EA000108B1 - Способ получения окислов алкиленов путем эпоксидирования олефинов ароматическими пероксикарбоновыми кислотами - Google Patents

Способ получения окислов алкиленов путем эпоксидирования олефинов ароматическими пероксикарбоновыми кислотами Download PDF

Info

Publication number
EA000108B1
EA000108B1 EA199700187A EA199700187A EA000108B1 EA 000108 B1 EA000108 B1 EA 000108B1 EA 199700187 A EA199700187 A EA 199700187A EA 199700187 A EA199700187 A EA 199700187A EA 000108 B1 EA000108 B1 EA 000108B1
Authority
EA
Eurasian Patent Office
Prior art keywords
aromatic
hundred
carbon atoms
acid
solvent
Prior art date
Application number
EA199700187A
Other languages
English (en)
Other versions
EA199700187A1 (ru
Inventor
Йоаким Хенрик Телес
Вернер Шнур
Рольф Фишер
Норберт Рибер
Михаель Шульц
Original Assignee
Басф Акциенгезельшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Басф Акциенгезельшафт filed Critical Басф Акциенгезельшафт
Publication of EA199700187A1 publication Critical patent/EA199700187A1/ru
Publication of EA000108B1 publication Critical patent/EA000108B1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/41Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by hydrogenolysis or reduction of carboxylic groups or functional derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C407/00Preparation of peroxy compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/14Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic peracids, or salts, anhydrides or esters thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

Настоящее изобретение относится к улучшенному способу получения эпоксидов, в частности окислов алкиленов, путем эпоксидирования олефинов ароматическими пероксикарбоновыми кислотами.
Эпоксидирование олефинов с помощью пероксикарбоновых кислот, в частности с помощью м-хлорпероксибензойной кислоты, является для синтеза эпоксидов хорошо разработанным лабораторным методом.
В специальной химической литературе этот метод подробно описан, например, Y.Sawaki у S.Patai (издатель), Chem. Hydroxyl, Ether Peroxide Groups, стр. 590-593 (1993).
Однако для получения эпоксидов в большом масштабе этот метод мало подходит, т. к. пероксикарбоновые кислоты используют в стехиометрических количествах и для регенерации образующейся карбоновой кислоты требуется больший расход перекиси водорода.
Поэтому в основу настоящего изобретения была положена задача выработать способ получения окислов алкиленов путем эпоксидирования олефинов с помощью ароматических пероксикарбоновых кислот, который дает возможность простой, надежно выполнимой и экономичной повторной переработки образующихся карбоновых кислот в пероксикарбоновые кислоты без применения перекиси водорода.
В соответствии с этим был найден способ получения окислов алкилена путем эпоксидирования олефинов ароматическими пероксикарбоновыми кислотами, который заключается в том, что после произведенного эпоксидирования (стадия А) полученные ароматические карбоновые кислоты отделяют от эпоксидов, на стадии Б каталитически гидрируют в соответствующие ароматические альдегиды и на стадии В полученные альдегиды окисляют кислородом или содержащей кислород газовой смесью до ароматических пероксикарбоновых кислот, которые рециркулируют на эпоксидирование.
С помощью этого способа в соответствии со стадией А можно, в принципе, эпоксидировать любой олефин. Предпочтительны те олефины, которые непосредственно на двойной связи несут не более одного притягивающего электрон заместителя. Особенно предпочтительны олефины без притягивающих электроны заместителей на двойной связи. Примерами широко применимых олефинов являются линейные или разветвленные олефины с 7-40 атомами углерода, в частности олефины с 3-24 атомами углерода, такие как этилен, пропен, 1 -бутен, 2бутен, изобутен, 1 -пентен, 2-пентен, 1 -гексен, 1 гептен, 1 -октен, 2,4,4-триметил-1 -пентен, 2,4,4триметил-2-пентен, 1 -нонен, 1 -декан, 1 -додецен, 1 -тетрадецен, 1 -гексадецен, 1 -октадецен, олефин с 20 атомами углерода, олефин с 22 атомами углерода, олефин с 24 атомами углерода, олефин с 28 атомами углерода, олефин с 30 атомами углерода, или циклические олефины, такие как циклопропен, циклобутен, циклопентен, циклогексен, циклооктен, винилалкиловые эфиры, такие как винилметиловый эфир, винилэтиловый эфир или винилбутиловый эфир, аллилхлорид, аллиловый спирт, винилацетат, винилпропионат, стирол, а также соединения с многими олефиновыми двойными связями, такие как 1,3-бутадиен, изопропен, циклопентадиен или циклооктадиен. Применяют также и смеси олефинов.
Особенно хорошо подходит соответствующий изобретению способ для эпоксидирования пропена в окись пропилена.
В качестве ароматических пероксикарбоновых кислот подходят прежде всего соединения с общей формулой I
в которой заместители от R1 до R3 независимо друг от друга означают водород, алкил с 1-6 атомами углерода, циклоалкил с 3-8 атомами углерода, арил с 6-1 4 атомами углерода, фенилалкил с 7-1 2 атомами углерода, галоген, алкокси с 1-6 атомами углерода, циклоалкокси с 3-8 атомами углерода, арилокси с 6-1 4 атомами углерода или фенилалкокси с 7-1 2 атомами углерода и один из заместителей от R1 до R3 также могут означать другую пероксикарбоксильную группу или карбоксильную группу.
В частности, заместители от R1 до R3 независимо друг от друга имеют следующее значение:
- водород;
- алкил с 1 -6 атомами углерода, преимущественно алкил с 1 -4 атомами углерода, такие как метил, этил, н-пропил, изо-пропил, н-бутил, изобутил, вторичный бутил, третичный бутил, нпентил или н-гексил, особенно метил или третичный бутил;
- циклоалкил с 3-8 атомами углерода, такие как циклопропил, циклобутил, циклопентил, циклогексил, циклогептил или циклооктил, в частности циклопентил или циклогексил или замещенный циклоалкил с 3-8 атомами углерода, в частности 1 -метилциклопентил или 1 -метилциклогексил;
- арил с 6-1 4 атомами углерода, такие как фенил, 1 -нафтил, 2-нафтил 1 -антрил, 2-антрил или 9-антрил, в частности фенил;
- фенилалкил с 7-1 2 атомами углерода, такие как 1 -метил-1 -фенилэтил, бензил, 1 фенилэтил, 2-фенилэтил, 1 -фенилпропил, 2фенилпропил, 3-фенилпропил, 1-фенилбутил, 2фенилбутил, 3-фенилбутил или 4-фенилбутил, в частности 1 -метил-1 -фенилэтил;
- галогены, такие как фтор, хлор или бром;
- алкокси с 1-6 атомами углерода, циклоалкокси с 3-8 атомами углерода, арилокси с 6-14 атомами углерода или фенилалкокси с 7-12 атомами углерода, причем указанные алкильные остатки и арильный остаток имеют вышеуказанные предпочтительные значения;
-для одного из заместителей от R1 до R3 пероксикарбоксил или карбоксил;
Далее предпочтительными являются ароматические пероксикарбоновые кислоты 1 , которые имеют одну, две или три метильных группы в качестве заместителей от R1 до R3.
Примерами применяемых ароматических пероксикарбоновых кислот являются в частности пероксибензойные кислоты, 2-метилпероксибензойная кислота (о-перокситолуиловая кислота), 3-метилпероксибензойная кислота (м-перокситолуиловая кислота), 4метилпероксибензойная кислота (п-перокситолуиловая кислота), 2,4- и 3,5-диметилпероксибензойная кислота, 2,4,6-триметилпероксибензойная кислота, 4трет. бутилпероксибензойная кислота, 2-метил4-трет.бутилпероксибензойная кислота, 2-метил-4-трет.бутилпероксибензойная кислота, 2,6диметил-4-трет. бутилпероксибензойная кислота, 2-, 3- или 4-этилпероксибензойная кислота, 4-(1 -метилциклогексил) пероксибензойная кислота, 4-(1 -метилциклопентил) пероксибензойная кислота, 4-фенилпероксибензойная кислота, 3-хлорпероксибензойная кислота, 4-метоксиили 4-этоксипероксибензойная кислота, 4метокси- или 4-этокси-2,6-диметилпероксибензойная кислота, бис-пероксифталевая кислота, монопероксифталевая кислота, бисперокситерефталевая кислота и моноперокситерефталевая кислота. Также применяют смеси названных ароматических пероксикарбоновых кислот. Особенно предпочтительна о-перокситолуиловая кислота.
Соответствующая изобретению стадия А касательно эпоксидирования олефинов описана в литературе.
Как правило, эпоксидирование проводят следующим образом.
Ароматические пероксикарбоновые кислоты, растворенные в подходящем растворителе, подвергают реакции с олефином. Молярное соотношение олефина относительно пероксикарбоновой кислоты составляет от 0,8:1 до 100:1, в частности от 1:1 до 20:1, прежде всего от 1,5:1 до 5:1.
Используемый раствор пероксикарбоновой кислоты получают растворением в растворителе выделенной пероксикарбоновой кислоты. Однако, предпочтительно используют непосредственно тот раствор, который был получен на стадии окисления В (при известных условиях после стадии очистки, в которой пероксикарбоновая кислота остается в растворе).
В качестве органических растворителей для пероксикарбоновых кислот при эпоксидировании используют, например, кетоны (например, ацетон, бутанон или третичный бутилметилкетон), сложные эфиры (например, метил- и этилацетат или метилбензоат), нитросоединения (например, нитрометан или нитробензол), галогенозамещенные углеводороды (например, ди- и трихлорметан, 1,1,1-трихлорэтан или хлорбензол), карбонаты (например, диметилкарбонат), карбамидные производные (например, тетраметилкарбамид), неорганические эфиры или амиды (например, триметилфосфат или гексаметилтриамид ортофосфорной кислоты), углеводороды (например, гексан или гептан), или ароматические алкилуглеводороды (например, бензол, толуол или ксилол). Особенно предпочтительно, однако, применение тех же растворителей, что и при окислении на стадии В. Особенно предпочтительными растворителями для обеих стадий являются ацетон, метилацетат и этилацетат.
Эпоксидирование проводят, например, при температуре от -20 до 100° С, в зависимости от растворителя и олефина. При применении ацетона в качестве растворителя и конечных олефинов (как, например, 1-октена или пропена) в качестве субстрата предпочтительны температуры от 25 до 80 °С. Особенно предпочтительны температуры от 45 до 65°С.
При относительно высокой температуре 45°С или выше неожиданно намного быстрее реагирует олефин по отношению к эпоксиду, чем при известных условиях еще существующий альдегид на стадии Б по отношению к карбоновой кислоте.
Отделение возникающих из ароматических пероксикарбоновых кислот на стадии А ароматических карбоновых кислот от окислительных продуктов, в частности окислов алкенов, происходит согласно обычным методам, например путем фильтрации, экстракции или дистилляции. Каталитическое гидрирование ароматических карбоновых кислот на стадии Б происходит преимущественно в газовой фазе с помощью водорода в присутствии катализатора лантанида/двуокиси циркония. Подобные катализаторы известны из немецкой патентной заявки Р 44 28 994.4 как катализаторы гидрогенизации для переведения ароматических карбоновых кислот в соответствующие альдегиды.
Стадия Б соответствующего изобретению способа производится следующим образом.
Гидрирование ароматических карбоновых кислот с помощью водорода в присутствии катализатора, каталитически активная масса которого содержит от 60 до 99,9, в частности от 80 до 99,9 вес.% двуокиси циркония (ZrO2 ) и от 0,1 до 40, в частности от 0,1 до 20 вес.% одного или нескольких элементов лантанидов, проводится как правило при температурах от 200 до 450°С, преимущественно от 250 до 400°С, в частности от 300 до 380°С, и давлениях от 0,1 до 20 бар, преимущественно от 0,7 до 5 бар, в частности при атмосферном (нормальном) давлении. Тре5 буемая температура и требуемое давление зависят от активности катализатора и термической стабильности исходного соединения и продукта.
В качестве катализаторов подходят как катализаторы на носителе, так и катализаторы без носителя, преимущественно катализаторы из двуокиси циркония в кубической, тетрагональной или моноклинной фазе, которые легированы одним или несколькими элементами из ряда лантанидов. Каталитически активная масса содержит преимущественно от 90 до 99,9 вес.%, в частности от 92 до 99 вес.% двуокиси циркония и от 0,1 до 10 вес.%, в частности от 1 до 8 вес.% одного или нескольких элементов лантанидов, в частности лантана, церия, празеодима, неодима, самария, европия или их смесей, прежде всего лантана как окиси лантана (III). Легирование происходит, как правило, путем пропитывания двуокиси циркония солевыми растворами (водными или спиртовыми) лантанидов.
Катализатор может дополнительно содержать другие примеси (например, хром, железо, иттрий, гафний, марганец) в количествах от 0,001 до 10 вес.%. Однако предпочтительны катализаторы без подобных добавок.
Поверхность по БЭТ двуокиси циркония колеблется в широких пределах, но составляет как правило от 5 до 150 м2/г, преимущественно от 20 до 150 м2/г, особенно от 40 до 120 м2/г.
Подобные катализаторы изготавливают известным образом, например путем пропитывания предварительно сформованных носителей в виде окатышей, шариков или жгутов, сушки и кальцинирования.
Преимущественно применяемые катализаторы на носителе показывают высокую активность по истечении долгого промежутка времени. Дезактивированные катализаторы можно регенерировать путем обработки газами, содержащими молекулярный кислород, например воздухом, при температурах от 350 до 500° С.
В общем, регулируют нагрузку катализатора от 0,01 до 10, преимущественно от 0,01 до 3 кг ароматической карбоновой кислоты на кг катализатора и в час.
Концентрация водорода в исходном газе зависит от концентрации карбоновой кислоты. Молярное соотношение водорода и ароматической карбоновой кислоты составляет как правило от 2:1 до 70:1. В качестве источника водорода также используют муравьиную кислоту.
Также является, например, полезной добавка инертного разбавителя. Как правило применяются азот, вода или газообразные, инертные при условиях реакции соединения, такие как углеводороды, ароматические углеводороды или эфиры.
Реакцию проводят в газовой фазе либо на неподвижном слое катализатора с подачей реагентов снизу или сверху, или на псевдоожиженном слое катализатора. Предпочтительной является работа на неподвижном слое катализатора.
Для повышения селективности образующиеся при гидрировании побочные продукты, например спирты, можно рециркулировать в синтез.
Содержащая ароматический альдегид смесь из стадии Б, при необходимости после стадии очистки, на стадии В соответственно поглощается подходящим растворителем и окисляется в жидкой фазе с помощью кислорода или содержащей кислород газовой смеси до соответствующих ароматических перкарбоновых кислот. При этом работают преимущественно при температурах от-10 до 100°С и парциальном давлении кислорода от 0,001 до 100 бар.
Из DE-A 25 15 033 известно, что птолуиловый альдегид окисляют, например, в растворе ацетона с помощью воздуха при 28°С и 30 бар без катализатора примерно с 80%-ным выходом п-перокситолуиловой кислоты. Столь высокие выходы достигают, однако, лишь тогда, когда используют п-толуиловый альдегид высокой чистоты и не содержащий воды ацетон.
Стадию В соответствующего изобретению способа обычно проводят следующим образом.
Концентрация ароматического альдегида в растворителе составляет, например, от 1 до 75 вес.%. При этом предпочитаются концентрации от 5 до 35 вес.%, особенно от 8 до 20 вес.%.
Кислород или содержащую кислород газовую смесь, либо в газообразном состоянии, либо как раствор, при необходимости также и под давлением, подвергают реакции с ароматическим альдегидом. Парциальное давление кислорода составляет преимущественно от 0,01 до 30 бар, в частности от 0,05 до 5 бар.
Окисление проводят одно- или двухфазно. Для однофазного режима проведения подходят реакторы, в которых раствор ароматического альдегида подвергают реакции с раствором кислорода, при необходимости под давлением, например трубчатые реакторы или котлы с мешалкой, снабженные лотком. Для двухфазного режима проведения подходят реакторы, которые осуществляют хорошее размешивание газа/жидкости, такие как барботажные колонны (с или без разделительных пластин или насадок), котлы с мешалкой (при необходимости с мешалкой для обработки газом или при необходимости установленные в виде каскада) или оросительные реакторы.
Температура реакции составляет преимущественно от 0 до 60°С, в частности от 15 до 40°С.
Время реакции выбирают таким образом, чтобы степень превращения альдегида достигала от 40 до 1 00%. Предпочтительно время реакции, в течение которого степень превращения альдегида достигает от 60 до 99%. Особенно предпочтительно то время реакции, в течение которого степень превращения альдегида достигает значения между 75 и 95%.
При окислении можно также добавлять стабилизатор для образованной пероксикарбоновой кислоты, например, 8гидроксихинолин, дипиколиновая кислота или 2,6-дигидроксиметилпиридин.
В качестве органических растворителей для стадии В применяют, например, кетоны (например, ацетон, бутанон или третичный бутилметилкетон), сложные эфиры (например, метил- и этилацетат или метилбензоат), нитросоединения (например, нитрометан или нитробензол), галогенозамещенные углеводороды (например, ди- и трихлорметан, 1,1,1трихлорэтан или хлорбензол), карбонаты (например, диметилкарбонат), производные карбамида (например, тетраметилкарбамид), неорганические эфиры или амиды (например, триметилфосфат или гексаметилтриамид фосфорной кислоты) или алкильные ароматические углеводороды (например, бензол, толуол или ксилол). Предпочтение отдается кетонам, в частности ацетону и третичному бутилметилкетону, и сложным эфирам, в частности метил- и этилацетату и метилбензоату.
Ароматические перкарбоновые кислоты либо выделяют (например, путем осаждения), либо используют без выделения (т.е. в растворе) снова непосредственно на стадии А.
Неожиданно то, что о-толуиловый альдегид можно окислять быстрее, чем изомерный птолуиловый альдегид.
Способ согласно изобретению имеет то преимущество, что ароматические пероксикарбоновые кислоты регенерируют после окисления или эпоксидирования без использования перекиси водорода. Ароматическая пероксикарбоновая кислота действует только как переносчик кислорода и практически не расходуется. Стехиометрия для общего способа означает в случае эпоксидирования: олефин + О2 + Н2 окись алкилена + Н2О. Схема реакции эпоксидирования с применением ароматических пероксикарбоновых кислот I выглядит следующим образом:
Пример 1. Эпоксидирование 1-октена с помощью п-перокситолуиловой кислоты в ацетоне.
г 8,3%-ного по весу раствора пперокситолуиловой кислоты в ацетоне смешивают с 4,6 г (1,5 эквивалента) 1-октена и перемешивают при 40°С. Через 5 ч конверсия пероксикислоты составляет примерно 90%. Селективность образования окиси октена составляет около 80% относительно пероксикислоты и >95% относительно 1-октена. Температура реакции может быть повышена без существенного снижения селективности. При температуре реакции 60°С степень превращения пероксикислоты составляет через 2 ч уже около 90%. Селективность образования окиси октена напротив остается неизменной по сравнению с опытом при 40°С.
Пример 2. Эпоксидирование пропена с помощью п-перокситолуиловой кислоты в ацетоне.
г 8,4%-ного по весу раствора пперокситолуиловой кислоты в ацетоне помещают в 50 мл стеклянный автоклав, добавляют 2,4 г пропена (3 эквивалента) и перемешивают 4,5 ч при температуре 60°С. Степень превращения пероксикислоты составляет 94%. Селективность образования окиси пропилена относительно пероксикислоты составляет >95%.
Пример 3. Эпоксидирование 1 -октена с помощью о-перокситолуиловой кислоты в ацетоне.
100 г 11,2%-ного по весу раствора оперокситолуиловой кислоты в ацетоне смешивают с 16,8 г 2-октена (2 эквивалента) и перемешивают при 60°С. Через 1 ч степень превращения пероксикислоты составляет 92%. Селективность образования окиси октена составляет 97% относительно о-перокситолуиловой кислоты.
Пример 4. Получение катализатора для гидрирования на стадии Б.
Моноклинную ZrO2 (поверхность по БЭТ: от 40 до 85 м2/г) в виде таблеток (катализатор А и Д) или жгутов (катализатор Б, В и Г) пропитывают с помощью водного раствора нитрата лантанида (или с помощью водного раствора нитратов лантанида) при хорошем перемешивании и выдерживают 2 ч при комнатной температуре. Наконец, катализатор сушат 1 5 ч при 1 20°С и затем подвергают термической обработке в течение от 2 до 4 ч при температуре от 400 до 500°С.
Полученные таким образом катализаторы имеют следующее содержание лантанидов:
Катализатор А (поверхность 67 м2/г)
вес.% лантана;
Катализатор Б (поверхность 46 м2/г)
вес.% празеодима; м2/г)
Катализатор В (поверхность 46
вес.% церия; м2/г)
Катализатор Г (поверхность 46
вес.% лантанида;
(Распределение: 48,2 вес.% CeO2, 26,4 вес.% La2O3, 5,7 вес.% Рг2О3 и 19,7 вес.% ЖО3);
Катализатор Д (поверхность 53 м2/г): 3 вес.% лантана.
Примеры от 5а до 5и. Гидрирование 4замещенных ароматических карбоновых кислот.
При известных условиях растворяют от 4 до 8 г в час ароматических карбоновых кислот в тетрагидрофуране (ТГФ), направляют в выпарной аппарат (<300°С) и оттуда с помощью 100 л/ч водорода подвергают распылению над 1 00 г катализатора. Газообразный продукт реакции конденсируют в низкотемпературной ловушке и анализируют газохроматографическим методом. Применяемые кислоты и результаты обобщены в табл.1.
Пример 6. Гидрирование 3-метилбензойной кислоты.
С помощью 1 00 л/ч водорода выпаривают 8 г в час 3-метилбензойной кислоты (в качестве расплава) и при 360°С пропускают над 100 г катализатора Д. Газообразный продукт реакции конденсируют в низкотемпературной ловушке и анализируют газохроматографическим методом. Выход 3-метилбензальдегида составляет 92% (степень превращения 99%).
Пример 7. Гидрирование 2-метилбензойной кислоты.
С помощью 200 л/ч водорода выпаривают 8 г/ч 2-метилбензойной кислоты (в качестве расплава) и при 350°С пропускают над 100 г катализатора Д. Газообразный продукт реакции конденсируют в низкотемпературной ловушке и анализируют газохроматографическим методом. Выход 3-метилбензальдегида составляет 93% (степень превращения 99%).
Примеры от 8а до 8д. Окисление ароматических альдегидов с помощью воздуха до пероксикарбоновых кислот в ацетоне.
Раствор ароматического альдегида (10 вес.% в ацетоне) окисляют воздухом при 30°С в колбе с четырьмя горлышками с трубкой для подведения газа, высокоскоростной мешалкой Геша и дефлегматором. Концентрацию пероксикислоты определяют йодометрически. Другие компоненты определяют с помощью газовой хроматографии (после восстановления пероксикислоты с помощью трибутилфосфита). Применяемые альдегиды и результаты сведены в табл.2.
Таблица 2
При- мер № Альдегид Время реакции, ч Выход альдегида, % Селективность образования пероксикислоты, %
бензаль- дегид 2 34 77
п-толу- иловый альдегид 7 84 83
м-толуиловый альдегид 6 90 82
о-толуиловый альдегид 4 80 93
п-метокси- бензаль- дегид 1 37 72
Пример 9. Окисление п-толуилового альдегида в метилацетате.
П-толуиловый альдегид окисляют как в примере 8б, но вместо ацетона в качестве растворителя используют метилацетат. Через 7 ч времени реакции конверсия альдегида составляет 62%. Селективность образования птолуиловой пероксикислоты составляет 69%.
Пример 10. Окисление о-толуилового альдегида кислородом под давлением.
Раствор, содержащий 10 вес.% отолуилового альдегида в ацетоне, окисляют чистым кислородом при 5 бар и 30°С в 10 мл стеклянном автоклаве с магнитной мешалкой. Через 1,5 ч было превращено около 80% альдегида. О-толуиловая пероксикислота образовалась с селективностью >90%. Остаток состоял в основном из о-толуиловой кислоты. Побочные продукты, такие как фталид, толуол, о-крезол и о-крезолформиат, образуются в количестве лишь примерно 0,2%.
Окисление можно проводить также и в более концентрированных растворах. Окисление раствора, содержащего 20 вес.% о-толуилового альдегида (30°С, 5 бар, кислород, время реакции 3 ч) дает соответствующую пероксикислоту с селективностью около 93% (конверсия альдегида 90%).

Claims (2)

ФОРМУЛА ИЗОБРЕТЕНИЯ
1) Заместитель на 4-ой позиции карбоновой кислоты.
1 . Способ получения окислов алкиленов путем эпоксидирования олефинов ароматическими пероксикарбоновыми кислотами, отличающийся тем, что после произведенного эпоксидирования олефинов (стадия А) полученные ароматические карбоновые кислоты отделяют от эпоксидов, каталитически гидрируют их в соответствующие ароматические альдегиды (стадия Б) и полученные альдегиды окисляют кислородом или кислородсодержащей газовой смесью до ароматических пероксикарбоновых кислот (стадия В), которые рециркулируют на эпоксидирование олефинов.
2. Способ по п.1, отличающийся тем, что в качестве олефина используют пропилен.
3. Способ по п.1 или 2, отличающийся тем, что в качестве ароматических пероксикарбоновых кислот применяют соединения с общей формулой I в которой заместители от R1 * до R3, независимо друг от друга, означают водород, алкил с 1-6 атомами углерода, циклоалкил с 3-8 атомами углерода, арил с 6-14 атомами углерода, фенилалкил с 7-12 атомами углерода, галоген, алкокси с 1-6 атомами углерода, циклоалкокси с 3-8 атомами углерода, арилокси с 6-1 4 атомами углерода или фенилалкокси с 7-1 2 атомами углерода и один из заместителей от R1 до R3 также может означать другую пероксикарбоновую группу или карбоксильную группу.
4. Способ по пп. от 1 до 3, отличающийся тем, что каталитическое гидрирование ароматических карбоновых кислот на стадии Б проводят в газовой фазе с помощью водорода в присутствии катализатора-лантанида/двуокиси циркония.
5. Способ по пп. от 1 до 3, отличающийся тем, что окисление ароматических альдегидов в стадии В проводят в жидкой фазе в подходящем растворителе при температурах от -10 до 100°С и парциальных давлениях кислорода от 0,001 до 1 00 бар.
6. Способ по пп. от 1 до 3, отличающийся тем, что эпоксидирование производят в растворителе.
7. Способ по п.1, отличающийся тем, что эпоксидирование и окисление альдегидов проводят в одинаковом растворителе.
8. Способ по п.7, отличающийся тем, что в качестве растворителя применяют ацетон, метилацетат или этилацетат.
9. Способ по п.3, отличающийся тем, что в качестве пероксикарбоновой кислоты применяют о-перокситолуиловую кислоту.
Таблица 1
№ примера Ката- лиза- тор Карбо- новая кислота R1) Конц. кар- боновой кисло- ты, вес.% 2) Тем- пера- тура реак- тора, °С Выход альде- гида, % Степень превращения, % Селективность, % А Н 100 340 98 100 98 А Н 20 350 98 100 98 А метил 100 340 96 99 97 А трет-бу- тил 100 340 90 94 96 А трет-бу- тил 20 340 93 97 96 А метил 10 350 77 99 78 Б Н 100 360 95 100 95 В Н 100 360 96 100 96 Г Н 100 360 97 99 98
2) В растворителе (ТГФ), при 100 вес.% чистой карбоновой кислоты без растворителя.
EA199700187A 1995-02-21 1996-02-10 Способ получения окислов алкиленов путем эпоксидирования олефинов ароматическими пероксикарбоновыми кислотами EA000108B1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19505858A DE19505858A1 (de) 1995-02-21 1995-02-21 Verfahren zur Herstellung von Epoxiden mittels aromatischer Peroxycarbonsäuren
PCT/EP1996/000578 WO1996026198A1 (de) 1995-02-21 1996-02-10 Verfahren zur herstellung von epoxiden mittels aromatischer peroxycarbonsäuren

Publications (2)

Publication Number Publication Date
EA199700187A1 EA199700187A1 (ru) 1997-12-30
EA000108B1 true EA000108B1 (ru) 1998-08-27

Family

ID=7754562

Family Applications (1)

Application Number Title Priority Date Filing Date
EA199700187A EA000108B1 (ru) 1995-02-21 1996-02-10 Способ получения окислов алкиленов путем эпоксидирования олефинов ароматическими пероксикарбоновыми кислотами

Country Status (17)

Country Link
US (1) US5808114A (ru)
EP (1) EP0811003B1 (ru)
JP (1) JPH11500135A (ru)
KR (1) KR19980702350A (ru)
CN (1) CN1175949A (ru)
AU (1) AU4830796A (ru)
BG (1) BG62166B1 (ru)
BR (1) BR9607257A (ru)
CA (1) CA2210696A1 (ru)
DE (2) DE19505858A1 (ru)
EA (1) EA000108B1 (ru)
ES (1) ES2121477T3 (ru)
HU (1) HU218097B (ru)
PL (1) PL321833A1 (ru)
SK (1) SK104197A3 (ru)
WO (1) WO1996026198A1 (ru)
ZA (1) ZA961312B (ru)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19806398B4 (de) * 1997-02-18 2017-01-26 Basf Se Verfahren zur Herstellung von Aldehyden
DE19936087B4 (de) * 1999-07-30 2004-07-01 Mtu Cfc Solutions Gmbh Matrix für Schmelzcarbonat-Brennstoffzellen sowie Verfahren zu ihrer Herstellung
CN108727561A (zh) * 2018-05-03 2018-11-02 中科院广州化学有限公司南雄材料生产基地 一种脂环族环氧树脂及其制备与应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1440125A (fr) * 1965-04-16 1966-05-27 Aquitaine Petrole Nouveau procédé d'époxydation des oléfines en phase liquide par l'eau oxygénée
DE2312281A1 (de) * 1973-03-13 1974-09-19 Metallgesellschaft Ag Verfahren zur herstellung von olefinoxiden
US3981909A (en) * 1974-04-08 1976-09-21 Mitsubishi Gas Chemical Company, Inc. Process for producing per-p-toluic acid and utilizing the same
US4010195A (en) * 1974-04-08 1977-03-01 Mitsubishi Gas Chemical Company, Inc. Process for producing methyl p-toluate
US4590286A (en) * 1985-10-28 1986-05-20 Fmc Corporation Process for epoxidizing an olefin
US5214168A (en) * 1992-04-30 1993-05-25 Arco Chemical Technology, L.P. Integrated process for epoxide production
EP0777639B1 (de) * 1994-08-16 1998-12-09 Basf Aktiengesellschaft Verfahren zur herstellung von aromatischen aldehyden
DE4428994A1 (de) * 1994-08-16 1996-02-22 Basf Ag Verfahren zur Herstellung von aromatischen Aldehyden

Also Published As

Publication number Publication date
EP0811003A1 (de) 1997-12-10
DE19505858A1 (de) 1996-10-31
EP0811003B1 (de) 1998-09-02
US5808114A (en) 1998-09-15
WO1996026198A1 (de) 1996-08-29
HU218097B (hu) 2000-05-28
JPH11500135A (ja) 1999-01-06
SK104197A3 (en) 1998-10-07
DE59600514D1 (de) 1998-10-08
ZA961312B (en) 1997-10-29
BR9607257A (pt) 1997-12-30
CN1175949A (zh) 1998-03-11
BG101824A (en) 1998-04-30
ES2121477T3 (es) 1998-11-16
CA2210696A1 (en) 1996-08-29
HUP9801678A3 (en) 1999-03-29
MX9706068A (es) 1997-10-31
BG62166B1 (bg) 1999-04-30
HUP9801678A2 (hu) 1998-11-30
KR19980702350A (ko) 1998-07-15
AU4830796A (en) 1996-09-11
PL321833A1 (en) 1997-12-22
EA199700187A1 (ru) 1997-12-30

Similar Documents

Publication Publication Date Title
US5466835A (en) Titanosilicate as an epoxidation catalyst for olefins
US5214168A (en) Integrated process for epoxide production
Beckman Production of H 2 O 2 in CO 2 and its use in the direct synthesis of propylene oxide
CA2117706A1 (en) Olefin epoxidation using a carbon molecular sieve impregnated with a transition metal
JP2000026440A (ja) チタノスタノシリカライトを含む触媒を用いるオレフィンのエポキシ化
US4303587A (en) Catalytic epoxidation of olefins
KR20010080171A (ko) 하나 이상의 탄소-탄소 이중결합을 함유하는 유기화합물의산화 방법
EP1874710A1 (en) Process for oxidizing organic substrates by means of singlet oxygen using a modified molybdate ldh catalyst
GB2182035A (en) Process for epoxidizing an olefin
IL27188A (en) Oxidation of ethylbenzene to ethylbenzene hydroperoxide and epoxidation of olefins by reaction with ethylbenzene hydroperoxide
EA000108B1 (ru) Способ получения окислов алкиленов путем эпоксидирования олефинов ароматическими пероксикарбоновыми кислотами
JP5481975B2 (ja) エポキシ化合物の製造法
CN113956216A (zh) 一种环氧苯乙烷及其制备方法
US4115410A (en) Process for making peroxycarboxylic acid
US3475498A (en) Process for preparing ethyl benzene hydroperoxide
US4483998A (en) Simultaneous epoxide and carboxylic acid manufacture by co-oxidation in the presence of a copper-boron-silver catalyst
EP1601660B1 (en) Process for the preparation of lactones or epoxides
US3265716A (en) Epoxidation of olefins during the simultaneous air oxidation of secondary aldehydes
US5760254A (en) Production of oxirane compounds
MXPA97006068A (en) Preparation of epoxides by means of aromati peroxicarboxilic acids
JP4186482B2 (ja) アリル化合物のエポキシ化触媒及びこれを使用するエポキシ化合物の製造方法
EP0226566B1 (en) Oxidation of 2-arylpropanals
EP0452411A4 (en) Acid catalyzed process
WO2023189723A1 (ja) 環状ジケトン化合物の製造方法
SU466221A1 (ru) Способ получени окиси олефина

Legal Events

Date Code Title Description
MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): AZ BY KZ KG TJ TM

MM4A Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s)

Designated state(s): RU