。举例来说,流体可由热源102产出,以控制靠近热源的地层中的压力。从热源102产出的流体可通过管路或管道输送至收集管108,或者产出流体通过管路或管道直接输送至处理设备110中。处理设备110可包括分离单元、反应单元、提质单元、燃料电池、涡轮、存储罐、和/或用于处理产出的地层流体的其它系统和单元。
来自受热地层的热损失的可能的来源起因于井中的回流。当蒸气凝结在井中并流入井的靠近地层受热部分的部分中时出现回流。蒸气会在地层上覆岩层附近凝结在井中以形成冷凝流体。流入受热地层附近的井中的冷凝流体从地层中吸收热量。冷凝流体吸收热量使得地层冷却,并需要向地层内输入额外的能量以使地层保持在要求的温度条件下。凝结在上覆岩层中并流入受热地层附近的部分井中的一些流体可反应并生成不需要的化合物和/或焦炭。阻止流体回流可显著改进现场转化系统的热效率和/或通过现场转化系统产生的产品的重量。
对于一些井实施方式而言,井在地层上覆岩层段附近的部分用水泥胶合在地层上。在一些井实施方式中,井包括靠近自地层的受热段至上覆岩层的过渡段设置的封隔材料。封隔材料阻止地层流体从地层的受热段流至上覆岩层附近的井眼段。缆索、管道、装置、和/或工具可穿过封隔材料,但是该封隔材料阻止地层流体通过地层的上覆岩层段附近的井眼上。
对于有些类型的井而言,尤其是生产井,希望产出流体沿着井向上流至地面。对于一些用于控制地层中的压力的加热器型井而言,也希望产出流体沿着井向上方流动。上覆岩层、或用于将流体从地层的受热部输送至地面的井中的管道可被加热以阻止在管道上或其内凝结。但是在上覆岩层中供热会比较昂贵,和/或会导致当地层流体从地层中产生时,地层流体发生裂化或焦化。
为了不用加热上覆岩层或加热通过上覆岩层的管道,可在井眼中布置一或多个分流器,以阻止流体回流至地层受热部附近的井眼中。在一些实施方式中,分流器将流体保持在地层的受热部分之上。保持在分流器中的流体可用泵、气举、和/或其它流体取走技术从分流器中取出。在一些实施方式中,分流器引导流体至位于地层的受热部分之下的泵、气举组件或其它流体取走装置。
图3示出了生产井中的分流器的实施方式。生产井106包括管道112。在一些具体实施方式中,分流器114与上覆岩层116中的生产管道112相联或位于其附近。在一些实施方式中,分流器位于地层的受热部分中。分流器114可位于上覆岩层116与含烃层118的分界面处或其附近。含烃层118由位于地层中的热源加热。分流器114可包括生产管道112中的封隔器120、提升管122、和封口124。来自受热地层的蒸气相地层流体从烃层118移动至提升管122。在一些具体实施方式中,提升管122在封隔器120下被穿孔以利于流体流入提升管。封隔器120阻止蒸气相地层流体进入生产井106上部。蒸气相地层流体通过提升管122流入生产管道112。不凝结的地层流体部分通过生产管道112升至地表。当生产管道112中的蒸气相地层流体在生产管道中朝地表升高时,它可能会冷却。如果一部分蒸气相地层流体在生产管道112中凝结成液体,液体流将在重力作用下朝封口124流动。封口124阻止液体进入地层的受热部分。收集在封口124上的液体通过泵126从管道128中抽出。泵126可为有杆泵、电动泵、或渐进式空腔泵(progressive cavity pump)(Moyno类型),但不限于此。在一些具体实施方式中,封口124上的液体经气举通过管道128。产生冷凝流体可降低为了对生产井的井口处的流体进行除热而发生的相应成本。
在一些实施方式中,生产井106包括加热器130。加热器130供热,以蒸发生产井106的烃层118附近的部分中的蒸发液体。加热器130可位于生产管道112中,或可与生产管道的外部相联。在加热器位于生产管道外的实施方式中,部分加热器穿过封隔材料。
在一些具体实施方式中,在生产管道112和/或管道128中可引入稀释剂。稀释剂用于防止生产管道112、泵126和/或管道128中发生阻塞。稀释剂可为水、乙醇、溶剂、和/或表面活性剂,但不限于此。
在一些具体实施方式中,提升管122延伸至生产井106的地表处。位于封口124之上的提升管122中的开孔和折流器将凝结液从提升管引入生产管道112。
在某些实施方式中,两个或两个以上的分流器可设置在生产井中。两个或两个以上的分流器提供了一种简单的方式来分离由现场转化系统中产生的最初那部分冷凝流体。在每一分流器中可设置一泵,以从分流器取走冷凝流体。
在一些具体实施方式中,流体(气体和液体)可用分流器导向生产井的底部。流体可从生产井的底部产生。图4示出了朝生产井底部引导流体的分流器的具体实施方式。分流器114可包括位于生产管道112中的折流器132和封隔材料120。折流器可以是布置在管道128周围的管子。生产管道112可具有开口134,开口134可允许流体从含烃层118进入生产管道。在一些具体实施方式中,全部或部分开口临近受热地层流体流过的地层的不含烃层。开口134包括筛子、穿孔、狭缝、和/或槽,但不限于此。烃层118可用位于地层其它部分中的加热器和/或位于生产管道112中的加热器进行加热。
折流器132和封隔材料120引导地层流体进入生产管道112至不加热区域136。不加热区域136位于地层的下伏岩层中。部分地层流体可在折流器132的外表面上凝结,或在靠近不加热区域136的生产管道112的管壁上凝结。来自地层的液体和/或冷凝流体可在重力作用下流到贮槽或生产管道112的底部。生产管道112底部的液体和冷凝液可用泵126通过管道128泵送至地面。泵126可置入下伏岩层1m、5m、10m、20m或更深。在一些具体实施方式中,泵可位于井眼的未加套管(开放)的部分中。不冷凝的流体最初穿过折流器132与管道128之间的环形空间,然后通过生产管道112与管道128之间的环形空间至地面,如图4所示。当移动至地面时,如果一部分不冷凝的流体在上覆岩层116附近凝结,则冷凝流体将在重力作用下朝生产管道112的底部流动至泵126的入口。当流体通过地层的受热部分时冷凝流体吸收的热量与折流器132接触,而不与地层直接接触。折流器132因地层流体以及自地层传来的辐射使热量而受热。相比冷凝流体能够与地层接触的情况,当流体流过受热部附近的折流器132时,明显较少的热量从地层传给冷凝流体。顺着折流器流下的冷凝流体可从井眼中的蒸气中吸收充足的热量而将部分蒸气凝结在折流器132的外表面上。蒸气的凝结部分可流下折流器至井眼的底部。
在一些具体实施方式中,在生产管道112和/或管道128中可引入稀释剂。稀释剂用于防止在生产管道112、泵126和管道128中发生阻塞。稀释剂可包括水、乙醇、溶剂、表面活性剂、或其组合,但不限于此。各种稀释剂可在不同时期引入。例如,当生产第一次开始进入最初由地层产生的溶液型高分子量烃中时可引入溶剂。在随后的时间里,水可代替溶剂。
在一些具体实施方式中,独立的管道可将稀释剂导入井眼中下伏岩层附近处,如图5所示。生产管道112引导由地层产生的蒸气通过上覆岩层116至地面。如果部分蒸气在生产管道112中凝结,冷凝液会沿折流器132向下流到泵126的入口。包括封隔材料120和折流器132的分流器114引导地层流体从受热含烃层118流动至未加热区136。液态地层流体被泵126输送通过管道128至地面。蒸气相地层流体通过折流器132传送至生产管道112。管道138可与折流器132搭接。管道138可将稀释剂导入井眼140中不受热区域136附近处。稀释剂可促使地层流体凝结和/或防止泵126阻塞。管道138中的稀释剂可处于高压条件下。如果稀释剂在通过地层的受热部分时会从液态变成蒸气态,则当稀释剂离开管道138时压力的变化会使得稀释剂得以凝结。
在一些具体实施方式中,泵系统的入口位于贮槽的外壳上。在一些具体实施方式中,泵系统的入口位于开放的井孔上。贮槽位于地层的受热部分下方。泵的入口可位于用于加热地层的受热部分的最深处的加热器下方1m、5m、10m、20m或更深。贮槽可处于比地层的受热部分温度低的状态下。贮槽的温度可比地层的受热部分的温度低10℃以上、50℃以上、75℃以上、或100℃以上。进入贮槽的流体的一部分可为液体。进入贮槽的流体的一部分可在贮槽内凝结。
生产井气举系统可被利用以有效地将地层流体从生产井的底部传送至地面。生产井气举系统可提供并保持最大要求的井压降(drawdown)(最小的储存生产压力)以及生产率。在典型项目的使用期限内,生产井气举系统可在很宽的高温范围内/多相流体(气体/蒸气/蒸汽/水/烃类液体)和期望的产量的情况下有效作业。
图6示出了供生产井使用的一双同心杆式泵升系统的具体实施方式。地层流体从受热部142进入井眼140。地层流体可通过内管道144和外管道146输送至地面。内管道144和外管道146可为同心。同心管道相比常规油田生产井中的双管道(并排)会有一些优势。内管道144可用于生产液体。外管道146可允许蒸气和/或气体相地层流体沿着一些夹带液流向地面。
外管道146的直径可选择成允许所要求的流量范围、和/或将压降系数和流动油层压力降至最小。位于外管道146底部的回流封口148可防止热的取出气和/或蒸气接触受热部142上方的井筒156的较冷的壁。这使得潜在的损坏以及受热部142经流体冷凝和循环所浪费的能量损耗降低最小。回流封口148可为动态密封,允许外管道146热胀冷缩,同时固定在地面152上。回流封口148可为单向封口,用于允许流体沿着环带150向下泵送,用于处理或压井作业。例如,在回流封口148中可使用面朝下的弹性体型泵柱塞圆板以阻止流体向上流过环带150。在一些具体实施方式中,回流封口148为“固定”设计,具有一动态井口封口,允许外管道146在地面152处移动,从而减小热应力和周期。
任何特殊井或项目的状况均可允许外管道146的两端都得以固定。外管道146在生产井的期望使用年限中可能无须或极少需要取回维修。在一些具体实施方式中,辅助设施包(utility bundle)154被连接到外管道146的外侧。辅助设施包154可包括用于监控、控制、和/或处理如温度/压力监测器装置一类设备的管道、化学处理线、稀释剂注入管线、和用于冷却液泵系统的冷却液注入管线,但不限于此。将辅助设施包154接合至外管道146上可允许辅助设施包(从而是包含在该辅助设施包内的潜在复合的和敏感的设备)在内管道144取回和/或维修期间保持就位。在某些具体实施方式中,外管道146在所期望的生产井的使用年限内被取回一或多次。
井套管156与外管道146之间的环状空间150为运行辅助设施包154和仪表设备提供空间,同时具有隔热作用以使得产出流体的温度和/或性能最佳和/或受到控制。在一些具体实施方式中,环状空间150内装有一或多种流体或气体(加压的或不加压的),以调整上覆岩层与产生的地层流体之间的综合导热性以及所产生的传热性。使用环形空间150作为热绝缘可使得:1)用于地面上的液流的后续工序的液流温度和/或相态特性最佳;和/或2)多相性能最佳,以使得流体和液流泵送的自然流量最大。外管道146和内管道144为同心构造是有好处的,其中液流上的传热/热效果比常规双(平行管)构造更为均匀。
内管道144可用于生产液体。由内管道144产出的液体可包括不夹带有由外管道146产生的气体/蒸气的处于液态的流体,以及在外管道中凝结的液体。在一些具体实施方式中,内管道144的底部位于受热部142(贮槽158中)的底部之下,以有助于液相的自然重力式分离。贮槽158可为分离贮槽。贮槽158也可根据贮槽的长度/深度以及总流体量和/或温度提供热益处(举例来说,泵送作业温度较低以及泵中液体闪蒸减少)。
内管道144可包括一泵系统。在一些具体实施方式中,泵系统160为油田型往复式杆式泵。这种泵在各种各样的设计和构造中均有效。往复式杆式泵的优点在于广泛有效且经济合算。此外,这种系统的检验/评价分析方法开发较完善且广为人知。在某些具体实施方式中,原动机有利地设置在地面上,便于接近和维修。将原动机设置在地面上还使原动机不用经受井眼的极端温度/流体环境。图6示出了位于地面152上的常规油田型游梁抽油机,用于抽油杆柱162的往复运动。也可使用其它类型的抽油机,包括液压装置、长行程单元、空气平衡单元、表面驱动旋转单元以及MII单元,但不限于此。根据井的状况以及所要求的抽油速度,可使用各种表面单元/泵组合。在某些具体实施方式中,内管道144是固定的,以限制内管道的运动和磨损。
外管道146与内管道144同心布置可便于内管道和相联泵系统的维修,包括各项采油修理工作和/或井下零件的更换。同心的设计使得内管道144的维修/清除/更换不会干扰外管道146和相关零件,从而使得总费用降低,井关井时间减少,和/或总项目性能比常规平行双孔管道构造有改善。同心构造也可因将来井状况的意外变化而改变。泵系统可被迅速取下,并且如果液体速度比预期低,或蒸气/气体比率比预期高时,两个管道可用于流动产品。相反,更大的或不一样的系统可不费力地安装在内管道内,而不会影响系统组成部件的平衡。
可用各种方法对泵系统进行控制,提高功效和井产量。这些方法可包括,例如,使用开关(on/off)计时器、测量表面加载和模拟所用的关泵检测系统、引导液面传感装置、以及适于高温场合的传感器(毛细管等),以允许直接的井下压力监控。在一些具体实施方式中,抽吸能力与从井中抽出的可用流体相匹配。
对于特定的生产井可以选择各种设计方案和/或构造(包括材料、结构尺寸和连接)的管道和/或抽油杆柱,以增加总可靠性、降低成本、便于初期安装以及随后的各项采油修理工作和/或维修。例如,连接可以是螺纹连接、焊接、或具体应用设计的连接。在一些具体实施方式中,当管道下降至井内时,一个以上的管道段进行连接。在某些具体实施方式中,一个以上的管道段在插入井内之前进行连接,并且管道被卷绕(例如,在不同位置处),随后退绕到井中。各生产井中的特定条件决定设备的参数,例如设备尺寸、管道直径、和贮槽尺寸,以获得最佳运行和性能。
图7示出了双同心杆式泵系统的实施方式,包括内管道144底部的两相分离器164,用于进一步地从杆式泵160中分离和取走气体/蒸气相流体。在蒸气和气体/液体比率较高的情况下,使用两相分离器164是有好处的。使用两相分离器164会有助于防止内管道144中发生气锁现象和抽吸效率低的情况。
图8示出了双同心杆式泵系统的实施方式,包括向下伸入贮槽158的气体/蒸气罩(shroud)166。气体/蒸气罩166可迫使大多数产出流体流向下通过贮槽158周围的区域,增加自然液体分离。气体/蒸气罩166可包括受热区顶部的具有一定大小的气体/蒸气孔168,以防气体/蒸气压力在该罩后形成积聚并被捕捉在该罩后。这样,气体/蒸气罩166可增加总的井压降效率,并且当受热部142的厚度增加时变得更为重要。气体/蒸气孔168的大小可以不同,并且对于任一特定的生产井而言,可基于所要求的流体量和所要求的工作压力来确定。
图9示出了供生产井使用的汇集室式气举系统(chamber liftsystem)的具体实施方式。导管170为要从受热部142输送至地面152的所有相态的流体提供了路径。封隔器/回流密封组件172位于受热部142之上,以防止产出流体流到管道170与受热部上方的井套管156之间的环形空间150中。封隔器/回流密封组件172可减少流体的回流,从而有利地降低能耗。在这种构造中,封隔器/回流密封组件172可基本上将封隔器/回流密封组件上方的环形空间150中的加压提升用气体与受热部142隔离开。这样,受热部142可能暴露在所要求的井最小生产压降中,使流体流入量最大。作为保持最小的生产压降的一个附加措施,贮槽158可位于井眼中的受热部142下方处。因此,生产流体/液体可收集在井眼中受热部142下方处,而不会在受热部上产生过大的反压力。当受热部142的厚度增加时会更加有利。
所有相态的流体可从受热部142进入井中。这些流体被直接向下引导到贮槽158。流体通过气举室底部的止回阀176而进入气举室174。待足够多的流体进入气举室174后,提升用气体注入阀178打开并允许加压的提升用气体进入气举室的顶部。转向口180允许提升用气体通过封隔器/回流密封组件172进入气举室174的顶部。气举室174中的总压力增加使得底部的止回阀176关闭,并迫使流体进入汲取管182的底部,向上进入管道170,并流出气举室。提升用气体注入阀178一直保持开放,直至注入足够的提升用气体,以将气举室174中的流体抽空至一收集装置中。然后,提升用气体注入阀178关闭,并允许气举室174再次充满流体。每当必须在受热部142内保持所要求的生产压降时就重复“气举循环”(间歇作业)。设备的尺寸,例如管道、阀门、室的长度和/或直径取决于从受热部142中产生的期望产液量,以及生产井中保持的所要求的最小生产压降。
在一些具体实施方式中,整个汇集室式气举系统可从井中取回,以便检修、维修、以及因井条件改变而进行的定期设计修正。但是,需要取回管道170、封隔器/回流密封组件172和气举室174的次数可能不多。在一些具体实施方式中,提升用气体注入阀178构造成沿着管道170从井中取回。在某些具体实施方式中,提升用气体注入阀178配置为可通过绳缆或类似装置单独地取回,而无需将管道170或其它系统部件从井中取下。止回阀176和/或汲取管182可按类似方式个别安装和/或取回。允许汲取管182单独取回可使得气体/蒸气孔168重新调整大小。从井的各项采油修理工作和维修费来看,允许这些独立部件取回(可能需要最为频繁的各项采油修理工作、检修和维修的项目)大大提高了该系统的吸引力。
气体/蒸气孔口168可位于汲取管182的顶部,以允许从受热部142进入气举室的气体和/或蒸气连续排入管道170内,并防止室压力过渡增大。防止室压力增长过大可提高整个系统的效率。气体/蒸气孔168的大小可避免气举循环期间过多的注入提升用气体分流到管道170中,从而促使汲取管182周围的注入提升用气体流动。图9所示的具体实施方式包括单个提升用气体注入阀178(而不是通常用于气举场合的多个中间“卸载”阀门)。单个提升用气体注入阀大大简化了井下系统设计和/或结构,从而降低了复杂性和成本,并增加了整个系统的可靠性。但是,单个提升用气体注入阀要求有效的气举系统压力足以克服并取代可能充满整个井眼的最重的流体,或者需要其它的装置来最初“卸载”这种情况下的井。卸载阀可用于生产井位于地层深处的一些实施方式中,例如生产井在地层中的深度大于900m、大于1000m、或大于1500m。
在一些具体实施方式中,室/井套管内径之比应保持尽可能大,以使得系统的容积效率最佳。保持室/井套管内径之比尽可能地大,可使得总的生产压降和进入井的流体产量最大,而作用在受热部上的压力则最小。
提升用气体注入阀178和气体传送及控制系统可设计成允许大量气体在较短的时期内注入气举室174内,以使得功效最大而抽空流体的周期最短。从而允许管道170中的液体下落量减小(或最小),而总的井产流体生产潜力增加(或最大)。
可用各种方法来控制提升用气体注入阀178以及在每个气举循环期间注入的气体量。提升用气体注入阀178可设计成自我控制、对于气举室压力或套管压力比较敏感。也就是说,提升用气体注入阀178可与常规油田气举应用系统中通常使用的油管压力操纵的或套管压力操纵的阀门类似。或者,提升用气体注入阀178可通过电或液压信号从地面进行控制。这些方法可通过调节提升用气体在地面152上注入环形空间150中时的速率和/或压力的附加控制器来补充。汇集室式气举系统的其它设计和/或安装选项(例如,管道连接和/或安装方法的类型)可从现有技术中公知的大量方法中进行选择。
图10示出了包括另外的平行生产管道的汇集室式气举系统的实施方式。管道184可允许生产出的气和/或蒸气绕过气举室174连续流动。绕过气举室174可避免大量气体和/或蒸气通过气举室,当气体和/或蒸气的量较大时,这可能会减小系统的功效。在该实施方式中,气举室从井中排出积聚在贮槽158中未随着气体/蒸气相从井流出的任何液体。贮槽158将有助于液体的自然分离以便更有效地运行。
图11示出了汇集室式气举系统的一种实施方式,包括从地面152向下至提升用气体注入阀178的注入气供给管186。相比使用套管环形空间输送喷射气体,这种布置(例如涉及井孔的完整性和/或阻挡层问题)可能具有一些优势。当提升用气体注入阀178布置在井下用于控制时,此构造也可助于替换的选择方案而完全从地表152控制提升用气体的喷射。完全从地表152控制提升用气体的喷射可无需井下注入阀178,并减少对井眼各项采油修理工作的需要和/或降低与之相关的成本。提供单独的提升用气体管道也使得产油管周围的环形空间保持在低压状态,乃至真空状态,从而减少从产油管传热。这样减少了管道184中的冷凝现象,从而减少了倒进受热部142中的回流。
图12示出了在气举室/汲取管的顶部设置一附加止回阀的汇集室式气举系统的一种具体实施方式。止回阀188可通过绳缆或其它装置单独取回,以减少维修并降低复杂性和/或与井各项采油修理工作相关的成本。止回阀188可防止自管道170下落的液体在气举循环之间回到气举室174。另外,止回阀188可通过将腔内流体和/或液体只转移至管道170的底部而使得气举室174排空(管道在循环之间保持充满流体),可让注入气使用和能量达到最佳效果。在一些具体实施方式中,注入气油管压力在该转移方式的注入循环之间被放泄,以允许通过图12中示出的地表注入气控制器获得最大降深压力。
如图12所示,已经去掉井下提升用气体注入阀,注入气控制阀190位于地表152上。在一些具体实施方式中,除了注入气控制阀190外,还使用了井下阀门,或使用井下阀门取代注入气控制阀190。连同注入气控制阀190一起使用井下控制阀可允许注入气管道压力在置换循环模式中得以保持。
图13示出了汇集室式气举系统的具体实施方式,允许气体/蒸气流的混合物进入管道170(未设气体和/或蒸气的单独管道),而绕过了气举室174。配有附加止回阀176′的附加气体/蒸气孔168′可允许气体/蒸气相流体在气举循环过程之间连续生产进入气举室174上方的管道170内。如前面对于其它工作零件的描述,止回阀176′可单独取回。图13中示出的具体实施方式可通过取消单独的气体/蒸气生产管道使得井下设备配置得以简化。在一些具体实施方式中,提升用气体喷射是通过井下气体注入阀192进行控制的。在某些具体实施方式中,提升用气体喷射在地表152进行控制。
图14示出了在封隔器/回流密封组件172之下具有止回阀/孔口组件194的汇集室式气举系统的具体实施方式,无需流过封隔器/回流密封组件。通过在封隔器/回流密封组件172之下设置止回阀/孔口组件194,气体/蒸气流绕过气举室174,同时保持单个混合的产出流至地面152。如前所述,止回阀194可独立取回。
如图14所示,汲取管182可为管道170和气举室174的一个整体部分。通过汲取管182与管道170和气举室174成一整体,气举室底部的止回阀176可更容易接近(例如,通过包括但不限于绳缆和挠性管的无钻机采油修井方法),并且对于较大的液体/流体量可使用较大的汲取管直径。如上所述,根据具体的井要求,此处也可使用可取回的汲取管布置。
图15示出了汇集室式气举系统的一具体实施方式,与上述结合杆式泵系统所描述的类似,其具有通过同心管道的用于气体/蒸气相的生产流的至地面152的单独流路。该实施方式无需如图13和14所示的那样使用将气体/蒸气流与来自气举室的液流一起混合至生产油管中的止回阀/通气系统,同时具有图6-8所示的同心内管道144和外管道146的优点。
图16示出了一汇集室式气举系统的实施方式,具有向下伸入贮槽158的气体/蒸气罩166。气体/蒸气罩166和贮槽158具有如图8所示的同样的优点。
鉴于本说明书,本发明各个方面的其它修改和替换实施方式对本领域技术人员是显而易见的。因此,本说明书仅为例证,目的在于教会本领域技术人员实施本发明的一般方式。应当理解,图示以及文中描述的发明的形式将作为目前的优选实施方式。图示及文中描述的元件和材料可以替代,部件和工艺可以相反,本发明的某些特征可单独使用,在获知所描述的本发明的好处之后,所有这些对于本领域技术人员都是显而易见的。在不背离本发明的精神和范围的前提下,可改变文中所述的部件。此外,应当理解,文中单独描述的特征在某些具体实施方式中可以组合。
Claims (10)
1.一种用于生产地层流体的方法,包括:
使用多个热源(102)来加热地层(142)的一部分;
允许地层流体流到生产井(106)中的位于地层(142)的受热部分之下的贮槽(158);以及
抽吸贮槽(158)中的地层流体以从地层(142)中取走地层流体的一部分,
其特征在于,抽吸地层流体的步骤循环地包括:
使地层流体通过贮槽(158)中的气举室(174)底部的止回阀(176)进入气举室(174);
待足够多的流体进入气举室(174)后,打开提升用气体注入阀(178)以使加压的提升用气体进入气举室(174)的顶部;
使得转向口(180)允许提升用气体通过封隔器或回流密封组件(172)进入气举室(174)的顶部;
使得气举室(174)中的总压力增加以使得底部的止回阀关闭,并迫使流体进入汲取管(182)的底部,然后向上进入管道(170),并流出气举室(174);
使得提升用气体注入阀(178)一直保持开放,直至注入足够的提升用气体,以将气举室(174)中的流体抽空至一收集装置中;
关闭提升用气体注入阀(178),并允许气举室(174)再次充满流体;
其中,所述封隔器或回流密封组件位于所述受热部分之上,以防止产出流体流到所述管道与所述受热部分上方的井套管之间的环形空间中。
2.如权利要求1所述的方法,其特征在于,还包括防止凝结的蒸气相地层流体与地层的受热部分接触。
3.如权利要求1或2所述的方法,其特征在于,所述方法用于生产包含烃的合成物。
4.如权利要求3所述的方法,其特征在于,所述合成物用于生产运输燃料。
5.一种用于生产地层流体的系统,包括:
多个配置成用于加热地层(142)的一部分的热源(102);
至少一个位于地层(142)中的生产井(106),其中,生产井(106)的底部是位于地层(142)的受热部分下方的贮槽(158),允许来自地层(142)的受热部分的流体流入贮槽(158);
其特征在于,所述生产井(106)包括:
位于所述贮槽(158)中的气举室(174),允许地层流体通过气举室(174)底部的止回阀(176)进入气举室(174);
提升用气体注入阀(178),在足够多的流体进入气举室(174)后,打开提升用气体注入阀(178)以使加压的提升用气体进入气举室(174)的顶部;
转向口(180),所述转向口(180)允许提升用气体通过封隔器或回流密封组件(172)进入气举室(174)的顶部;
位于气举室(174)底部的止回阀,通过使得气举室(174)中的总压力增加而使得所述止回阀关闭,并迫使流体进入汲取管(182)的底部,然后向上进入管道(170),并流出气举室(174);
其中使得提升用气体注入阀(178)一直保持开放,直至注入足够的提升用气体,以将气举室(174)中的流体抽空至一收集装置中,这时关闭提升用气体注入阀(178)并允许气举室(174)再次充满流体;以及
与所述气举室(174)连接的所述管道,其中,所述管道配置成用于将所述气举室(174)中的流体输送出地层(142);
其中,所述封隔器或回流密封组件位于所述受热部分之上,以防止产出流体流到所述管道与所述受热部分上方的井套管之间的环形空间中。
6.如权利要求5所述的系统,其特征在于,贮槽(158)位于地层(142)的下伏岩层中。
7.如权利要求5或6所述的系统,其特征在于,贮槽(158)位于地层(142)的温度比地层(142)的受热部分低的一部分中。
8.如权利要求5或6所述的系统,其特征在于,贮槽(158)位于用于加热地层(142)受热部分的最深的加热器之下至少5米处。
9.如权利要求5或6所述的系统,其特征在于,还包括配置成用于将蒸气相地层流体输送出地层(142)的第二生产管道(184)。
10.如权利要求9所述的系统,其特征在于,还包括分流器,所述分流器配置成用于防止来自第二生产管道(184)的凝结物与地层(142)的受热部分接触。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67408105P | 2005-04-22 | 2005-04-22 | |
US60/674,081 | 2005-04-22 | ||
PCT/US2006/015101 WO2006116092A1 (en) | 2005-04-22 | 2006-04-21 | Methods and systems for producing fluid from an in situ conversion process |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101300401A CN101300401A (zh) | 2008-11-05 |
CN101300401B true CN101300401B (zh) | 2012-01-11 |
Family
ID=36655240
Family Applications (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680013092.0A Pending CN101163851A (zh) | 2005-04-22 | 2006-04-21 | 用于原地转换过程的双阻挡层系统 |
CN200680013320.4A Expired - Fee Related CN101163856B (zh) | 2005-04-22 | 2006-04-21 | 成组的暴露金属加热器 |
CN200680013322.3A Expired - Fee Related CN101163853B (zh) | 2005-04-22 | 2006-04-21 | 以三相y字构造结合的用于地下岩层加热的绝缘导体限温加热器 |
CN200680013093.5A Expired - Fee Related CN101300401B (zh) | 2005-04-22 | 2006-04-21 | 用于通过现场转化工艺生产流体的方法及系统 |
CN200680013090.1A Expired - Fee Related CN101163854B (zh) | 2005-04-22 | 2006-04-21 | 利用非铁磁导体的温度限制加热器 |
CN200680013123.2A Expired - Fee Related CN101163860B (zh) | 2005-04-22 | 2006-04-21 | 用于地下屏障的低温监视系统 |
CN200680013122.8A Expired - Fee Related CN101163852B (zh) | 2005-04-22 | 2006-04-21 | 用于现场方法的低温屏障 |
CN200680013121.3A Expired - Fee Related CN101163858B (zh) | 2005-04-22 | 2006-04-21 | 从地下地层生产碳氢化合物的现场转换系统及相关方法 |
CN200680013312.XA Expired - Fee Related CN101163859B (zh) | 2005-04-22 | 2006-04-21 | 利用井眼在地层的至少两个区域中的现场转化处理系统 |
CN200680013101.6A Expired - Fee Related CN101163855B (zh) | 2005-04-22 | 2006-04-21 | 用于加热地表下地层的系统及耦联该系统中加热器的方法 |
CN200680013103.5A Expired - Fee Related CN101163857B (zh) | 2005-04-22 | 2006-04-21 | 用于对地下岩层进行加热的系统和方法 |
CN200680013130.2A Expired - Fee Related CN101163780B (zh) | 2005-04-22 | 2006-04-24 | 来自原位转化工艺的气体的处理 |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680013092.0A Pending CN101163851A (zh) | 2005-04-22 | 2006-04-21 | 用于原地转换过程的双阻挡层系统 |
CN200680013320.4A Expired - Fee Related CN101163856B (zh) | 2005-04-22 | 2006-04-21 | 成组的暴露金属加热器 |
CN200680013322.3A Expired - Fee Related CN101163853B (zh) | 2005-04-22 | 2006-04-21 | 以三相y字构造结合的用于地下岩层加热的绝缘导体限温加热器 |
Family Applications After (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200680013090.1A Expired - Fee Related CN101163854B (zh) | 2005-04-22 | 2006-04-21 | 利用非铁磁导体的温度限制加热器 |
CN200680013123.2A Expired - Fee Related CN101163860B (zh) | 2005-04-22 | 2006-04-21 | 用于地下屏障的低温监视系统 |
CN200680013122.8A Expired - Fee Related CN101163852B (zh) | 2005-04-22 | 2006-04-21 | 用于现场方法的低温屏障 |
CN200680013121.3A Expired - Fee Related CN101163858B (zh) | 2005-04-22 | 2006-04-21 | 从地下地层生产碳氢化合物的现场转换系统及相关方法 |
CN200680013312.XA Expired - Fee Related CN101163859B (zh) | 2005-04-22 | 2006-04-21 | 利用井眼在地层的至少两个区域中的现场转化处理系统 |
CN200680013101.6A Expired - Fee Related CN101163855B (zh) | 2005-04-22 | 2006-04-21 | 用于加热地表下地层的系统及耦联该系统中加热器的方法 |
CN200680013103.5A Expired - Fee Related CN101163857B (zh) | 2005-04-22 | 2006-04-21 | 用于对地下岩层进行加热的系统和方法 |
CN200680013130.2A Expired - Fee Related CN101163780B (zh) | 2005-04-22 | 2006-04-24 | 来自原位转化工艺的气体的处理 |
Country Status (14)
Country | Link |
---|---|
US (1) | US7831133B2 (zh) |
EP (12) | EP1871978B1 (zh) |
CN (12) | CN101163851A (zh) |
AT (5) | ATE435964T1 (zh) |
AU (13) | AU2006240043B2 (zh) |
CA (12) | CA2605720C (zh) |
DE (5) | DE602006007693D1 (zh) |
EA (12) | EA011905B1 (zh) |
IL (12) | IL186203A (zh) |
IN (1) | IN266867B (zh) |
MA (12) | MA29719B1 (zh) |
NZ (12) | NZ562247A (zh) |
WO (12) | WO2006116096A1 (zh) |
ZA (13) | ZA200708023B (zh) |
Families Citing this family (124)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
NZ532091A (en) | 2001-10-24 | 2005-12-23 | Shell Int Research | In situ recovery from a hydrocarbon containing formation using barriers |
WO2004038175A1 (en) | 2002-10-24 | 2004-05-06 | Shell Internationale Research Maatschappij B.V. | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
CA2579496A1 (en) | 2004-04-23 | 2005-11-03 | Shell Internationale Research Maatschappij B.V. | Subsurface electrical heaters using nitride insulation |
US7694523B2 (en) | 2004-07-19 | 2010-04-13 | Earthrenew, Inc. | Control system for gas turbine in material treatment unit |
US7024796B2 (en) | 2004-07-19 | 2006-04-11 | Earthrenew, Inc. | Process and apparatus for manufacture of fertilizer products from manure and sewage |
US7685737B2 (en) | 2004-07-19 | 2010-03-30 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
US7024800B2 (en) | 2004-07-19 | 2006-04-11 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
EA011905B1 (ru) | 2005-04-22 | 2009-06-30 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ конверсии in situ с использованием нагревающей системы с замкнутым контуром |
AU2006239988B2 (en) | 2005-04-22 | 2010-07-01 | Shell Internationale Research Maatschappij B.V. | Reduction of heat loads applied to frozen barriers and freeze wells in subsurface formations |
AU2006306471B2 (en) | 2005-10-24 | 2010-11-25 | Shell Internationale Research Maatschapij B.V. | Cogeneration systems and processes for treating hydrocarbon containing formations |
US7610692B2 (en) | 2006-01-18 | 2009-11-03 | Earthrenew, Inc. | Systems for prevention of HAP emissions and for efficient drying/dehydration processes |
AU2007240367B2 (en) | 2006-04-21 | 2011-04-07 | Shell Internationale Research Maatschappij B.V. | High strength alloys |
JP5330999B2 (ja) | 2006-10-20 | 2013-10-30 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 流体によるタールサンド地層の複数部分中での炭化水素の移動 |
DE102007040606B3 (de) * | 2007-08-27 | 2009-02-26 | Siemens Ag | Verfahren und Vorrichtung zur in situ-Förderung von Bitumen oder Schwerstöl |
US8622133B2 (en) | 2007-03-22 | 2014-01-07 | Exxonmobil Upstream Research Company | Resistive heater for in situ formation heating |
WO2008131171A1 (en) | 2007-04-20 | 2008-10-30 | Shell Oil Company | Parallel heater system for subsurface formations |
US7697806B2 (en) * | 2007-05-07 | 2010-04-13 | Verizon Patent And Licensing Inc. | Fiber optic cable with detectable ferromagnetic components |
CA2686830C (en) | 2007-05-25 | 2015-09-08 | Exxonmobil Upstream Research Company | A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant |
CA2700732A1 (en) | 2007-10-19 | 2009-04-23 | Shell Internationale Research Maatschappij B.V. | Cryogenic treatment of gas |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8297355B2 (en) * | 2008-08-22 | 2012-10-30 | Texaco Inc. | Using heat from produced fluids of oil and gas operations to produce energy |
DE102008047219A1 (de) | 2008-09-15 | 2010-03-25 | Siemens Aktiengesellschaft | Verfahren zur Förderung von Bitumen und/oder Schwerstöl aus einer unterirdischen Lagerstätte, zugehörige Anlage und Betriebsverfahren dieser Anlage |
US9561068B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US9561066B2 (en) | 2008-10-06 | 2017-02-07 | Virender K. Sharma | Method and apparatus for tissue ablation |
US10695126B2 (en) | 2008-10-06 | 2020-06-30 | Santa Anna Tech Llc | Catheter with a double balloon structure to generate and apply a heated ablative zone to tissue |
US10064697B2 (en) | 2008-10-06 | 2018-09-04 | Santa Anna Tech Llc | Vapor based ablation system for treating various indications |
CN102238920B (zh) | 2008-10-06 | 2015-03-25 | 维兰德.K.沙马 | 用于组织消融的方法和装置 |
WO2010045097A1 (en) | 2008-10-13 | 2010-04-22 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US20100200237A1 (en) * | 2009-02-12 | 2010-08-12 | Colgate Sam O | Methods for controlling temperatures in the environments of gas and oil wells |
US20100258291A1 (en) | 2009-04-10 | 2010-10-14 | Everett De St Remey Edward | Heated liners for treating subsurface hydrocarbon containing formations |
FR2947587A1 (fr) | 2009-07-03 | 2011-01-07 | Total Sa | Procede d'extraction d'hydrocarbures par chauffage electromagnetique d'une formation souterraine in situ |
CN102031961A (zh) * | 2009-09-30 | 2011-04-27 | 西安威尔罗根能源科技有限公司 | 井眼温度测量探头 |
US9466896B2 (en) | 2009-10-09 | 2016-10-11 | Shell Oil Company | Parallelogram coupling joint for coupling insulated conductors |
US8816203B2 (en) | 2009-10-09 | 2014-08-26 | Shell Oil Company | Compacted coupling joint for coupling insulated conductors |
US8356935B2 (en) | 2009-10-09 | 2013-01-22 | Shell Oil Company | Methods for assessing a temperature in a subsurface formation |
US8602103B2 (en) | 2009-11-24 | 2013-12-10 | Conocophillips Company | Generation of fluid for hydrocarbon recovery |
US8863839B2 (en) | 2009-12-17 | 2014-10-21 | Exxonmobil Upstream Research Company | Enhanced convection for in situ pyrolysis of organic-rich rock formations |
RU2012147629A (ru) * | 2010-04-09 | 2014-05-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способы формирования барьеров в подземных углеводородсодержащих пластах |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
EP2556721A4 (en) * | 2010-04-09 | 2014-07-02 | Shell Oil Co | INSULATION BLOCKS AND METHOD FOR INSTALLING THEM IN INSULATED LADDER HEATERS |
US8875788B2 (en) | 2010-04-09 | 2014-11-04 | Shell Oil Company | Low temperature inductive heating of subsurface formations |
US8939207B2 (en) | 2010-04-09 | 2015-01-27 | Shell Oil Company | Insulated conductor heaters with semiconductor layers |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8502120B2 (en) | 2010-04-09 | 2013-08-06 | Shell Oil Company | Insulating blocks and methods for installation in insulated conductor heaters |
US8464792B2 (en) | 2010-04-27 | 2013-06-18 | American Shale Oil, Llc | Conduction convection reflux retorting process |
US8408287B2 (en) * | 2010-06-03 | 2013-04-02 | Electro-Petroleum, Inc. | Electrical jumper for a producing oil well |
US8476562B2 (en) | 2010-06-04 | 2013-07-02 | Watlow Electric Manufacturing Company | Inductive heater humidifier |
RU2444617C1 (ru) * | 2010-08-31 | 2012-03-10 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой нефти методом парогравитационного воздействия на пласт |
AT12463U1 (de) * | 2010-09-27 | 2012-05-15 | Plansee Se | Heizleiteranordnung |
US8857051B2 (en) | 2010-10-08 | 2014-10-14 | Shell Oil Company | System and method for coupling lead-in conductor to insulated conductor |
US8943686B2 (en) | 2010-10-08 | 2015-02-03 | Shell Oil Company | Compaction of electrical insulation for joining insulated conductors |
US8732946B2 (en) | 2010-10-08 | 2014-05-27 | Shell Oil Company | Mechanical compaction of insulator for insulated conductor splices |
CN103314179A (zh) * | 2010-12-21 | 2013-09-18 | 雪佛龙美国公司 | 提高地下储层的油采收率的系统和方法 |
RU2473779C2 (ru) * | 2011-03-21 | 2013-01-27 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Северный (Арктический) федеральный университет" (С(А)ФУ) | Способ глушения фонтана флюида из скважины |
RU2587459C2 (ru) * | 2011-04-08 | 2016-06-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Системы для соединения изолированных проводников |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
EP2520863B1 (en) * | 2011-05-05 | 2016-11-23 | General Electric Technology GmbH | Method for protecting a gas turbine engine against high dynamical process values and gas turbine engine for conducting said method |
US9010428B2 (en) * | 2011-09-06 | 2015-04-21 | Baker Hughes Incorporated | Swelling acceleration using inductively heated and embedded particles in a subterranean tool |
CN104011327B (zh) * | 2011-10-07 | 2016-12-14 | 国际壳牌研究有限公司 | 利用地下地层中的绝缘导线的介电性能来确定绝缘导线的性能 |
CA2850741A1 (en) | 2011-10-07 | 2013-04-11 | Manuel Alberto GONZALEZ | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
JO3141B1 (ar) | 2011-10-07 | 2017-09-20 | Shell Int Research | الوصلات المتكاملة للموصلات المعزولة |
JO3139B1 (ar) | 2011-10-07 | 2017-09-20 | Shell Int Research | تشكيل موصلات معزولة باستخدام خطوة اختزال أخيرة بعد المعالجة الحرارية. |
CN102505731A (zh) * | 2011-10-24 | 2012-06-20 | 武汉大学 | 一种毛细-引射协同作用的地下水采集系统 |
US9080441B2 (en) | 2011-11-04 | 2015-07-14 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
CN102434144A (zh) * | 2011-11-16 | 2012-05-02 | 中国石油集团长城钻探工程有限公司 | 一种油田用“u”形井采油方法 |
US8908031B2 (en) * | 2011-11-18 | 2014-12-09 | General Electric Company | Apparatus and method for measuring moisture content in steam flow |
CA2898956A1 (en) | 2012-01-23 | 2013-08-01 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US9488027B2 (en) | 2012-02-10 | 2016-11-08 | Baker Hughes Incorporated | Fiber reinforced polymer matrix nanocomposite downhole member |
RU2496979C1 (ru) * | 2012-05-03 | 2013-10-27 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой нефти и/или битума методом закачки пара в пласт |
EP2945556A4 (en) | 2013-01-17 | 2016-08-31 | Virender K Sharma | METHOD AND DEVICE FOR TISSUE REMOVAL |
US9291041B2 (en) * | 2013-02-06 | 2016-03-22 | Orbital Atk, Inc. | Downhole injector insert apparatus |
US9403328B1 (en) | 2013-02-08 | 2016-08-02 | The Boeing Company | Magnetic compaction blanket for composite structure curing |
US10501348B1 (en) | 2013-03-14 | 2019-12-10 | Angel Water, Inc. | Water flow triggering of chlorination treatment |
RU2527446C1 (ru) * | 2013-04-15 | 2014-08-27 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ ликвидации скважины |
US9382785B2 (en) | 2013-06-17 | 2016-07-05 | Baker Hughes Incorporated | Shaped memory devices and method for using same in wellbores |
CN103321618A (zh) * | 2013-06-28 | 2013-09-25 | 中国地质大学(北京) | 油页岩原位开采方法 |
CA2917263C (en) * | 2013-07-05 | 2021-12-14 | Nexen Energy Ulc | Solvent addition to improve efficiency of hydrocarbon production |
RU2531965C1 (ru) * | 2013-08-23 | 2014-10-27 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ ликвидации скважины |
WO2015060919A1 (en) | 2013-10-22 | 2015-04-30 | Exxonmobil Upstream Research Company | Systems and methods for regulating an in situ pyrolysis process |
BR112016005923B1 (pt) * | 2013-10-28 | 2021-06-29 | Halliburton Energy Services, Inc | Método de conectar a um furo de poço existente no fundo de poço e sistema de poço |
MY190960A (en) * | 2013-10-31 | 2022-05-24 | Reactor Resources Llc | In-situ catalyst sulfiding, passivating and coking methods and systems |
US9394772B2 (en) | 2013-11-07 | 2016-07-19 | Exxonmobil Upstream Research Company | Systems and methods for in situ resistive heating of organic matter in a subterranean formation |
CN103628856A (zh) * | 2013-12-11 | 2014-03-12 | 中国地质大学(北京) | 一种高产水煤层气区块的阻水产气布井方法 |
GB2523567B (en) | 2014-02-27 | 2017-12-06 | Statoil Petroleum As | Producing hydrocarbons from a subsurface formation |
WO2015153705A1 (en) * | 2014-04-01 | 2015-10-08 | Future Energy, Llc | Thermal energy delivery and oil production arrangements and methods thereof |
GB2526123A (en) * | 2014-05-14 | 2015-11-18 | Statoil Petroleum As | Producing hydrocarbons from a subsurface formation |
US20150360322A1 (en) * | 2014-06-12 | 2015-12-17 | Siemens Energy, Inc. | Laser deposition of iron-based austenitic alloy with flux |
RU2569102C1 (ru) * | 2014-08-12 | 2015-11-20 | Общество с ограниченной ответственностью Научно-инженерный центр "Энергодиагностика" | Способ ликвидации отложений и предотвращения их образования в нефтяной скважине и устройство для его реализации |
US9451792B1 (en) * | 2014-09-05 | 2016-09-27 | Atmos Nation, LLC | Systems and methods for vaporizing assembly |
CA2967325C (en) | 2014-11-21 | 2019-06-18 | Exxonmobil Upstream Research Company | Method of recovering hydrocarbons within a subsurface formation |
WO2016085869A1 (en) * | 2014-11-25 | 2016-06-02 | Shell Oil Company | Pyrolysis to pressurise oil formations |
US20160169451A1 (en) * | 2014-12-12 | 2016-06-16 | Fccl Partnership | Process and system for delivering steam |
CN105043449B (zh) * | 2015-08-10 | 2017-12-01 | 安徽理工大学 | 监测冻结壁温度、应力及变形的分布式光纤及其埋设方法 |
WO2017039617A1 (en) * | 2015-08-31 | 2017-03-09 | Halliburton Energy Services, Inc | Monitoring system for cold climate |
CN105257269B (zh) * | 2015-10-26 | 2017-10-17 | 中国石油天然气股份有限公司 | 一种蒸汽驱与火驱的联合采油方法 |
US10125604B2 (en) * | 2015-10-27 | 2018-11-13 | Baker Hughes, A Ge Company, Llc | Downhole zonal isolation detection system having conductor and method |
RU2620820C1 (ru) * | 2016-02-17 | 2017-05-30 | Общество с ограниченной ответственностью "ЛУКОЙЛ-ПЕРМЬ" | Индукционный скважинный нагреватель |
US11331140B2 (en) | 2016-05-19 | 2022-05-17 | Aqua Heart, Inc. | Heated vapor ablation systems and methods for treating cardiac conditions |
RU2630018C1 (ru) * | 2016-06-29 | 2017-09-05 | Общество с ограниченной ответчственностью "Геобурсервис", ООО "Геобурсервис" | Способ ликвидации, предотвращения образования отложений и интенсификации добычи нефти в нефтегазодобывающих скважинах и устройство для его реализации |
US11486243B2 (en) * | 2016-08-04 | 2022-11-01 | Baker Hughes Esp, Inc. | ESP gas slug avoidance system |
RU2632791C1 (ru) * | 2016-11-02 | 2017-10-09 | Владимир Иванович Савичев | Способ стимуляции скважин путём закачки газовых композиций |
CN107289997B (zh) * | 2017-05-05 | 2019-08-13 | 济南轨道交通集团有限公司 | 一种岩溶裂隙水探测系统及方法 |
US10626709B2 (en) * | 2017-06-08 | 2020-04-21 | Saudi Arabian Oil Company | Steam driven submersible pump |
CN107558950A (zh) * | 2017-09-13 | 2018-01-09 | 吉林大学 | 用于油页岩地下原位开采区域封闭的定向堵漏方法 |
JP2021525598A (ja) | 2018-06-01 | 2021-09-27 | サンタ アナ テック エルエルシーSanta Anna Tech Llc | 多段階蒸気ベースのアブレーション処理方法並びに蒸気発生及びデリバリー・システム |
US10927645B2 (en) * | 2018-08-20 | 2021-02-23 | Baker Hughes, A Ge Company, Llc | Heater cable with injectable fiber optics |
CN109379792B (zh) * | 2018-11-12 | 2024-05-28 | 山东华宁电伴热科技有限公司 | 一种油井加热电缆及油井加热方法 |
CN109396168B (zh) * | 2018-12-01 | 2023-12-26 | 中节能城市节能研究院有限公司 | 污染土壤原位热修复用组合换热器及土壤热修复系统 |
CN109399879B (zh) * | 2018-12-14 | 2023-10-20 | 江苏筑港建设集团有限公司 | 一种吹填泥被的固化方法 |
FR3093588B1 (fr) * | 2019-03-07 | 2021-02-26 | Socomec Sa | Dispositif de récupération d’energie sur au moins un conducteur de puissance et procédé de fabrication dudit dispositif de récupération |
US11708757B1 (en) * | 2019-05-14 | 2023-07-25 | Fortress Downhole Tools, Llc | Method and apparatus for testing setting tools and other assemblies used to set downhole plugs and other objects in wellbores |
US11136514B2 (en) * | 2019-06-07 | 2021-10-05 | Uop Llc | Process and apparatus for recycling hydrogen to hydroprocess biorenewable feed |
WO2021116374A1 (en) * | 2019-12-11 | 2021-06-17 | Aker Solutions As | Skin-effect heating cable |
DE102020208178A1 (de) * | 2020-06-30 | 2021-12-30 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Aufheizen eines Brennstoffzellensystems, Brennstoffzellensystem, Verwendung eines elektrischen Heizelements |
CN112485119B (zh) * | 2020-11-09 | 2023-01-31 | 临沂矿业集团有限责任公司 | 一种矿用提升绞车钢丝绳静拉力试验车 |
EP4113768A1 (en) * | 2021-07-02 | 2023-01-04 | Nexans | Dry-mate wet-design branch joint and method for realizing a subsea distribution of electric power for wet cables |
US12037870B1 (en) | 2023-02-10 | 2024-07-16 | Newpark Drilling Fluids Llc | Mitigating lost circulation |
WO2024188630A1 (en) * | 2023-03-10 | 2024-09-19 | Shell Internationale Research Maatschappij B.V. | Mineral insulated cable, method of manufacturing a mineral insulated cable, and method and system for heating a substance |
WO2024188629A1 (en) * | 2023-03-10 | 2024-09-19 | Shell Internationale Research Maatschappij B.V. | Mineral insulated cable, method of manufacturing a mineral insulated cable, and method and system for heating a substance |
Family Cites Families (271)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US326439A (en) * | 1885-09-15 | Protecting wells | ||
US345586A (en) * | 1886-07-13 | Oil from wells | ||
US2734579A (en) * | 1956-02-14 | Production from bituminous sands | ||
SE126674C1 (zh) | 1949-01-01 | |||
US94813A (en) * | 1869-09-14 | Improvement in torpedoes for oil-wells | ||
SE123138C1 (zh) | 1948-01-01 | |||
US2732195A (en) | 1956-01-24 | Ljungstrom | ||
US48994A (en) * | 1865-07-25 | Improvement in devices for oil-wells | ||
US438461A (en) * | 1890-10-14 | Half to william j | ||
CA899987A (en) | 1972-05-09 | Chisso Corporation | Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current | |
SE123136C1 (zh) | 1948-01-01 | |||
US760304A (en) * | 1903-10-24 | 1904-05-17 | Frank S Gilbert | Heater for oil-wells. |
US1342741A (en) * | 1918-01-17 | 1920-06-08 | David T Day | Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks |
US1269747A (en) | 1918-04-06 | 1918-06-18 | Lebbeus H Rogers | Method of and apparatus for treating oil-shale. |
GB156396A (en) | 1919-12-10 | 1921-01-13 | Wilson Woods Hoover | An improved method of treating shale and recovering oil therefrom |
US1457479A (en) * | 1920-01-12 | 1923-06-05 | Edson R Wolcott | Method of increasing the yield of oil wells |
US1510655A (en) * | 1922-11-21 | 1924-10-07 | Clark Cornelius | Process of subterranean distillation of volatile mineral substances |
US1634236A (en) * | 1925-03-10 | 1927-06-28 | Standard Dev Co | Method of and apparatus for recovering oil |
US1646599A (en) * | 1925-04-30 | 1927-10-25 | George A Schaefer | Apparatus for removing fluid from wells |
US1666488A (en) * | 1927-02-05 | 1928-04-17 | Crawshaw Richard | Apparatus for extracting oil from shale |
US1681523A (en) * | 1927-03-26 | 1928-08-21 | Patrick V Downey | Apparatus for heating oil wells |
US1913395A (en) * | 1929-11-14 | 1933-06-13 | Lewis C Karrick | Underground gasification of carbonaceous material-bearing substances |
US2244255A (en) * | 1939-01-18 | 1941-06-03 | Electrical Treating Company | Well clearing system |
US2244256A (en) * | 1939-12-16 | 1941-06-03 | Electrical Treating Company | Apparatus for clearing wells |
US2319702A (en) | 1941-04-04 | 1943-05-18 | Socony Vacuum Oil Co Inc | Method and apparatus for producing oil wells |
US2365591A (en) * | 1942-08-15 | 1944-12-19 | Ranney Leo | Method for producing oil from viscous deposits |
US2423674A (en) * | 1942-08-24 | 1947-07-08 | Johnson & Co A | Process of catalytic cracking of petroleum hydrocarbons |
US2390770A (en) * | 1942-10-10 | 1945-12-11 | Sun Oil Co | Method of producing petroleum |
US2484063A (en) * | 1944-08-19 | 1949-10-11 | Thermactor Corp | Electric heater for subsurface materials |
US2472445A (en) * | 1945-02-02 | 1949-06-07 | Thermactor Company | Apparatus for treating oil and gas bearing strata |
US2481051A (en) * | 1945-12-15 | 1949-09-06 | Texaco Development Corp | Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations |
US2444755A (en) * | 1946-01-04 | 1948-07-06 | Ralph M Steffen | Apparatus for oil sand heating |
US2634961A (en) | 1946-01-07 | 1953-04-14 | Svensk Skifferolje Aktiebolage | Method of electrothermal production of shale oil |
US2466945A (en) * | 1946-02-21 | 1949-04-12 | In Situ Gases Inc | Generation of synthesis gas |
US2497868A (en) * | 1946-10-10 | 1950-02-21 | Dalin David | Underground exploitation of fuel deposits |
US2939689A (en) * | 1947-06-24 | 1960-06-07 | Svenska Skifferolje Ab | Electrical heater for treating oilshale and the like |
US2786660A (en) * | 1948-01-05 | 1957-03-26 | Phillips Petroleum Co | Apparatus for gasifying coal |
US2548360A (en) | 1948-03-29 | 1951-04-10 | Stanley A Germain | Electric oil well heater |
US2685930A (en) * | 1948-08-12 | 1954-08-10 | Union Oil Co | Oil well production process |
US2757738A (en) * | 1948-09-20 | 1956-08-07 | Union Oil Co | Radiation heating |
US2630307A (en) * | 1948-12-09 | 1953-03-03 | Carbonic Products Inc | Method of recovering oil from oil shale |
US2595979A (en) * | 1949-01-25 | 1952-05-06 | Texas Co | Underground liquefaction of coal |
US2642943A (en) * | 1949-05-20 | 1953-06-23 | Sinclair Oil & Gas Co | Oil recovery process |
US2593477A (en) * | 1949-06-10 | 1952-04-22 | Us Interior | Process of underground gasification of coal |
US2670802A (en) * | 1949-12-16 | 1954-03-02 | Thermactor Company | Reviving or increasing the production of clogged or congested oil wells |
US2714930A (en) * | 1950-12-08 | 1955-08-09 | Union Oil Co | Apparatus for preventing paraffin deposition |
US2695163A (en) * | 1950-12-09 | 1954-11-23 | Stanolind Oil & Gas Co | Method for gasification of subterranean carbonaceous deposits |
US2630306A (en) * | 1952-01-03 | 1953-03-03 | Socony Vacuum Oil Co Inc | Subterranean retorting of shales |
US2757739A (en) * | 1952-01-07 | 1956-08-07 | Parelex Corp | Heating apparatus |
US2780450A (en) * | 1952-03-07 | 1957-02-05 | Svenska Skifferolje Ab | Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ |
US2777679A (en) * | 1952-03-07 | 1957-01-15 | Svenska Skifferolje Ab | Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ |
US2789805A (en) * | 1952-05-27 | 1957-04-23 | Svenska Skifferolje Ab | Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member |
GB774283A (en) * | 1952-09-15 | 1957-05-08 | Ruhrchemie Ag | Process for the combined purification and methanisation of gas mixtures containing oxides of carbon and hydrogen |
US2780449A (en) * | 1952-12-26 | 1957-02-05 | Sinclair Oil & Gas Co | Thermal process for in-situ decomposition of oil shale |
US2825408A (en) * | 1953-03-09 | 1958-03-04 | Sinclair Oil & Gas Company | Oil recovery by subsurface thermal processing |
US2771954A (en) * | 1953-04-29 | 1956-11-27 | Exxon Research Engineering Co | Treatment of petroleum production wells |
US2703621A (en) * | 1953-05-04 | 1955-03-08 | George W Ford | Oil well bottom hole flow increasing unit |
US2743906A (en) * | 1953-05-08 | 1956-05-01 | William E Coyle | Hydraulic underreamer |
US2803305A (en) * | 1953-05-14 | 1957-08-20 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2914309A (en) * | 1953-05-25 | 1959-11-24 | Svenska Skifferolje Ab | Oil and gas recovery from tar sands |
US2902270A (en) * | 1953-07-17 | 1959-09-01 | Svenska Skifferolje Ab | Method of and means in heating of subsurface fuel-containing deposits "in situ" |
US2890754A (en) * | 1953-10-30 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2890755A (en) * | 1953-12-19 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2841375A (en) * | 1954-03-03 | 1958-07-01 | Svenska Skifferolje Ab | Method for in-situ utilization of fuels by combustion |
US2794504A (en) * | 1954-05-10 | 1957-06-04 | Union Oil Co | Well heater |
US2793696A (en) * | 1954-07-22 | 1957-05-28 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2923535A (en) | 1955-02-11 | 1960-02-02 | Svenska Skifferolje Ab | Situ recovery from carbonaceous deposits |
US2801089A (en) * | 1955-03-14 | 1957-07-30 | California Research Corp | Underground shale retorting process |
US2862558A (en) * | 1955-12-28 | 1958-12-02 | Phillips Petroleum Co | Recovering oils from formations |
US2819761A (en) * | 1956-01-19 | 1958-01-14 | Continental Oil Co | Process of removing viscous oil from a well bore |
US2857002A (en) * | 1956-03-19 | 1958-10-21 | Texas Co | Recovery of viscous crude oil |
US2906340A (en) * | 1956-04-05 | 1959-09-29 | Texaco Inc | Method of treating a petroleum producing formation |
US2991046A (en) | 1956-04-16 | 1961-07-04 | Parsons Lional Ashley | Combined winch and bollard device |
US2997105A (en) | 1956-10-08 | 1961-08-22 | Pan American Petroleum Corp | Burner apparatus |
US2932352A (en) * | 1956-10-25 | 1960-04-12 | Union Oil Co | Liquid filled well heater |
US2804149A (en) * | 1956-12-12 | 1957-08-27 | John R Donaldson | Oil well heater and reviver |
US2942223A (en) * | 1957-08-09 | 1960-06-21 | Gen Electric | Electrical resistance heater |
US2906337A (en) * | 1957-08-16 | 1959-09-29 | Pure Oil Co | Method of recovering bitumen |
US2954826A (en) * | 1957-12-02 | 1960-10-04 | William E Sievers | Heated well production string |
US2994376A (en) * | 1957-12-27 | 1961-08-01 | Phillips Petroleum Co | In situ combustion process |
US3051235A (en) | 1958-02-24 | 1962-08-28 | Jersey Prod Res Co | Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation |
US2911047A (en) * | 1958-03-11 | 1959-11-03 | John C Henderson | Apparatus for extracting naturally occurring difficultly flowable petroleum oil from a naturally located subterranean body |
US2958519A (en) * | 1958-06-23 | 1960-11-01 | Phillips Petroleum Co | In situ combustion process |
US2974937A (en) * | 1958-11-03 | 1961-03-14 | Jersey Prod Res Co | Petroleum recovery from carbonaceous formations |
US2998457A (en) * | 1958-11-19 | 1961-08-29 | Ashland Oil Inc | Production of phenols |
US2970826A (en) * | 1958-11-21 | 1961-02-07 | Texaco Inc | Recovery of oil from oil shale |
US3097690A (en) | 1958-12-24 | 1963-07-16 | Gulf Research Development Co | Process for heating a subsurface formation |
US2969226A (en) * | 1959-01-19 | 1961-01-24 | Pyrochem Corp | Pendant parting petro pyrolysis process |
US3150715A (en) | 1959-09-30 | 1964-09-29 | Shell Oil Co | Oil recovery by in situ combustion with water injection |
US3170519A (en) * | 1960-05-11 | 1965-02-23 | Gordon L Allot | Oil well microwave tools |
US3058730A (en) | 1960-06-03 | 1962-10-16 | Fmc Corp | Method of forming underground communication between boreholes |
US3138203A (en) | 1961-03-06 | 1964-06-23 | Jersey Prod Res Co | Method of underground burning |
US3057404A (en) | 1961-09-29 | 1962-10-09 | Socony Mobil Oil Co Inc | Method and system for producing oil tenaciously held in porous formations |
US3194315A (en) * | 1962-06-26 | 1965-07-13 | Charles D Golson | Apparatus for isolating zones in wells |
US3272261A (en) | 1963-12-13 | 1966-09-13 | Gulf Research Development Co | Process for recovery of oil |
US3332480A (en) | 1965-03-04 | 1967-07-25 | Pan American Petroleum Corp | Recovery of hydrocarbons by thermal methods |
US3358756A (en) * | 1965-03-12 | 1967-12-19 | Shell Oil Co | Method for in situ recovery of solid or semi-solid petroleum deposits |
US3262741A (en) | 1965-04-01 | 1966-07-26 | Pittsburgh Plate Glass Co | Solution mining of potassium chloride |
US3278234A (en) | 1965-05-17 | 1966-10-11 | Pittsburgh Plate Glass Co | Solution mining of potassium chloride |
US3362751A (en) | 1966-02-28 | 1968-01-09 | Tinlin William | Method and system for recovering shale oil and gas |
DE1615192B1 (de) | 1966-04-01 | 1970-08-20 | Chisso Corp | Induktiv beheiztes Heizrohr |
US3410796A (en) | 1966-04-04 | 1968-11-12 | Gas Processors Inc | Process for treatment of saline waters |
US3372754A (en) * | 1966-05-31 | 1968-03-12 | Mobil Oil Corp | Well assembly for heating a subterranean formation |
US3399623A (en) | 1966-07-14 | 1968-09-03 | James R. Creed | Apparatus for and method of producing viscid oil |
NL153755C (nl) | 1966-10-20 | 1977-11-15 | Stichting Reactor Centrum | Werkwijze voor het vervaardigen van een elektrisch verwarmingselement, alsmede verwarmingselement vervaardigd met toepassing van deze werkwijze. |
US3465819A (en) | 1967-02-13 | 1969-09-09 | American Oil Shale Corp | Use of nuclear detonations in producing hydrocarbons from an underground formation |
NL6803827A (zh) | 1967-03-22 | 1968-09-23 | ||
US3542276A (en) * | 1967-11-13 | 1970-11-24 | Ideal Ind | Open type explosion connector and method |
US3485300A (en) | 1967-12-20 | 1969-12-23 | Phillips Petroleum Co | Method and apparatus for defoaming crude oil down hole |
US3578080A (en) | 1968-06-10 | 1971-05-11 | Shell Oil Co | Method of producing shale oil from an oil shale formation |
US3537528A (en) | 1968-10-14 | 1970-11-03 | Shell Oil Co | Method for producing shale oil from an exfoliated oil shale formation |
US3593789A (en) | 1968-10-18 | 1971-07-20 | Shell Oil Co | Method for producing shale oil from an oil shale formation |
US3565171A (en) | 1968-10-23 | 1971-02-23 | Shell Oil Co | Method for producing shale oil from a subterranean oil shale formation |
US3554285A (en) | 1968-10-24 | 1971-01-12 | Phillips Petroleum Co | Production and upgrading of heavy viscous oils |
US3629551A (en) | 1968-10-29 | 1971-12-21 | Chisso Corp | Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current |
US3513249A (en) * | 1968-12-24 | 1970-05-19 | Ideal Ind | Explosion connector with improved insulating means |
US3614986A (en) | 1969-03-03 | 1971-10-26 | Electrothermic Co | Method for injecting heated fluids into mineral bearing formations |
US3542131A (en) | 1969-04-01 | 1970-11-24 | Mobil Oil Corp | Method of recovering hydrocarbons from oil shale |
US3547192A (en) | 1969-04-04 | 1970-12-15 | Shell Oil Co | Method of metal coating and electrically heating a subterranean earth formation |
US3529075A (en) * | 1969-05-21 | 1970-09-15 | Ideal Ind | Explosion connector with ignition arrangement |
US3572838A (en) | 1969-07-07 | 1971-03-30 | Shell Oil Co | Recovery of aluminum compounds and oil from oil shale formations |
US3614387A (en) * | 1969-09-22 | 1971-10-19 | Watlow Electric Mfg Co | Electrical heater with an internal thermocouple |
US3679812A (en) | 1970-11-13 | 1972-07-25 | Schlumberger Technology Corp | Electrical suspension cable for well tools |
US3893918A (en) | 1971-11-22 | 1975-07-08 | Engineering Specialties Inc | Method for separating material leaving a well |
US3757860A (en) | 1972-08-07 | 1973-09-11 | Atlantic Richfield Co | Well heating |
US3761599A (en) | 1972-09-05 | 1973-09-25 | Gen Electric | Means for reducing eddy current heating of a tank in electric apparatus |
US3794113A (en) | 1972-11-13 | 1974-02-26 | Mobil Oil Corp | Combination in situ combustion displacement and steam stimulation of producing wells |
US4199025A (en) | 1974-04-19 | 1980-04-22 | Electroflood Company | Method and apparatus for tertiary recovery of oil |
US4037655A (en) | 1974-04-19 | 1977-07-26 | Electroflood Company | Method for secondary recovery of oil |
US3894769A (en) | 1974-06-06 | 1975-07-15 | Shell Oil Co | Recovering oil from a subterranean carbonaceous formation |
US4029360A (en) | 1974-07-26 | 1977-06-14 | Occidental Oil Shale, Inc. | Method of recovering oil and water from in situ oil shale retort flue gas |
US3933447A (en) | 1974-11-08 | 1976-01-20 | The United States Of America As Represented By The United States Energy Research And Development Administration | Underground gasification of coal |
US3950029A (en) | 1975-06-12 | 1976-04-13 | Mobil Oil Corporation | In situ retorting of oil shale |
US4199024A (en) | 1975-08-07 | 1980-04-22 | World Energy Systems | Multistage gas generator |
US4037658A (en) | 1975-10-30 | 1977-07-26 | Chevron Research Company | Method of recovering viscous petroleum from an underground formation |
US4018279A (en) | 1975-11-12 | 1977-04-19 | Reynolds Merrill J | In situ coal combustion heat recovery method |
US4017319A (en) | 1976-01-06 | 1977-04-12 | General Electric Company | Si3 N4 formed by nitridation of sintered silicon compact containing boron |
US4487257A (en) | 1976-06-17 | 1984-12-11 | Raytheon Company | Apparatus and method for production of organic products from kerogen |
US4083604A (en) | 1976-11-15 | 1978-04-11 | Trw Inc. | Thermomechanical fracture for recovery system in oil shale deposits |
US4169506A (en) | 1977-07-15 | 1979-10-02 | Standard Oil Company (Indiana) | In situ retorting of oil shale and energy recovery |
US4119349A (en) | 1977-10-25 | 1978-10-10 | Gulf Oil Corporation | Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale |
US4228853A (en) | 1978-06-21 | 1980-10-21 | Harvey A Herbert | Petroleum production method |
US4446917A (en) | 1978-10-04 | 1984-05-08 | Todd John C | Method and apparatus for producing viscous or waxy crude oils |
US4311340A (en) | 1978-11-27 | 1982-01-19 | Lyons William C | Uranium leeching process and insitu mining |
JPS5576586A (en) * | 1978-12-01 | 1980-06-09 | Tokyo Shibaura Electric Co | Heater |
US4457365A (en) | 1978-12-07 | 1984-07-03 | Raytheon Company | In situ radio frequency selective heating system |
US4232902A (en) | 1979-02-09 | 1980-11-11 | Ppg Industries, Inc. | Solution mining water soluble salts at high temperatures |
US4289354A (en) | 1979-02-23 | 1981-09-15 | Edwin G. Higgins, Jr. | Borehole mining of solid mineral resources |
US4290650A (en) | 1979-08-03 | 1981-09-22 | Ppg Industries Canada Ltd. | Subterranean cavity chimney development for connecting solution mined cavities |
CA1168283A (en) | 1980-04-14 | 1984-05-29 | Hiroshi Teratani | Electrode device for electrically heating underground deposits of hydrocarbons |
CA1165361A (en) | 1980-06-03 | 1984-04-10 | Toshiyuki Kobayashi | Electrode unit for electrically heating underground hydrocarbon deposits |
US4401099A (en) * | 1980-07-11 | 1983-08-30 | W.B. Combustion, Inc. | Single-ended recuperative radiant tube assembly and method |
US4385661A (en) | 1981-01-07 | 1983-05-31 | The United States Of America As Represented By The United States Department Of Energy | Downhole steam generator with improved preheating, combustion and protection features |
US4382469A (en) * | 1981-03-10 | 1983-05-10 | Electro-Petroleum, Inc. | Method of in situ gasification |
GB2110231B (en) * | 1981-03-13 | 1984-11-14 | Jgc Corp | Process for converting solid wastes to gases for use as a town gas |
US4384614A (en) * | 1981-05-11 | 1983-05-24 | Justheim Pertroleum Company | Method of retorting oil shale by velocity flow of super-heated air |
US4401162A (en) | 1981-10-13 | 1983-08-30 | Synfuel (An Indiana Limited Partnership) | In situ oil shale process |
US4549073A (en) | 1981-11-06 | 1985-10-22 | Oximetrix, Inc. | Current controller for resistive heating element |
US4418752A (en) | 1982-01-07 | 1983-12-06 | Conoco Inc. | Thermal oil recovery with solvent recirculation |
US4441985A (en) | 1982-03-08 | 1984-04-10 | Exxon Research And Engineering Co. | Process for supplying the heat requirement of a retort for recovering oil from solids by partial indirect heating of in situ combustion gases, and combustion air, without the use of supplemental fuel |
CA1196594A (en) | 1982-04-08 | 1985-11-12 | Guy Savard | Recovery of oil from tar sands |
US4460044A (en) | 1982-08-31 | 1984-07-17 | Chevron Research Company | Advancing heated annulus steam drive |
US4485868A (en) | 1982-09-29 | 1984-12-04 | Iit Research Institute | Method for recovery of viscous hydrocarbons by electromagnetic heating in situ |
US4498531A (en) * | 1982-10-01 | 1985-02-12 | Rockwell International Corporation | Emission controller for indirect fired downhole steam generators |
US4609041A (en) | 1983-02-10 | 1986-09-02 | Magda Richard M | Well hot oil system |
US4886118A (en) * | 1983-03-21 | 1989-12-12 | Shell Oil Company | Conductively heating a subterranean oil shale to create permeability and subsequently produce oil |
US4545435A (en) * | 1983-04-29 | 1985-10-08 | Iit Research Institute | Conduction heating of hydrocarbonaceous formations |
EP0130671A3 (en) | 1983-05-26 | 1986-12-17 | Metcal Inc. | Multiple temperature autoregulating heater |
US4538682A (en) * | 1983-09-08 | 1985-09-03 | Mcmanus James W | Method and apparatus for removing oil well paraffin |
US4572229A (en) * | 1984-02-02 | 1986-02-25 | Thomas D. Mueller | Variable proportioner |
US4637464A (en) * | 1984-03-22 | 1987-01-20 | Amoco Corporation | In situ retorting of oil shale with pulsed water purge |
US4570715A (en) * | 1984-04-06 | 1986-02-18 | Shell Oil Company | Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature |
US4577691A (en) | 1984-09-10 | 1986-03-25 | Texaco Inc. | Method and apparatus for producing viscous hydrocarbons from a subterranean formation |
JPS61104582A (ja) * | 1984-10-25 | 1986-05-22 | 株式会社デンソー | シ−ズヒ−タ |
FR2575463B1 (fr) * | 1984-12-28 | 1987-03-20 | Gaz De France | Procede de production du methane a l'aide d'un catalyseur thioresistant et catalyseur pour la mise en oeuvre de ce procede |
US4662437A (en) | 1985-11-14 | 1987-05-05 | Atlantic Richfield Company | Electrically stimulated well production system with flexible tubing conductor |
CA1253555A (en) | 1985-11-21 | 1989-05-02 | Cornelis F.H. Van Egmond | Heating rate variant elongated electrical resistance heater |
CN1010864B (zh) * | 1985-12-09 | 1990-12-19 | 国际壳牌研究有限公司 | 安装电加热器到井中的方法和装置 |
CN1006920B (zh) * | 1985-12-09 | 1990-02-21 | 国际壳牌研究有限公司 | 小型井的温度测量方法 |
US4716960A (en) | 1986-07-14 | 1988-01-05 | Production Technologies International, Inc. | Method and system for introducing electric current into a well |
CA1288043C (en) | 1986-12-15 | 1991-08-27 | Peter Van Meurs | Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil |
US4793409A (en) | 1987-06-18 | 1988-12-27 | Ors Development Corporation | Method and apparatus for forming an insulated oil well casing |
US4852648A (en) | 1987-12-04 | 1989-08-01 | Ava International Corporation | Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead |
US4974425A (en) | 1988-12-08 | 1990-12-04 | Concept Rkk, Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US4860544A (en) | 1988-12-08 | 1989-08-29 | Concept R.K.K. Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US5152341A (en) | 1990-03-09 | 1992-10-06 | Raymond S. Kasevich | Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes |
CA2015460C (en) | 1990-04-26 | 1993-12-14 | Kenneth Edwin Kisman | Process for confining steam injected into a heavy oil reservoir |
US5050601A (en) | 1990-05-29 | 1991-09-24 | Joel Kupersmith | Cardiac defibrillator electrode arrangement |
US5042579A (en) | 1990-08-23 | 1991-08-27 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers |
US5066852A (en) | 1990-09-17 | 1991-11-19 | Teledyne Ind. Inc. | Thermoplastic end seal for electric heating elements |
US5065818A (en) | 1991-01-07 | 1991-11-19 | Shell Oil Company | Subterranean heaters |
US5626190A (en) | 1991-02-06 | 1997-05-06 | Moore; Boyd B. | Apparatus for protecting electrical connection from moisture in a hazardous area adjacent a wellhead barrier for an underground well |
CN2095278U (zh) * | 1991-06-19 | 1992-02-05 | 中国石油天然气总公司辽河设计院 | 油井电加热装置 |
US5133406A (en) | 1991-07-05 | 1992-07-28 | Amoco Corporation | Generating oxygen-depleted air useful for increasing methane production |
US5420402A (en) * | 1992-02-05 | 1995-05-30 | Iit Research Institute | Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles |
CN2183444Y (zh) * | 1993-10-19 | 1994-11-23 | 刘犹斌 | 深井石油电磁加热器 |
US5507149A (en) | 1994-12-15 | 1996-04-16 | Dash; J. Gregory | Nonporous liquid impermeable cryogenic barrier |
EA000057B1 (ru) * | 1995-04-07 | 1998-04-30 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Система скважин для добычи вязкой нефти |
US5730550A (en) * | 1995-08-15 | 1998-03-24 | Board Of Trustees Operating Michigan State University | Method for placement of a permeable remediation zone in situ |
US5759022A (en) * | 1995-10-16 | 1998-06-02 | Gas Research Institute | Method and system for reducing NOx and fuel emissions in a furnace |
US5619611A (en) | 1995-12-12 | 1997-04-08 | Tub Tauch-Und Baggertechnik Gmbh | Device for removing downhole deposits utilizing tubular housing and passing electric current through fluid heating medium contained therein |
GB9526120D0 (en) | 1995-12-21 | 1996-02-21 | Raychem Sa Nv | Electrical connector |
CA2177726C (en) * | 1996-05-29 | 2000-06-27 | Theodore Wildi | Low-voltage and low flux density heating system |
US5782301A (en) | 1996-10-09 | 1998-07-21 | Baker Hughes Incorporated | Oil well heater cable |
US6039121A (en) | 1997-02-20 | 2000-03-21 | Rangewest Technologies Ltd. | Enhanced lift method and apparatus for the production of hydrocarbons |
MA24902A1 (fr) | 1998-03-06 | 2000-04-01 | Shell Int Research | Rechauffeur electrique |
US6540018B1 (en) | 1998-03-06 | 2003-04-01 | Shell Oil Company | Method and apparatus for heating a wellbore |
US6248230B1 (en) * | 1998-06-25 | 2001-06-19 | Sk Corporation | Method for manufacturing cleaner fuels |
US6130398A (en) * | 1998-07-09 | 2000-10-10 | Illinois Tool Works Inc. | Plasma cutter for auxiliary power output of a power source |
NO984235L (no) | 1998-09-14 | 2000-03-15 | Cit Alcatel | Oppvarmingssystem for metallrør for rõoljetransport |
DE69930290T2 (de) * | 1998-09-25 | 2006-12-14 | Tesco Corp., Calgary | System, vorrichtung und verfahren zur installierung von steuerleitungen in einer erdbohrung |
US6609761B1 (en) | 1999-01-08 | 2003-08-26 | American Soda, Llp | Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale |
JP2000340350A (ja) | 1999-05-28 | 2000-12-08 | Kyocera Corp | 窒化ケイ素製セラミックヒータおよびその製造方法 |
US6257334B1 (en) | 1999-07-22 | 2001-07-10 | Alberta Oil Sands Technology And Research Authority | Steam-assisted gravity drainage heavy oil recovery process |
US6633236B2 (en) | 2000-01-24 | 2003-10-14 | Shell Oil Company | Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters |
US7259688B2 (en) | 2000-01-24 | 2007-08-21 | Shell Oil Company | Wireless reservoir production control |
US20020036085A1 (en) | 2000-01-24 | 2002-03-28 | Bass Ronald Marshall | Toroidal choke inductor for wireless communication and control |
US7170424B2 (en) | 2000-03-02 | 2007-01-30 | Shell Oil Company | Oil well casting electrical power pick-off points |
OA12225A (en) | 2000-03-02 | 2006-05-10 | Shell Int Research | Controlled downhole chemical injection. |
MY128294A (en) | 2000-03-02 | 2007-01-31 | Shell Int Research | Use of downhole high pressure gas in a gas-lift well |
US6632047B2 (en) * | 2000-04-14 | 2003-10-14 | Board Of Regents, The University Of Texas System | Heater element for use in an in situ thermal desorption soil remediation system |
US6918444B2 (en) | 2000-04-19 | 2005-07-19 | Exxonmobil Upstream Research Company | Method for production of hydrocarbons from organic-rich rock |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US20030085034A1 (en) | 2000-04-24 | 2003-05-08 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce pyrolsis products |
US20030075318A1 (en) | 2000-04-24 | 2003-04-24 | Keedy Charles Robert | In situ thermal processing of a coal formation using substantially parallel formed wellbores |
US20030066642A1 (en) | 2000-04-24 | 2003-04-10 | Wellington Scott Lee | In situ thermal processing of a coal formation producing a mixture with oxygenated hydrocarbons |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
ATE313695T1 (de) * | 2000-04-24 | 2006-01-15 | Shell Int Research | Elektrische bohrlochheizvorrichtung und verfahren |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
WO2002057805A2 (en) * | 2000-06-29 | 2002-07-25 | Tubel Paulo S | Method and system for monitoring smart structures utilizing distributed optical sensors |
US6585046B2 (en) | 2000-08-28 | 2003-07-01 | Baker Hughes Incorporated | Live well heater cable |
US20020112987A1 (en) | 2000-12-15 | 2002-08-22 | Zhiguo Hou | Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts |
US20020112890A1 (en) | 2001-01-22 | 2002-08-22 | Wentworth Steven W. | Conduit pulling apparatus and method for use in horizontal drilling |
US20020153141A1 (en) | 2001-04-19 | 2002-10-24 | Hartman Michael G. | Method for pumping fluids |
ATE314556T1 (de) * | 2001-04-24 | 2006-01-15 | Shell Int Research | Ölgewinnung durch verbrennung an ort und stelle |
WO2002086029A2 (en) | 2001-04-24 | 2002-10-31 | Shell Oil Company | In situ recovery from a relatively low permeability formation containing heavy hydrocarbons |
US7055600B2 (en) | 2001-04-24 | 2006-06-06 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
CN100545415C (zh) | 2001-04-24 | 2009-09-30 | 国际壳牌研究有限公司 | 现场处理含烃地层的方法 |
US20030029617A1 (en) | 2001-08-09 | 2003-02-13 | Anadarko Petroleum Company | Apparatus, method and system for single well solution-mining |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
ATE402294T1 (de) | 2001-10-24 | 2008-08-15 | Shell Int Research | Vereisung von böden als vorwegmassnahme zu deren thermischer behandlung |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
NZ532091A (en) * | 2001-10-24 | 2005-12-23 | Shell Int Research | In situ recovery from a hydrocarbon containing formation using barriers |
US6679326B2 (en) | 2002-01-15 | 2004-01-20 | Bohdan Zakiewicz | Pro-ecological mining system |
WO2003062596A1 (en) * | 2002-01-22 | 2003-07-31 | Weatherford/Lamb, Inc. | Gas operated pump for hydrocarbon wells |
US6958195B2 (en) * | 2002-02-19 | 2005-10-25 | Utc Fuel Cells, Llc | Steam generator for a PEM fuel cell power plant |
CA2486582C (en) * | 2002-05-31 | 2008-07-22 | Sensor Highway Limited | Parameter sensing apparatus and method for subterranean wells |
WO2004018828A1 (en) * | 2002-08-21 | 2004-03-04 | Presssol Ltd. | Reverse circulation directional and horizontal drilling using concentric coil tubing |
WO2004038175A1 (en) * | 2002-10-24 | 2004-05-06 | Shell Internationale Research Maatschappij B.V. | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
US7048051B2 (en) | 2003-02-03 | 2006-05-23 | Gen Syn Fuels | Recovery of products from oil shale |
US6796139B2 (en) | 2003-02-27 | 2004-09-28 | Layne Christensen Company | Method and apparatus for artificial ground freezing |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
RU2349745C2 (ru) | 2003-06-24 | 2009-03-20 | Эксонмобил Апстрим Рисерч Компани | Способ обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды (варианты) |
US7147057B2 (en) | 2003-10-06 | 2006-12-12 | Halliburton Energy Services, Inc. | Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore |
US7337841B2 (en) | 2004-03-24 | 2008-03-04 | Halliburton Energy Services, Inc. | Casing comprising stress-absorbing materials and associated methods of use |
CA2579496A1 (en) | 2004-04-23 | 2005-11-03 | Shell Internationale Research Maatschappij B.V. | Subsurface electrical heaters using nitride insulation |
AU2006239988B2 (en) * | 2005-04-22 | 2010-07-01 | Shell Internationale Research Maatschappij B.V. | Reduction of heat loads applied to frozen barriers and freeze wells in subsurface formations |
EA011905B1 (ru) | 2005-04-22 | 2009-06-30 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ конверсии in situ с использованием нагревающей системы с замкнутым контуром |
AU2006306471B2 (en) | 2005-10-24 | 2010-11-25 | Shell Internationale Research Maatschapij B.V. | Cogeneration systems and processes for treating hydrocarbon containing formations |
US7124584B1 (en) | 2005-10-31 | 2006-10-24 | General Electric Company | System and method for heat recovery from geothermal source of heat |
EP1984599B1 (en) | 2006-02-16 | 2012-03-21 | Chevron U.S.A., Inc. | Kerogen extraction from subterranean oil shale resources |
AU2007240367B2 (en) | 2006-04-21 | 2011-04-07 | Shell Internationale Research Maatschappij B.V. | High strength alloys |
JP5330999B2 (ja) | 2006-10-20 | 2013-10-30 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 流体によるタールサンド地層の複数部分中での炭化水素の移動 |
US20080216321A1 (en) | 2007-03-09 | 2008-09-11 | Eveready Battery Company, Inc. | Shaving aid delivery system for use with wet shave razors |
WO2008131171A1 (en) | 2007-04-20 | 2008-10-30 | Shell Oil Company | Parallel heater system for subsurface formations |
CA2700732A1 (en) | 2007-10-19 | 2009-04-23 | Shell Internationale Research Maatschappij B.V. | Cryogenic treatment of gas |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
-
2006
- 2006-04-21 EA EA200702307A patent/EA011905B1/ru not_active IP Right Cessation
- 2006-04-21 DE DE602006007693T patent/DE602006007693D1/de active Active
- 2006-04-21 EA EA200702303A patent/EA014760B1/ru not_active IP Right Cessation
- 2006-04-21 DE DE602006007450T patent/DE602006007450D1/de active Active
- 2006-04-21 IN IN4144CHN2007 patent/IN266867B/en unknown
- 2006-04-21 EP EP06750964.6A patent/EP1871978B1/en not_active Not-in-force
- 2006-04-21 DE DE602006007974T patent/DE602006007974D1/de active Active
- 2006-04-21 EP EP06751034A patent/EP1871987B1/en not_active Not-in-force
- 2006-04-21 EA EA200702297A patent/EA012900B1/ru not_active IP Right Cessation
- 2006-04-21 CA CA2605720A patent/CA2605720C/en not_active Expired - Fee Related
- 2006-04-21 EP EP06751032A patent/EP1871983B1/en not_active Not-in-force
- 2006-04-21 EA EA200702305A patent/EA012171B1/ru not_active IP Right Cessation
- 2006-04-21 AU AU2006240043A patent/AU2006240043B2/en not_active Ceased
- 2006-04-21 AT AT06750975T patent/ATE435964T1/de not_active IP Right Cessation
- 2006-04-21 AT AT06751032T patent/ATE437290T1/de not_active IP Right Cessation
- 2006-04-21 WO PCT/US2006/015105 patent/WO2006116096A1/en active Application Filing
- 2006-04-21 EA EA200702301A patent/EA012901B1/ru not_active IP Right Cessation
- 2006-04-21 CN CN200680013092.0A patent/CN101163851A/zh active Pending
- 2006-04-21 NZ NZ562247A patent/NZ562247A/en not_active IP Right Cessation
- 2006-04-21 CN CN200680013320.4A patent/CN101163856B/zh not_active Expired - Fee Related
- 2006-04-21 CA CA2606210A patent/CA2606210C/en not_active Expired - Fee Related
- 2006-04-21 AU AU2006240173A patent/AU2006240173B2/en not_active Ceased
- 2006-04-21 DE DE602006013437T patent/DE602006013437D1/de active Active
- 2006-04-21 EP EP06758470A patent/EP1880078A1/en not_active Withdrawn
- 2006-04-21 NZ NZ562239A patent/NZ562239A/en not_active IP Right Cessation
- 2006-04-21 CN CN200680013322.3A patent/CN101163853B/zh not_active Expired - Fee Related
- 2006-04-21 WO PCT/US2006/015104 patent/WO2006116095A1/en active Application Filing
- 2006-04-21 WO PCT/US2006/015095 patent/WO2006116087A1/en active Application Filing
- 2006-04-21 CA CA2606295A patent/CA2606295C/en not_active Expired - Fee Related
- 2006-04-21 AU AU2006239997A patent/AU2006239997B2/en not_active Ceased
- 2006-04-21 EP EP06750749A patent/EP1871981A1/en not_active Withdrawn
- 2006-04-21 EA EA200702299A patent/EA013555B1/ru not_active IP Right Cessation
- 2006-04-21 CA CA2606176A patent/CA2606176C/en not_active Expired - Fee Related
- 2006-04-21 AU AU2006239958A patent/AU2006239958B2/en not_active Ceased
- 2006-04-21 AU AU2006240175A patent/AU2006240175B2/en not_active Ceased
- 2006-04-21 NZ NZ562240A patent/NZ562240A/en not_active IP Right Cessation
- 2006-04-21 EP EP06750975A patent/EP1871985B1/en not_active Not-in-force
- 2006-04-21 AU AU2006239962A patent/AU2006239962B8/en not_active Ceased
- 2006-04-21 NZ NZ562243A patent/NZ562243A/en not_active IP Right Cessation
- 2006-04-21 WO PCT/US2006/015166 patent/WO2006116130A1/en active Application Filing
- 2006-04-21 AU AU2006239961A patent/AU2006239961B2/en not_active Ceased
- 2006-04-21 EP EP06751031A patent/EP1871986A1/en not_active Withdrawn
- 2006-04-21 CN CN200680013093.5A patent/CN101300401B/zh not_active Expired - Fee Related
- 2006-04-21 NZ NZ562241A patent/NZ562241A/en not_active IP Right Cessation
- 2006-04-21 EA EA200702298A patent/EA011226B1/ru not_active IP Right Cessation
- 2006-04-21 EA EA200702304A patent/EA012077B1/ru not_active IP Right Cessation
- 2006-04-21 WO PCT/US2006/015084 patent/WO2006116078A1/en active Application Filing
- 2006-04-21 CN CN200680013090.1A patent/CN101163854B/zh not_active Expired - Fee Related
- 2006-04-21 EA EA200702302A patent/EA014258B1/ru not_active IP Right Cessation
- 2006-04-21 AT AT06751034T patent/ATE427410T1/de not_active IP Right Cessation
- 2006-04-21 CA CA2605729A patent/CA2605729C/en not_active Expired - Fee Related
- 2006-04-21 WO PCT/US2006/015167 patent/WO2006116131A1/en active Application Filing
- 2006-04-21 WO PCT/US2006/015106 patent/WO2006116097A1/en active Application Filing
- 2006-04-21 EP EP06750751A patent/EP1871990B1/en not_active Not-in-force
- 2006-04-21 NZ NZ562252A patent/NZ562252A/en not_active IP Right Cessation
- 2006-04-21 EA EA200702300A patent/EA012767B1/ru not_active IP Right Cessation
- 2006-04-21 CA CA2606216A patent/CA2606216C/en not_active Expired - Fee Related
- 2006-04-21 CN CN200680013123.2A patent/CN101163860B/zh not_active Expired - Fee Related
- 2006-04-21 CN CN200680013122.8A patent/CN101163852B/zh not_active Expired - Fee Related
- 2006-04-21 AU AU2006239999A patent/AU2006239999B2/en not_active Ceased
- 2006-04-21 NZ NZ562249A patent/NZ562249A/en not_active IP Right Cessation
- 2006-04-21 WO PCT/US2006/014778 patent/WO2006115945A1/en active Application Filing
- 2006-04-21 WO PCT/US2006/014776 patent/WO2006115943A1/en active Application Filing
- 2006-04-21 AT AT06750976T patent/ATE463658T1/de not_active IP Right Cessation
- 2006-04-21 AU AU2006239996A patent/AU2006239996B2/en not_active Ceased
- 2006-04-21 CN CN200680013121.3A patent/CN101163858B/zh not_active Expired - Fee Related
- 2006-04-21 EP EP06750974A patent/EP1871980A1/en not_active Withdrawn
- 2006-04-21 EA EA200702306A patent/EA012554B1/ru not_active IP Right Cessation
- 2006-04-21 CN CN200680013312.XA patent/CN101163859B/zh not_active Expired - Fee Related
- 2006-04-21 NZ NZ562244A patent/NZ562244A/en not_active IP Right Cessation
- 2006-04-21 NZ NZ562251A patent/NZ562251A/en not_active IP Right Cessation
- 2006-04-21 CA CA2606217A patent/CA2606217C/en not_active Expired - Fee Related
- 2006-04-21 CA CA2605724A patent/CA2605724C/en not_active Expired - Fee Related
- 2006-04-21 CA CA2606181A patent/CA2606181C/en not_active Expired - Fee Related
- 2006-04-21 CA CA2606218A patent/CA2606218C/en not_active Expired - Fee Related
- 2006-04-21 CA CA2606165A patent/CA2606165C/en not_active Expired - Fee Related
- 2006-04-21 CN CN200680013101.6A patent/CN101163855B/zh not_active Expired - Fee Related
- 2006-04-21 NZ NZ562242A patent/NZ562242A/en not_active IP Right Cessation
- 2006-04-21 AU AU2006239963A patent/AU2006239963B2/en not_active Ceased
- 2006-04-21 AU AU2006240033A patent/AU2006240033B2/en not_active Ceased
- 2006-04-21 EP EP06750969A patent/EP1871979A1/en not_active Withdrawn
- 2006-04-21 US US11/409,523 patent/US7831133B2/en not_active Expired - Fee Related
- 2006-04-21 AT AT06750751T patent/ATE434713T1/de not_active IP Right Cessation
- 2006-04-21 EP EP06750976A patent/EP1871982B1/en not_active Not-in-force
- 2006-04-21 WO PCT/US2006/015101 patent/WO2006116092A1/en active Search and Examination
- 2006-04-21 CN CN200680013103.5A patent/CN101163857B/zh not_active Expired - Fee Related
- 2006-04-21 NZ NZ562248A patent/NZ562248A/en not_active IP Right Cessation
- 2006-04-21 DE DE602006006042T patent/DE602006006042D1/de active Active
- 2006-04-21 WO PCT/US2006/015169 patent/WO2006116133A1/en active Application Filing
- 2006-04-24 EA EA200702296A patent/EA014031B1/ru not_active IP Right Cessation
- 2006-04-24 EP EP06758505A patent/EP1871858A2/en not_active Withdrawn
- 2006-04-24 CA CA2605737A patent/CA2605737C/en active Active
- 2006-04-24 NZ NZ562250A patent/NZ562250A/en not_active IP Right Cessation
- 2006-04-24 AU AU2006239886A patent/AU2006239886B2/en not_active Ceased
- 2006-04-24 CN CN200680013130.2A patent/CN101163780B/zh not_active Expired - Fee Related
- 2006-04-24 WO PCT/US2006/015286 patent/WO2006116207A2/en active Application Filing
-
2007
- 2007-09-18 ZA ZA200708023A patent/ZA200708023B/en unknown
- 2007-09-18 ZA ZA200708022A patent/ZA200708022B/xx unknown
- 2007-09-18 ZA ZA200708020A patent/ZA200708020B/xx unknown
- 2007-09-18 ZA ZA200708021A patent/ZA200708021B/xx unknown
- 2007-09-20 ZA ZA200708089A patent/ZA200708089B/xx unknown
- 2007-09-20 ZA ZA200708090A patent/ZA200708090B/xx unknown
- 2007-09-20 ZA ZA200708087A patent/ZA200708087B/xx unknown
- 2007-09-20 ZA ZA200708088A patent/ZA200708088B/xx unknown
- 2007-09-21 ZA ZA200708134A patent/ZA200708134B/xx unknown
- 2007-09-21 ZA ZA200708136A patent/ZA200708136B/xx unknown
- 2007-09-21 ZA ZA200708135A patent/ZA200708135B/xx unknown
- 2007-09-21 ZA ZA200708137A patent/ZA200708137B/xx unknown
- 2007-09-24 IL IL186203A patent/IL186203A/en not_active IP Right Cessation
- 2007-09-24 IL IL186213A patent/IL186213A/en not_active IP Right Cessation
- 2007-09-24 IL IL186207A patent/IL186207A/en not_active IP Right Cessation
- 2007-09-24 IL IL186214A patent/IL186214A/en not_active IP Right Cessation
- 2007-09-24 IL IL186204A patent/IL186204A/en not_active IP Right Cessation
- 2007-09-24 IL IL186208A patent/IL186208A/en not_active IP Right Cessation
- 2007-09-24 IL IL186211A patent/IL186211A/en not_active IP Right Cessation
- 2007-09-24 IL IL186206A patent/IL186206A/en not_active IP Right Cessation
- 2007-09-24 IL IL186209A patent/IL186209A/en not_active IP Right Cessation
- 2007-09-24 IL IL186210A patent/IL186210A/en not_active IP Right Cessation
- 2007-09-24 IL IL186212A patent/IL186212A/en not_active IP Right Cessation
- 2007-09-24 IL IL186205A patent/IL186205A/en not_active IP Right Cessation
- 2007-09-28 ZA ZA200708316A patent/ZA200708316B/xx unknown
- 2007-11-21 MA MA30404A patent/MA29719B1/fr unknown
- 2007-11-21 MA MA30400A patent/MA29470B1/fr unknown
- 2007-11-21 MA MA30403A patent/MA29473B1/fr unknown
- 2007-11-21 MA MA30407A patent/MA29476B1/fr unknown
- 2007-11-21 MA MA30399A patent/MA29469B1/fr unknown
- 2007-11-21 MA MA30401A patent/MA29471B1/fr unknown
- 2007-11-21 MA MA30406A patent/MA29475B1/fr unknown
- 2007-11-21 MA MA30408A patent/MA29477B1/fr unknown
- 2007-11-21 MA MA30398A patent/MA29468B1/fr unknown
- 2007-11-21 MA MA30409A patent/MA29478B1/fr unknown
- 2007-11-21 MA MA30405A patent/MA29474B1/fr unknown
- 2007-11-21 MA MA30402A patent/MA29472B1/fr unknown
-
2011
- 2011-03-09 AU AU2011201030A patent/AU2011201030B2/en not_active Ceased
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101300401B (zh) | 用于通过现场转化工艺生产流体的方法及系统 | |
CN1946917B (zh) | 用于处理地下岩层的方法 | |
RU2537712C2 (ru) | Нагрев подземных углеводородных пластов циркулируемой теплопереносящей текучей средой | |
KR101434248B1 (ko) | 열 발생 배출 경로를 갖는 타르 모래로부터 탄화수소를제조하기 위한 시스템 및 그 제조 방법 | |
CN102947539B (zh) | 传导对流回流干馏方法 | |
US6978837B2 (en) | Production of natural gas from hydrates | |
US9022109B2 (en) | Leak detection in circulated fluid systems for heating subsurface formations | |
CN102428252B (zh) | 用于从页岩原位提取油的方法和系统 | |
CN100540843C (zh) | 利用自然分布型燃烧器对含烃岩层进行就地热处理的方法 | |
CN106460486A (zh) | 热能传递和石油开采装置及其方法 | |
EA019751B1 (ru) | Способ и система для обработки подземного углеводородсодержащего пласта | |
AU2002359315A1 (en) | In situ thermal processing of a hydrocarbon containing formation via backproducing through a heater well | |
RU2303128C2 (ru) | Термообработка углеводородсодержащего пласта по месту залегания посредством обратной добычи через обогреваемую скважину | |
CN100359128C (zh) | 在对含烃地层进行就地热处理过程中阻止井眼变形的方法 | |
CN204729075U (zh) | 一种石油热采系统 | |
US9163490B1 (en) | Oil shale production system using a thermal-energy-carrier fluid for creating a porous heating element in a highly permeable zone | |
AU2011237624B2 (en) | Leak detection in circulated fluid systems for heating subsurface formations | |
US20150285032A1 (en) | Methods and apparatus for storage and recovery of hydrocarbon fluids | |
RU2741644C1 (ru) | Способ разработки месторождений трудноизвлекаемых углеводородов | |
RU2323332C2 (ru) | Тепловая обработка углеводородсодержащего пласта по месту залегания с использованием естественно распределенной камеры сгорания | |
IL222203A (en) | Methods and facility for the storage and production of hydrocarbon liquids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120111 Termination date: 20160421 |
|
CF01 | Termination of patent right due to non-payment of annual fee |