DE69910202T2 - EGR-1 zur Herstellung eines Medikamentes zur Behandlung von Wunden - Google Patents

EGR-1 zur Herstellung eines Medikamentes zur Behandlung von Wunden Download PDF

Info

Publication number
DE69910202T2
DE69910202T2 DE69910202T DE69910202T DE69910202T2 DE 69910202 T2 DE69910202 T2 DE 69910202T2 DE 69910202 T DE69910202 T DE 69910202T DE 69910202 T DE69910202 T DE 69910202T DE 69910202 T2 DE69910202 T2 DE 69910202T2
Authority
DE
Germany
Prior art keywords
egr
sequence
nucleic acid
use according
polypeptide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE69910202T
Other languages
English (en)
Other versions
DE69910202D1 (de
Inventor
Martin Stevenage BRADDOCK
Jeffrey Callum Stevenage CAMPBELL
Jean-Luc Schwachtgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Glaxo Group Ltd
Original Assignee
Glaxo Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB9811836.7A external-priority patent/GB9811836D0/en
Priority claimed from GBGB9815035.2A external-priority patent/GB9815035D0/en
Priority claimed from GBGB9819846.8A external-priority patent/GB9819846D0/en
Priority claimed from GBGB9828578.6A external-priority patent/GB9828578D0/en
Application filed by Glaxo Group Ltd filed Critical Glaxo Group Ltd
Publication of DE69910202D1 publication Critical patent/DE69910202D1/de
Application granted granted Critical
Publication of DE69910202T2 publication Critical patent/DE69910202T2/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4705Regulators; Modulating activity stimulating, promoting or activating activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Immunology (AREA)
  • Dermatology (AREA)
  • Biotechnology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

  • Diese Erfindung betrifft die Verwendung von Polynucleotiden, die den frühen Wachstumsantwort-1-(Egr-1)-Transkriptionsfaktor codieren, bei der Herstellung eines Medikaments für Gentherapietechniken bei der Wundheilung und assoziierten Zuständen. Genauer betrifft sie eine neue Verwendung von Polynucleotiden, die den frühen Wachstumsantwort-1-(Egr-1)-Transkriptionsfaktor codieren, bei der Behandlung von Wunden, bei der Wundheilung und damit assoziierten Zuständen wie bei der Behandlung von Hautgeschwüren, die herrühren aus Ischämie und Neuropathie, welche assoziiert sind mit Diabetes, peripherer arterieller Verschlußkrankheit, tiefer Venenthrombose, chronischer Venenklappeninsuffizienz und Wundliegen; bei der Verringerung einer post-operativen Narbenbildung, die zum Beispiel assoziiert ist mit Katarakten, Hauttransplantatverfahren, Verbrennungen und Psoriasis; bei der Beschleunigung der Gewebeneugestaltung und -regeneration; bei der Wiederherstellung von festem Gewebe, zum Beispiel Knochen; bei der Weichteilwiederherstellung, zum Beispiel Sehnen, Ligamente und Muskel; bei der Förderung der Angiogenese; bei der Reendothelialisation nach perkutaner transluminaler Koronarangioplastie; bei der Hemmung einer linksventrikulären Herzhypertrophie; bei der Modulation einer Gefäßwandverkalkung; und bei der Förderung der Neuroregeneration.
  • Weitere Anwendungen können die Hemmung fibrotischer Zustände, zum Beispiel Lungen- und Leberfibrose, und die Vorbeugung von Haarausfall einschließen.
  • WO 94/23030 und US-5,206,152 offenbaren DNA-Sequenzen, die Egr-1-Proteine codieren, zusammen mit immunologischen Verfahren und Materialien zum Nachweis von Egr-Proteinen sowie Hybridisierungsverfahren und Materialien zum Nachweis und zur Quantifizierung von Nucleinsäuren, die mit dem Egr-Protein in Beziehung stehen.
  • Die Ausheilung von Haut schließt einen großen Bereich von zellulären, molekularen, physiologischen und biochemischen Ereignissen ein. Während des Heilungsprozesses wandern Zellen zu den Wundstellen, wo sie sich vermehren und extrazelluläre Matrixkomponenten synthetisieren, um ein Gewebe wiederherzustellen, sehr ähnlich zu dem unverletzten Original. Diese Aktivität wird durch Mediatoren reguliert, die durch Wundrandzellen sezerniert werden, wie der von Thrombocyten stammende Wachstumsfaktor (PDGF), der epidermale Wachstumsfaktor (EGF), der transformierende Wachstumsfaktor (TGF)-beta und andere Cytokine. Die vorteilhaften Wirkungen dieser Mittel auf Zellen ist sowohl in vitro als auch in vivo gezeigt worden (zusammengefaßt durch Moulin, Eur. J. Cell Biol. 68 (1995), 1– 7), einschließlich des Vorteils der Verabreichung von PDGF in Rattenmodellen von Diabetes (Brown et al., J. Surg. Res. 56 (1994), 562–570).
  • Im Laufe der letzten fünf Jahre wurde für zahlreiche Wachstumsfaktoren gezeigt, daß sie die Zellproliferation in vitro beschleunigen und die Wundheilung in Tiermodellen fördern. TGF-beta fand die größte Aufmerksamkeit im Zusammenhang mit der Wundheilung, da er die Zellproliferation, Differenzierung und Matrixproduktion fördert. TGF-beta, entweder topisch oder systemisch verabreicht, beschleunigt die Rate einer kutanen Wundheilung in Tiermodellen (Ashcroft et al., Nature Medicine 3 (1997), 1209–1215; Sporn und Roberts, J. Cell Biol. 119 (1997), 1017–1021; Beck et al., J. Clin. Invest. 92 (1993), 2841–2849). Desgleichen ist berichtet worden, daß PDGF die Reepithelisation und Revaskularisation in ischämischem Gewebe und diabetischen Tieren fördert (Uhl et al., Langenbecks Archiv für Chirurgie-Supplement-Kongreßband 114 (1997), 705–708, und zusammengefaßt bei Dirks und Bloemers, Mol. Biol. Reports 22 (1996), 1–24).
  • Der Transkriptionsfaktor Egr-1 ist ein potentieller Regulator von über 30 Genen und spielt eine Rolle beim Wachstum, bei der Entwicklung und bei der Differenzierung (zusammengefaßt bei Liu et a1., Crit. Rev. Oncogenesis 7 (1996), 101–125; Khachigian und Collins, Circ. Res. 81 (1997), 457–461). Egr-1 wird nach einer Verletzung des Gefäßendothels induziert (z. B. Khachigian et al., Science 271 (1996), 1427–1431), und Ziele für die transkriptionelle Aktivierung sind zahlreiche Gene, einschließlich der epidermale Wachstumsfaktor (EGF), der von Thrombocyten stammende Wachstumsfaktor-A (PDGF-A) und der basische Fibroblasten-Wachstumsfaktor (bFGF), und die Induktion von PDGF-A, PDGF-B, TGF-beta, bFGF, uro-Plasminogen-Aktivator (U-PA), Gewebefaktor und dem Insulinähnlichen Wachstumsfaktor-2 (IGF-2). WO 97/32979 stellt ein Verfahren zur Hemmung der Proliferation von Zellen bereit, umfassend die Hemmung der Induktion oder die Verringerung der Expression von Egr-1 oder die Verringerung der Anreicherung im Kern oder der Aktivität des Egr-1-Genprodukts zur Verringerung der Häufigkeit von Restenose in einem Individuum.
  • Der Transkriptionskomplex, der die Induktion des Gefäßendothel-Wachstumsfaktors (VEGF) vermittelt, hängt von AP2 und nicht direkt von Egr-1 ab (Gille et al., EMBO J. 16 (1997), 750–759). Jedoch wird die VEGF-Expression durch PDGF-B direkt hochreguliert (Finkenzeller, Oncogene 15 (1997), 669–676). Die Transkription von VEGF-mRNA wird durch eine Reihe von Faktoren verstärkt, einschließlich PDGF-B, bFGF, Keratinocyten- Wachstumsfaktor (KGF), EGF, Tumornekrosefaktor (TNF)-alpha und TGF-beta-1. Es wurde gezeigt, daß VEGF die Reepithelisation in einer Ballon verletzten Arterie fördert. Die bei Kaninchen erhaltenen Daten zeigten eine deutliche VEGF gesteuerte Passivierung von Metallstents, wobei eine Hemmung der Neointimabildung am Stent, eine Verringerung der Häufigkeit eines Thromboseverschlusses, eine Beschleunigung der Reendothelisation der Prothese und eine Erhöhung der vasomotorischen Aktivität hervorgerufen wurde (van Belle E. et al., Biochem. Biophys. Res. Comm. 235 (1997), 311–316; van Belle E. et al., J. Am. Coll. Cardiol. 29 (1997), 1371–1379; Asahara T. et al., Circulation 94 (1997), 3291–3302). Die NIH-Genehmigung für eine Pilotstudie über die Förderung der Reendothelisation durch VEGF bei Menschen wurde im Jahr 1996 erteilt. Zusätzlich ist auch gezeigt worden, daß HGF die Reendothelisation nach einer Ballonangioplastie in einem Rattenmodell einer Halsschlagaderverletzung fördert (Nakamura et al., Abstract 1681, American Heart Association Meeting, Dallas, 1998). In Tiermodellen ist gezeigt worden, daß die VEGF-gesteuerte Passivierung von Metallstents die Neointimabildung hemmt, die Reendothelisation beschleunigt und die vasomotorische Aktivität erhöht (Asahara et al., Circulation 94, 3291– 3302).
  • Über die VEGF-Expression bei der Heilung von Wunden und psoriatischer Haut wurde berichtet, beides Zustände, bei denen TGF-alpha und sein Ligand, der EGF-Rezeptor (EGFr), hochreguliert sind. Die Expression von EGF induziert Egr-1 (Iwami et al., Am. J. Physiol. 270 (1996), H2100–2107; Fang et al., Calcified Tissue International 57 (1995), 450– 455; J. Neuroscience Res. 36 (1993), 58–65). Gegenwärtig gibt es unveröffentlichte Hinweise, daß Egr-1 die Expression des interzellulären Adhäsionsmoleküls-1 (ICAM-1) in Phorbolester stimulierten B-Lymphocyten aktivieren kann (Maltzman et al., Mol. Cell. Biol. 16 (1996), 2283–2294) und die Expression von TNF-alpha auf Grund des Vorhandenseins einer Egr-1-Bindungsstelle im TNF-alpha-Promotor aktivieren kann (Kramer et al., Biochim. Biophys. Acta 1219 (1994), 413–421). Schließlich sind Egr-1-Knockout-Mäuse unfruchtbar und Luteinisierungshormon (LH)-defizient (Lee et al., Science 273 (1996), 1219–1221), was zeigt, daß der LH-Promotor auch ein Ziel für die Egr-1-Aktivierung sein kann.
  • Die Knochenbelastung, mechanische Dehnung und Flüssigkeitsströmung von Osteoblasten-ähnlichen MC3T3E1-Zellen induziert Egr-1 (Dolce et al., Archs. Oral Biol. 41 (1996), 1101–1118; Ogata, J. Cell Physiol. 170 (1997), 27–34), zusammen mit der gleichzeitigen Aktivierung von Wachstumsfaktoren. Die Egr-1-Expression überwiegt im Knorpel und Knochen der sich entwickelnden Maus (McMahon et al., Development 108, 281–287) und wurde mit der Regulation des Wachstums und der Differenzierung osteoblastischer Zellen in Verbindung gebracht (Chaudhary et al., Mol. Cell. Biochem. 156 (1996), 69–77). Egr-1 und der eng verwandte Zinkfinger-Transkriptionsfaktor Wilms-Tumor-1 (WT1) sind mit der Regulation der Osteoclastogenese in Verbindung gebracht worden (Kukita et al., Endocrinology 138 (1997), 4384–4389), und sowohl Prostacyclin-E2 (PGE2) als auch EGF werden durch Egr-1 induziert (Fang et al., Calcified Tissue International 57 (1995), 450–455; Fang et al., Prostaglandins, Leukotrienes and Essential Fatty Acids 54 (1996), 109–114). Die Gefäßverkalkung ist ein aktiv regulierter Prozeß, ähnlich der Knochenbildung, an dem Zellen und Faktoren beteiligt sind, von denen bekannt ist, daß sie bei der Regulation des Knochenstoffwechsels wichtig sind (zusammengefaßt bei Dermer et al., Trends Cardiovasc. Med. 4 (1994), 45–49). Regulatoren der Osteoblastogenese und/oder Osteoclastogenese können den Grad der Gefäßwandverkalkung modulieren.
  • Hypertrophische Reize wie eine hämodynamische Belastung und Angiotensin-II können verwendet werden, um die Produktion von Egr-1 unter der Kontrolle eines Myocytenspezifischen Promotors überwiegend negativ zu steuern, und finden Anwendung bei der Behandlung von Herzinsuffizienz.
  • Egr-1 ist für die Expression des p75-Nervenwachstumsfaktor (NGF)-Rezeptors in Schwann-Zellen wesentlich (Nikam et al., Mol. Cell. Neurosciences 6 (1995), 337–348). NGF induziert die Egr-1-Expression zusammen mit der gleichzeitigen Aktivierung von Wachstumsfaktoren (Kendall et al., Brain Research. Molecular Brain Research. 25 (1994), 73–79; Kujubu et al., Journal of Neuroscience Research 36 (1993), 58–65).
  • Es wird auch in Betracht gezogen, daß Egr-1 bei der Fließscherbeanspruchung eine Rolle spielt. Es wurde festgestellt, daß die Fließscherbeanspruchungsaktivierung der Egr-1-Transkription in gezüchteten menschlichen Endothel- und Epithelzellen über den mit extrazellulären Signalen in Beziehung stehenden, Kinase 1/2-Mitogen aktivierten Proteinkinaseweg vermittelt wird (Schwachtgen et al., J. Clin. Invest. 101(11) (1998), 2540–2549).
  • Es wurde nun festgestellt, daß die Verabreichung eines Polynucleotids, das den Transkriptionsfaktor Egr-1 codiert, an einer Verletzungsstelle und die folgende Expression davon eine beschleunigte Heilung fördert.
  • Folglich wird gemäß einem ersten Gesichtspunkt der vorliegenden Erfindung die Verwendung eines Nucleinsäuremoleküls, umfassend eine Sequenz, die ein Egr-1-Transkriptionsfaktor-Polypeptid oder ein biologisch aktives Fragment davon codiert, bei der Herstel lung eines Medikaments zur Behandlung von Wunden bei einem Säuger, einschließlich des Menschen, bereitgestellt.
  • Um irgendwelche Unklarheiten zu vermeiden, entspricht die Bezugnahme auf ein Polynucleotid einer Bezugnahme auf ein Nucleinsäuremolekül.
  • Gemäß einem zweiten Gesichtspunkt stellt die Erfindung ein Nucleinsäuremolekül, umfassend eine Sequenz, die ein Egr-1-Transkriptionsfaktor-Polypeptid oder ein biologisch aktives Fragment davon codiert, zur Verwendung bei der Herstellung eines Medikaments zur Behandlung von Wunden bereit.
  • Unter einem dritten Gesichtspunkt stellt die Erfindung ein Medikament, das ein Nucleinsäuremolekül, umfassend eine Sequenz, die Egr-1 oder ein biologisch aktives Fragment davon codiert, zusammen mit einem oder mehreren pharmazeutisch verträglichen Trägern davon umfaßt, zur Verwendung bei der Herstellung eines Medikaments zur Behandlung von Wunden bereit.
  • Die vorliegende Erfindung betrifft folglich die therapeutische Verwendung von Polynucleotiden, die einen Egr-1-Transkriptionsfaktor codieren, bei der Behandlung von Wunden. Die Erfindung betrifft auch die therapeutische Verwendung eines Egr-1-Transkriptionsfaktors selbst, wie nachstehend ausführlicher beschrieben, bei der Behandlung von Wunden.
  • Die Erfindung betrifft die Verwendung von Egr-1-Polypeptiden und Nucleinsäuresequenzen, die Egr-1 codieren, von irgendeiner Quelle oder Spezies. Die Proteinsequenzen sind zwischen den Arten stark konserviert, zum Beispiel mit 98% Homologie zwischen der Ratte und der Maus. Die murine Egr-1-DNA-Sequenz ist bekannt (Cell 53 (1988), 37–43). Die abgeleitete Aminosäuresequenz zeigt ein langes offenes Leseraster mit einem Stoppcodon (TAA) in Position 1858. Die abgeleitete Aminosäuresequenz sagt ein Polypeptid von 533 Aminosäuren mit einem Molekulargewicht von 56.596 voraus. Die entsprechenden Sequenzen von anderen Arten können durch Verfahren erhalten werden, die auf dem Fachgebiet bekannt sind, zum Beispiel durch die Durchmusterung von genomischen oder cDNA-Banken unter Verwendung von Oligonucleotidsequenzen, die auf der murinen Egr-1-Sequenz basieren oder davon abgeleitet sind, als Sonden. Es ist bekannt, daß sich der menschliche Egr-1 auf Chromosom 5, genauer bei 5g23–31 (Cell 53, 37–43), befindet. Die Sequenz der menschlichen Egr-1-cDNA ist in Nucleic Acids Research 18 (1990), S. 4283, beschrieben. Die Übereinstimmung zwischen den Sequenzen der Maus und des Menschen beträgt 87% bzw. 94% auf den Nucleosid- und Proteinebenen.
  • Die Bezugnahmen auf nachstehend beschriebene Egr-1-Polypeptide und -Polynucleotide sind allgemein auf die Sequenzen jeglichen Ursprungs, einschließlich der murinen Egr-1-DNA und entsprechenden Aminosäuresequenzen, wie veröffentlicht in Cell 53 (1988), 37–43, und der menschlichen Sequenz, wie veröffentlicht in Nucleic Acids Research 18 (1990), S. 4283, und auf Sequenzen aus anderen Arten anwendbar. So wie nachstehend beschrieben wird, schießt der Begriff Egr-1 auch Varianten, Fragmente und Analoga von Egr-1 ein. Am meisten bevorzugt wird die menschliche Sequenz verwendet.
  • Die folgenden veranschaulichenden Erklärungen werden bereitgestellt, um das Verständnis bestimmter Begriffe zu erleichtern, die hierin verwendet werden. Die Erklärungen werden der Einfachheit halber bereitgestellt und begrenzen die Erfindung nicht.
  • "Behandlung von Wunden" schließt ein die Behandlung von mit Wunden assoziierten Zuständen, die Wundheilung und assoziierte Zustände sowie eine Therapie, welche die Heilung von Geweben fördert, verstärkt oder beschleunigt, und schließt ein die Behandlung von Extremitätengeschwüren bei Diabetes und peripherer arterieller Verschlußkrankheit, postoperativer Narbenbildung, Verbrennungen und Psoriasis, die Beschleunigung der Gewebeneugestaltung und Knochenwiederherstellung und die Förderung der Angiogenese, Reendothelisation nach perkutaner transluminaler Koronarangioplastie, die Hemmung einer linksventrikulären Herzhypertrophie, die Modulation der Gefäßwandverkalkung und die Förderung einer Neuroregeneration. Der Begriff schließt ferner die Hemmung fibrotischer Zustände, zum Beispiel Lungen- und Leberfibrose, und die Vorbeugung vor Haarausfall ein.
  • Ein "biologisch aktives Fragment" von Egr-1, wie hierin erwähnt, ist ein Fragment, das eine Egr-1-Aktivität, einschließlich erfindungsgemäße Wundheilungseigenschaften, aufweist.
  • "Genetisches Element" bedeutet im allgemeinen ein Polynucleotid, umfassend eine Region, die ein Polypeptid codiert, oder eine Polynucleotidregion, welche die Replikation, Transkription oder Translation oder andere Prozesse, die für die Expression des Polypeptids in einer Wirtszelle wichtig sind, reguliert, oder ein Polynucleotid, umfassend sowohl eine Region, die ein Polypeptid codiert, als auch eine damit funktionell verbundene Region, welche die Expression reguliert. Genetische Elemente können innerhalb eines Vektors eingeschlossen sein, der als ein episomales Element repliziert; daß heißt, als ein Molekül, physikalisch unabhängig von dem Wirtszellgenom. Sie können innerhalb von Plasmiden eingeschlossen sein. Genetische Elemente können auch innerhalb eines Wirtszellgenoms eingeschlossen sein; nicht in ihrem natürlichen Zustand, sondern vielmehr nach einer Manipulation wie Isolierung, Clonierung und Einschleusung in eine Wirtszelle, unter anderem in Form einer gereinigten DNA oder in einem Vektor.
  • Eine "Wirtszelle" ist eine Zelle, die transformiert oder transfiziert worden ist oder durch eine exogene Polynucleotidsequenz zur Transformation oder Transfektion fähig ist. "Gleichartigkeit", so wie auf dem Fachgebiet bekannt, ist die Beziehung zwischen zwei oder mehreren Polypeptidsequenzen oder zwei oder mehreren Polynucleotidsequenzen, wie sie durch Vergleich der Sequenzen bestimmt wird. Auf dem Fachgebiet bezeichnet Gleichartigkeit auch den Grad der Sequenzverwandschaft zwischen Polypeptid- oder Polynucleotidsequenzen, je nach Sachlage, wie durch die Übereinstimmung zwischen Strängen solcher Sequenzen bestimmt wird. Die Gleichartigkeit kann leicht berechnet werden (Computational Molecular Biology, Lesk A. M., Hrsg., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith D. W., Hrsg., Academic Press, New York, 1993; Computer Analysis of Sequence Data, Teil I, Griffan A. M. und Griffan H. G., Hrsg., Humana Press, New Jersey, 1994; Sequence Analysis in Molecular Biology, von Heinje G., Academic Press, 1987; und Sequence Analysis Primer, Gribskov M. und Devereux J. Hrsg., M. Stockton Press, New York, 1991). Obwohl eine Reihe von Verfahren existiert, die Gleichartigkeit zwischen zwei Polynucleotid- oder zwei Polypeptidsequenzen zu messen, ist der Begriff den Fachleuten gut bekannt (Sequence Analysis in Molecular Biology, von Heinje G., Academic Press, 1987; Sequence Analysis Primer, Gribskov M. und Devereux J., Hrsg., M. Stockton Press, New York, 1991; und Carillo H. und Lipman D., SIAM J. Applied Math. 48 (1988), 1073). Gewöhnlich zur Bestimmung der Gleichartigkeit zwischen Sequenzen angewendete Verfahren schließen solche ein, aber sind nicht darauf begrenzt, die bei Carillo H. und Lipman D., SIAM J. Applied Math. 48 (1988), 1073, offenbart sind. Bevorzugte Verfahren zur Bestimmung der Gleichartigkeit sind derart ausgelegt, daß die größte Übereinstimmung zwischen den getesteten Sequenzen erhalten wird: Verfahren zur Bestimmung der Gleichartigkeit sind in Computerprogrammen erfasst. Bevorzugte Computerprogramm-Verfahren zur Bestimmung der Gleichartigkeit zwischen zwei Sequenzen schließen ein, aber sind nicht begrenzt auf, das GCG-Programmpaket (Devereux J. et al., Nucleic Acids Research 12(1) (1984), 387), BLASTP, BLASTN und FASTA (Atschul S. F. et al., J. Molec. Biol. 215 (1990), 403).
  • "Isoliert" bedeutet, "durch die Hand des Menschen" aus dem natürlichen Zustand verändert; d. h. daß, falls ein Molekül in der Natur vorkommt, es verändert oder aus seiner ursprünglichen Umgebung entfernt worden ist, oder beides. Zum Beispiel ist ein natürlich vorkommendes Polynucleotid oder Polypeptid, das natürlicherweise in einem lebenden Organismus vorhanden ist, in seinem natürlichen Zustand nicht "isoliert", aber das gleiche Polynucleotid oder Polypeptid, getrennt von den gleichzeitig vorhandenen Materialien seines natürlichen Zustandes, ist "isoliert", so wie der Begriff hierin verwendet wird. Als Teil oder nach einer Isolierung können solche Polynucleotide mit anderen Polynucleotiden wie DNAs zum Beispiel für die Mutagenese, zur Bildung von Fusionsproteinen und zur Vermehrung oder Expression in einem Wirt verknüpft werden. Die isolierten Polynucleotide, allein oder verknüpft mit anderen Polynucleotidsequenzen wie in Form von Vektoren können in Wirtszellen, in eine Kultur oder in ganze Organismen eingeschleust werden. Eingeschleust in Wirtszellen in Kultur oder in ganze Organismen wären solche DNAs immer noch isoliert, so wie der Begriff hierin verwendet wird, da sie nicht in ihrer natürlich vorkommenden Form oder Umgebung vorliegen würden, die nicht natürlich vorkommende Zusammensetzungen ist, und bleiben darin isolierte Polynucleotide oder Polypeptide innerhalb der Bedeutung dieses Begriffes, so wie er hierin verwendet wird.
  • "Polynucleotid(e)" betrifft allgemein irgendein Polyribonucleotid oder Polydesoxyribonucleotid, das eine unmodifizierte RNA oder DNA oder eine modifizierte RNA oder DNA oder eine cDNA sein kann. So betreffen zum Beispiel Polynucleotide, so wie hierin verwendet, unter anderem einzel- und doppelsträngige DNA; DNA, die ein Gemisch aus einzel- und doppelsträngigen Bereichen oder einzel-, doppel- und dreifachsträngige Bereichen ist; einzel- und doppelsträngige RNA; und RNA, die ein Gemisch aus einzel- und doppelsträngigen Bereichen ist; Hybridmoleküle, umfassend DNA und RNA, die einzelsträngig oder typischer doppelsträngig oder dreifachsträngig sein kann; oder ein Gemisch aus einzel- und doppelsträngigen Bereichen. Außerdem betrifft Polynucleotid, so wie hierin verwendet, dreifachsträngige Bereiche, umfassend RNA oder DNA oder sowohl RNA als auch DNA. Die Stränge in solchen Bereichen können aus dem gleichen Molekül oder aus verschiedenen Molekülen bestehen. Die Bereiche können ein oder mehrere Moleküle in ihrer Gesamtheit einschließen, aber schließen typischer nur einen Bereich von einigen der Moleküle ein. Eines der Moleküle einer Dreifachhelixregion ist oft ein Oligonucleotid. So wie hierin verwendet, schließt der Begriff Polynucleotid DNAs oder RNAs ein, wie vorstehend beschrieben, die eine oder mehrere modifizierte Basen enthalten. Folglich sind DNAs oder RNAs mit Grundgerüsten, die wegen der Stabilität oder aus anderen Gründen modifiziert wurden, "Polynucleotide", so wie der Begriff hierin gedacht ist. Außerdem sind DNAs oder RNAs, umfassend ungewöhnliche Basen wie Inosin oder modifizierte Basen wie tritylierte Basen, um nur zwei Beispiele zu nennen, Polynucleotide gemäß des hierin verwendeten Begriffes. Es ist erkennbar, daß eine große Vielzahl von Modifikationen bei DNA und RNA durchgeführt worden ist, die vielen nützlichen Zwecken dienen, welche den Fachleuten bekannt sind. Der Begriff Polynucleotid, so wie er hierin verwendet wird, umfaßt solche chemisch, enzymatisch oder metabolisch modifizierten Formen von Polynucleotiden sowie die chemischen Formen von DNA und RNA, die für Viren und Zellen, einschließlich u. a. einfache und komplexe Zellen, charakteristisch sind. Polynucleotide umfassen kurze Polynucleotide, die oft als Oligonucleotid(e) bezeichnet werden.
  • "Polypeptid(e)", so wie hierin verwendet, schließtlschließen alle Polypeptide ein, wie nachstehend beschrieben. Die Grundstruktur von Polypeptiden ist gut bekannt und ist in unzähligen Lehrbüchern und anderen Veröffentlichungen auf dem Fachgebiet beschrieben worden. In diesem Zusammenhang wird der Begriff hierin verwendet, um auf irgendein Peptid oder Protein zu verweisen, umfassend zwei oder mehrere Aminosäuren, die in einer linearen Kette durch Peptidbindungen miteinander verknüpft sind. So wie hierin verwendet, betrifft der Begriff sowohl kurze Ketten, die auf dem Fachgebiet zum Beispiel gewöhnlich auch als Peptide, Oligopeptide und Oligomere bezeichnet werden, als auch längere Ketten, die auf dem Fachgebiet allgemein als Proteine bezeichnet werden, von denen es viele Arten gibt. Es ist erkennbar, daß Polypeptide oft Aminosäuren enthalten, welche verschieden sind von den 20 Aminosäuren, die gewöhnlich als die 20 natürlich vorkommenden Aminosäuren bezeichnet werden, und daß viele Aminosäuren, einschließlich der terminalen Aminosäuren, in einem bestimmten Polypeptid modifiziert sein können, entweder durch natürliche Prozesse wie Prozessierung und andere post-translationale Modifikationen, aber auch durch chemische Modifikationstechniken, die auf dem Fachgebiet gut bekannt sind. Selbst die häufigen Modifikationen, die natürlicherweise in Polypeptiden vorkommen, sind zu zahlreich, um hier vollständig aufgeführt zu werden, aber sie sind in Lehrbüchern und in ausführlicheren Monographien sowie in einer umfangreichen Forschungsliteratur hinreichend beschrieben, und sie sind den Fachleuten gut bekannt.
  • Unter den bekannten Modifikationen, die in Polypeptiden zur erfindungsgemäßen Verwendung vorhanden sein können, befinden sich, um einige veranschaulichende zu nennen, die Acetylierung, Acylierung, ADP-Ribosylierung, Amidierung, kovalente Bindung von Flavin, kovalente Bindung einer Hämgruppe, kovalente Bindung eines Nucleotids oder Nucleotidderivats, kovalente Bindung eines Lipids oder Lipidderivats, kovalente Bindung von Phosphatidylinosit, Vernetzung, Cyclisierung, Disulfidbrückenbildung, Demethylierung, Bil dung kovalenter Vernetzungen, Bildung von Cystin, Bildung von Pyroglutamat, Formylierung, gamma-Carboxylierung, Glycosylierung, GPI-Ankerbildung, Hydroxylierung, Iodierung, Methylierung, Myristoylierung, Oxidierung, proteolytische Prozessierung, Phosphorylierung, Prenylierung, Racemisierung, Selenoylierung, Sulfatisierung, Transfer-RNA vermittelte Addition von Aminosäuren an Proteine wie Arginylierung und Ubiquitinierung. Solche Modifikationen sind den Fachleuten gut bekannt und sind in der wissenschaftlichen Literatur ausführlich beschrieben worden. Mehrere besonders häufige Modifikationen, zum Beispiel Glycosylierung, Lipidanlagerung, Sulfatisierung, gamma-Carboxylierung von Glutaminsäureresten, Hydroxylierung und ADP-Ribosylierung, sind in den meisten Lehrbüchern beschrieben, wie zum Beispiel Proteins – Structure and Molecular Properties, 2. Auflage, Creighton T. E., Freeman W. H. and Company, New York (1993). Viele ausführliche Übersichten sind zu diesem Thema erhältlich, wie zum Beispiel solche, die bereitgestellt werden durch Wold F., Posttranslational Protein Modifications: Perspectives and Prospects, S. 1–12, in Posttranslational Covalent Modification of Proteins, Johnson B. C., Hrsg., Academic Press, New York (1983); Seifter et al.,. Meth. Enzymol. 182 (1990), 626–646; und Rattan et al., Protein Synthesis: Posttranslational Modifications and Aging, Ann. N.Y. Acad. Sci. 663 (1992), 48–62. Es ist erkennbar, so wie gut bekannt ist und vorstehend angemerkt wurde, daß Polypeptide nicht immer völlig linear sind. Zum Beispiel können Polypeptide allgemein das Ergebnis von posttranslationalen Ereignissen, einschließlich natürlicher Prozessierungsereignisse und durch menschliche Manipulation verursachter Ereignisse, die natürlicherweise nicht vorkommen, sein. Ringförmige, verzweigte und verzweigte ringförmige Polypeptide können durch ein natürliches Nicht-Translationsverfahren und auch durch vollständig synthetische Verfahren synthetisiert werden. Modifikationen können irgendwo in einem Polypeptid vorkommen, einschließlich des Peptidgrundgerüsts, der Aminosäureseitenketten und der Amino- oder Carboxyl-Termini. In der Tat ist die Blockierung der Amino- oder Carboxylgruppe in einem Polypeptid oder beides durch eine kovalente Modifikation in natürlich vorkommenden und synthetischen Polypeptiden häufig, und solche Modifikationen können auch in erfindungsgemäßen Polypeptiden vorhanden sein. Zum Beispiel ist der aminoterminale Rest von Polypeptiden, die in E. coli oder anderen Zellen hergestellt wurden, vor der proteolytischen Prozessierung praktisch immer N-Formylmethionin. Während der posttranslationalen Modifikation des Peptids kann ein Methioninrest am NH2-Terminus deletiert werden. Demgemäß zieht diese Erfindung die erfindungsgemäße Verwendung von sowohl Methionin enthaltenden als auch Methionin-freien aminoterminalen Varianten des Proteins ein. Die Modifikationen, die in einem Polypeptid vorkommen, sind oft eine Funktion seiner Herstellungsweise. Für Polypeptide, die zum Beispiel durch Expression eines clonierten Gens in einem Wirt hergestellt wurden, werden die Art und das Ausmaß der Modifikationen größtenteils durch die posttranslationale Modifikationskapazität der Wirtszelle und die in der Aminosäuresequenz des Polypeptids vorhandenen Modifikationssignale bestimmt. Zum Beispiel, wie gut bekannt ist, kommt die Glycosylierung in Bakterienwirten wie zum Beispiel E. coli oft nicht vor. Demgemäß, falls eine Glycosylierung erwünscht ist, sollte ein Polypeptid in einem glycosylierenden Wirt, im allgemeinen eine eukaryontische Zelle, exprimiert werden. Insektenzellen führen oft die gleichen posttranslationalen Glycosylierungen wie Säugerzellen aus, und aus diesem Grund sind Insektenzellexpressionssysteme entwickelt worden, um u. a. Säugerproteine mit nativen Glycosylierungsmustern effizient zu exprimieren. Ähnliche Überlegungen gelten für andere Modifikationen. Es ist erkennbar, daß die gleiche Art der Modifikation in dem gleichen oder in einem unterschiedlichen Grad an mehreren Stellen in einem bestimmten Polypeptid vorliegen kann. Auch kann ein bestimmtes Polypeptid viele Arten von Modifikationen enthalten. Im allgemeinen, so wie hierin verwendet, umfaßt der Begriff Polypeptid alle derartigen Modifikationen, besonders solche, die in Polypeptiden vorhanden sind, welche durch Expression eines Polynucleotids in einer Wirtszelle rekombinant synthetisiert werden.
  • "Variante(n)" von Polynucleotiden oder Polypeptiden, so wie der Begriff hierin verwendet wird, ist/sind Polynucleotide oder Polypeptide, die sich von einem Referenz-Polynucleotid bzw. -Polypeptid unterscheiden. Varianten in diesem Sinne werden nachstehend und anderswo in der vorliegenden Offenbarung ausführlicher beschrieben. (1) Ein Polynucleotid, das sich bezüglich der Nucleotidsequenz von einem anderen, einem Referenz-Polynucleotid, unterscheidet. Im allgemeinen sind die Unterschiede begrenzt, so daß die Nucleotidsequenzen der Referenz und der Variante insgesamt sehr ähnlich und in vielen Bereichen identisch sind. Wie nachstehend angemerkt, können Austäusche in der Nucleotidsequenz der Variante stumm sein. Das heißt, sie können die Aminosäuren, die durch das Polynucleotid codiert werden, nicht verändern. Wo Veränderungen auf stumme Austäusche dieses Typs begrenzt sind, codiert ein variantes Polynucleotid ein Polypeptid mit der gleichen Aminosäuresequenz wie die Referenz. Wie nachstehend auch angemerkt, können Austäusche in der Nucleotidsequenz des varianten Polynucleotids die Aminosäuresequenz eines Polypeptids verändern, das durch das Referenz-Polynucleotid codiert wird. Solche Nucleotidaustäusche können zu Aminosäuresubstitutionen, -additionen, -deletionen, -fusionen und -ver kürzungen in dem Polypeptid führen; das durch die Referenz-Sequenz codiert wird, wie nachstehend besprochen wird. (2) Ein Polypeptid, das sich bezüglich der Aminosäuresequenz von einem anderen, einem Referenz-Polypeptid, unterscheidet. Im allgemeinen sind die Unterschiede begrenzt, so daß die Sequenzen der Referenz und der Variante insgesamt sehr ähnlich und in vielen Bereichen identisch sind. Eine Variante und ein Referenz-Polypeptid können sich bezüglich der Aminosäuresequenz durch eine oder mehrere Substitutionen, Additionen, Deletionen, Fusionen und Verkürzungen unterscheiden, die in einer beliebigen Kombination vorliegen können.
  • "Behandlung/Therapie" schließt irgendein Schema ein, das für einen Menschen oder ein nicht-menschliches Tier von Nutzen sein kann. Die Behandlung kann im Hinblick auf einen bestehenden Zustand erfolgen oder kann prophylaktisch sein (vorbeugende Behandlung).
  • "Umfassend aufweisend" deckt alles ab, was eine) spezifische(s) Merkmal/Eigenschaft ausmacht, sowie alles mit diesem/dieser Merkmal/Eigenschaft, das/die auch eine) oder mehrere zusätzliche Merkmale/Eigenschaften aufweisen kann. So sind im Fall einer Nucleinsäure/Proteinsequenz, umfassend/aufweisend eine bestimmte Sequenz, die Sequenz selbst sowie längere Sequenzen abgedeckt.
  • "Homolog" wird verwendet, um irgendeine Variante eines spezifizierten biologisch aktiven Moleküls einzuschließen, die eine oder mehrere der biologischen Aktivitäten dieses Moleküls aufweist.
  • Die Erfindung betrifft therapeutische Verwendungen von Nucleinsäuremolekülen, umfassend eine Sequenz, die ein Egr-1-Polypeptid codiert. Die Erfindung betrifft auch therapeutische Verwendungen von Fragmenten der Polynucleotidsequenz, die biologisch aktive Fragmente von Egr-1 codiert, oder Varianten der Polynucleotidsequenz, die auf Grund der Degeneration des genetischen Codes funktionelle, d. h. biologisch aktive Fragmente von Egr-1 codiert, und funktionell äquivalente allele Varianten und verwandte Sequenzen, die modifiziert sind durch eine einzige oder vielfache Basensubstitution(en), -addition(en) und/oder -deletion(en), welche Polypeptide mit einer Egr-1-Aktivität codieren.
  • Diese können durch Standardclonierungsverfahren erhalten werden, die den Fachleuten bekannt sind.
  • Polynucleotide, die den Egr-1-Transkriptionsfaktor codieren, können in Form von DNA, cDNA oder RNA wie mRNA vorliegen, die durch Clonierung erhalten wird oder durch chemische Synthesetechniken hergestellt wird. Die DNA kann einzel- oder doppelsträngig sein. Einzelsträngige DNA kann der codierende oder Sense-Strang sein, oder sie kann der nichtcodierende oder Antisense-Strang sein. Zur therapeutischen Verwendung liegt das Polynucleotid in einer Form vor, die in einen funktionellen Egr-1-Transkriptionsfaktor an der Wundstelle in dem zu behandelnden Individuum exprimiert werden kann. Die Polynucleotide können auch zur in vitro-Produktion eines Egr-1-Polypeptids zur Verabreichung gemäß einem weiteren therapeutischen Gesichtspunkt der Erfindung verwendet werden, wie nachstehend ausführlich beschrieben wird.
  • Erfindungsgemäße Polynucleotide, die ein Polypeptid des Egr-1-Transkriptionsfaktors codieren, können, aber sind nicht darauf begrenzt, die codierende Sequenz für ein Egr-1-Polypeptid oder für biologisch aktive Fragmente davon einschließen. So kann das Polynucleotid zusammen mit zusätzlichen, nichtcodierenden Sequenzen bereitgestellt werden, einschließlich zum Beispiel, aber nicht begrenzt auf nichtcodierende 5'- und 3'-Sequenzen wie die transkribierten, nichttranslatierten Sequenzen, die bei der Transkription (einschließlich zum Beispiel Terminationssignale) und Ribosomenbindung eine Rolle spielen, mRNA-Stabilitätselemente und zusätzliche codierende Sequenzen, die zusätzliche Aminosäuren codieren, wie solche, die zusätzliche Funktionalitäten bereitstellen. Erfindungsgemäße Polynucleotide schließen, aber sind nicht begrenzt auf, Polynucleotide ein, die ein Strukturgen für Egr-1 und seine natürlicherweise assoziierten genetischen Elemente umfassen.
  • In Übereinstimmung mit dem Vorstehenden umfaßt der Begriff "ein Polynucleotid, das ein Polypeptid codiert", so wie hierin verwendet, Polynucleotide, die eine Sequenz einschließen, welche ein Polypeptid des Egr-1-Transkriptionsfaktors codiert. Der Begriff umfaßt Polynucleotide, die einen einzigen kontinuierlichen Bereich oder diskontinuierliche Bereiche, die das Polypeptid codieren (zum Beispiel unterbrochen durch einen integrierten Phagen oder eine Insertionssequenz oder einen Editingbereich), zusammen mit weiteren Bereichen, die auch codierende und/oder nichtcodierende Sequenzen enthalten können, einschließen.
  • Die Erfindung betrifft ferner Varianten der vorstehend beschriebenen Polynucleotide, die Fragmente, Analoga und Derivate des Polypeptids codieren. Eine Variante des Polynucleotids kann eine natürlich vorkommende Variante sein, wie eine natürlich vorkommende allele Variante, oder sie kann eine Variante sein, von der nicht bekannt ist, daß sie in der Natur vorkommt. Solche nicht in der Natur vorkommenden Varianten des Polynucleotids können durch Mutagenesetechniken, einschließlich solchen, die bei Polynucleotiden, Zellen oder Organismen angewendet werden, hergestellt werden.
  • Unter den Varianten befinden sich in dieser Hinsicht Varianten, die sich von den vorstehend erwähnten Polynucleotiden durch Nucleotidsubstitutionen, -deletionen oder -additionen unterscheiden. Die Substitutionen, Deletionen oder Additionen können ein oder mehrere Nucleotide einschließen. Die Varianten können in codierenden oder nichtcodierenden Bereichen oder beiden verändert sein. Veränderungen in den codierenden Bereichen können konservative oder nichtkonservative Aminosäuresubstitutionen, -deletionen oder -additionen ergeben.
  • Weitere bevorzugte Ausführungsformen der Erfindung sind Polynucleotide, die über ihre gesamte Länge mindestens 70% identisch sind zu einem Polynucleotid, das ein Polypeptid codiert, welches die Aminosäuresequenz aufweist, die dargestellt ist in Cell 53 (1988), 37–43 (die Maus-Sequenz), die stärker bevorzugt über ihre gesamte Länge mindestens 70% identisch sind zu einem Polynucleotid, das die menschliche cDNA-Sequenz codiert, und dazu komplementäre Polynucleotide (die menschliche Sequenz) in Nucleic Acids Research 18 (1990), 4283, sowie Polynucleotide, die zu solchen Polynucleotiden komplementär sind. In einer anderen Ausführungsform werden Polynucleotide, die eine Region umfassen, welche über ihre gesamte Länge mindestens 80% identisch ist zu einem Polynucleotid, das ein erfindungsgemäßes Polypeptid codiert, am meisten bevorzugt. In dieser Hinsicht werden Polynucleotide, die über ihre gesamte Länge mindestens 90% identisch sind zu dem gleichen Polynucleotid, besonders bevorzugt, und unter diesen besonders bevorzugten Polynucleotiden werden solche mit mindestens 95% besonders bevorzugt. Außerdem werden diejenigen mit mindestens 97% unter solchen mit mindestens 95% besonders bevorzugt, und unter diesen werden solche mit mindestens 98% und mindestens 99% ganz besonders bevorzugt, wobei solche mit mindestens 99% stärker bevorzugt werden.
  • Bevorzugte Ausführungsformen in dieser Hinsicht sind außerdem Polynucleotide, die Polypeptide codieren, welche im Wesentlichen die gleiche biologische Funktion oder Aktivität wie das reife Egr-1-Polypeptid beibehalten, das durch die murine DNA-Sequenz in Cell 53 (1988), 37–43, codiert wird, stärker bevorzugt wird das Polypeptid, welches durch die menschliche Sequenz in Nucleic Acids Research 18 (1990), 4283, codiert wird.
  • Die vorliegende Erfindung betrifft ferner Polynucleotide, die mit den vorstehend beschriebenen Sequenzen hybridisieren. In dieser Hinsicht betrifft die vorliegende Erfindung besonders Polynucleotide, die unter stringenten Bedingungen mit den vorstehend beschriebenen Polynucleotiden hybridisieren. So wie hierin verwendet, bedeutet der Begriff "stringente Bedingungen", daß eine Hybridisierung erfolgt, wenn mindestens 95% und vorzugsweise mindestens 97% Gleichartigkeit zwischen den Sequenzen vorhanden ist. Vorzugsweise codieren die Sequenzen, die in dieser Art und Weise mit der erfindungsgemäßen Sequenz hybridisieren, ein Polypeptid mit der biologischen Aktivität von Egr-1.
  • Die Polynucleotide können ein Polypeptid codieren, welches das reife Protein plus zusätzliche amino- oder carboxylterminale Aminosäuren ist. Solche zusätzlichen Sequenzen können u. a. zum Beispiel eine Funktion ausüben, können die Proteinhalbwertszeit verlängern oder verkürzen oder können die Manipulation eines Proteins für einen Test oder zur Herstellung erleichtern. Wie es im allgemeinen in vivo der Fall ist, können die zusätzlichen Aminosäuren bei der Prozessierung aus dem reifen Protein durch zelluläre Enzyme entfernt werden.
  • Polynucleotide zur Verwendung bei der Herstellung eines Medikaments für den erfindungsgemäßen Gesichtspunkt der Gentherapie können allein oder als Teil eines Vektors wie ein Expressionsvektor bereitgestellt werden; Beispiele davon sind auf dem Fachgebiet gut bekannt.
  • Ein Egr-1 codierendes Polynucleotid kann bei der Herstellung eines Medikaments zur erfindungsgemäßen Verwendung durch die Gentherapie therapeutisch verwendet werden, wobei das Polynucleotid an eine Wundstelle oder an andere Gewebe, die eine Heilung benötigen, in einer Form zu verabreichen ist, in der es die Produktion von Egr-1 oder eines biologisch aktiven Fragments davon in situ steuern kann. Man nimmt an, daß Egr-1 in der Förderung der Wundheilung wirksam ist, indem er Gene aktiviert, die an der Wundheilung beteiligt sind, wie Gene für VEGF, PDGF, EGF, TGF-beta, basischen Fibroblasten-Wachstumsfaktor, UPA und Gewebefaktor.
  • Vorzugsweise ist das Polynucleotid bei der Gentherapie derart zu verabreichen, daß es in dem zu behandelnden Individuum exprimiert wird, zum Beispiel in Form eines rekombinanten DNA-Moleküls, umfassend ein Egr-1 codierendes Polynucleotid, das funktionell verbunden ist mit einer Nucleinsäuresequenz, welche die Expression kontrolliert, wie in einem Expressionsvektor. Ein solcher Vektor schließt folglich geeignete Transkriptionskontrollsignale ein, einschließlich einer Promotorregion, die zur Expression der codierenden Sequenz fähig ist, wobei der Promotor in dem zu behandelnden Individuum funktionell ist. So ist zur Gentherapie beim Menschen der Promotor, wobei der Begriff nicht nur die Sequenz einschließt, die notwendig ist, um die RNA-Polymerase zu dem Transkriptionsstartpunkt hinzuleiten, sondern auch gegebenenfalls andere funktionelle oder kontrollierende Sequenzen, einschließlich Enhancer, vorzugsweise eine menschliche Promotorsequenz aus einem menschlichen Gen oder aus einem Gen, das typischerweise in Menschen exprimiert wird, wie der Promotor aus dem menschlichen Cytomegalievirus (CMV). Unter den bekannten eukaryontischen Promotoren, die in dieser Hinsicht geeignet sind, sind der sehr frühe CMV-Promotor, der HSV-Thymidinkinase-Promotor, die frühen und späten SV40-Promotoren, die Promotoren von retroviralen LTRs wie die des Rous-Sarkom-Virus ("RSV") und Metallothionein-Promotoren wie der Maus-Metallothionein-I-Promotor.
  • Wie nachstehend ausführlicherer besprochen wird, kann der native Egr-1-Promotor verwendet werden. Die hier genannten Erfinder haben festgestellt, daß die für den menschlichen Egr-1-Promotor bereitgestellte, veröffentlichte Sequenz nicht korrekt ist, und haben eine neue Sequenz bereitgestellt, die mehrere Unterschiede bezüglich der veröffentlichten Sequenz aufweist.
  • Eine Polynucleotidsequenz und eine Transkriptionskontrollsequenz können cloniert in einen replizierbaren Plasmidvektor auf der Basis von im Handel erhältlichen Plasmiden wie pBR322 bereitgestellt werden, oder können aus erhältlichen Plasmiden durch routinemäßige Anwendung von gut bekannten, veröffentlichten Verfahren konstruiert werden.
  • Der Vektor kann auch Transkriptionskontrollsequenz einschließen, die 3' zu der Egr-1 codierenden Sequenz angeordnet sind, und auch Polyadenylierungssignale, die in dem zu behandelnden Individuum erkennbar sind, wie zum Beispiel die entsprechenden Sequenzen aus Viren wie das SV40-Virus zur Behandlung von Menschen. Andere Transkriptionskontrollsequenzen sind auf dem Fachgebiet gut bekannt und können verwendet werden.
  • Die Expressionsvektoren können auch selektierbare Marker einschließen, wie zum Beispiel eine Antibiotikaresistenz, welche die Vermehrung der Vektoren ermöglicht.
  • Expressionsvektoren, die in situ zur Synthese von Egr-1 fähig sind, können durch physikalische Verfahren direkt in die Wundstelle eingebracht werden. Beispiele hierfür schließen ein die topische Anwendung des 'bloßen' Nucleinsäurevektors in einem geeigneten Vehikel, zum Beispiel in Lösung in einem pharmazeutisch verträglichen Excipienten wie phosphatgepufferte Salzlösung (PBS) oder die Verabreichung des Vektors durch physikalische Verfahren wie Partikelbeschuß, auch als 'Genkanonen'-Technologie bekannt, gemäß Verfahren, die auf dem Fachgebiet bekannt sind, z. B. wie beschrieben in US-5371015, wobei inerte Partikel wie Goldkügelchen, die mit dem Vektor beschichtet sind, bei ausreichenden Geschwindigkeiten beschleunigt werden, um sie zu befähigen, die Oberfläche an der Wundstelle, z. B. Hautzellen, durch Austritt unter hohem Druck aus einer Projektionsvorrichtung zu durchdringen. (Mit einem erfindungsgemäßen Nucleinsäuremolekül beschichtete Partikel sind im Schutzumfang der vorliegenden Erfindung eingeschlossen, so wie Vorrichtungen, die solche Partikel umfassen.) Andere physikalische Verfahren zur Verabreichung der DNA direkt an den Empfänger schließen Ultraschall, elektrische Stimulierung, Elektroporation und Mikroeinpflanzung ein.
  • Besonders bevorzugt wird die Übertragungsweise durch Mikroeinpflanzung, die ein System zur Übertragung von genetischem Material in Zellen in situ in einem Patienten ist. Dieses Verfahren ist im US-Patent Nr. 5,697,901 beschrieben.
  • Eine Egr-1 codierende Nucleinsäuresequenz zur Verwendung bei der Herstellung eines Medikaments zur erfindungsgemäßen Verwendung kann auch mit Hilfe von Übertragungsvektoren verabreicht werden. Diese schließen virale Übertragungsvektoren ein, wie Adenovirus- oder Retrovirus-Übertragungsvektoren, die auf dem Fachgebiet bekannt sind.
  • Andere nichtvirale Übertragungsvektoren schließen Lipid-Übertragungsvektoren ein, einschließlich Liposomen-Übertragungsvehikel, die auf dem Fachgebiet bekannt sind.
  • Eine Egr-1 codierende Nucleinsäuresequenz kann auch mit Hilfe transformierter Wirtszellen an die Wundstelle verabreicht werden. Solche Zellen schließen aus dem Individuum gewonnene Zellen ein, in welche die Nucleinsäuresequenz durch auf dem Fachgebiet bekannte Gentransferverfahren eingeschleust wird, gefolgt von der Züchtung der transformierten Zellen in Kultur und der Transplantation in das Individuum.
  • Expressionskonstrukte, wie die vorstehend beschriebenen, können in vielfältiger Weise bei der erfindungsgemäßen Verwendung verwendet werden. So können sie direkt an die Wundstelle in dem Individuum verabreicht werden, oder sie können verwendet werden, um einen rekombinanten Egr-1-Transkriptionsfaktor selbst herzustellen, der dann an die Wundstelle verabreicht werden kann, wie nachstehend ausführlicher besprochen wird. Die Erfindung betrifft auch die Verwendung von Konstrukten, die ein Egr-1-Polynucleotid oder erfindungsgemäße Polynucleotide oder vorstehend definierte genetische Elemente umfassen, bei den therapeutischen Anwendungen der Erfindung. Diese Konstrukte können per se in den erfindungsgemäßen therapeutischen Verfahren verwendet werden, oder sie können verwendet werden, um ein Egr-1-Polypeptid zur Verwendung in den erfindungsgemäßen therapeutischen Verfahren herzustellen, wie nachstehend ausführlicher beschrieben wird.
  • Der Vektor kann zum Beispiel ein Plasmidvektor, ein einzel- oder doppelsträngiger Phagenvektor oder ein einzel- oder doppelsträngiger RNA- oder DNA-Virusvektor sein, abhängig davon, ob der Vektor direkt an die Wundstelle verabreicht werden soll (d. h. zur in situ-Synthese von Egr-1) oder zur Synthese eines rekombinanten Egr-1 verwendet werden soll. Hierin offenbarte Ausgangsplasmide sind entweder im Handel erhältlich, öffentlich zugänglich oder können aus erhältlichen Plasmiden durch routinemäßige Anwendung von gut bekannten, veröffentlichten Verfahren konstruiert werden. Viele Plasmide und andere Clonierungs- und Expressionsvektoren, die erfindungsgemäß verwendet werden können, sind gut bekannt und für Fachleute ohne weiteres zugänglich.
  • Im allgemeinen umfassen Vektoren zur Expression eines Egr-1-Polypeptids zur erfindungsgemäßen Verwendung cis-wirkende Kontrollregionen, die zur Expression in einem Wirt wirksam sind, funktionell verknüpft mit dem Polynucleotid, das exprimiert werden soll. Geeignete trans-wirkende Faktoren werden entweder durch den Wirt, durch einen komplementierenden Vektor oder durch den Vektor selbst nach Einschleusen in den Wirt bereitgestellt.
  • In bestimmten Ausführungsformen sorgen die Vektoren in dieser Hinsicht für eine spezifische Expression. Zur Herstellung eines rekombinanten Egr-1 kann eine solche spezifische Expression eine induzierbare Expression oder eine Expression, die nur in bestimmten Zelltypen erfolgt, oder sowohl induzierbar als auch zellspezifisch sein. Besonders bevorzugt unter den induzierbaren Vektoren werden Vektoren, die durch Umgebungsfaktoren, die einfach zu manipulieren sind, wie Temperatur und Nährstoffzusätze, zur Expression induziert werden können. Eine Vielzahl von Vektoren, die für diesen Gesichtspunkt der Erfindung geeignet sind, einschließlich konstitutiver und induzierbarer Expressionsvektoren zur Verwendung in prokaryontischen und eukaryontischen Wirten, ist gut bekannt und wird routinemäßig durch Fachleute verwendet.
  • Eine große Vielzahl von Expressionsvektoren kann verwendet werden, um Egr-1 zur erfindungsgemäßen Verwendung zu exprimieren. Solche Vektoren schließen u. a. chromosomale, episomale und virale Vektoren ein, z. B. Vektoren, die abgeleitet sind aus bakteriellen Plasmiden, aus Bakteriophagen, aus Transposons, aus Hefe-Episomen, aus Insertionselementen, aus chromosomalen Hefe-Elementen, aus Viren wie Baculoviren, Papovaviren wie SV40, Vacciniaviren, Adenoviren, Geflügelpockenviren, Pseudorabisviren und Retroviren sowie Vektoren, die aus Kombinationen hiervon abgeleitet sind, z. B. solche, welche aus genetischen Elementen von Plasmiden und Bakteriophagen abgeleitet sind, wie Cosmide und Phagemide, die alle zur Expression in Übereinstimmung mit diesem Gesichtspunkt der vorliegenden Erfindung verwendet werden können. Im allgemeinen kann in dieser Hinsicht jeder Vektor, der geeignet ist, um Polynucleotide zur Expression eines Polypeptids in einem Wirt aufrechtzuerhalten, zu vermehren oder zu exprimieren, zur Expression verwendet werden.
  • Die geeignete DNA-Sequenz kann in den Vektor durch irgendeine einer Vielzahl von gut bekannten und routinemäßigen Techniken inseriert werden, wie zum Beispiel solche, die angegeben sind bei Sambrook et al., Molecular Cloning, A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).
  • Die Nucleinsäuresequenz in dem Expressionsvektor ist funktionell verknüpft mit einer oder mehreren geeigneten Expressionskontrollsequenzen, einschließlich zum Beispiel eines Promotors, um die mRNA-Transkription zu steuern. Vertreter solcher Promotoren schließen ein, aber sind nicht begrenzt auf, den PL-Promotor des Phagen Lambda und die lac-, trp- und tac-Promotoren von E. coli für die rekombinante Expression, und die frühen und späten SV40-Promotoren sowie die Promotoren von retroviralen LTRs für die in situ-Expression.
  • Im allgemeinen enthalten Expressionskonstrukte Stellen zur Transkriptionsinitiation und -termination und eine Ribosomenbindungsstelle zur Translation in dem transkribierten Bereich. Der codierende Teil der reifen Transkripte, die durch die Konstrukte exprimiert werden, schließt ein die Translation einleitendes AUG am Anfang und ein Terminationscodon, das sich geeigneterweise am Ende des zu translatierenden Polypeptids befindet, ein.
  • Außerdem können die Konstrukte Kontrollregionen enthalten, welche die Expression regulieren sowie hervorrufen. In Übereinstimmung mit vielen häufig praktizierten Verfahren sind solche Regionen im Allgemeinen dadurch wirksam, daß sie die Transkription, u. a. durch Transkriptionsfaktoren, Repressorbindungsstellen und Termination, kontrollieren.
  • Vektoren zur Vermehrung und Expression schließen im Allgemeinen selektierbare Marker und Amplifikationsbereiche ein, wie zum Beispiel solche, die angegeben sind bei Sambrook et al., Molecular Cloning, A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).
  • Repräsentative Beispiele geeigneter Wirte zur rekombinanten Expression von Egr-1 schließen Bakterienzellen wie Streptokokken-, Staphylokokken-, E. coli-, Streptomyces- und Bacillus subtilis-Zellen; Pilzzellen wie Hefezellen und Aspergillus-Zellen; Insektenzellen wie Drosophila S2- und Spodoptera Sf9-Zellen; tierische Zellen wie CHO, COS, HeLa, C127, 3T3, BHK, 293 und Bowes-Melanomzellen; sowie pflanzliche Zellen ein.
  • Die folgenden Vektoren, die im Handel erhältlich sind, werden als Beispiel bereitgestellt. Unter den zur Verwendung in Bakterien bevorzugten Vektoren sind pQE70, pQE60 und pQE-9, erhältlich von Qiagen; pBS-Vektoren, Phagescript-Vektoren, Bluescript-Vektoren, pNH8A, pNH16a, pNH18A, pNH46A, erhältlich von Stratagene; und ptrc99a, pKK223- 3, pKK233-3, pDR540 und pRIT5, erhältlich von Pharmacia; sowie pBR322 (ATCC 37017). Unter den bevorzugten eukaryontischen Vektoren sind pWLNEO, pSV2CAT, pOG44, pXT1 und pSG, erhältlich von Stratagene; und pSVK3, pBPV, pMSG und pSVL, erhältlich von Pharmacia. Diese Vektoren, die sowohl zur rekombinanten Expression als auch zur in situ-Expression verwendet werden können, sind nur zur Veranschaulichung der vielen im Handel erhältlichen und gut bekannten Vektoren aufgeführt, welche den Fachleuten zur Verwendung gemäß diesem erfindungsgemäßen Gesichtspunkt zur Verfügung stehen. Es ist erkennbar, daß irgendein anderes/r Plasmid oder Vektor, das/der zum Beispiel zur Einschleusung, Aufrechterhaltung, Vermehrung oder Expression eines Polynucleotids oder Polypeptids zur Verwendung bei der erfindungsgemäßen Therapie in einem Wirt geeignet ist, unter diesem erfindungsgemäßen Gesichtspunkt verwendet werden kann.
  • Beispiele für Vektoren zur Verwendung gemäß diesem erfindungsgemäßen Gesichtspunkt schließen Expressionsvektoren ein, worin die Egr-1-cDNA-Sequenz in ein Plasmid inseriert ist, wodurch die Genexpression durch den sehr frühen menschlichen Cytomegalievirus-Enhancer-Promotor gesteuert wird (Foecking und Hofstetter, Cell 45 (1986), 101–105). Solche Expressionsplasmide können SV40-RNA-Prozessierungssignale enthalten, wie Polyadenylierungs- und Terminationssignale. Expressionskonstrukte, die den CMV-Promotor verwenden und die im Handel erhältlich sind, sind pCDM8, pcDNA1 und Derivate davon sowie pcDNA3 und Derivate davon (Invitrogen). Andere erhältliche Expressionsvektoren, die verwendet werden können, sind pSVK3 und pSVL, die den SV40-Promotor und die mRNA-Spleißstelle und Polyadenylierungssignale aus SV40 (pSVK3) sowie SV40-VP1-Prozessierungssignale (pSVL, Vektoren von Pharmacia) enthalten.
  • Die Promotorregionen können gewählt sein aus irgendeinem gewünschten Gen unter Verwendung von Vektoren, die eine Reporter-Transkriptionseinheit, der eine Promotorregion fehlt, wie eine Chloramphenicolacetyltransferase ("CAT")-Transkriptionseinheit, stromabwärts von einer oder mehreren Restriktionsstellen zur Einführung eines möglichen Promotorfragments, d. h. eines Fragments, das einen Promotor enthalten kann, enthalten. Wie gut bekannt ist, ruft die Einführung eines Fragments, das einen Promotor enthält, in einen Vektor in die Restriktionsstelle stromaufwärts des cat-Gens eine CAT-Aktivität hervor, die durch Standard-CAT-Tests nachgewiesen werden kann. Zu diesem Zweck geeignete Vektoren sind gut bekannt und ohne weiteres erhältlich, wie pKK232-8 und pCM7. Promotoren zur Expression von Polynucleotiden zur Verwendung bei der erfindungsgemäßen Therapie schließen nicht nur gut bekannte und ohne weiteres erhältliche Promotoren ein, sondern auch Promotoren, die ohne weiteres durch die vorstehende Technik unter Verwendung eines Reportergens erhalten werden können; zur in situ-Expression sollte ein solcher Promotor wünschenswerterweise in dem zu behandelnden Individuum erkannt werden.
  • Unter den bekannten prokaryontischen Promotoren, die zur Expression von Polynucleotiden und Polypeptiden in Übereinstimmung mit der erfindungsgemäßen Therapie geeignet sind, sind die E. coli lacI- und lacZ-Promotoren, die T3- und T7-Promotoren, der gpt-Promotor, die Lambda-PR- und -PL-Promotoren und der trp-Promotor.
  • Rekombinante Expressionsvektoren schließen zum Beispiel Replikationsursprünge, einen Promotor, vorzugsweise abgeleitet von einem stark exprimierten Gen, um die Transkription einer stromabwärts angeordneten Struktursequenz zu steuern, und einen selektierbaren Marker, um die Isolierung von Zellen, die einen Vektor enthalten, nach der Exposition gegen den Vektor zu ermöglichen, ein.
  • Polynucleotide zur erfindungsgemäßen Verwendung, welche die heterologe Struktursequenz eines erfindungsgemäßen Polypeptids codieren, werden im allgemeinen in den Vektor unter Verwendung von Standardtechniken inseriert, so daß diese zur Expression funktionell verknüpft ist mit dem Promotor. Das Polynucleotid wird so positioniert, daß die Transkriptionsstartstelle geeigneterweise 5' zu einer Ribosomenbindungsstelle angeordnet ist. Die Ribosomenbindungsstelle befindet sich 5' zu dem AUG, das die Translation des Polypeptids einleitet, welches exprimiert werden soll.
  • Im allgemeinen sind keine anderen offenen Leseraster vorhanden, die mit einem Initiationscodon, üblicherweise AUG, beginnen und zwischen der Ribosomenbindungsstelle und dem Initiationscodon liegen. Im allgemeinen ist auch ein Translationsstoppcodon am Ende des Polypeptids vorhanden, und in Konstrukten zur Verwendung in eukaryontischen Wirten ist ein Polyadenylierungssignal vorhanden. Ein Transkriptionsterminationssignal, das geeigneterweise am 3'-Ende der transkribierten Region angeordnet ist, kann in dem Polynucleotidkonstrukt auch eingeschlossen sein.
  • Zur Sekretion des translatierten Proteins in das Lumen des endoplasmatischen Retikulums, in den periplasmatischen Raum oder in die extrazelluläre Umgebung können geeignete Sekretionssignale in das exprimierte Polypeptid eingeführt werden, wenn es rekombinant synthetisiert wird. Diese Signale können in dem Polypeptid vorkommen, oder sie können heterologe Signale sein.
  • Das Polypeptid kann in einer modifizierten Form exprimiert werden, wie ein Fusionsprotein, und kann nicht nur Sekretionssignale, sondern auch zusätzliche heterologe funktionelle Regionen einschließen. So kann zum Beispiel ein Bereich zusätzlicher Aminosäuren, besonders geladener Aminosäuren, an den N- oder C-Terminus des Polypeptids angehängt werden, um die Stabilität und das Fortbestehen in der Wirtszelle, während der Reinigung oder während der anschließenden Handhabung und Lagerung zu verbessern. Auch kann eine Region an das Polypeptid angehängt werden, um die Reinigung zu erleichtern. Solche Regionen können vor der endgültigen Zubereitung des Polypeptids entfernt werden. Die Addition von Peptidgruppen an Polypeptide, um u. a. die Sekretion oder Ausscheidung hervorzurufen, die Stabilität zu verbessern oder die Reinigung zu erleichtern, ist eine auf dem Fachgebiet bekannte und routinemäßige Technik. Ein bevorzugtes Fusionsprotein umfaßt eine heterologe Region aus einem Immunglobulin, die nützlich ist, um die Polypeptide zu solubilisieren oder zu reinigen. Die Zellen werden dann typischerweise durch Zentrifugation geerntet, durch physikalische oder chemische Mittel aufgebrochen, und der erhaltene Rohextrakt wird zur weiteren Reinigung zurückbehalten.
  • Bei der Expression von Proteinen verwendete Mikrobenzellen können durch irgendein geeignetes Verfahren aufgebrochen werden, einschließlich Frost/Tau-Wechsel, Beschallung, mechanische Disruption oder die Verwendung von Zelllysemitteln; solche Verfahren sind den Fachleuten gut bekannt.
  • Säuger-Expressionsvektoren können einen Replikationsursprung, einen geeigneten Promotor und Enhancer und auch irgendwelche notwendigen Ribosomenbindungsstellen, Polyadenylierungsregionen, Spleißdonor- und -akzeptorstellen, Transkriptionsterminationssequenzen und flankierende nichttranskribierte 5'-Sequenzen, die zur Expression notwendig sind, umfassen.
  • Zur Herstellung von Egr-1-Polypeptiden zur erfindungsgemäßen Verwendung können genetisch veränderte Wirtszellen verwendet werden. Die Einschleusung eines Polynucleotids in die Wirtszelle kann durch Calciumphosphattransfektion, DEAE-Dextran-vermittelte Transfektion, Transvektion, Mikroinjektion, kationische Lipid-vermittelte Transfektion, Elektroporation, Transduktion, Abstreifbeladung, ballistische Einführung, Infektion oder andere Verfahren bewirkt werden. Solche Verfahren sind in vielen Standardlaborhandbüchern beschrieben, wie Davis et al., Basic Methods in Molecular Biology (1986), und Sambrook et al., Molecular Cloning, A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).
  • Reife Proteine können in Wirtszellen, einschließlich Säugerzellen wie CHO-Zellen, Hefe-, Bakterien- oder andere Zellen, unter der Kontrolle geeigneter Promotoren exprimiert werden. Zellfreie Translationssysteme können auch verwendet werden, um solche Proteine unter Verwendung von RNAs herzustellen, die aus den erfindungsgemäßen DNA-Konstrukten abgeleitet sind. Geeignete Clonierungs- und Expressionsvektoren zur Verwendung mit prokaryontischen und eukaryontischen Wirten sind beschrieben bei Sambrook et al., Molecular Cloning, A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).
  • Das Polypeptid kann aus rekombinanten Zellkulturen durch gut bekannte Verfahren, einschließlich Ammoniumsulfat- oder Ethanolfällung, Säureextraktion, Anionen- oder Kationenaustauscherchromatographie, Phosphocellutosechromatographie, hydrophobe Wechselwirkungschromatographie, Affinitätschromatographie, Hydroxylapatitchromatographie und Lectinchromatographie, gewonnen und gereinigt werden. Besonders bevorzugt wird die Hochleistungsflüssigkeitschromatographie zur Reinigung verwendet. Gut bekannte Techniken zur Umfaltung eins Proteins können verwendet werden, um die aktive Konformation wiederherzustellen, wenn das Polypeptid während der Isolierung und/oder der Reinigung denaturiert wird.
  • Zur Therapie kann ein Egr-1 codierendes Polynucleotid, z. B. in Form eines rekombinanten Vektors, durch Techniken gereinigt werden, die auf dem Fachgebiet bekannt sind, wie mit Hilfe der Säulenchromatographie, wie beschrieben ist bei Sambrook et al., Molecular Cloning, A Laboratory Manual, 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).
  • Wie vorstehend angedeutet, kann Egr-1 an die Stelle der Verletzung entweder als eine Egr-1 codierende Nucleinsäure, die an der Wundstelle selbst transkribiert und in Egr-1 translatiert wird, in Form einer Gentherapie verabreicht werden, oder der Transkriptionsfaktor selbst kann direkt verabreicht werden.
  • So wird gemäß einem vierten Gesichtspunkt der Erfindung die Verwendung eines Egr-1-Transkriptionsfaktor-Polypeptids oder eines biologisch aktiven Fragments davon bei der Herstellung eines Medikaments zur Behandlung von Wunden in einem Säuger, einschließlich dem Menschen, bereitgestellt.
  • Gemäß einem fünften Gesichtspunkt stellt die Erfindung die Verwendung eines Egr-1-Transkriptionsfaktors oder eines biologisch aktiven Fragments davon zur Verwendung bei der Herstellung eines Medikaments zur Behandlung von Wunden und bei der Wundheilung bereit.
  • Gemäß einem sechsten Gesichtspunkt stellt die Erfindung ein Medikament, umfassend einen Egr-1-Transkriptionsfaktor oder ein biologisch aktives Fragment davon zusammen mit einem oder mehreren pharmazeutisch vernäglichen Trägern dafür, zur Verwendung bei der Behandlung von Wunden bereit.
  • So wie hierin verwendet, schließt der Begriff "Egr-1-Transkriptionsfaktor-Polypeptid" einen natürlich und rekombinant hergestellten Egr-1-Transkriptionsfaktor, natürliche, synthetische und biologisch aktive Polypeptidanaloga oder Varianten oder Derivate davon oder biologisch aktive Fragmente davon und Varianten, Derivate und Analoga der Fragmente ein.
  • Egr-1-Transkriptionsfaktor-Proteinprodukte, einschließlich biologisch aktive Fragmente des Egr-1-Transkriptionsfaktors, können durch allgemeine Techniken, die auf dem Fachgebiet bekannt sind, erzeugt und/oder isoliert werden.
  • Egr-1 und die vorstehend erwähnten Fragmente und Derivate davon zur erfindungsgemäßen Verwendung können aus natürlichen Quellen durch Verfahren extrahiert werden, die auf dem Fachgebiet bekannt sind. Solche Verfahren schließen die Reinigung mit Hilfe einer sequenzspezifischen DNA-Affinitätschromatographie unter Anwendung von Verfahren ein, wie solchen, die beschrieben sind bei Briggs et al., Science 234 (1986), 47–52, unter Verwendung eines an DNA bindenden Oligonucleotids, das Egr-1 erkennt. Das Polypeptid kann auch hergestellt werden durch Verfahren der DNA-Rekombinationstechnik, die auf dem Fachgebiet bekannt sind, wie vorstehend beschrieben, d. h. durch Expression der beschriebenen Konstrukte in Wirtszellen. In einer anderen Ausführungsform können die erfindungsgemäßen Polypeptide durch herkömmliche Peptidsynthesegeräte synthetisch hergestellt werden.
  • Die Erfindung betrifft auch die Verwendung von Fragmenten, Analoga und Derivaten von Egr-1. Die Begriffe "Fragment", "Derivat" und "Analogon" bedeuten ein Polypeptid, das im Wesentlichen die gleiche biologische Funktion oder Aktivität wie ein solches Polypeptid beibehält. So schließt ein Analogon ein Pro-Protein ein, das durch Abspaltung des Pro-Proteinteils aktiviert werden kann, um ein aktives reifes Polypeptid herzustellen.
  • Das Fragment, Derivat oder Analogon des Polypeptids kann (i) eines sein, worin einer oder mehrere der Aminosäurereste durch einen konservierten oder nichtkonservierten Aminosäurerest (vorzugsweise einen konservierten Aminosäurerest) substituiert sind, und ein solcher substituierter Aminosäurerest kann ein Rest sein, aber muß nicht, der durch den genetischen Code codiert wird, oder (ii) eines, worin einer oder mehrere der Aminosäurereste eine Substituentengruppe einschließen, oder (iii) eines, worin das reife Polypeptid fusioniert ist mit einer anderen Verbindung, wie eine Verbindung, um die Halbwertszeit des Polypeptids zu erhöhen (zum Beispiel Polyethylenglykol), oder (iv) eines, worin die zusätzlichen Aminosäuren fusioniert sind mit dem reifen Polypeptid, wie eine Leader- oder sekretorische Sequenz oder eine Sequenz, die zur Reinigung des reifen Polypeptids oder einer Pro-Proteinsequenz verwendet wird. Solche Fragmente, Derivate und Analoga werden aus den Lehren hierin innerhalb der Möglichkeit von Fachleuten erachtet.
  • Unter den bevorzugten Varianten sind solche, die sich von dem natürlich vorkommenden Egr-1 durch konservative Aminosäuresubstitutionen unterscheiden. Solche Substitutionen sind diejenigen, die eine bestimmte Aminosäure in einem Polypeptid durch eine andere Aminosäure mit ähnlichen Eigenschaften ersetzen. Als konservative Substitutionen werden typischerweise die Austäusche, einer für einen anderen, unter den aliphatischen Aminosäuren Ala, Val, Leu und Ile; der Austausch der Hydroxylreste Ser und Thr, der Austausch der sauren Reste Asp und Glu, die Substitution zwischen den Amidresten Asn und Gln, der Austausch der basischen Reste Lys und Arg und die Austäusche unter den aromatischen Resten Phe und Tyr beobachtet.
  • In dieser Hinsicht besonders bevorzugt werden ferner Varianten, Analoga, Derivate und Fragmente sowie Varianten, Analoga und Derivate der Fragmente, welche die Aminosäuresequenz des Polypeptids aufweisen, worin mehrere, einige wenige, 5 bis 10, 1 bis 5, 1 bis 3, 2, 1 oder keine Aminosäurereste in einer beliebigen Kombination substituiert, deletiert oder addiert sind. Unter diesen besonders bevorzugt werden stumme Substitutionen, Additionen und Deletionen, welche die Eigenschaften und Aktivitäten des erfindungsgemäßen Polypeptids nicht verändern. In dieser Hinsicht besonders bevorzugt werden auch konservative Substitutionen.
  • Besonders bevorzugte Fragmente sind biologisch aktive Fragmente, d. h. Fragmente, welche die Wundheilungseigenschaften des Stamm-Polypeptids beibehalten.
  • Die erfindungsgemäß nützlichen Polypeptide und Polynucleotide werden vorzugsweise in isolierter Form bereitgestellt und sind vorzugsweise bis zur Homogenität gereinigt.
  • Egr-1-Polypeptide zur erfindungsgemäßen Verwendung umfassen ein Egr-1-Polypeptid sowie Polypeptide, die mindestens 70% Übereinstimmung, vorzugsweise mindestens 80% Übereinstimmung und stärker bevorzugt mindestens 90% Übereinstimmung und noch mehr bevorzugt mindestens 95% Übereinstimmung (auch mehr bevorzugt mindestens 99% Übereinstimmung) mit der murinen Polypeptidsequenz, wie in Cell 53 (1988), 37–43, angegeben, und mit Polypeptiden, die durch die menschliche Sequenz codiert werden, aufweisen, und sie schließen auch Teile solcher Polypeptide ein, wobei ein solcher Teil des Polypeptids im Allgemeinen mindestens 30 Aminosäuren und stärker bevorzugt mindestens 50 Aminosäuren enthält.
  • Fragmente oder Teile der Polypeptide, die bei der erfindungsgemäßen Therapie nützlich sind, können zur Herstellung des entsprechenden Polypeptids vollständiger Länge durch Peptidsynthese verwendet werden; daher können die Fragmente als Zwischenprodukte zur Herstellung von Polypeptiden vollständiger Länge verwendet werden. Fragmente oder Teile der erfindungsgemäß nützlichen Polynucleotide können verwendet werden, um erfindungsgemäß nützliche Polynucleotide vollständiger Länge zu synthetisieren.
  • Die Erfindung betrifft auch die Verwendung von Fragmenten eines Egr-1-Polypeptids, wie vorstehend definiert, und Fragmenten von Varianten und Derivaten davon.
  • In dieser Hinsicht ist ein Fragment ein Polypeptid mit einer Aminosäuresequenz, die völlig gleich ist zu einem Teil, aber nicht zur gesamten Aminosäuresequenz von Egr-1-Polypeptiden und Varianten und Derivaten davon.
  • Solche Fragmente können "freistehend" sein, d. h. kein Teil von oder nicht fusioniert mit anderen Aminosäuren oder Polypeptiden, oder sie können innerhalb eines größeren Polypeptids eingeschlossen sein, von dem sie einen Teil oder Bereich bilden. Wenn innerhalb eines größeren Polypeptids eingeschlossen, bilden die gerade besprochenen Fragmente besonders bevorzugt einen einzigen zusammenhängenden Bereich. Es können jedoch mehrere Fragmente innerhalb eines einzigen größeren Polypeptids eingeschlossen sein. Zum Beispiel betreffen bestimmte bevorzugte Ausführungsformen ein Fragment eines erfindungsgemäßen Polypeptids, das innerhalb eines Vorläufer-Polypeptids eingeschlossen ist, welches zur Expression in einem Wirt konstruiert ist und das heterologe Prä- und Pro-Polypeptidregionen, fusioniert mit dem Aminoterminus des Fragments, und eine zusätzliche Region, fusioniert mit dem Carboxylterminus des Fragments, aufweist. Daher betreffen Fragmente gemäß einem Gesichtspunkt der hierin beabsichtigten Bedeutung den Teil oder die Teile eines Fusionspolypeptids oder eines Fusionsproteins, das aus einem erfindungsgemäßen Polypeptid abgeleitet ist.
  • Gemäß diesem erfindungsgemäßen Gesichtspunkt werden auch Fragmente bevorzugt, die dadurch gekennzeichnet sind, daß sie strukturelle oder funktionelle Eigenschaften des Polypeptids aufweisen, die bei der erfindungsgemäßen Therapie nützlich sind. Bevorzugte erfindungsgemäße Ausführungsformen schließen in dieser Hinsicht Fragmente ein, die alpha-Helix- und alpha-Helix bildende Regionen, beta-Faltblatt- und beta-Faltblatt bildende Regio nen, Schleifen- und Schleifen bildende Regionen, Knäuel- und Knäuel bildende Regionen, hydrophile Regionen, hydrophobe Regionen, amphipatische alpha-Regionen, amphipatische beta-Regionen, flexible Regionen, oberflächenbildende Regionen, Substratbindungsregionen und stark antigene Leitregionen des erfindungsgemäßen Polypeptids umfassen, sowie Kombinationen solcher Fragmente.
  • Bevorzugte Regionen sind solche, welche die Aktivitäten des erfindungsgemäßen Polypeptids vermitteln. In dieser Hinsicht besonders bevorzugt werden Fragmente, die eine chemische, biologische oder andere Aktivität des erfindungsgemäßen Polypeptids aufweisen, einschließlich solche mit einer ähnlichen Aktivität oder einer verbesserten Aktivität oder mit einer verminderten unerwünschten Aktivität. Weitere bevorzugte Polypeptidfragmente sind solche, die antigene oder immunogene Determinanten in einem Tier, besonders in einem Menschen, umfassen oder enthalten.
  • Es ist erkennbar, daß die Erfindung u. a. auch Polynucleotide, welche die vorstehend erwähnten Fragmente codieren; Polynucleotide, die mit Polynucleotiden hybridisieren, die die Fragmente codieren, besonders solche, die unter stringenten Bedingungen hybridisieren; und Polynucleotide wie PCR-Primer zur Amplifikation von Polynucleotiden, die die Fragmente codieren, betreffen. In dieser Hinsicht sind bevorzugte Polynucleotide solche, die den bevorzugten Fragmenten, wie vorstehend besprochen, entsprechen.
  • Weitere Ausführungsformen dieses erfindungsgemäßen Gesichtspunkts schließen biologisch, prophylaktisch, klinisch oder therapeutisch nützliche Varianten, Analoga oder Derivate davon oder Fragmente davon, einschließlich Fragmente der Varianten, Analoga und Derivate, und diese umfassende Zusammensetzungen ein. Biologisch aktive Varianten, Analoga oder Fragmente sind im Schutzumfang der vorliegenden Erfindung eingeschlossen.
  • Die Erfindung betrifft auch Zusammensetzungen, welche die vorstehend besprochenen Polynucleotide oder Polypeptide umfassen. Daher können die erfindungsgemäßen Polynucleotide oder Polypeptide in Kombination mit einem oder mehreren pharmazeutisch verträglichen Trägern verwendet werden.
  • Solche Träger können einschließen, aber sind nicht begrenzt auf, Salzlösung, gepufferte Salzlösung, Dextrose, Wasser, Glycerin, Ethanol und Kombinationen davon.
  • Die Polypeptide und Polynucleotide können erfindungsgemäß allein oder in Ver bindung mit anderen Verbindungen wie therapeutische Verbindungen verwendet werden.
  • Die Arzneimittel können in irgendeiner wirksamen, geeigneten Art und Weise verabreicht werden, die in dem zielgerechten Hinleiten zu den Wundstellen wirksam ist, ein schließlich zum Beispiel die Verabreichung u. a. durch topische, intravenöse, intramuskuläre, intranasale oder intradermale Wege. Im allgemeinen werden die Zusammensetzungen lokal auf die Wunde oder einen assoziierten Zustand aufgetragen.
  • Bei der Therapie oder als Prophylaxe kann der Wirkstoff als eine injizierbare Zusammensetzung, zum Beispiel als eine sterile wäßrige Dispersion, die vorzugsweise isotonisch ist, an ein Individuum verabreicht werden.
  • In einer anderen Ausführungsform kann die Zusammensetzung zur topischen Anwendung, zum Beispiel in Form von Salben, Cremes, Lotionen, Augensalben, Augentropfen, Ohrentropfen, Mundspülungen, imprägnierten Verbänden und Nahtmaterialien sowie Aerosolen, formuliert werden und kann geeignete herkömmliche Zusätze, einschließlich zum Beispiel Konservierungsmittel, Lösungsmittel zur Förderung der Wirkstoffpenetration und Erweichungsmittel in Salben und Cremes, enthalten. Solche topischen Formulierungen können auch verträgliche herkömmliche Träger, zum Beispiel Creme- und Salbengrundstoffe, und Ethanol oder Oleylalkohol für Lotionen enthalten. Solche Träger können etwa 1 bis etwa 98 Gew.-% der Formulierung ausmachen; üblicher machen sie bis zu etwa 80 Gew.-% der Formulierung aus.
  • Zur Verabreichung an Säuger und besonders an Menschen wird erwartet, daß die tägliche Dosierungsmenge des Wirkstoffs 0,01 mg/kg bis 10 mg/kg, typischerweise ungefähr 1 mg/kg, beträgt. In jedem Fall wird der Arzt die tatsächliche Dosierung bestimmen, die für ein Individuum am besten geeignet ist, und sie wird mit dem Alter, dem Gewicht und der Reaktion des einzelnen Individuum variieren. Die vorstehenden Dosierungen sind beispielhaft für den Durchschnittsfall. Es kann natürlich einzelne Fälle geben, wo höhere oder niedrigere Dosierungsbereiche nützlich sind, und solche sind im Schutzumfang dieser Erfindung eingeschlossen.
  • Als siebter Gesichtspunkt wird ein Arzneimittel, umfassend einen Egr-1-Transkriptionsfaktor oder ein Nucleinsäuremolekül, umfassend eine Sequenz, die Egr-1 codiert, zusammen mit einem oder mehreren pharmazeutisch verträglichen Trägern davon zur Verwendung bei der Behandlung von Wunden bereitgestellt.
  • Der therapeutische Vorteil der Verwendung von Transkriptionsfaktoren bei der Beschleunigung der Wundheilung beruht auf der Aktivierung mehrerer Zielgene, die eine beschleunigte Heilung fördern. Egr-1 wird natürlicherweise als Reaktion auf eine Verletzung aktiviert, und die Verlängerung der natürlichen Reaktion ist auch ein Vorteil. Die Behandlung erfolgt auf DNA-Basis und stellt ein zuverlässiges und reproduzierbares Übertragungssystem bereit.
  • Falls ein Egr-1-Polynucleotid bei der erfindungsgemäßen therapeutischen Anwendung verwendet wird, kann das Polynucleotid als Teil eines Expressionskonstrukts, z. B. in Form eines Expressionsvektors, verwendet werden. Bei einer solchen Verwendung wird das Konstrukt an der Wundstelle eingebracht, wo Egr-1 in situ produziert wird. Die verwendeten Konstrukte können Standardvektoren und/oder Genübertragungssysteme wie Liposomen, Rezeptor-vermittelte Übertragungssysteme und virale Vektoren sein.
  • Die vorliegende Erfindung ist für alle Gesichtspunkte der Wundheilung geeignet, einschließlich Extremitätengeschwüre bei Diabetes sowie peripherer arterieller Verschlußkrankheit, post-operativer Narbenbildung, Verbrennungen und Psoriasis.
  • Wie vorstehend beschrieben, können erfindungsgemäße Egr-1-Polypeptide oder -Nucleinsäuren an der Stelle einer Gewebeschädigung durch irgendein geeignetes Verfahren, z. B. durch topische Verabreichung, örtlich verabreicht werden. Ein Verfahren zur Übertragung von Nucleinsäureprodukten ist die Verwendung der Genkanonen-Technologie, wobei das isolierte Egr-1-Nucleinsäuremolekül z. B. in Form von cDNA oder in einem Expressionsvektor auf Goldpartikeln immobilisiert ist und direkt an die Stelle der Verletzung geschossen wird. So wird als ein bevorzugter Gesichtspunkt der vorliegenden Erfindung die Verwendung eines Nucleinsäuremoleküls, umfassend eine Sequenz, die Egr-1 codiert, in einer Genkanone zur Herstellung eines Medikaments zur Behandlung von Wunden bereitgestellt. Ferner wird eine Zusammensetzung bereitgestellt, die für die Genkanonen-Therapie geeignet ist, umfassend eine Sequenz, die einen Egr-1-Transkriptionsfaktor codiert, und Goldpartikel.
  • Die bevorzugte Übertragung der/des erfindungsgemäßen Nucleinsäure oder Polypeptids erfolgt jedoch durch Mikroeinpflanzung, wie in US-5,697,901 beschrieben ist.
  • Wie bereits erwähnt, kann sich das Polynucleotid, umfassend eine Sequenz, die Egr-1 oder ein biologisch aktives Fragment davon codiert, unter der Kontrolle von mindestens einem Teil eines nativen Egr-1-Promotors, vorzugsweise des menschlichen Egr-1-Promotors, befinden.
  • Der murine Egr-1-Promotor ist isoliert und sequenziert worden (Morris, Nucleic Acids Research 16, 8835–3346). Mögliche regulatorische Sequenzen umfassen ein AAATA-Element (eine 'TATA'-ähnliche Homologie) in Position -26 bis -22; eine CCAAT-Box in den Positionen -337 bis -333; fünf Serum-Response-Elemente (SREs) in den Positionen -110 bis -91, -342 bis -324, -358 bis -339, -374 bis -355 und -412 bis -393; zwei Ap1-Stellen in den Positionen -610 bis -603 und -867 bis -860; vier Sp1-Stellen in den Positionen -285 bis -280, -649 bis -644, -700 bis -695 und -719 bis -714; und zwei cAMP-Response-Elemente in den Positionen -138 bis -131 und -631 bis -624. Es ist gezeigt worden, daß Egr-1 an den murinen Egr-1-Promotor bindet und die Transkription seiner eigenen Expression herunterreguliert. Die Sequenz dieses Promotors ist in 9 der beigefügten Zeichnungen bereitgestellt.
  • Über die Regulation des menschlichen Egr-1-Promotors ist wenig bekannt. Eine mutmaßliche menschliche Egr-1-Sequenz ist bereitgestellt worden. 695 Nucleotide einer Stromaufwärtssequenz sind, bezogen auf den mRNA-Startpunkt bei +1, identifiziert worden. Diese Stromaufwärtssequenz umfaßt ein AAATA-Element (eine 'TATA'-ähnliche Homologie) in Position -26 bis -22 und zahlreiche potentielle regulatorische Elemente, einschließlich zwei Sp1-Stellen in den Positionen -505 bis -499 und -647 bis -642; zwei cyclisches AMP-Response-Elemente in den Positionen -134 bis -127 und -630 bis -623; fünf Serum-Response-Elemente (SREs) in den Positionen -108 bis -89, -344 bis -326, -359 bis -340, -376 bis -357 und -410 bis -394; eine Egr-1-Bindungsstelle (EBS) in Position -597 bis -589 und ein Tetradecanoylphorbolacetat (TPA)-Response-Element (Ap1-Bindungsstelle) in Position -609 bis -602. Es ist bekannt, daß die TPA-Bindungsstelle funktionsfähig ist, da TPA die Expression durch ein Plasmid stimuliert, welches das Chloramphenicolacetyltransferase-Gen exprimiert. Es ist gezeigt worden, daß die SREs 3 und 4 die Reaktion des Egr-1-Promotors auf eine Scherbeanspruchung vermitteln und eine Scherbeanspruchungsreaktion auf den SV40-Promotor übertragen können. Die Deletion der EBS aus dem menschlichen Promotorelement führt zu einer Erhöhung der Scherbeanspruchungsreaktionsfähigkeit dieses Promotors, was für eine Rolle von Egr-1 bei der Herunterregulierung der Aktivität durch den menschlichen Promotor spricht.
  • Die hierin genannten Erfinder haben festgestellt, daß die für den menschlichen Egr-1-Promotor bereitgestellte, veröffentlichte Sequenz nicht korrekt ist, und haben eine neue Sequenz bereitgestellt, die mehrere Unterschiede zu der veröffentlichten Sequenz aufweist. Diese Sequenzunterschiede konnten nicht im voraus vorhergesagt werden, und mindestens einige von ihnen werden als funktionell bedeutend angesehen. Außerdem haben die hierin genannten Erfinder eine vollständige Sequenz bereitgestellt, während die beschriebene menschliche Egr-1-Promotorsequenz verschiedene Lücken einschließt.
  • Folglich kann das Nucleinsäuremolekül, umfassend eine Sequenz, die Egr-1 oder ein biologisch aktives Fragment davon codiert, funktionell verbunden sein mit einer Nucleinsäuresequenz, die:
    • a) einen Strang besitzt, der die in 7 bereitgestellte Sequenz für GW SEQ umfaßt; oder
    • b) einen Strang besitzt, der eine oder mehrere Deletionen, Insertionen und/oder Substitutionen, bezogen auf GW SEQ, umfaßt, der aber nicht die in 7 als ON SEQ gezeigte Sequenz umfaßt und der auch nicht die in 9 gezeigte Sequenz umfaßt.
  • Gemäß einem achten Gesichtspunkt der vorliegenden Erfindung wird ein Nucleinsäuremolekül, das:
    • a) einen Strang besitzt, der die in 7 bereitgestellte Sequenz für GW SEQ umfaßt;
    • b) einen Strang besitzt, der eine oder mehrere Deletionen, Insertionen und/oder Substitutionen, bezogen auf GW SEQ, umfaßt, der aber nicht die in 7 als ON SEQ gezeigte Sequenz umfaßt und der auch nicht die in 9 gezeigte Sequenz umfaßt; oder
    • c) einen Strang besitzt, der mit einem Strang hybridisiert, wie vorstehend in a) oder b) beschrieben, und der funktionell verbunden ist mit dem Nucleinsäuremolekül, umfassend eine Sequenz, die Egr-1 oder ein biologisch aktives Fragment davon codiert, zur erfindungsgemäßen Verwendung bereitgestellt.
  • Moleküle innerhalb des vorstehenden Schutzumfangs von a), b) oder c) werden nun ausführlicher beschrieben:
  • a) Nucleinsäuremolekül mit der in 7 bereitgestellten Sequenz für GW SEQ
  • Es ist erkennbar, daß die in 7 gezeigte GW SEQ verschiedene eingerahmte Bereiche aufweist. Man nimmt an, daß diese funktionell bedeutend sind. Ohne an eine Theorie gebunden zu sein, werden die mutmaßlichen Funktionen der in 7 gezeigten verschiedenen eingerahmten Bereiche nachstehend beschrieben:
  • Sp1 (zwei Regionen)
  • Sp1 kennzeichnet eine Sequenz zur Bindung des Transkriptionsfaktors Sp1 und von Homologen davon.
  • cAMP-RE (zwei Regionen)
  • cAMP-RE kennzeichnet eine Sequenz zur Bindung des Transkriptionsfaktors ATF und von Homologen davon. Diese wird durch cAMP induziert, und die Sequenz wird daher als cAMP-Response-Element bezeichnet.
  • TPA-RE
  • TPA-RE kennzeichnet eine Sequenz zur Bindung des Transkriptionsfaktors AP1 und von Homologen davon. Diese wird zum Beispiel durch den Phorbolester TPA induziert, und die Sequenz wird daher als TPA-Response-Element bezeichnet.
  • EBS
  • EBS kennzeichnet eine Sequenz zur Bindung des Transkriptionsfaktors Egr-1 und von Homologen davon.
  • SRE (SRE5, SRE4, SRE3, SRE2, SRE1)
  • SRE kennzeichnet eine Sequenz, die eine Serumreaktionsfähigkeit vorsieht (d. h. ein Serum-Response-Element). Zusammen mit assoziierten Ets (E26-Transformation-spezifischen)-Bindungsstellen binden die Serum-Response-Elemente Transkriptionsfaktoren wie SRF, Elk-1 und/oder F-ACT1 sowie Homologe davon.
  • TATA
  • Man nimmt an, daß die TATA-Box für die Zusammenlagerung des Transkriptionskomplexes erforderlich ist, der viele Transkriptionsfaktoren umfaßt, die zur Transkriptionsinitiation erforderlich sind. Sie muß nicht die genaue Sequenz "TATA" einschließen, da diese eine Konsensussequenz ist und ein bestimmter Variationsgrad auftreten kann.
  • Die GW SEQ weist mehrere Sequenzunterschiede, bezogen auf die veröffentlichte menschliche Egr-1-Sequenz, auf (hierin als "ON SEQ" bezeichnet). Die Unterschiede werden nun im Hinblick auf eine in 7 gezeigte Ausrichtung der Sequenzen GW SEQ und ON SEQ besprochen.
  • Wie aus 7 ersichtlich ist, weist die GW SEQ fünf Nucleotide auf, die von den spezifischen Nucleotiden, die in den entsprechenden Positionen für die ON SEQ bereitgestellt wurden, verschieden sind. Diese können, bezogen auf die ON SEQ, als Substitutionen angesehen werden. Zwei davon liegen in Bereichen vor, die eingerahmt sind. Diese zwei Substitutionen sind die Substitution eines G's durch ein T und die Substitution eines G's durch ein C. Sie liegen in der ersten cAMP-RE-Box bzw. in der SRE3-Box vor.
  • Die GW SEQ weist auch verschiedene zusätzliche Nucleotide bezogen auf ON SEQ auf (d. h. Nucleotide, die in der ON SEQ nicht spezifisch identifiziert sind). Diese können bezogen auf die ON SEQ als Insertionen angesehen werden. Vier davon liegen in der SRE5-Box vor. (Drei davon sind Insertionen eines A's und eine ist eine Insertion eines C's.)
  • Die GW SEQ weist, bezogen auf ON SEQ, eine Deletion auf. Es ist die Deletion eines G's. Diese liegt nicht in einem eingerahmten Bereich vor. Sie befindet sich zwischen der zweiten Sp1-Box und der SRE5-Box.
  • Moleküle innerhalb des vorstehenden Schutzumfangs von a) können natürlich zusätzliche Stromaufwärts- und/oder Stromabwärtssequenzen, bezogen auf die GW SEQ, aufweisen. Zum Beispiel können eine oder mehrere Regionen bereitgestellt werden, die an der Transkription/Translation oder der Regulation davon beteiligt sind. Eine codierende Region kann auch bereitgestellt werden (die vorzugsweise Egr-1 oder ein biologisch aktives Fragment davon codiert). Zusätzliche Regionen werden später ausführlicher besprochen.
  • b) Nucleinsäuremolekül, das einen Strang besitzt, der eine oder mehrere Deletionen, Insertionen und/oder Substitutionen, bezogen auf GW SEQ, aufweist, der aber nicht die in 7 als ON SEQ gezeigte Sequenz umfaßt und der auch nicht die in 9 gezeitge Sequenz umfaßt
  • Austäusche in der Nucleotidsequenz können, bezogen auf ein GE SEQ umfassendes Molekül, durchgeführt werden, um andere Moleküle bereitzustellen, die noch immer nützlich sind. Solche Austäusche sind im Schutzumfang der vorliegenden Erfindung eingeschlossen. Sie schließen allele und nicht-allele Varianten ein.
  • Bevorzugte Varianten innerhalb des vorstehenden Schutzumfangs von b) umfassen üblicherweise eine oder mehrere regulatorische Regionen mit einer Funktion, die der Funktion eines oder mehrerer der für GW SEQ gezeigten eingerahmten Bereiche entsprechen (selbst wenn die Funktion, bezogen auf den einen oder mehrere der für die GW SEQ gezeigten eingerahmten Bereiche, hoch- oder herunterreguliert ist). Besonders bevorzugt weisen solche Moleküle eine oder mehrere Regionen auf, welche die gleichen Sequenzen aufweisen, wie eine oder mehrere der für GW SEQ gezeigten eingerahmten Bereiche.
  • Bevorzugte Varianten innerhalb des vorstehenden Schutzumfangs von b) weisen eine wesentliche Sequenzübereinstimmung mit der gesamten oder einem Teil der GW SEQ über die Länge der GW SEQ oder einen Teil davon auf.
  • Falls eine Variante eine oder mehrere Regionen aufweist, die einem oder mehreren der in 7 für GW SEQ gezeigten eingerahmten Bereiche entsprechen, wird bevorzugt, daß es, bezogen auf die eingerahmten Bereiche, keine Unterschiede oder nur einige wenige solche Unterschiede gibt (z. B. kann im allgemeinen bevorzugt werden, daß maximal nur 1, 2 oder 3 Unterschiede im Hinblick auf einen bestimmten eingerahmten Bereich vorhanden sind). Außerhalb der eingerahmten Bereiche können mehr Sequenzveränderungen vorhanden sein. So können Varianten verhältnismäßig geringe Grade einer Sequenzübereinstimmung mit dem entsprechenden Teil der GW SEQ im Hinblick auf Regionen aufweisen, die in 7 nicht eingerahmt sind. Tatsächlich können einige Varianten eine oder mehrere Regionen nicht aufweisen, die der einen oder mehreren Regionen außerhalb der eingerahmten Bereiche im Hinblick auf die GW SEQ entsprechen.
  • Bevorzugte Nucleinsäuremoleküle des achten Gesichtspunkts der vorliegenden Erfindung schließen eine oder mehrere regulatorische Regionen ein, die fähig sind, die Transkriptionsrate von Egr-1 in Säugern (besonders bevorzugt in Menschen) als Antwort auf in vivo-Bedingungen zu verändern. So können solche Nucleinsäuremoleküle an Säuger verabreicht werden, um Egr-1 in einer Art und Weise bereitzustellen, welche ermöglicht, daß seine Expression auf der Transkriptionsebene reguliert wird (diese Nucleinsäuremoleküle schließen daher im allgemeinen eine Region ein, die eine Substanz mit einer Egr-1-Aktivität codiert).
  • Ein oder mehrere Serum-Response-Elemente (SREs) können vorhanden sein. Bevorzugt sind eines oder mehrere davon Scherbeanspruchungs-Response-Elemente (SSREs). Diese sind Regionen, die eine Scherbeanspruchungsreaktionsfähigkeit auf die Transkription übertragen.
  • Eine Vielzahl von SSREs kann beim Ermöglichen einer Scherbeanspruchungsreaktionsfähigkeit zusammenarbeiten. Bevorzugt sind diese verbunden mit/schließen ein eine oder mehrere Ets-Stellen. Jedoch ist es einigen Fällen möglich, daß nur ein SSRE vorhanden sein muß (vorzugsweise zusammen mit einer Ets-Stelle), um einen Grad an Scherbeanspruchungsreaktionsfähigkeit bereitzustellen.
  • Ein bevorzugtes SSRE ist in 7 als SRE5 für "GW SEQ" gezeigt. Die hierin genannten Erfinder haben gezeigt, daß dieses funktionsfähig ist, während die im Hinblick auf die ON SEQ gezeigte SRE5-Sequenz nicht funktionsfähig ist. SRE5 selbst sowie Varianten von SRE5, die fähig sind, eine Scherbeanspruchungsreaktionsfähigkeit bereitzustellen, sind im Schutzumfang der vorliegenden Erfindung eingeschlossen. Solche Varianten schließen vorzugsweise mindestens einen der Nucleotidunterschiede ein, die in dem GW SEQ-SRE5, bezogen auf das ON SEQ-SRE5, vorhanden sind.
  • Andere bevorzugte SSREs sind SRE3 und SRE4, wie in 7 für GW SEQ gezeigt, sowie Varianten davon, die fähig sind, eine Scherbeanspruchungsreaktionsfähigkeit bereitzustellen.
  • Besonders bevorzugt sind alle drei Elemente, SRE3, SRE4 und SRE5 (oder Varianten davon, die fähig sind, eine Scherbeanspruchungsreaktionsfähigkeit bereitzustellen), vorhanden.
  • Ungeachtet davon, ob bestimmte SREs vorhanden sind oder nicht, schließt ein Nucleinsäuremolekül des zehnten Gesichtspunkts der vorliegenden Erfindung bevorzugt eine TATA-Box ein (die nicht notwendigerweise die Konsensussequenz "TATA" einschließt). Es schließt üblicherweise auch eine CCAAT-Box ein (die nicht notwendigerweise die Konsensussequenz "CCAAT" einschließt).
  • Mindestens eine und vorzugsweise zwei Sp1-Bindungsregionen sind üblicherweise auch vorhanden. Die Sp1-Bindungsregionen können eine oder beide der in 7 für GW SEQ gezeigten Sp1-Bindungssequenzen sein.
  • Eine cAMP-Response-Region kann vorhanden sein. Bevorzugt umfassen solche Regionen die in 7 gezeigten Sequenzen im Hinblick auf GW SEQ mit der Bezeichnung cAMP-RE. Besonders bevorzugt wird das erste cAMP-RE, das in 7 für GW SEQ gezeigt ist. Diese können die Regulation der Transkription durch cAMP ermöglichen.
  • Eine Egr-1-Bindungsstelle (EBS) kann vorhanden sein. Man nimmt an, daß sie eine wichtige Rolle bei der Herunterregulierung der Transkription von Egr-1 spielt, sobald die Egr-1-Spiegel einen bestimmten Schwellenwert überschreiten. Folglich kann Egr-1 seine eigene Expression nach einer Scherbanspruchungsstimulation begrenzen. Eine EBS kann gegebenenfalls im allgemeinen eingeschlossen sein, um die Egr-1-Spiegel in dieser Art und Weise zu begrenzen. Die EBS kann die in 7 für GW SEQ gezeigte Sequenz als EBS aufweisen. Nucleotidaustäusche können bei einer bestimmten EBS durchgeführt werden, um Varianten davon bereitzustellen. Zum Beispiel können Varianten mit einer verminderten Affinität für Egr-1 bezogen auf die in 7 für GW SEQ gezeigte EBS bereitgestellt werden. Eine solche Variante ist die in 8 gezeigte EBS. In einigen Fällen kann eine funktionsfähige EBS nicht vorhanden sein, und daher kann die Regulation durch Egr-1 vollständig aufgehoben werden (z. B. kann eine vollständige Deletion einer EBS durchgeführt werden). Nucleotidaustäusche können bei einer EBS auch durchgeführt werden, um eine erhöhte Affinität für Egr-1 bereitzustellen. Dies ist nützlich, falls eine verstärkte Selbstregulation der Egr-1-Expression gewünscht wird.
  • c) Nucleinsäwemolekül, das einen Strang besitzt, der mit einem Strang hybridisiert, wie vorstehend in a) oder b) beschrieben
  • Nucleinsäwemoleküle, die mit einem oder mehreren der vorstehend besprochenen Nucleinsäuremoleküle hybridisieren können, sind durch den zehnten Gesichtspunkt der vorliegenden Erfindung auch abgedeckt. Auf solche Nucleinsäuremoleküle wird hierin als "hybridisierende" Nucleinsäwemoleküle verwiesen. Bevorzugt sind die erfindungsgemäßen hybridisierenden Nucleinsäuremoleküle mindestens 10 Nucleotide lang und vorzugsweise mindestens 25, mindestens 50, mindestens 100 oder mindestens 200 Nucleotide lang.
  • Ein erfindungsgemäßes hybridisierendes Nucleinsäuremolekül kann einen hohen Grad der Sequenzgleichartigkeit entlang seiner Länge mit einem Nucleinsäuremolekül aufweisen, das komplementär ist zu einer Nucleinsäure innerhalb des vorstehenden Schutzumfangs von a) oder b) (z. B. mindestens 50%, mindestens 75%, mindestens 90%, mindestens 95% oder mindestens 98% Gleichartigkeit), obwohl dies nicht wesentlich ist. Je größer der Grad der Sequenzgleichartigkeit ist, den ein bestimmtes einzelsträngiges Nucleinsäuremolekül mit einem anderen einzelsträngigen Nucleinsäuremolekül aufweist, desto größer ist die Wahrscheinlichkeit, daß es mit einem einzelsträngigen Nucleinsäuremolekül, das komplementär ist zu dem anderen einzelsträngigen Nucleinsäuremolekül, unter geeigneten Bedingungen hybridisiert.
  • Bevorzugte hybridisierende Moleküle hybridisieren unter Bedingungen einer mäßigen oder hohen Stringenz. Hybridisierungsbedingungen sind auf S. 1.101–1.110 und 11.45– 11.61 von Sambrook et al. (Molecular Cloning, 2. Auflage, Cold Spring Harbor Laboratory Press (1989)) ausführlich besprochen. Ein Beispiel für Hybridisierungsbedingungen, die verwendet werden können, schließt die Verwendung einer Vorwaschlösung aus 5× SSC, 0,5% SDS, 1,0 mM EDTA (pH 8,0) und das Versuchen der Hybridisierung über Nacht bei 55°C unter Verwendung von 5× SSC ein. Jedoch gibt es viele andere Möglichkeiten. Einige davon sind zum Beispiel in Tabelle 1 von WO 98/45435 aufgeführt (vgl. besonders die unter A–F dargelegten Bedingungen dieser Tabelle und weniger bevorzugt die unter G bis L oder M bis R aufgeführten).
  • Ein anderer Ansatz ist, die Tm für ein bestimmtes fehlerloses Duplexmolekül (d. h. ohne Fehlpaarungen) einer bestimmten Länge unter bestimmten Bedingungen zu bestimmen und dann eine versuchte Hybridisierung mit einem Einzelstrang des Duplexmoleküls unter solchen Bedingungen durchzuführen, aber bei einer Temperatur, die ausreichend unterhalb der Tm liegt, um die Bildung einer Auswahl von stabilen Hybriden in einer annehmbaren Rate zu ermöglichen, während dennoch ein ausreichender Hybridisierungsspezifitätsgrad erforderlich ist. Die Tm für ein solches Duplexmolekül kann empirisch bestimmt werden durch Bereitstellen des Duplexmoleküls und das allmähliche Erhöhen der Temperatur, bis die Tm erreicht ist. Die Tm kann auch abgeschätzt werden, z. B. unter Verwendung der Formel: Tm = 81,5 + 16,6 (log10 [Na+]) + 0,41 (Fraktion G + C) – (600/N), worin N die Kettenlänge ist (diese Formel ist für Na+-Konzentrationen von 1 M oder weniger und für Polynucleotidlängen von 14 bis 70 ziemlich genau, aber weniger genau, wenn diese Parameter nicht erfüllt werden). Für Nucleinsäuremoleküle mit einer Länge von mehr als 200 Nucleotiden kann die Hybridisierung zum Beispiel bei 15 bis 25°C unterhalb der Tm eines fehlerlosen Hybrids (d. h. ohne Fehlpaarungen) unter bestimmten Bedingungen ausgeführt werden. Wenn die Länge jedoch verringert wird, wird die Tm erniedrigt, so daß es zuweilen ungünstig ist, die Hybridisierung bei Tm –25°C auszuführen. Die Hybridisierung mit kürzeren Nucleinsäuremolekülen wird daher oft bei nur 5 bis 10°C unterhalb der Tm ausgeführt. Mäßige oder hohe Stringenzbedingungen lassen üblicherweise nur einen kleinen Teil von Fehlpaarungen zu. Als Faustregel gilt, daß für jedes 1% an Fehlpaarungen eine Verringerung der Tm um 1– 1,5°C auftritt. Vorzugsweise werden die Hybridisierungsbedingungen so gewählt, daß weniger als 25% Fehlpaarungen, stärker bevorzugt weniger als 10% oder weniger als 5% Fehlpaarungen zugelassen werden. An die Hybridisierung können sich Waschschritte mit ansteigender Stringenz anschließen. So können die ersten Waschschritte unter Bedingungen einer niedrigen Stringenz erfolgen, aber auf diese können Waschschritte mit einer höheren Stringenz folgen, bis zu der Stringenz der Bedingungen, unter denen die Hybridisierung durchgeführt wurde.
  • Die vorstehende Besprechung der Hybridisierungsbedingungen wird zur allgemeinen Information bereitgestellt, aber soll nicht begrenzend sein. Der Grund dafür ist, daß ein Fachmann in der Lage ist, die Parameter gegebenenfalls zu variieren, um geeignete Hybridisierungsbedingungen bereitzustellen, und solche Variablen wie Polynucleotidlänge, Basenzusammensetzung, An des Duplexmoleküls (d. h. DNA/DNA, RNA/RNA oder DNA/RNA), vorliegender Ionentyp etc. zu berücksichtigen.
  • Besonders bevorzugt hybridisieren hybridisierende Nucleinsäuremoleküle des zehnten Gesichtspunkts der vorliegenden Erfindung mit einen DNA-Molekül, das die in 7 für GW SEQ gezeigte Sequenz aufweist, oder mit einem oder mehreren der in 7 gezeigten eingerahmten Bereiche.
  • Hybridisierende Nucleinsäuremoleküle können zum Beispiel als Sonden oder Primer nützlich sein.
  • Sonden können verwendet werden, um Nucleinsäuren zu reinigen und/oder zu identifizieren. Sie können in der Diagnose verwendet werden. Zum Beispiel können Sonden verwendet werden, um zu bestimmen, ob ein Individuum Defekte in seinem Genom aufweist oder nicht, welche die Transkription von Egr-1 oder die Regulation einer solchen Transkription beeinflussen können. Solche Defekte können das Individuum für verschiedene Störungen anfällig machen, die unter Verwendung der erfindungsgemäßen Behandlungen behandelbar sind. Zum Beispiel kann die Wundheilung durch Mutationen in einem oder mehreren der SREs gestört sein. Solche Mutationen können unter Verwendung von Sonden identifiziert werden, die mit einem größeren Spezifitätsgrad mit einem oder mehreren der für GW SEQ gezeigten SREs hybridisieren als mit den entsprechenden mutierten SREs (oder umgekehrt).
  • Bevorzugt hybridisieren hybridisierende Moleküle des achten Gesichtspunkts der vorliegenden Erfindung mehr stringent mit einem DNA-Molekül, das die in 7 für GW SEQ gezeigte Sequenz aufweist, oder mit einem oder mehreren der eingerahmten Bereiche davon, als mit einem DNA-Molekül, das die in 7 für ON SEQ gezeigte Sequenz aufweist, oder mit einem oder mehreren der eingerahmten Bereiche davon. Zum Beispiel können hybridisierende Moleküle mit einem hohen Spezifitätsgrad für eine oder mehrere der in 7 für GW SEQ gezeigten SRE3-, SRE5- und cAMP-Regionen konstruiert werden (alle diese Regionen weisen Unterschiede bezüglich der Sequenz zu den entsprechenden Regionen von ON SEQ auf).
  • Hybridisierende Nucleinsäuremoleküle innerhalb des Schutzumfangs des zehnten Gesichtspunkts der vorliegenden Erfindung schließen Primer ein. Primer sind bei der Amplifikation von Nucleinsäuren oder Teilen davon, z. B. durch PCR-Techniken, nützlich.
  • Hybridisierende Nucleinsäuremoleküle des zehnten Gesichtspunkts der vorliegen den Erfindung können zusätzlich dazu, daß sie als Sonden oder Primer nützlich sind, als Antisense-Moleküle verwendet werden, um die Expression zu verändern. Diese Technik kann in der Antisense-Therapie verwendet werden. Antisense-Moleküle können zum Beispiel verwendet werden, um die Expression von Egr-1 durch die Verhinderung oder Verringerung der Transkriptionsrate zu blockieren oder zu verringern. In einer anderen Ausführungsform können sie verwendet werden, um die Regulation der Transkription von Egr-1 durch einen bestimmten Regulator zu verhindern oder zu verringern, indem sie an eine Region binden, an die der Regulator normalerweise binden würde.
  • Es ist wichtig anzumerken, daß Nucleinsäuremoleküle zur erfindungsgemäßen Verwendung nicht nur solche mit klassischen DNA- oder RNA-Strukturen einschließen, sondern auch Varianten mit modifizierten (Nicht-Phosphodiester) Grundgerüsten, z. B. Morpholinoderivate und Peptidnucleinsäuren (PNAs), die ein Pseudopeptidgrundgerüst auf der Basis von N-(2-Aminoethyl)glycin enthalten (vgl. Nielsen P. E., Annual Review of Biophysics & Biomolecular Structure 24 (1995), 167–183). Nucleinsäurevarianten mit modifizierten Grundgerüsten können eine erhöhte Stabilität bezogen auf unmodifizierte Nucleinsäuren aufweisen und sind besonders nützlich, wenn eine Langzeithybridisierung erwünscht ist (z. B. bei der Antisense-Therapie).
  • Aus der vorstehenden Besprechung ist ersichtlich, daß eine große Zahl von Nucleinsäuren im Schutzumfang des zehnten Gesichtspunkts der vorliegenden Erfindung eingeschlossen ist. Sofern im Zusammenhang nicht anders angegeben, können Nucleinsäuremoleküle des zehnten Gesichtspunkts der vorliegenden Erfindung daher eine oder mehrere der folgenden Eigenschaften aufweisen:
    • 1) Sie können in Form von DNA oder RNA vorliegen (einschließlich Varianten von natürlich vorkommenden DNA- oder RNA-Strukturen, die nicht natürlich vorkommende Basen und/oder nicht natürlich vorkommende Grundgerüste aufweisen).
    • 2) Sie können einzelsträngig oder doppelsträngig sein (es sind sowohl ein bestimmter Strang als auch sein Komplement eingeschlossen, ob sie assoziiert sind oder nicht).
    • 3) Sie können in rekombinanter Form bereitgestellt werden, d. h. kovalent gebunden an eine heterologe flankierende 5'- und/oder 3'-Sequenz, um ein chimäres Molekül bereitzustellen (z. B. einen Vektor), das nicht in der Natur vorkommt.
    • 4) Sie können ohne flankierende 5'- und/oder 3'-Sequenzen bereitgestellt werden, die normalerweise in der Natur vorkommen.
    • 5) Sie können in im Wesentlichen reiner Form bereitgestellt werden (d. h. in isolierter Form). Dies kann zum Beispiel unter Verwendung von Sonden zur Isolierung clonierter Moleküle mit einer gewünschten Zielsequenz oder unter Verwendung chemischer Synthesetechniken bewirkt werden. So können die Nucleinsäuren in einer Form bereitgestellt werden, die im wesentlichen frei von kontaminierenden Proteinen und/oder von anderen Nucleinsäuren ist.
    • 6) Sie können mit Introns (z. B. als ein Gen vollständiger Länge) oder ohne Introns bereitgestellt werden.
  • Verschiedene Anwendungen des zehnten Gesichtspunkts der vorliegenden Erfindung werden nun ausführlicher besprochen.
  • Nucleinsäuremoleküle des achten Gesichtspunkts der vorliegenden Erfindung können irgendeine gewünschte codierende Sequenz umfassen. Zum Beispiel können ein oder mehrere Serum-Response-Elemente funktionell verbunden sein mit einer codierenden Sequenz, die normalerweise nicht mit solchen Elementen assoziiert ist. Diese kann zum Beispiel gegebenenfalls bei der Wundheilung nützlich sein, um eine Serumreaktionsfähigkeit im Hinblick auf ein bestimmtes Therapeutikum bereitzustellen, das durch die codierende Sequenz codiert wird und normalerweise keine Serumreaktionsfähigkeit zeigt.
  • Es wird jedoch bevorzugt, daß Nucleinsäuremoleküle des achten Gesichtspunkts der vorliegenden Erfindung eine codierende Sequenz für Egr-1 oder ein biologisch aktives Fragment davon umfassen.
  • Bevorzugt schließen Nucleinsäuremoleküle des achten Gesichtspunkts der vorliegenden Erfindung eine Promotorregion ein und können verwendet werden, um Egr-1 bereitzustellen, indem sie die Transkription von Egr-1-mRNA ermöglichen. Diese kann dann durch Ribosomen translatiert werden, die in einem Wirt vorhanden sind. So können die Nucleinsäuremoleküle an ein Individuum (vorzugsweise einen Menschen oder einen anderen Säuger) verabreicht werden, so daß zusätzlicher Egr-1 in dem Individuum synthetisiert werden kann, oder (weniger bevorzugt) sie können verwendet werden, um Egr-1 selbst herzustellen, der dann an das Individuum verabreicht werden kann.
  • Bevorzugte Nucleinsäuremoleküle des achten Gesichtspunkts der vorliegenden Erfindung zur Verabreichung an ein Individuum können in einer solchen Art und Weise transkribiert werden, daß die Transkription durch einen oder mehrere Faktoren reguliert werden kann, die die Egr-1-Transkription in dem Individuum regulieren.
  • Zum Beispiel können ein oder mehrere SSREs bereitgestellt werden (wie vorstehend besprochen), um die Transkription von Egr-1 mit einer Scherbeanspruchungsreaktionsfähigkeit bereitzustellen. Dies ist besonders vorteilhaft, wenn Nucleinsäuremoleküle des zehnten Gesichtspunkts der vorliegenden Erfindung an einen Patienten verabreicht werden (anstatt der Verabreichung von Egr-1 selbst). Eine Scherbeanspruchungsreaktionsfähigkeit ist vorteilhaft, wenn Nucleinsäuremoleküle des zehnten Gesichtspunkts der vorliegenden Erfindung in vivo bei der Behandlung von Wunden verwendet werden. Der Grund dafür ist, daß eine Scherbeanspruchung an den Wundstellen Faktoren hervorbringen kann, die an SSREs binden und eine erhöhte Transkription von Egr-1 stimulieren können. Die resultierenden erhöhten Egr-1-Spiegel können die Wundheilung beschleunigen.
  • In einigen Fällen kann es wünschenswert sein, den Grad der Scherbeanspruchungsreaktionsfähigkeit zu verringern. Zum Beispiel kann es wünschenswert sein, die Behandlung von Wunden durch diesen Weg zu verlangsamen (möglicherweise um die Narbenbildung zu verringern). In einer anderen Ausführungsform kann es erwünscht sein, das Risiko von kardiovaskulären Problemen zu verringern, die mit einer Scherbeanspruchungsreaktionsfähigkeit verbunden sind.
  • Der zehnte Gesichtspunkt der vorliegenden Erfindung ist hier auch nützlich. Er stellt zum ersten Mal die vollständigen Sequenzen von fünf menschlichen SSREs bereit, die mit der Regulation der menschlichen Egr-1-Transkription verbunden sind. Eines oder mehrere davon können mutiert werden, um den Grad der Scherbeanspruchungsreaktionsfähigkeit, bezogen auf denjenigen zu verringern, der unter Verwendung eines oder mehrerer der in 7 für GW SEQ gezeigten SREs erhältlich ist.
  • In anderen Fällen kann es wünschenswert sein, den Grad der Scherbeanspruchungsreaktionsfähigkeit zu erhöhen, indem Mutationen in einem oder mehreren der fünf SREs bereitgestellt werden, um den Grad der Scherbeanspruchungsreaktionsfähigkeit bezogen auf denjenigen zu erhöhen, der unter Verwendung der in 7 für GW SEQ gezeigten SREs erhältlich ist. Solche Mutationen können zum Beispiel bei der Beschleunigung der Behandlung von Wunden nützlich sein.
  • Nucleinsäuremoleküle des achten Gesichtspunkts der vorliegenden Erfindung können in Form von Vektoren vorliegen, obwohl dies nicht wesentlich ist. Sie können durch physikalische Verfahren an einen Patienten verabreicht werden. Solche Verfahren schließen die topische Anwendung des 'bloßen' Nucleinsäurevektors in einem geeigneten Vehikel ein – zum Beispiel in Lösung in einem pharmazeutisch verträglichen Excipienten wie phosphatgepufferte Salzlösung (PBS). Solche Verfahren schließen den Partikelbeschuß ein (der auch als 'Genkanonen'-Technologie bekannt ist und in US-5371015 beschrieben ist). Hierbei werden inerte Partikel wie Goldkügelchen, die mit Nucleinsäure beschichtet sind, bei ausreichenden Geschwindigkeiten beschleunigt, um sie in die Lage zu versetzen, die Oberfläche an der Wundstelle (z. B. Haut) mit Hilfe des Austritts unter hohem Druck aus einer Projektionsvorrichtung zu durchdringen (mit einem erfindungsgemäßen Nucleinsäuremoleküle beschichtete Partikel sind im Schutzumfang der vorliegenden Erfindung eingeschlossen, so wie Vorrichtungen, die solche Partikel umfassen). Andere physikalische Verfahren der Ver abreichung der DNA direkt an einen Empfänger schließen Ultraschall, elektrische Stimulation, Elektroporation und Mikroeinpflanzung ein. Besonders bevorzugt wird die Übertragungsweise durch Mikroeinpflanzung. Diese ist in US-5697901 beschrieben.
  • Nucleinsäuremoleküle des achten Gesichtspunkts der vorliegenden Erfindung können auch mit Hilfe spezialisierter Übertragungsvektoren verabreicht werden.
  • Jeder zur Gentherapie geeignete Vektor kann verwendet werden. Gentherapie-Ansätze werden zum Beispiel durch Verna et al. in Nature 389, 239–242, besprochen. Es können sowohl virale als auch nichtvirale Systeme verwendet werden.
  • Systeme auf der Basis von Viren schließen retrovirale, lentivirale, adenovirale, Adenovirus-assoziierte, Herpesvirus- und Vacciniavirus-Systeme ein.
  • Nichtviral basierende Systeme schließen die direkte Verabreichung von Nucleinsäuren und Systeme auf der Basis von Liposomen ein.
  • Eine Nucleinsäuresequenz des achten Gesichtspunkts der vorliegenden Erfindung kann sogar mit Hilfe transformierter Wirtszellen verabreicht werden. Solche Zellen schließen Zellen ein, die aus einem Individuum gewonnen werden. Die erfindungsgemäßen Nucleinsäuremoleküle können in solche Zellen in vitro eingeschleust werden, und die transformierten Zellen können später wieder in das Individuum eingeführt werden. Die Nucleinsäuremoleküle müssen nicht als Vektoren eingeschleust werden, da Nichtvektor-Nucleinsäuremoleküle eingeschleust werden können. Einige solche Moleküle können in die bereits in der Wirtszelle vorhandene Nucleinsäure durch homologe Rekombinationsereignisse integriert werden.
  • Die vorliegende Erfindung schließt in ihrem Schutzumfang auch Expressionssysteme ein, die verwendet werden können, um Polypeptide (z. B. Egr-1) zur erfindungsgemäßen Verwendung bereitzustellen.
  • Bevorzugte Expressionsvektoren sind eukaryontische Vektoren. Jedoch können prokaryontische Vektoren auch verwendet werden. Geeignete Vektoren schließen im allgemeinen eine codierende Sequenz ein, die mit einer oder mehreren regulatorischen Sequenzen funktionell verbunden ist. Vorzugsweise codieren die codierenden Sequenzen Egr-1.
  • Viele verschiedene Expressionssysteme sind bekannt und werden zum Beispiel bei Sambrook et al. (Molecular Cloning, 2. Auflage, Cold Spring Harbor Laboratory Press (1989)) besprochen.
  • Aus der vorstehenden Besprechung ist ersichtlich, daß Nucleinsäuren des zehnten Gesichtspunkts der vorliegenden Erfindung (die in Form von Vektoren vorliegen können) bei verschiedenen therapeutischen Anwendungen verwendet werden können, so wie Polypeptide, die unter Verwendung solcher Nucleinsäuren hergestellt werden. Die vorliegende Erfindung schließt daher in ihrem Schutzumfang pharmazeutisch verträgliche Zusammensetzungen ein, umfassend die Nucleinsäuren oder Polypeptide, wahlweise in Kombination mit einem oder mehreren pharmazeutisch verträglichen Trägern.
  • Solche Träger können einschließen, aber sind nicht begrenzt auf, gepufferte Salzlösung, Dextrose, Wasser, Glycerin, Ethanol und Kombinationen hiervon.
  • Polypeptide und Nucleinsäuren, die erfindungsgemäß verwendet werden können, können allein oder in Verbindung mit anderen Stoffen wie therapeutische Stoffe verwendet werden. Zum Beispiel können Egr-1-Repressoren (wie NAB1 und/oder NAB2) unter bestimmten Umständen (z. B. gegebenenfalls um die Narbenbildung zu minimieren, die Restenosie zu inhibieren, die Gefäßwandverkalkung zu modulieren und/oder die Zellproliferation zu inhibieren (z. B. bei Krebserkrankungen)) verabreicht werden. Wenn zwei oder mehrere Wirkstoffe zu verabreichen sind, kann dies in Form eines Kombinationspräparats zur gleichzeitigen, separaten oder aufeinanderfolgenden Verwendung erfolgen.
  • Erfindungsgemäße Arzneimittel können in irgendeiner wirksamen Art und Weise verabreicht werden, einschließlich zum Beispiel der Verabreichung durch u. a. topische, intravenöse, intramuskuläre, intranasale oder intradermale Wege. Im allgemeinen wird bevorzugt, daß die Zusammensetzungen lokal appliziert werden – z. B. bei oder nahe einer Wundstelle oder einem damit verbundenen Zustand. Jedoch kann die systemische Verabreichung verwendet werden.
  • Ein Wirkstoff kann an ein Individuum als eine injizierbare Zusammensetzung, zum Beispiel als eine sterile wäßrige Dispersion, verabreicht werden. Diese ist vorzugsweise, bezogen auf die Körperflüssigkeiten des Patienten, im Wesentlichen (z. B. mit Blut aus dem Patienten) isotonisch.
  • In einer anderen Ausführungsform kann die Zusammensetzung zur topischen Anwendung zum Beispiel in Form von Salben, Cremes, Lotionen, Augensalben, Augentropfen, Ohrentropfen, Mundspülungen, imprägnierten Verbänden und Nahtmaterialien sowie Aerosolen formuliert werden. Sie kann Zusätze enthalten, einschließlich zum Beispiel Konservierungsmittel, Lösungsmittel zur Unterstützung der Arzneistoffpenetration und Erweichungsmittel in Salben und Cremes. Solche topischen Formulierungen können auch verträgliche Träger, zum Beispiel Creme- und Salbengrundstoffe, und Ethanol oder Oleylalkohol für Lotionen enthalten. Solche Träger können etwa 1 bis etwa 98 Gew.-% der Formulierung ausmachen. Üblicher machen sie bis zu etwa 80 Gew.-% der Formulierung aus.
  • Besonders bevorzugt sind die Arzneimittel, umfassend erfindungsgemäße Nucleinsäuren, zur Verabreichung durch die "Genkanonen"-Technologie angepaßt. So können die Nucleinsäuren mit Partikeln (z. B. Goldkügelchen) assoziiert sein, die als Projektile verwendet werden können.
  • Zur Verabreichung an Säuger und besonders an Menschen wird erwartet, daß die tägliche Dosierungsmenge eines Wirkstoffs 0,01 mg/kg bis 10 mg/kg, typischerweise ungefähr 1 mg/kg, beträgt. In der Praxis wird ein Arzt die tatsächliche Dosierung festlegen, die für ein Individuum am besten geeignet ist, und diese kann mit dem Alter, Gewicht und Zustand des einzelnen Individuums sehr variieren. Falls sich Nebenwirkungen entwickeln, kann die Dosierung in Übereinstimmung mit einer guten klinischen Praxis verringert werden.
  • Die bevorzugten Merkmale jedes Gesichtspunkts der Erfindung sind wie für jeden der anderen Gesichtspunkte mutatis mutandis. Die hierin erwähnten Dokumente gemäß dem Stand der Technik sind im vollsten gesetzlich zugelassenen Umfang eingeschlossen.
  • Die vorliegende Erfindung wird nun durch Beispiele beschrieben, wobei nur auf die beigefügten Figuren Bezug genommen wird, wobei:
  • die 1a und b die Egr-1-Expression von VEGF zeigen;
  • die 1c und d die Egr-1-Expression von TGF-B1 zeigen;
  • die 1e und f die Egr-1-Expression von PDGF-A zeigen;
  • 2a die Wirkung von Egr-1 auf die Exzisionswundkontraktion bei Ratten zeigt;
  • 2b die Wirkung einer Egr-1-DNA-Transfektion auf die Histologie von heilenden Exzisionswunden bei Ratten zeigt;
  • 2c die Wirkung von Egr-1 auf die Kollagenablagerung bei Exzisionswunden bei Ratten zeigt;
  • 2d die Wirkung von Egr-1 auf das angiogene Profil in Exzisionswunden bei Ratten unter Verwendung einer vWF-Immunfärbung zeigt;
  • 3a die Optimierung des Lipid : DNA-Verhältnisses (Vol./Gew.) für die Transfektion eines pGL3-Luciferase-Kontrollplasmids in das Angiogenese-Co-Kultursystem unter Verwendung von Mirus TransIt (Cambridge Biosciences) zeigt;
  • 3b die Wirkung von Egr-1 auf die Angiogenese zeigt;
  • 4a die Proben für die Knochenbelastung unter Verwendung einer Western-Blot-Analyse zeigt;
  • 4b die Western-Blot-Analyse von Egr-1-Protein in einer Belastung ausgesetzten menschlichen TE85-Knochenzellen zeigt;
  • 4c eine ELISA-Analyse von PDGF-BB, produziert durch TE85-Knochenzellen nach dem Aussetzen einer Belastung, zeigt;
  • 4d den Nachweis von VEGF und TGF-B1 nach Transfektion von CMV-TGF-B1 in ROS-Zellen zeigt;
  • 4e den Nachweis von VEGF und TGF-B1 nach Transfektion von CMV-TGF-B1 in MC3tE1-Zellen zeigt;
  • 5 die Wirkung von Egr-1 auf die Spiegel der alkalischen Phosphatase in einem Nagetiermodell der ektopen Knochenbildung zeigt;
  • 6a eine anti-Egr-1-Antikörperfärbung menschlicher glatter Muskelzellen, die mit CMV-Egr-1 transfiziert wurden, zeigt;
  • 6b eine anti-Egr-1-Antikörperfärbung glatter Muskelzellen aus dem Schwein, die mit CMV-Egr-1-DNA transfiziert wurden, zeigt;
  • 6c die Optimierung der Transfektion einer pGL3-Luciferase-Kontrolle in menschliche SMCs durch Fugene zeigt;
  • 6d die Optimierung der Transfektion einer pGL3-Luciferase-Kontrolle in SMCs aus dem Schwein durch Fugene zeigt;
  • 6e die Aktivierung der VEGF-Produktion/Sekretion durch Transfektion von CMV-Egr-1 in menschliche SMCs zeigt;
  • 6f die Aktivierung der HGF-Produktion/Sekretion durch Transfektion von CMV-Egr-1 in menschliche SMCs zeigt;
  • 6g die Aktivierung der PDGF-Produktion/Sekretion durch Transfektion von CMV-Egr-1 in menschliche SMCs zeigt;
  • 6h die Immunfärbung von Egr-1-Protein in der Gefäßwand vor und nach der Verletzung zeigt;
  • 7 einen Vergleich von zwei als GW SEQ bzw. ON SEQ angegebenen Nucleotidsequenzen zeigt. ON SEQ ist der veröffentlichte frühe Wachstums-Response-1-Promotor (Sakamoto et al., Oncogene 6 (1991), 867–871), und GW SEQ ist eine erfindungsgemäße Sequenz, die eine Reihe von Baseninsertionen/deletionen, wie gezeigt, und Substitutionen (fett unterstrichen) enthält.
  • 8 eine Variante der in 7 gezeigten Sequenz zeigt, wobei die Variante eine modifizierte EBS-Region aufweist. Die Mutation in der Egr-1-Bindungsstelle (EBS) ist fett unterstrichen gezeigt.
  • 9 die veröffentlichte 5'-Stromaufwärtssequenz des Maus-Egr-1-Gens (Morris, Nucleic Acids Research 16, 8835–8846) zeigt. Die Nucleotide sind von der Kappenstelle = +1 aus numeriert. Mutmaßliche TATA- und CCAAT-Elemente sind eingerahmt. Potentielle regulatorische Elemente sind unterstrichen und in der Figur angegeben. Die gestrichelte Unterstreichung zeigt die Position eines 29-Mers an, das für Primerverlängerungsstudien verwendet wurde;
  • 10 die Aktivierung von SRE5 durch vorübergehende Transfektion von pFA-MEK1 zeigt.
  • Beispiele
  • Die Beispiele 1 und 2 beschreiben die Genkanonenübertragung von β-Galactosidase- und Egr-1-Expressionsplasmid-DNAs, komplexiert an Goldpartikel, in Nagetierhaut.
  • a) Vorbereitung einer Schlauchstation
  • Das Schlauchvorbereitungsgerät wurde in einem Raum mit steriler, laminar strömender Luft aufgestellt und mit 70% I. M. S. abgewischt und in dem Raum luftgetrocknet. Der Gasleitungsschlauch von der Stickstoff-Druckgasflasche zu dem Schlauchvorbereitungsgerät wurde autoklaviert, und ein nachgeschalteter 0,2 μm-Gelman-Filter wurde befestigt. Der autoklavierte Schlauch wurde mit der Gaszuleitung an dem Vorbereitungsgerät durch ein Laer-Lock-Verbindungsstück verbunden, und man ließ Gas bei 0,2 Liter/Minute durchströmen, um den Schlauch vollständig zu trocknen.
  • Der Partikelübertragungsschlauch wurde an dem Vorbereitungsgerät befestigt, und man ließ das Gas durchströmen, wie vorstehend, um das Innere des Schlauches vollständig zu trocknen. Jegliche Restfeuchte in dem Schlauch resultiert in einer unzureichenden oder ungleichmäßigen Anlagerung der Goldpartikel an den Schlauchwänden und kann das Ergebnis eines Experiments ungünstig beeinflussen.
  • b) DNA-Goldmikroträgerkügelchenherstellung:
  • Goldkügelchen von 1,0 μm wurden von Bio-Rad, GB, erhalten. Ein Aliquot von Goldkügelchen (53 mg) wurde in einem Mikrofugenröhrchen ausgewogen, und 100 μl 0,05 M Spermidin wurden zugegeben, und das Röhrchen wurde mit Hilfe eines Vortexgeräts vorsichtig gemischt.
  • 100 μl DNA-Lösung, enthaltend 100–120 μg Plasmid-DNA, die entweder Egr-1 oder β-Galactosidase exprimiert, wurden zugegeben, gefolgt von 100 μl 1 M CaCl2, das während des Mischens mit Hilfe eines Vortexgeräts zugetropft wurde. Dieses Gemisch ließ man für 10 Minuten bei Raumtemperatur stehen, anschließend wurde zentrifugiert. Der Überstand wurde entfernt, und das Goldpellet wurde dreimal in absolutem EtOH gewaschen.
  • Die Goldpartikel wurden schließlich in absolutem Ethanol, enthaltend 0,1 mg/ml Polyvinylpyrrolidon (PVP), resuspendiert.
  • Abschätzung der Beschichtungseffizienz der DNA auf den Goldmikroträgern und Freisetzung in wäßrige Lösung: Alle Proben (Ausgangsmaterial, Post-Präzipitationsüberstand nach DNA/Gold-Komplexbildung und eluiertes Material) wurden in einer "GeneQuant"-Vorrichtung (Pharmacia) auf DNA getestet. Die zurückbleibende Post-Präzipitations-DNA ergab ein Maß für das ungebundene Material, und das Verhältnis von gebundenem Material : Ausgangsmaterial wurde als Beschichtungseffizienz angesehen.
  • c) Einbringen der DNA/Mikroträger-Suspension in den Goldübertragungsschlauch:
  • Die Goldpartikelsuspension in Ethanol/PVP wurde dann unter Verwendung einer Spritze in den Übertragungsschlauch eingebracht, und man ließ die Suspension für 3–5 Minuten in dem Schlauch stehen. Während dieses Zeitraums schieden sich die Partikel an der Innenfläche des Schlauches ab, was die Entfernung des Ethanols durch die Spritze ermöglichte. Wenn das Ethanol entfernt worden war, wurde der Schlauch gedreht, um die Goldpartikel gleichmäßig über die Innenfläche des Schlauches zu verteilen. Nach Drehen für 2–3 Minuten wurde Stickstoffgas in einer Rate von 0,1 Liter/Minute durch den Schlauch geleitet, um das restliche Ethanol zu entfernen und die Goldpartikel anheften zu lassen. Nach 10 Minuten wurde der Schlauch entfernt, unter Verwendung der bereitgestellten Schneidevorrichtung (Bio-Rad, GB) auf geeignete Länge geschnitten, und der geschnittene Schlauch wurde in die Genkanone eingeführt.
  • Die Egr-1-Expression und -Aktivität wurden unter Verwendung einer Standard-Immunhistochemie mit im Handel erhältlichen Antikörperzubereitungen zum Nachweis von Egr-1 (Santa Cruz) und Egr-1-Ziel-Genprodukten (Santa Cruz oder R & D Systems) bestimmt, und die Expression wurde für 1–7 Tage überwacht. Die negative Kontrolle war null DNA.
  • Beispiel 1
  • Übertragung von Egr-1-DNA in unverletzte Nagetierhaut
  • 1.1 Methoden
  • Ein Expressionsplasmid, umfassend die Egr-1-cDNA, gesteuert durch den menschlichen Cytomegalievirus-Promotor (hCMV; Houston et al., Arterioscler. Thromb. Vasc. Biol. 19 (1999), 281–289), wurde mit Hilfe der Genkanonen-vermittelten Partikelübertragung in den Rücken unverletzter Mäuse übertragen. Die Gold/DNA-Komplexe wurde hergestellt, wie vorstehend beschrieben, und 0,5–1,0 μg DNA wurden pro Tier unter Verwendung eines Genkanonendrucks von 350 psi und einer Goldpartikelgröße von 1,6 Mikron übertragen. Die Tiere wurden am Tag 0 und 1, 2 und 6 Tage nach Übertragung der DNA getötet, und die Haut wurde in OCT eingebettet und in Trockeneis/Hexan schockgefroren. Schnitte wurden bei 0,7 μm hergestellt, und die Egr-1-Ziel-Waschstumsfaktoren wurden durch Immunfärbung unter Verwendung von Antikörpern untersucht, die gegen VEGF, PDGF-A, TGF-β und Egr-1 gerichtet waren.
  • 1.2 Ergebnisse
  • Die immunhistochemischen Daten sind für die Egr-1-Aktivierung von VEGF (1a und 1b), TGF-β (1c und 1d) und PDGF-A (1e und 1f) gezeigt. Die Ergebnisse zeigen eine drastische Hochregulierung des VEGF-Proteins an den Tagen 1 und 2, die am Tag 6 abnimmt, eine Hochregulierung von TGF-β am Tag 6, aber nicht an den Tagen 1 und 2, und eine schnelle Hochregulierung von PDGF-A zwei Stunden nach der Egr-1-DNA-Übertragung (bezeichnet als Tag 0).
  • 1.3 Zusammenfassung
  • Diese Daten bestätigen, daß Egr-1 die Expression von Ziel-Wachstumsfaktoren in vivo aktivieren kann, einige davon sind hierin beschrieben. Diese Daten veranschaulichen, daß die Egr-1-Aktivierung von Wachstumsfaktoren über eine zeitlich verschiedene Zeitskala erfolgt.
  • Nach der Bestätigung der Aktivierung von Egr-1-Zielgenen unter Verwendung unverletzter Nagetierhaut (Beispiel 1) wurde eine Egr-1- und β-Galactosidase-Genkanonenübertragung in Exzisionswunden bei Ratten durchgeführt, um die Wirkung von Egr-1 auf die Wundheilungsrate zu beurteilen.
  • Beispiel 2
  • Verwendung des Egr-1-Transkriptionsfaktors zur Förderung der Wundheilung bei Nagetieren
  • 2.1 Methoden
  • 2.1.1 Plasmidkonstrukte:
  • Die in dieser Studie verwendeten Expressionsplasmide waren CMV gesteuerte β-Galactosidase und CMV gesteuerter Egr-1 (Houston et al., Arterioscler. Thromb. Vasc. Biol. 19 (1999), 281–289). Die Plasmide wurden in Escherichia coli XL-2 Blue MR vermehrt, und die DNA wurde unter Verwendung von Qiagen Maxi-Kits präpariert.
  • 2.1.2 Partikel-vermittelter Gentransfer:
  • Achtzehn männliche Sprague Dawley-Ratten mit einem Gewicht von 250 g wurden unter Isofloran in einem 2 : 1-Gemisch von Sauerstoff/Lachgas betäubt. Zwei Transfektionsstellen (8 cm vom Schädel entfernt, 1,5 cm auf jeder Seite der Wirbelsäule) auf dem Rücken der Ratte wurden vorbereitet, indem zuerst das Fell abgeschnitten und dann mit einem Rasierapparat rasiert wurde. Zwei Transfektionen wurden pro Wundstelle 8 mm entfernt voneinander durch Beschleunigen der Plasmid/Gold-Komplexe von entweder Egr-1 oder β-Galactosidase in die Haut bei 350 psi ausgeführt. Die Gesamtmenge an DNA betrug nicht weniger als 1,7 μg pro Transfektion (entsprechend 3,4 μg pro Wunde).
  • 2.1.3 Exzisionswundheilungsmodell:
  • Vierundzwanzig Stunden nach der Transfektion wurden die Tiere betäubt, und zwei Exzisionswunden über die gesamte Dicke (8 mm Durchmesser) wurden unter Verwendung eines Biopsiemessers genau an den Transfektionsstellen zugefügt (vgl. nachstehend). Unmittelbar nach der Verletzung wurde jede Wunde unter Verwendung eines Kamera/Video-Aufbaus aufgenommen, und die Tiere konnten sich von der Betäubung erholen. An den Tagen 2, 4 und 6 nach der Verletzung wurden 6 Tiere getötet, und jede Wunde wurde unter Verwendung des gleichen Kamera/Video-Aufbaus noch einmal aufgenommen. Nach der Aufnahme wurden die Wunden herauspräpariert und für eine routinemäßige Histologie und Immunhistochemie gewonnen.
  • 2.1.4 Heilungsanalyse:
  • i) Makroskopische Beurteilung
  • Der Wundbezirk wurde mittels Bildanalyse bestimmt, und die Heilung wurde als eine Vergrößerung in Prozent des ursprünglichen Wundbezirks ausgedrückt. Die statistische Signifikanz von Unterschieden zwischen behandelten und Kontrollgruppen wurde unter Verwendung eines gepaarten Mann-Whitney-Tests berechnet.
  • ii) Mikroskopische Beurteilung
  • Histologische Analyse:
  • Jede Wunde pro Zeitpunkt nach der Dissektion wurde horizontal geteilt. Eine Hälfte wurde für 24 Stunden in 4% Paraformaldehyd gelegt und für eine Wachshistologie weiterbearbeitet. 5 μm-Schnitte von jeder Wunde wurden unter Verwendung eines Mikrotoms geschnitten, und die Schnitte wurden mit van Geison gefärbt. Unter Verwendung dieser histologischen Färbung wurden Schlüsselmarker der Wundheilung beurteilt, einschließlich Reepithelisation und Kollagengehalt, und Vergleiche zwischen den behandelten und den Kontrollschnitten wurden vorgenommen.
  • Immuncytochemie:
  • Eine Immuncytochemie und Bildanalyse wurden durchgeführt, um die Unterschiede zu quantifizieren, die bei der routinemäßigen Histologie beobachtet wurden. Nach dem Einfrieren in OCT wurde die zweite Hälfte jeder Wunde unter Verwendung eines Kryostats bei 7 μm geschnitten. Zwei Schnitte von jeder Wunde wurden in eiskaltem Aceton fixiert, und eine Fluoreszenzimmunfärbung wurde durchgeführt, primär auf Kollagen I und den von Willebrand-Faktor (vWF). Unmittelbar nach der Immunfärbung wurde jeder Objektträger unter ein Fluoreszenzmikroskop gelegt, und der Wundbezirk wurde unter Verwendung einer ×25-Vergrößerung aufgenommen. Das Bild wurde integriert und ein Schwellenwert festgelegt, um den Hintergrund zu minimieren. Die Fläche und die Intensität der Färbung wurden mittels Bildanalyse gemessen und graphisch dargestellt. Statistisch signifikante Unterschiede zwischen behandelten und Kontrollgruppen wurden unter Verwendung eines nichtparametrischen Man-Wihney-Tests beurteilt.
  • 2.2 Ergebnisse
  • 2.2.1 Wirkung von Egr-1 auf die Exzisionswundheilung bei Rattert
  • (i) Wundkontraktion:
  • Dermale Exzisionswunden bei Ratten über die gesamte Dicke mit einem Durchmesser von 8 mm zogen sich als Antwort auf eine Egr-1-Transfektion verglichen mit der Kontrolle (β-Galactosidase) bis zu 6 Tage nach der Verletzung geringfügig schneller zusammen. Statistisch signifikante Verstärkungen der Kontraktion (p < 0,05) traten 6 Tage nach der Verletzung auf, wobei sich mit Egr-1 behandelte Wunden auf eine Fläche zusammenzogen, die 7% kleiner war als die Kontrolle (2a).
  • (ii) Histologische Analyse:
  • Mit van Gieson gefärbte Wundschnitte zeigten deutliche Unterschiede bezüglich der Histologie der Wunden bei 4 und 6 Tagen nach der Verletzung. 2 Tage nach der Verletzung gab es wenig Unterschied zwischen Egr-1 und β-Galactosidase transfizierten Wunden. Beide Behandlungen zeigten einkernige Zellen an der Wundstelle, was auf die frühe Entzündungsreaktion mit einer frühen Narbenbildung, aber keine Reepithelisation hinweist. 4 Tage nach der Verletzung hatte immer noch keine Reepithelisation eingesetzt, jedoch wiesen mit Egr-1 transfizierte Wunden mehr Kollagen innerhalb der Wundstelle verglichen mit β-Galactosidase auf. 6 Tage nach der Verletzung wiesen mit Egr-1 behandelte Wunden ein stärker entwickeltes Granulationsgewebe auf, das deutlich mehr Kollagen innerhalb der Wundstelle zeigte, verglichen mit β-Galactosidase, bis zu einem Ausmaß, wo deutliche dicke Kollagenfasern beobachtet werden konnten. Die Reepithelisation war in 50% der mit Egr-1 behandelte Wunden abgeschlossen, verglichen mit 0% bei β-Galactosidase. Histologisch zeigten mit Egr-1 behandelte Wunden eine beschleunigte Heilung, verglichen mit β-Galactosidase (2b).
  • (iii) Quantifizierung der Wirkun von Egr-1 auf die Kollagenablagerung unter Verwendung von Immunhistochemie und Bildanalyse:
  • Eine Kollagen I-Immunfärbung wurde bei 7 μm-Kryoschnitten von mit Egr-1 oder β-Galactosidase behandelten Wunden durchgeführt, und die Färbung wurde mittels Bildanalyse quantifiziert. Mit β-Galactosidase behandelte Wunden wiesen erheblich mehr Kollagen am Tag 2 nach der Verletzung auf, verglichen mit Egr-1. 4 und 6 Tage nach der Ver letzung wiesen mit Egr-1 transfizierte Wunden eine stärkere Kollagenablagerung auf als die Kontrolle (β-Galactosidase), was die Befunde bestätigt, die unter Verwendung einer routinemäßigen Wachshistologie beobachtet wurden. Die Egr-1-Transfektion erhöhte die Menge der Kollagenablagerung bei 4 und 6 Tagen nach der Verletzung (2c).
  • (iv) Quantifizierung der Wirkung von Egr-1 auf die Angiogenese unter Verwendung von Immunhistochemie und der Bildanalyse:
  • Die Angiogenese wurde unter Verwendung einer von Willebrand-Faktor-Immunfärbung bei Kryoschnitten der Wunde und mittels Bildanalyse quantifiziert, um die Fläche einer positiven Färbung innerhalb der Wundstelle zu messen. 2 Tage nach der Verletzung wiesen mit Egr-1 transfizierte Wunden signifikant (p < 0,01) mehr neue Blutgefäße auf, verglichen mit der Kontrolle (β-Galactosidase). 4 und 6 Tage nach der Verletzung wiesen sowohl mit Egr-1 als auch mit β-Galactosidase transfizierte Wunden ähnliche Ausmaße einer Angiogenese auf. Die Transfektion von Egr-1 exprimierender DNA förderte die Angiogenese 2 Tage früher als die Kontrolle (2d).
  • 2.3 Zusammenfassung
  • Die Egr-1-Transfektion von Exzisionswunden bei Ratten beschleunigte die Heilung durch Erhöhung der Kontraktionsrate, Reepithelisation und Kollagenablagerung. Die Egr-1-Transfektion förderte 2 Tage nach der Verletzung auch die Angiogenese.
  • Beispiel 3
  • Verwendung des Egr-1-Transkriptionsfaktors zur Förderung der Angiogenese
  • 3.1 Methoden
  • Egr-1 unter der Kontrolle des hCMV-Promotors (Houston et al., Arterioscler. Thromb. Vasc. Biol. 19 (1999), 281–289) wurde in ein menschliches Zell-Co-Kultursystem eingeschleust, das entwickelt wurde, um die Angiogenese in vitro zu messen. Der Angiogenese-Kit (TCS Biologicals) wurde, wie beschrieben, gemäß den Anweisungen des Herstellers unter Verwendung von VEGF-Protein (2 ng/ml) und Suramin (20 μM) als positive bzw. negative Kontrolle für die Angiogenese verwendet.
  • Die Optimierung der Transfektion in dem Co-Kultursystem wurde unter Verwendung von pGL3-Kontroll-Luciferase (Promega) mit 1,0 μg und 0,5 μg CMV-β-Gal als ein normalisierendes Plasmid zur Transfektionskontrolle durchgeführt. Zwei Verhältnisse von Lipid : DNA (Vol./Gew.) wurden verwendet: 2 : 1 und 4 : 1 (3a). CMV-Egr-1-DNA wurde mit 0,5, 1,0, 1,5 und 2,5 μg pro Vertiefung in dreifacher Ausfertigung in eine Mikrotiterplatte mit 24 Vertiefungen unter Verwendung des Mirus Transit-Reagens (Cambridge Biosciences) in einem Verhältnis von 2 : 1 Vol./Gew. DNA transfiziert. Die VEGF-Protein-positive Kontrolle und die Suramin-negative Kontrolle wurden zu den Vertiefungen in dreifacher Ausfertigung zugegeben. Nach 11-tägiger Co-Kultur wurde die Angiogenese durch Färben der Zellen auf den Endothelzellmarker PECAM-11 und Sichtbarmachen unter Verwendung des BCIP/NBT-Substrats bestimmt.
  • Repräsentative Bilder der Kanälchenbildung unter Verwendung aller vier Dosen des Egr-1-Expressionsplasmids zusammen mit VEGF (positive Kontrolle) und Suramin (negative Kontrolle) wurden aufgenommen und mittels Bildanalyse unter Verwendung eines Quantimet 600-Bildanalysegeräts und der damit verbundenen Software weiterbearbeitet.
  • 3.2 Ergebnisse
  • Eine Angiogenese, die, wie beschrieben, durch eine Kanälchenbildung unter dem Lichtmikroskop sichtbar ist, war nach 11-tägiger Co-Kultur nachweisbar. Die Bewertung der Angiogenese wird unter Verwendung der Bildanalyse, wie veranschaulicht, der gesamten Vertiefung dargestellt, und die Ergebnisse sind als Kanälchen pro Flächeneinheit gegen die Behandlung dargestellt (3b).
  • Eine verminderte Kanälchenbildung (mit Suramin behandelte Zellen) und eine vermehrte Kanälchenbildung (mit VEGF-Protein behandelte Zellen) sind gezeigt. Es wurde gezeigt, daß Egr-1 eine vermehrte Kanälchenbildung in einer umgekehrt dosisabhängigen Weise fördert.
  • 3.3 Zusammenfassung
  • In dem Co-Kultursystem ist die Egr-1-Transkriptionsfaktor-Expression angingen. Dies bestätigt Daten aus Beispiel 1 und wird dadurch bestätigt, wodurch gezeigt wurde; daß Egr-1 die Wachstumsfaktor-Expression (z. B. VEGF) hochreguliert, wenn er mittels Genkanone in Mäusehaut übertragen wird, sowie Daten aus Beispiel 5, wo gezeigt wurde, daß die Transfektion von Egr-1 die Menge an VEGF erhöht, die in menschlichen vaskulären glatten Muskelzellen produziert wird. Die umgekehrte Dosisantwort von Egr-1 als ein pro-angiogener Reiz steht im Einklang mit den in Beispiel 6 erhaltenen Ergebnissen und mit der Annahme, daß Egr-1 seine eigene Produktion herunterregulieren kann (Cao X. et al., J. Biol. Chem. 268 (1993), 16949–16957; Schwachtgen J. -L. et al., J. Clin. Invest. 101 (1998), 254–2549).
  • Beispiel 4
  • Verwendung des Egr-1-Transkriptionsfaktors zur Förderung der Osteogenese in vitro
  • 4.1 Knochenbelastung und Bestimmung von Wachstumsfaktoren
  • 4.1.1 Methoden:
  • Die verwendeten Zellen waren TE85-Zellen, eine Osteoblasten-ähnliche Zelllinie, die aus einem menschlichen Osteosarkom erhalten wurde. Subkonfluente Zellschichten wurden mit Trypsin behandelt und in DMEM, enthaltend 10% fötales Kälberserum (FCS) und 1% Penicillin-Streptomycin (PS)-Antibiotika, resuspendiert. Die Zellsuspension wurde auf das Belastungssubstrat überimpft (18 × 18 mm große Quadrate eines Kunststoffs, der mit einer Gewebekultur behandelt worden war). Die Zellen konnten sich über Nacht anheften. Nach dem Anheften wurden die Belastungssubstrate und die anhaftenden Zellen in Kolben, enthaltend DMEM mit 2% FCS und 1% PS, für weitere 24 h vor der Belastungsstimulation überführt.
  • Es wurden vier Sätze von Bedingungen für jeden des in 4a beschriebenen Zeitpunkts verwendet:
    • [1]. Belastung (200 Zyklen von 2000 Microstrain bei 3232 Microstrain pro Sekunde).
    • [2]. Kontrolle (keine Belastung).
    • [3]. Positive Kontrolle (100 ng/ml PMA für 1 h).
    • [4]. Kontrolle mit gelöstem Stoff.
  • Zur Zellbelastung wurden die Zellen aseptisch von Standardgewebekulturbedingungen in die Belastungskammer transferiert. Die Belastungsdauer der Zellen in der Kammer betrug 4 Minuten. Nach der Belastung wurden die Zellen wieder unter ihre früheren Kulturbedingungen gebracht. Die kontrollbehandelten Zellen wurden in genau der gleichen Weise behandelt, außer daß keine Belastung in der Kammer angewendet wurde.
  • Die Ergebnisse wurden durch zwei unterschiedliche Methoden analysiert. Erstens wurde die Anwesenheit des Egr-1-Transkriptionsfaktors durch Western-Blot-Analysen von Zellpellets bestimmt, die nach den Belastungsexperimenten gesammelt worden waren ( 4b). Zweitens wurde die Anwesenheit von sezernierten Wachstumsfaktoren durch einen ELISA-Test des Gewebekulturmediums bestimmt (4c).
  • 4.1.2 Zusammenfassung:
  • Diese Ergebnisse zeigen unter Bedingungen einer Knochenbelastung, daß der Transkriptionsfaktor Egr-1 in Osteoblasten-ähnlichen Zellen, die aus einem menschlichen Osteosarkom erhalten wurden, produziert wird. Die Anwendung einer Knochenbelastung auf menschliche TE85-Zellen stimuliert die Produktion und Sekretion von Wachstumsfaktoren; ein Beispiel hierfür ist PDGF-B.
  • 4.2 Transfektion von CMV-TGF-β1 in MC3T3E1- und ROS-Zellen, gefolgt von ELISA-Tests auf menschlichen TGF-β1 und Maus-VEGF von Zellkulturüberständen
  • 4.2.1 Materialien:
  • (i) Transfektion
  • Maus-Osteoblastenzellen (MC3T3E1) und Ratten-Osteosarkomzellen (ROS17/2.8) wurden verwendet, die in Platten mit 6 Vertiefungen überimpft worden waren.
  • MC3T3E1-Zellen wurden in MEM-α, essentielles Eagle-Minimalmedium, alpha-Modifikation (Sigma), 10% fötalem Kälberserum (Life Technologies), 1% L-Glutamin (Life Technologies), 1% Penicillin-Streptomycin (Life Technologies) gezüchtet.
  • ROS-Zellen wurden in F12-HAM, F12-HAM mit Glutamin (Life Technologies), 10% fötalem Kälberserum (Life Technologies), 1% Penicillin-Streptomycin (Life Technologies) gezüchtet.
  • Die Zellen wurden unter Verwendung von Fugene (Boehringer Mannheim) mit einem CMV-TGF-β1-Expressionsplasmid transfiziert, wie beschrieben (Benn S. I. et al., J. Clin. Invest. 98 (1996), 2894–2902). Die Transfektion in die Zellen wurde ausgeführt, wie beschrieben:
    • 1) Eine Platte mit 6 Vertiefungen wurde mit 2 × 105 Zellen pro Vertiefung präpariert und über Nacht stehen gelassen, bis 50–70% der Zellen konfluent waren.
    • 2) Am nächsten Tag wurden 94 μl serumfreies Medium (SFM) und 6 μl Fugene zu jedem von 6 Eppendorf-Röhrchen zugegeben und bei Raumtemperatur für 5 min stehen gelassen.
    • 3) Bei 6 separaten Röhrchen wurde zu zwei Röhrchen keine DNA zugegeben, während 4 μg CMV-TGF-β1-DNA zu den restlichen 4 Röhrchen zugegeben wurden.
    • 4) Das Fugene/SFM-Gemisch aus Schritt 2) wurde zu den Röhrchen aus Schritt 3) zugetropft, die Röhrchen wurden mehrmals mit dem Finger angestoßen und dann für 15 min bei Raumtemperatur inkubiert.
    • 5) Die Fugene/SFM/DNA-Transfektionsgemische wurden zu ihren jeweiligen Vertiefungen zugetropft, während die Platte mit 6 Vertiefungen gedreht wurde, die Platte wurde bei 37°C für 48 h inkubiert.
    • 6) Die Zellkulturüberstände wurden aliquotiert und bei –20°C gelagert.
  • Das vorstehende Protokoll wurde für sowohl die MC3T3E1-Zellen als auch die ROS-Zellen durchgeführt. Die Anwesenheit von TGF-β1 und VEGF in dem Zellkulturüberstand wurde durch einen ELISA (R & D Systems) unter Verwendung eines Farbnachweissystems auf der Basis von Streptavidin-HRP nachgewiesen.
  • 4.2.2 Ergebnisse:
  • Die Produktion und der Nachweis von TGF-β1 und VEGF nach der Transfektion von CMV-TGF-β1 wird in ROS-Zellen (3) und MC3T3E1-Zellen (4) gezeigt. Diese Daten zeigen, daß ein Egr-1-Zielgen, in diesem Beispiel TGF-β1, die Produktion von VEGF aktiviert hat.
  • 4.3 Zusammenfassung
  • Die Expression von Egr-1 und die Aktivierung von Egr-1-Zielgenen kann VEGF synergistisch aktivieren.
  • Beispiel 5
  • Verwendung des Egr-1-Transkriptionsfaktors zur Förderung der Osteogenese in vivo
  • 5.1 Ektope Knochenbildung bei Ratten
  • Die subkutane Implantation von möglichen die Knochenbildung induzierenden Verbindungen in Nagetiere stellt das am gründlichsten untersuchte biologische Testsystem dar, das gegenwärtig in Gebrauch ist (Wozney J. M., Cell. Mol. Biol. (1993), 131–167). Die Verwendung einer Trägermatrix erhöht die Reproduzierbarkeit und Empfindlichkeit der Knocheninduktionsreaktion. In diesem Testsystem (Reddi A. H. et al., Proc. Natl. Acad. Sci. USA 69 (1972), 1601–1605; Sampath T. K., ibid. 78 (1981), 7599–7603) ist die Trägermatrix aus dem diaphysären Teil langer Knochen der Ratten abgeleitet, die zu Teilchen einer bestimmten Größe zermahlen und anschließend demineralisiert worden sind, und die biologische Aktivität wurde durch eine Guanidinextraktion entfernt. Der zurückbleibende Träger besteht vorwiegend aus Knochenkollagen, das keine osteoinduktive Fähigkeit aufweist. Die Verbindung oder der Stoff, welche/welcher getestet werden soll, wird dann auf der Matrix durch Fällung mit Alkohol, Dialyse gegen Wasser oder Gefriertrocknen abgeschieden. Diese Matrixkombination wird dann in die subkutanen Gewebe der Ratte für eine Anzahl von Tagen (12 Tage in diesem Experiment) implantiert. Die Implantate werden dann histologisch und biochemisch auf ihre Fähigkeit untersucht, die Knochenbildung zu induzieren (Sampath T. K. et al., Proc. Natl. Acad. Sci. USA 80 (1983), 6591–6595; Sampath T. K. et al., ibid. 84 (1987), 7109–7113; Wang E., ibid. 85, 9484–9488; Wang E. et al., ibid. 87, 2220–2224; Sampath T. K. et al., J. Cell Biol. 98 (1984), 2192–2197).
  • 5.1.1 Experimentelle Methoden:
  • Zwanzig vorbereitete männliche Sprague-Dawley-Ratten (Alter 42–49 Tage, Gewicht 170–220 g) wurden zufällig eingeteilt, um zwei Implantate zu erhalten, die subkutan über den dorsalen Thorax unter Halothan-Betäubung eingesetzt wurden. Die Implantate umfaßten eine von vier Behandlungen:
    • – Negative Kontrolle – Träger allein (demineralisierte, Guanidin extrahierte Knochenmatrix DGBM).
    • – CMV-Egr-1-DNA; 500 ug auf dem Träger DGBM.
    • – CMV-Egr-1-DNA; 500 ug plus rekombinantes knochenmorphogenes Protein (BMP) 4; 5 μg auf dem Träger DGBM (BMP4 wird wegen seiner chemotaktischen Wirkungen verwendet).
    • – Rekombinantes BMP4-Protein; 5 μg auf dem Träger DGBM.
  • Der Tag der Insertion wurde als Tag 0 betrachtet, und am Tag 12 nach der Operation wurden alle Ratten unter Verwendung eines als Ablaufplan 1 zugelassenen Verfahrens getötet, die Implantate wurden entfernt, von Weichteilen gereinigt und in gleiche Hälften geteilt. Eine Hälfte wurde zur histologischen Untersuchung in 10% Formalin gelegt, und die andere Hälfte wurde eingefroren und bei –20°C gelagert. Diese Probe wurde dann auf den Calciumgehalt und die alkalische Phosphataseaktivität getestet.
  • 5.1.2 Herstellung von demineralisierten Rattenknochen
  • Die Diaphysenschäfte der Oberschenkelknochen, Schienbeinknochen und Oberarmknochen erwachsener Sprague-Dawley-Ratten wurden entfernt, von Weichteilen befreit, und die Markhöhlen wurden mit normalem Salzwasser ausgespült. Der Knochen wurde dann durch Rühren in 100 ml Chloroform : Methanol (2 : 1) für 30 Minuten entfettet. Dieser Schritt wurde einmal wiederholt, bevor der Knochen in einem Trockenschrank luftgetrocknet wurde. Die Knochenschäfte wurden dann in flüssigem Stickstoff eingefroren und in einer CRC-Mikromühle pulverisiert. Das erhaltene Pulver wurde gesiebt, wobei eine diskrete Teilchengröße von 75–425 um zurückblieb, und dann in 0,5 HCl für 3 Stunden unter ständigem Rühren demineralisiert. Das Gemisch wurde dann 30 Minuten bei 19.000 UpM (Kontron Centriks T124, Rotor A8.24) bei 15°C zentrifugiert. Das Pellet wurde in 100 ml Wasser resuspendiert, eine Stunde gerührt und zentrifugiert. Dieser Schritt wurde dann wiederholt. Das Pellet wurde dann in 100 ml Ethanol resuspendiert, eine Stunde gerührt und zentrifugiert. Das Ethanol wurde abgedampft, und die Probe wurde in 4 M Guanidinhydrochlorid/50 mM Tris, pH 7,4, resuspendiert und über Nacht gerührt. Anschließend wurde eine weitere Zentrifugation ausgeführt, wobei das Pellet in 50 ml Wasser resuspendiert, eine Stunde gerührt und zentrifugiert wurde. Dieser Schritt wurde weitere zweimal wiederholt. Die Probe wurde dann über Nacht in einem Trockenschrank getrocknet. Die DNA wurde zu dem Knochen durch mechanisches Mischen und Gefriertrocknen zugegeben.
  • 5.2 Histologische Untersuchung
  • Nach anfänglicher Fixierung in Formalin wurden die Proben in Methylmethacrylat eingebettet, und 1 μm-Schnitte wurden angefertigt und mit Von Kossa und Toluidinblau gefärbt. Drei nicht angrenzende Schnitte aus jedem Implantat wurden dann durch einen hinzugezogenen Histopathologen unabhängig von der Testsubstanz beurteilt, und die Bewertungen wurden gemittelt.
  • Ein Standardbewertungssystem für Knorpel und Knochen wurde verwendet:
    • +/- vorläufige Identifizierung von Knochen oder Knorpel
    • 1. > 10% jedes Schnittes neuer Knorpel oder Knochen
    • 2. > 25% jedes Schnittes neuer Knorpel oder Knochen
    • 3. > 50% jedes Schnittes neuer Knorpel oder Knochen
    • 4. > 75% jedes Schnittes neuer Knorpel oder Knochen
    • 5. > 80% jedes Schnittes neuer Knorpel oder Knochen
  • 5.3 Biochemische Untersuchung
  • Das Gewebe wurde in 2 ml eiskaltem 0,25 M Saccharose-3 mM NaHCO3 homogenisiert. Die Homogenate wurden bei 12.000 g für 15 min bei 2°C zentrifugiert, und die Überstände wurden für Enzymtests gesammelt. Die alkalische Phosphataseaktivität wurde unter Verwendung eines kolorimetrischen Tests mit p-Nitrophenylphosphat (PNP) als Substrat bestimmt. Nach der Inkubation von Testproben mit PNP bei 37°C wurde die optische Dichte bei 405 nm in einem Standard-Mikrotiterplattenlesegerät bestimmt.
  • 5.4 Ergebnisse
  • Die Ergebnisse sind in 5 dargestellt. Die Daten wurden analysiert, wobei die zwei Implantatstellen für jede Ratte unabhängig voneinander behandelt wurden. Medianwerte und Interquartilbereiche (IQR) sind wegen der kleinen Zahlen und der asymmetrischen Verteilung der Daten angegeben. Kruskal-Wallis-Tests wurden mit den vorstehenden Variablen ausgeführt, und es wurde festgestellt, daß sich die alkalischen Phosphatspiegel signifikant voneinander unterscheiden.
  • Die Knochenbildung war für ein Implantat an fünf implantierten Stellen in nur einer Gruppe positiv (CMV-Egr-1-DNA/BMP). Das erste Experiment verwendete einen einzigen Zeitpunkt für den Test von 12 Tagen, der gewählt wurde, um frühe richtungsweisende Ergebnisse zu erhalten. Zu diesem Zeitpunkt sind die Spiegel der alkalischen Phosphataseaktivität in CMV-Egr-1-DNA- und CMV-Egr-1-DNA/BMP4-Gruppen im Vergleich zu den Kontrollen signifikant erhöht. Eine solche zeitliche Erhöhung der alkalischen Phosphataseaktivität wird typischerweise (als ein Vorläufer der Knochenbildung) mit Stoffen wie BMP beobachtet, welche die Knochenbildung stimulieren, wobei sich die Aktivität bis zu einem Peak bei 10–15 Tagen erhöht und danach abfällt. Dies stellt die Erhöhung dar, die in der frühesten Phase einer enchrondralen Knochenbildung beobachtet wird. Der Calciumgehalt zeigt keine signifikanten Unterschiede in den bisher getesteten Proben, obwohl eine frühe Verkalkung in einer Reihe von histologischen Proben in der CMV-Egr-1/BMP4-Gruppe beobachtet worden ist. Dies kann auf den Zeitpunkt der Biopsie zurückgeführt werden, an dem die Verkalkung gerade erst beginnt.
  • 5.5 Zusammenfassung
  • Egr-1 erhöht die alkalischen Phosphatasespiegel in einem Nagetiermodell der ektopen Knochenbildung und kann örtlich begrenzt die Knochenbildung fördern.
  • Beispiel 6
  • Verwendung des Egr-1-Transkriptionsfaktors zur Förderung der Reendothelisation nach perkutaner transluminaler Koronarangioplastie in vitro
  • 6.1 Methoden
  • Vaskuläre glatte Muskelzellen von Mensch oder Schwein (SMCs; Clonetics) wurden aufgetaut, in Medium aufrechterhalten und gemäß den Anweisungen des Herstellers wurden bis nicht später als Passage 4 Passagen durchgeführt. Die SMCs wurden mit einem Expressionsplasmid transfiziert, umfassend die Egr-1-cDNA, exprimiert durch den CMV-Promotor (Houston et al., Arterioscler. Thromb. Vasc. Biol. 19 (1999), 218–289). Egr-1 exprimierende DNA wurde unter Verwendung von Fugene (Boehringer Mannheim) nach der Optimierung der SMCs mit der Luciferase-Reportervektor-pGL3-Kontrolle (Promega) oder Mirus Transit (Cambridge Biosciences), beide Transfektionsprotokolle verwendeten (3-Galactosidase als ein normalisierendes Plasmid zur Transfektionskontrolle, in die SMCs transfiziert.
  • 6.2 Ergebnisse
  • Die CMV-Egr-1-DNA wurde in menschliche SMCs transfiziert, und das Egr-1-Protein wurde mittels Immunhistochemie unter Verwendung eines polyclonalen Antikörpers (Santa Cruz) und eines Peroxidase-Nachweises (Sigma und Vector Laboratories) nachgewiesen. Mit CMV-Egr-1-DNA transfizierte (Tafel auf der rechten Seite) oder scheintransfizierte (Tafel auf der linken Seite) menschliche SMCs sind in 6a gezeigt, und mit CMV-Egr-1-DNA transfizierte (Tafel auf der rechten Seite) oder scheintransfizierte (Tafel auf der linken Seite) SMCs aus dem Schwein sind in 6b gezeigt. Die Egr-1-Proteinexpression ist als braune Färbung nachweisbar. Die Optimierung der DNA-Transfektion wurde unter Verwendung von Fugene 6 (zur weiteren in vitro-Charakterisierung, 6c) und Mirus Transit (für nachfolgende in vivo-Studien, 6d) erreicht. Ausgehend von diesen Daten wurden 4 μg CMV-Egr-1-DNA routinemäßig für Wachstumsfaktor-Aktivierungsexperimente unter Verwendung eines Lipid : DNA-Verhältnisses von 3 : 1 verwendet. Ein Lipid : DNA-Verhältnis von 3 : 1 wurde auch für in vivo-Genübertragungsexperimente verwendet.
  • Die Egr-1-Aktivierung von drei Wachstumsfaktoren wurde durch einen ELISA-Test von Zellüberständen analysiert. Die VEGF (6e)-, HGF (6f)- und PDGF-AB ( 6g)-Produktionen waren als Folge einer Egr-1-Aktivierung alle erhöht. Es gab eine Dosis- Antwort auf die Aktivierung und eine umgekehrte Dosisantwort oberhalb einer bestimmten [Egr-1]DNA-Konzentration, wie bereits in Beispiel 3 gezeigt wurde.
  • 6.3 Zusammenfassung
  • Das Egr-1-Protein wird in SMCs nach der Transfektion einer CMV-Egr-1-DNA exprimiert. Die Transkription von Egr-1 erhöht die Produktion/Sekretion des von SMCs gebildeten PDGF, HGF und VEGF.
  • Beispiel 7
  • Egr-1-Promotorsequenz
  • Das menschliche Egr-1-Promotorfragment, das Nucleotid –674 bis +12 überspannt, wurde mittels PCR in einer Reaktion synthetisiert, enthaltend 0,5 μg menschliche genomische Plazenta-DNA als Matrize, 0,4 mM dATP, dCTP, dGTP und dTTP, 25 pmol des Vorwärtsprimers 5'-GGC CAC GCG TCG TCG GTT CGC TCT CAC GGT CCC-3' (die MluI-Restriktionsstelle ist unterstrichen), 25 pmol des Rückwärtsprimers 5'-GCA GCT CGA GGC TGG ATC TCT CGC GAC TCC-3' (die XhoI-Stelle ist unterstrichen) und Vent-DNA-Polymerase (NEB). Das PCR-Fragment wurde mit MluI und XhoI geschnitten, in einem Agarosegel gereinigt und zwischen die MluI- und XhoI-Stellen in die multiple Clonierungsstelle des Vektors pGL3 basic (Promega) cloniert.
  • Die vollständige Sequenz ist nun abgeleitet worden, was die Vervollständigung von 'Lücken' innerhalb der veröffentlichten Sequenz ermöglicht. Diese ist in 7 gezeigt, wo die vollständige Sequenz, wie sie durch die Erfinder abgeleitet wurde (GW SEQ, mit der zuvor veröffentlichten Sequenz (ON SEQ verglichen wird. Diese Promotorsequenz ist funktionsfähig und ist in Studien zur Scherbeanspruchung bei Endothelzellen untersucht worden.
  • Ein wichtiger Unterschied zwischen der veröffentlichten Sequenz des menschlichen Egr-1-Promotors und der Sequenz, welche die Erfinder beschreiben (8), beruht auf zwei bisher unerkannten SREs. Während die Sequenzen von SRE5 und SRE1, wie veröffentlicht, nicht den Serum-Response-Faktor (SRF) binden und nicht funktionsfähig sind (Nurrish S. J., Treisman R., Mol. Cell Biol. 15(8) (1995), 4076–4085), haben die Erfinder festgestellt, daß, sie mit der SRE-Konsensussequenz übereinstimmen (7).
  • Die Erfinder haben sich auf SRE5 konzentriert. Das neue SRE5 mit seinen assoziierten Ets-Transkriptionsfaktor-Bindungsstellen wurde als ein doppelsträngiges Oligo nucleotid synthetisiert und in die NheI-Stelle stromaufwärts eines minimalen SV40-Promotor-Vektors (pSV40) inseriert.
  • SRE5 weist die Sequenz auf:
  • Figure 00620001
  • Die zwei Ets-Stellen sind fett gedruckt, das SRE ist unterstrichen. Das überhängende AG wird zur Clonierung in die teilweise aufgefüllte Nhe-Stelle des pGLE-Promotors verwendet.
  • Das erhaltene Reporterplasmid pSVSRE5 wurde vorübergehend in HeLa-Zellen zusammen mit den Plasmiden pFA-dbd (ein Konstrukt, das die Gal4-DNA-Bindungsdomäne (dbd) codiert) oder pFA-MEK1 (ein Konstrukt, das ein Fusionsprotein der Gal4-DNA-Bindungsdomäne (dbd) und der Kinasedomäne der MAP-Kinase-Kinase MEK1 codiert) transfiziert. Das Gal4-MEK1-Fusionsprotein ist konstitutiv aktiv und phosphoryliert Elk1 und SRF, gebunden an SRE5.
  • Die in 10 gezeigten Ergebnisse zeigen, daß die isolierte SRE5-Sequenz durch die Anwesenheit von MEK1 um das Dreifache aktiviert wird, während der SV40-Promotor nur eine minimale Aktivierung zeigt.
  • Die Ergebnisse zeigen, daß das neue SRE5 funktionsfähig ist.

Claims (16)

  1. Verwendung eines Nucleinsäuremoleküls, umfassend eine Sequenz, die ein Egr-1-Transkriptionsfaktor-Polypeptid oder ein biologisch aktives Fragment davon codiert, für die Herstellung eines Medikaments zur Behandlung von Wunden bei einem Säuger, einschließlich des Menschen.
  2. Verwendung nach Anspruch 1, wobei das Egr-1 menschliches Egr-1 ist.
  3. Verwendung nach Anspruch 1 oder Anspruch 2, wobei das Nucleinsäuremolekül, das die Sequenz umfasst, die ein Egr-1-Transkriptionsfaktor-Polypeptid oder ein biologisch aktives Fragment davon codiert, funktionell mit einer Nucleinsäuresequenz verbunden ist, die die Expression kontrolliert.
  4. Verwendung nach Anspruch 3, wobei die Nucleinsäuresequenz, die die Expression kontrolliert: a) einen Strang besitzt, der die in 7 bereitgestellte Sequenz für GW SEQ umfasst; oder b) einen Strang besitzt, der eine oder mehrere Deletion(en), Insertionen) und/oder Substitutionen) bezogen auf GW SEQ umfasst, der aber nicht die in 7 als ON SEQ gezeigte Sequenz umfasst und der auch nicht die in 9 gezeigte Sequenz umfasst.
  5. Verwendung nach einem vorhergehenden Ansprüche, wobei das Nucleinsäuremolekül zur Verabreichung durch physikalische Verfahren an den Säuger hergerichtet ist.
  6. Verwendung nach Anspruch 5, wobei das Nucleinsäuremolekül zur Verabreichung durch Partikelbeschuss an den Säuger hergerichtet ist.
  7. Verwendung nach Anspruch 6, wobei das Nucleinsäuremolekül auf Goldpartikeln immobilisiert ist.
  8. Verwendung nach Anspruch 5, wobei das Nucleinsäuremolekül zur Verabreichung durch Mikroeinpflanzung hergerichtet ist.
  9. Verwendung nach einem vorgehenden Ansprüche, wobei das Nucleinsäuremolekül in einem Vektor ist.
  10. Verwendung nach Anspruch 9, wobei das Nucleinsäuremolekül in einer Zelle ist.
  11. Verwendung eines Egr-1-Transkriptionsfaktor-Polypeptids oder eines biologisch aktiven Fragments davon für die Herstellung eines Medikaments zur Behandlung von Wunden bei einem Säuger, einschließlich des Menschen.
  12. Verwendung nach Anspruch 11, wobei Egr-1 oder das biologisch aktive Fragment davon natürlich, synthetisch oder rekombinant hergestellt ist.
  13. Verwendung nach Anspruch 11 oder Anspruch 12, wobei Egr-1 menschliches Egr-1 ist.
  14. Verwendung nach einem vorhergehenden Ansprüche, wobei die Behandlung von Wunden die Behandlung von Extremitätengeschwüren bei Diabetes und peripherer arterieller Verschlusskrankheit, post-operativer Narbenbildung, Verbrennungen und Psoriasis ist.
  15. Verwendung nach Anspruch 1, wobei die Behandlung von Wunden die Förderung von Angiogenese einschließt.
  16. Verwendung nach Anspruch 1, wobei die Behandlung von Wunden die Förderung von Osteogenese einschließt.
DE69910202T 1998-06-02 1999-06-02 EGR-1 zur Herstellung eines Medikamentes zur Behandlung von Wunden Expired - Fee Related DE69910202T2 (de)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
GBGB9811836.7A GB9811836D0 (en) 1998-06-02 1998-06-02 Gene therapy method
GB9811836 1998-06-02
GBGB9815035.2A GB9815035D0 (en) 1998-07-11 1998-07-11 Gene therapy method
GB9815035 1998-07-11
GB9819846 1998-09-12
GBGB9819846.8A GB9819846D0 (en) 1998-09-12 1998-09-12 Gene therapy method
GB9828578 1998-12-23
GBGB9828578.6A GB9828578D0 (en) 1998-12-23 1998-12-23 Regulation
PCT/GB1999/001722 WO1999062561A2 (en) 1998-06-02 1999-06-02 Gene therapy method

Publications (2)

Publication Number Publication Date
DE69910202D1 DE69910202D1 (de) 2003-09-11
DE69910202T2 true DE69910202T2 (de) 2004-06-17

Family

ID=27451790

Family Applications (1)

Application Number Title Priority Date Filing Date
DE69910202T Expired - Fee Related DE69910202T2 (de) 1998-06-02 1999-06-02 EGR-1 zur Herstellung eines Medikamentes zur Behandlung von Wunden

Country Status (29)

Country Link
US (1) US6689758B1 (de)
EP (2) EP1083934B1 (de)
JP (1) JP2002516676A (de)
KR (1) KR20010043968A (de)
CN (1) CN1311822A (de)
AP (1) AP2000001999A0 (de)
AT (1) ATE246518T1 (de)
AU (1) AU770497B2 (de)
BR (1) BR9910877A (de)
CA (1) CA2334171A1 (de)
DE (1) DE69910202T2 (de)
DK (1) DK1083934T3 (de)
EA (1) EA200001124A1 (de)
EE (1) EE200000790A (de)
ES (1) ES2205830T3 (de)
HK (1) HK1034465A1 (de)
HR (1) HRP20000832A2 (de)
HU (1) HUP0103252A3 (de)
ID (1) ID27483A (de)
IL (1) IL139936A0 (de)
IS (1) IS5742A (de)
NO (1) NO20006047L (de)
NZ (1) NZ508505A (de)
PL (1) PL345207A1 (de)
PT (1) PT1083934E (de)
SK (1) SK18322000A3 (de)
TR (2) TR200100348T2 (de)
WO (1) WO1999062561A2 (de)
YU (1) YU75600A (de)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9928430D0 (en) * 1999-12-01 2000-01-26 Glaxo Group Ltd Screening
EP1467207B1 (de) * 2002-01-10 2008-06-04 Takeda Pharmaceutical Company Limited Screening-verfahren für eine prophylaktische und therapeutische Substanz für eine Nierenerkrankung
WO2004060476A2 (en) * 2002-12-31 2004-07-22 The Johns Hopkins University Wound healing method and kits
JPWO2005021045A1 (ja) * 2003-08-29 2006-10-26 アンジェスMg株式会社 針無注射器を用いた皮膚疾患の遺伝子治療
DE10342071B4 (de) * 2003-09-10 2006-01-19 Fleischmann, Wilhelm, Dr.med. Vorrichtung und Verfahren zur Applikation von Wïrkstoffen an eine Wundoberfläche
KR100647490B1 (ko) 2004-10-04 2006-11-23 사회복지법인 삼성생명공익재단 저산소 조건 및 다른 스트레스에 특이적으로 반응할 수있는 키메라 인핸서 요소를 포함하는 벡터, 상기 벡터를포함하는 약제학적 조성물 및 상기 조성물을 이용하는 방법
JP5646320B2 (ja) 2007-05-11 2014-12-24 アダイニクス, インコーポレイテッド 遺伝子発現と疼痛
FR2920158B1 (fr) * 2007-08-24 2010-03-12 Centre Nat Rech Scient Production de plasmides et expression de proteines recombinantes dans des cellules cultivees sans antibiotiques
FR2924128A1 (fr) * 2007-11-26 2009-05-29 Galderma Res & Dev Modulateurs de egr1 dans le traitement de l'alopecie
US9132202B2 (en) 2009-07-17 2015-09-15 Aaron T. Tabor Compositions and methods for genetic modification of cells having cosmetic function to enhance cosmetic appearance
CN102552938A (zh) * 2012-03-22 2012-07-11 南京大学 Egr-1拮抗剂在制备治疗Ⅱ型糖尿病的药物中的用途
WO2013170086A2 (en) 2012-05-10 2013-11-14 Adynxx, Inc. Formulations for the delivery of active ingredients
ES2750689T3 (es) 2014-08-15 2020-03-26 Adynxx Inc Señuelos oligonucleotídicos para el tratamiento del dolor
KR101721228B1 (ko) * 2015-04-03 2017-03-30 사회복지법인 삼성생명공익재단 지방유래 줄기세포의 배양액을 유효성분으로 포함하는 발모촉진용 조성물
CN104857529A (zh) * 2015-05-20 2015-08-26 山西大学 Egr-1基因在制备抗膀胱癌药物中的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5206152A (en) * 1988-04-08 1993-04-27 Arch Development Corporation Cloning and expression of early growth regulatory protein genes
US5763209A (en) * 1988-09-26 1998-06-09 Arch Development Corporation Methods and materials relating to the functional domains of DNA binding proteins
AUPN855496A0 (en) * 1996-03-07 1996-04-04 Unisearch Limited Prevention of proliferation of vascular cells

Also Published As

Publication number Publication date
WO1999062561A3 (en) 2000-08-03
NZ508505A (en) 2003-04-29
JP2002516676A (ja) 2002-06-11
IS5742A (is) 2000-11-28
HK1034465A1 (en) 2001-10-26
EP1083934B1 (de) 2003-08-06
CN1311822A (zh) 2001-09-05
DE69910202D1 (de) 2003-09-11
EP1083934A2 (de) 2001-03-21
ES2205830T3 (es) 2004-05-01
IL139936A0 (en) 2002-02-10
WO1999062561A2 (en) 1999-12-09
HRP20000832A2 (en) 2001-04-30
EP1281763A3 (de) 2003-07-09
AP2000001999A0 (en) 2000-12-31
NO20006047D0 (no) 2000-11-29
PT1083934E (pt) 2003-12-31
HUP0103252A3 (en) 2003-09-29
CA2334171A1 (en) 1999-12-09
KR20010043968A (ko) 2001-05-25
EE200000790A (et) 2002-04-15
PL345207A1 (en) 2001-12-03
ATE246518T1 (de) 2003-08-15
HUP0103252A2 (hu) 2001-12-28
EP1281763A2 (de) 2003-02-05
AU770497B2 (en) 2004-02-26
BR9910877A (pt) 2002-01-22
AU4156099A (en) 1999-12-20
SK18322000A3 (sk) 2001-11-06
DK1083934T3 (da) 2003-12-01
ID27483A (id) 2001-04-12
TR200100348T2 (tr) 2001-07-23
EA200001124A1 (ru) 2001-08-27
US6689758B1 (en) 2004-02-10
TR200102985T2 (tr) 2002-06-21
YU75600A (sh) 2004-03-12
NO20006047L (no) 2001-02-01

Similar Documents

Publication Publication Date Title
DE69910202T2 (de) EGR-1 zur Herstellung eines Medikamentes zur Behandlung von Wunden
DE69924615T2 (de) Thymosin beta 4 stimuliert wundheilung
DE69637332T2 (de) Kombinierung von PDGF, KGF, IGF und IGFBP für Wundheilung
DE69936312T2 (de) Mutanten von op-1
DE69513149T3 (de) Verfahren und Zusammensetzungen für die Stimulierung von Knochenzellen
US20070154529A1 (en) Uses of dna binding proteins
DE69231062T3 (de) Morphogen-induzierte Modulation von entzündlichen Antworten
JPH0611709B2 (ja) 角膜基質創傷の治療のための組成物
DE3877753T2 (de) Transformierender wachstumsfaktor-beta.
EP1779862A1 (de) Erythropoietin zur Stimulation endothelialer Vorläuferzellen
US7196055B2 (en) Inhibition of apoptosis in keratinocytes by a ligand of p75 nerve growth factor receptor
Bitto et al. Activation of the EPOR-β common receptor complex by cibinetide ameliorates impaired wound healing in mice with genetic diabetes
DE10121254A1 (de) MRP8/MRP14 Heterodimers oder seiner Einzelkomponenten alleine oder in Kombination zur Behandlung und/oder Prävention von Hauterkrankungen, Wunden und/oder Wundheilungsstörungen, die durch eine verringerte Menge an MRP8/MRP14 Heterodimeren gekennzeichnet sind
KR20010071832A (ko) Nab1 및 nab2의 약학 용도
CN110214143B (zh) 用于抑制皮肤炎症的肽及包含其的用于预防或治疗皮肤炎的组合物
MXPA00011726A (en) Gene therapy method
CZ20004509A3 (cs) Způsob genové terapie
ZA200006963B (en) Gene therapy method.
MXPA01000386A (en) Pharmaceutical uses of nab1 and nab2
Henry Biolistic augmentation of wound healing in diabetic and steroid treated rats
CZ2001142A3 (cs) Použití molekuly nukleové kyseliny
WO2001040460A1 (en) Screening method for compounds capable of modularing egr-1-regulated expression
ZA200505658B (en) Uses of HMGB, HMGN, HMGA proteins
ZA200100193B (en) Pharmaceutical uses of NAB1 and NAB2.

Legal Events

Date Code Title Description
8364 No opposition during term of opposition
8339 Ceased/non-payment of the annual fee