DE4397755B4 - Kraftübertragungseinrichtung - Google Patents

Kraftübertragungseinrichtung Download PDF

Info

Publication number
DE4397755B4
DE4397755B4 DE4397755.3A DE4397755A DE4397755B4 DE 4397755 B4 DE4397755 B4 DE 4397755B4 DE 4397755 A DE4397755 A DE 4397755A DE 4397755 B4 DE4397755 B4 DE 4397755B4
Authority
DE
Germany
Prior art keywords
turbine wheel
housing
damper
energy storage
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
DE4397755.3A
Other languages
English (en)
Other versions
DE4397755A5 (de
Inventor
Helmut Müller
Steven Olsen
Roland Seebacher
Dieter Otto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6470230&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=DE4397755(B4) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Priority to DE4397755.3A priority Critical patent/DE4397755B4/de
Anticipated expiration legal-status Critical
Application granted granted Critical
Publication of DE4397755B4 publication Critical patent/DE4397755B4/de
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • F16F15/1232Wound springs characterised by the spring mounting
    • F16F15/1234Additional guiding means for springs, e.g. for support along the body of springs that extend circumferentially over a significant length
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • F16F15/123Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0205Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type two chamber system, i.e. without a separated, closed chamber specially adapted for actuating a lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0247Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means having a turbine with hydrodynamic damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0252Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means having a damper arranged on input side of the lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0278Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch comprising only two co-acting friction surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0294Single disk type lock-up clutch, i.e. using a single disc engaged between friction members

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

Die Erfindung betrifft eine Kraftübertragungseinrichtung mit Flüssigkeitskupplung mit einem im Kraftfluß zwischen dem Gehäuse und einem Abtriebsteil der Einrichtung angeordneten drehelastischen Dämpfer.

Description

  • Die Erfindung bezieht sich auf eine Kraftübertragungseinrichtung mit Flüssigkeitskupplung, wie Föttinger-Kupplung, hydrodynamischer Drehmomentwandler oder dergleichen, mit wenigstens einem, mit einer Antriebswelle verbindbaren Gehäuse, das wenigstens ein über das Gehäuse angetriebenes Pumpenrad und wenigstens ein mit der Eingangswelle eines anzutreibenden Stranges, wie Getriebe, verbindbares Turbinenrad sowie gegebenenfalls wenigstens ein zwischen Pumpen- und Turbinenrad angeordnetes Leitrad aufnimmt, mit weiterhin wenigstens einem im Kraftfluß zwischen dem Gehäuse und einem Abtriebsteil der Einrichtung angeordneten drehelastischen Dämpfer mit wenigstens einem in Umfangsrichtung wirksamen Kraftspeicher. Die Erfindung betrifft u. a. auch solche Kraftübertragungseinrichtungen mit einer sogenannten Überbrückungskupplung.
  • Hydrodynomische Drehmomentwandler sind beispielsweise durch die US 4,138,003 und US 5,020,647 bekannt geworden, wobei diese eine Überbrückungskupplung mit einer drehelastischen Dämpfungseinrichtung umfassen, welche bei geschlossener Überbrückungskupplung zwischen dem Wandlergehäuse und einem Abtriebsteil des Drehmomentwandlers wirksam ist.
  • Der vorliegenden Erfindung lag die Aufgabe zugrunde, derartige Einrichtungen zu verbessern, insbesondere deren Dämpfungswirkung, wobei die Möglichkeit geschaffen werden soll, große Winkelausschläge zwischen dem Eingangsteil und dem Ausgangsteil der Einrichtung zu realisieren. Bei Verwendung einer Wandlerüberbrückungskupplung soll durch die Erfindung weiterhin die Möglichkeit der Übertragung eines hohen Momentes, bezogen auf den hierzu erforderlichen Schließdruck, geschaffen werden. Außerdem soll die erfindungsgemäße Einrichtung in besonders einfacher und kostengünstiger Weise herstellbar sein. Insbesondere soll durch konstruktive Maßnahmen ein geringer Fertigungs- und Montageaufwand ermöglicht werden. Weiterhin ist es Ziel der Erfindung, den Verschleiß zu minimieren, und die Lebensdauer des Gesamtaggregates zu verlängern. Kraftübertragungseinrichtungen, die mit einer Wandlerüberbrückungskupplung ausgerüstet sind, werden im allgemeinen so ausgelegt, daß die Wandlerüberbrückungskupplung erst bei höheren Drehzahlen schließt, das heißt, das Ein- und Ausgangsteil der Kraftübertragungseinrichtung verbindet. Durch das Schließen der Wandlerüberbrückungskupplung wird das Motormoment unter Umgehung des hydraulischen Teils des Drehmomentwandlers übertragen und schaltet so die Verluste aus, die durch den unvermeidbaren Schlupf im Wandler entstehen. Diese Schlupfverluste im Wandler zeigen sich in einem erhöhten Energieverbrauch. Weiteres Ziel der Erfindung ist es, beispielsweise zur Energieeinsparung, die Wandlerüberbrückungskupplung in einem möglichst großen Betriebsbereich geschlossen zu halten und dabei den Schwingungskomfort, der bei einer geöffneten Wandlerüberbrückungskupplung durch den Drehmomentwandler gegeben ist, zumindest zu erhalten. Hierzu ist es jedoch nötig, die Wandlerüberbrückungskupplung bereits bei niedriger Drehzahl zu schließen. Um den geforderten Komfort zu erreichen, ist es nötig, die Eigenfrequenz der Schwingungseigenform des Teiles des Antriebsstranges, der die gesamten Antriebsstrangteile vom Getriebeeingang bis zum Differential umfaßt, in einen Bereich zu verlegen, der im normalen Fahrbetrieb nicht berührt wird.
  • Dies wird gemäß der vorliegenden Erfindung dadurch erreicht, daß der Kraftspeicher radial außen und im Kraftfluß zwischen wenigstens einem Turbinenrad und dem Abtriebsteil der Einrichtung angeordnet ist. Durch die Anordnung der Kraftspeicher radial außen wird die Möglichkeit eröffnet, ein Maximum an Federkapazität bzw. Federvolumen unterbringen zu können. Dies ermöglicht bei gleichzeitig verhältnismäßig niedriger Federrate, die die Resonanzdrehzahl absenkt, sehr große Verdrehwinkel bzw. sehr große Federwege.
  • Besonders vorteilhaft kann es bei einer erfindungsgemäßen Einrichtung sein, wenn zumindest der Kraftspeicher axial zwischen Turbinenrad und der antriebswellenseitigen Gehäusewandung angeordnet ist.
  • Zweckmäßig, beispielsweise in den Auswirkungen auf Resonanzdrehzahlen, kann es sein, eine erfindungsgemäße Kraftübertragungseinrichtung so auszulegen, daß die Federrate des drehelastischen Dämpfers zwischen 2 und 20 Nm/°, vorzugsweise zwischen 5 und 15 Nm/°, beträgt.
  • Weiterhin kann es sich als vorteilhaft erweisen, wenn die einzelnen Kraftspeicher des drehelastischen Dämpfers – über den Umfang der Einrichtung betrachtet – sich über einen Winkel in der Größenordnung zwischen 75 und 175° erstrecken. Besonders für den Zusammenbau kann es sich als zweckmäßig erweisen, wenn die Kraftspeicher zumindest annähernd auf denjenigen Durchmesser, auf dem sie angeordnet werden, vorgekrümmt sind.
  • Es kann sich positiv auf die Lebensdauer einer erfindungsgemäßen Kraftübertragungseinrichtung auswirken, wenn die Kraftspeicher sich zumindest radial außen wenigstens teilweise an einem Verschleißschutz abstützen. Dabei kann es zweckmäßig sein, wenn der Verschleißschutz durch wenigstens ein separat eingelegtes Teil gebildet ist.
  • Besonders vorteilhaft kann es sein, wenn Beaufschlagungsbereiche für die radial außen angeordneten Kraftspeicher tragende Teile diese zumindest teilweise radial außen umfassen und mit dem Turbinenrad drehfest verbunden sind. Dabei kann es zweckmäßig sein, wenn die drehfeste Verbindung radial innen hergestellt ist.
  • Für andere Fälle kann es dagegen von Vorteil sein, wenn die drehfeste Verbindung im radial äußeren Bereich des Turbinenrades gebildet ist.
  • Ganz allgemein kann es bei einer Kraftübertragungseinrichtung nach der Erfindung vorteilhaft sein, wenn sich die Kraftspeicher andererseits an einem Ausgangsteil des Dämpfers abstützen, das zumindest indirekt mit dem Abtriebsteil der Kraftübertragungseinrichtung drehfest verbunden ist. Dabei kann es sich als besonders zweckmäßig erweisen, wenn das Ausgangsteil des radial außen liegenden Dämpfers das Eingangsteil eines weiteren, radial innenliegenden Dämpfers bildet, der sich wiederum andererseits an einem Ausgangsteil abstützt, das mit der Abtriebswelle der Kraftübertragungseinrichtung drehfest verbunden ist.
  • Für eine Ausführungsform einer erfindungsgemäßen Kraftübertragungseinrichtung kann es von Vorteil sein, wenn die Beaufschlagungsbereiche für die Kraftspeicher zumindest indirekt über eine Schweißverbindung mit dem Turbinenrad verbunden sind.
  • Ganz allgemein kann es zweckmäßig sein, mit dem Dämpfer eine Überbrückungskupplung in Reihe zu schalten.
  • Weiterhin kann es sich als vorteilhaft erweisen, wenn das Ausgangsteil der Überbrückungskupplung mit dem Eingangsteil des drehelastischen Dämpfers drehfest verbunden ist. Dabei kann es zweckmäßig sein, wenn das Ausgangsteil der Überbrückungskupplung axial verlagerbar ist.
  • Hierbei kann es wiederum von Vorteil sein, wenn das Ausgangsteil der Überbrückungskupplung relativ zum Eingangsteil des drehelastischen Dämpfers axial verlagerbar ist.
  • Als besonders vorteilhaft kann es sich erweisen, wenn die Reibfläche der Überbrückungskupplung im Durchmesserbereich des radial außen liegenden Dämpfers angeordnet ist.
  • Eine vorteilhafte Ausgestaltung einer erfindungsgemäßen Kraftübertragungseinrichtung kann vorsehen, daß das Ausgangsteil der Überbrückungskupplung axial zwischen der antriebsseitigen Gehäusewandung und dem radial außenliegenden drehelastischen Dämpfer angeordnet ist.
  • Als zweckmäßig kann es sich erweisen, wenn das Ausgangsteil der Überbrückungskupplung als Kolben ausgebildet ist. Dabei kann es von Vorteil sein, wenn das Ausgangsteil der Überbrückungskupplung axial und in Umfangsrichtung beweglich, jedoch abgedichtet auf einem von der Abtriebswelle der Kraftübertragungseinrichtung gehaltenen Bauteil gelagert ist.
  • Zweckmäßig kann es sein, wenn die drehfeste Verbindung zwischen dem Ausgangsteil der Überbrückungskupplung und dem Eingangsteil des Dämpfers formschlüssig ausgeführt ist. Dabei kann es von besonderem Vorteil sein, wenn der Formschluß durch eine stirnverzahnungsartige Ausbildung der zu verbindenden Teile ausgeführt ist.
  • Weiterhin kann es sich als zweckmäßig erweisen, wenn bei einer Kraftübertragungseinrichtung diese Verbindung über Blattfedern hergestellt ist.
  • Ein weiterer erfinderischer Grundgedanke bezieht sich auf eine Kraftübertragungseinrichtung mit Flüssigkeitskeitskupplung mit wenigstens einem, mit einer Antriebswelle verbindbaren Gehäuse, das wenigstens ein über das Gehäuse angetriebenes Pumpenrad und wenigstens ein mit der Eingangswelle eines anzutreibenden Stranges verbindbares Turbinenrad sowie gegebenenfalls wenigstens ein zwischen Pumpen- und Turbinenrad angeordnetes Leitrad aufnimmt, weiterhin mit wenigstens einem im Kraftfluß zwischen dem Gehäuse und einem Abtriebsteil der Einrichtung angeordneten drehelastischen Dämpfer mit zumindest einem in Umfangsrichtung wirksamen Kraftspeicher, wobei der Kraftspeicher im radial außen liegenden Bereich zwischen zumindest einem Turbinenrad und dem Abtriebsteil der Einrichtung angeordnet ist, wobei die Beaufschlagungsbereiche für den Dämpfer axial und drehfest mit dem Turbinenrad verbunden sind und zusammen mit diesem axial verlagerbar und relativ dazu verdrehbar zumindest indirekt auf dem Abtriebsteil der Einrichtung gelagert sind.
  • Bei einer derartigen Kraftübertragungseinrichtung kann es von Vorteil sein, wenn das Turbinenrad über ein Zwischenteil mit einer auf dem Abtriebsteil angeordneten Nabe gelagert ist. Dabei kann das Zwischenteil die axiale Verlagerung des Turbinenrades in zumindest eine Richtung begrenzen.
  • Begünstigend – beispielsweise auf die Herstellkosten – kann es sich auswirken, wenn das Zwischenteil aus Kunststoff besteht.
  • Vorteilhaft kann es sein, wenn die Beaufschlagungsbereiche für den Dämpfer über ein im Querschnitt L-förmiges, die Beaufschlagungsbereiche in Axialrichtung überragendes Teil mit dem Turbinenrad verbunden sind, wodurch sich eine kompakte Bauweise realisieren läßt. In besonders zweckmäßiger Weise ist die Verbindung als Schweißverbindung ausgeführt.
  • Besonders vorteilhaft kann es sein, wenn das den L-förmigen Querschnitt aufweisende Bauteil das Ausgangsteil einer Überbrückungskupplung ist.
  • Dabei kann es zweckmäßig sein, wenn das den L-förmigen Querschnitt aufweisende Bauteil Reibbeläge oder einen Reibbelag aufweist.
  • Weiterhin bezieht sich die Erfindung auf eine Kraftübertragungseinrichtung mit Flüssigkeitskupplung, wie Föttinger-Kupplung, hydrodynamischer Drehmomentwandler oder dergleichen, mit wenigstens einem, mit einer Antriebswelle verbindbaren Gehäuse, das wenigstens ein über das Gehäuse angetriebenes Pumpenrad und wenigstens ein mit der Eingangswelle eines anzutreibenden Stranges, wie Getriebe, verbindbares Turbinenrad sowie gegebenenfalls wenigstens ein zwischen Pumpen- und Turbinenrad angeordnetes Leitrad aufnimmt, mit weiterhin wenigstens zwei im Kraftfluß zwischen dem Gehäuse und einem Abtriebsteil der Einrichtung angeordneten drehelastischen Dämpfern mit wenigstens je einem in Umfangsrichtung wirksamen Kraftspeicher, wobei der Kraftspeicher des einen Dämpfers im Kraftfluß zwischen dem wenigstens einen Turbinenrad und dem Abtriebsteil der Einrichtung und der Kraftspeicher des anderen Dämpfers im Kraftfluß zwischen Gehäuse und zumindest einem Turbinenrad angeordnet sind.
  • Dabei kann es von Vorteil sein, wenn die Kraftspeicher des anderen Dämpfers radial außen angeordnet sind, jedoch kann es auch zweckmäßig sein, diesen radial innen anzuordnen.
  • Als vorteilhaft kann es sich erweisen, wenn bei einer Kraftübertragungseinrichtung die zumindest eine Reibfläche einer Wandlerüberbrükungskupplung radial zwischen den Kraftspeichern des einen und des anderen Dämpfers angeordnet ist. Dabei kann es zweckmäßig sein, wenn das Ausgangsteil des anderen Dämpfers über die Wandlerüberbrückungskupplung mit dem Eingangsteil des einen Dämpfers verbunden ist.
  • Eine bevorzugte Ausführungsform einer erfindungsgemäßen Kraftübertragungseinrichtung kann vorsehen, daß das Eingangsteil des einen Dämpfers durch das Turbinenrad und das Eingangsteil des anderen Dämpfers durch das Gehäuse gebildet ist, wobei es jedoch möglich ist, die unterschiedlichen Eingangsteile dem jeweils anderen Dämpfer zuzuordnen.
  • Von Vorteil kann es sein, wenn das Ausgangsteil des einen Dämpfers drehfest mit dem Abtriebsteil der Einrichtung verbunden ist.
  • Ganz allgemein kann es zweckmäßig sein, wenn das Turbinenrad über das Abtriebsteil der Einrichtung zentriert ist.
  • Außerdem kann es von Vorteil sein, wenn ein scheibenartiges, als Kolben für die Wandlerüberbrükungskupplung ausgebildetes Bauteil über das Abtriebsteil der Einrichtung zentriert ist.
  • Als besonders vorteilhaft kann es sich erweisen, wenn zwischen dem als Kolben ausgebildeten scheibenartigen Teil und dem Abtriebsteil der Einrichtung eine Zentrierhülse angeordnet ist, die zumindest einen Dichtbereich aufweist, der mit dem radial inneren Bereich des als Kolben ausgebildeten scheibenartigen Bauteils zusammenwirkt.
  • Eine zweckmäßige Ausführungsform einer Kraftübertragungseinrichtung nach der Erfindung kann vorsehen, daß das Ausgangsteil des anderen Dämpfers auf dem Ausgangsteil des einen Dämpfers radial zentriert und axial verschieblich gehalten ist.
  • Von besonderem Vorteil kann es sein, wenn das Eingangsteil des einen Dämpfers mit dem als Kolben wirksamen, scheibenartigen Bauteil drehfest verbunden ist.
  • In vorteilhafter Weise können die Zentrierhülse und das als Kolben ausgebildete, scheibenartige Bauteil drehfest verbunden sein.
  • Dabei kann es von Vorteil sein, wenn die drehfeste Verbindung spielbehaftet ist.
  • Eine besonders zweckmäßige Ausbildungsform der Erfindung zeichnet sich dadurch aus, daß der hydrodynamischer Drehmomentwandler ein mit einer Antriebswelle verbindbares Gehäuse besitzt, in dem wenigstens ein über das Gehäuse antreibbares Pumpenrad, ein mit einer anzutreibenden Welle, wie einer Getriebeeingangswelle, verbindbares Turbinenrad sowie eine Überbrükungskupplung und ein mit dieser in Reihe geschalteter drehelastischer Dämpfer aufgenommen sind, wobei die Überbrückungskupplung einen, einen Reibbereich tragenden, gegenüber dem Turbinenrad begrenzt axial verlagerbaren, scheibenförmig ausgebildeten Kolben aufweist, mittels dessen eine Drehverbindung zwischen dem Gehäuse und einem Abtriebsteil, welches mit der anzutreibenden Welle verbindbar ist, ermöglicht ist, wobei das Abtriebsteil ein scheibenartiges erstes Bauteil aufweist zur Beaufschlagung der Federn des drehelastischen Dämpfers, weiterhin ein scheibenartiges zweites Bauteil vorgesehen ist, das ebenfalls Beaufschlagungsbereiche für die Federn trägt und über diese eine Drehverbindung mit dem ersten Bauteil besitzt, wobei dieses zweite Bauteil weiterhin eine Drehverbindung mit dem Turbinenrad und dem Kolben besitzt.
  • Anhand der 1 bis 4 sei die Erfindung näher erläutert.
  • Dabei zeigt:
  • 1 einen vereinfacht dargestellten Schnitt durch eine erfindungsgemäße Einrichtung,
  • 2 einen vereinfacht dargestellten Schnitt durch eine andere Ausführungsform einer erfindungsgemäßen Einrichtung,
  • 3 eine Teilansicht eines Schnittes mit teilweiser Ansicht gemäß den Pfeilen III der 2, wobei aus Gründen der besseren Darstellung einzelne Teile entfernt wurden,
  • 4 eine weitere Ausführungsform im vereinfacht dargestellten Schnitt.
  • Die in 1 dargestellte Einrichtung 1 besitzt ein Gehäuse 2, das einen hydrodynamischen Drehmomentwandler 3 aufnimmt. Das Gehäuse 2 ist mit einer antreibenden Welle, die durch die Abtriebswelle, wie z. B. Kurbelwelle, einer Brennkraftmaschine gebildet sein kann, verbunden. Dabei kann die drehfeste Verbindung zwischen der Welle und dem Gehäuse 2 über ein nicht näher dargestelltes Antriebsblech erfolgen, das radial innen mit der antreibenden Welle und radial außen mit dem Gehäuse 2 beispielsweise über Schrauben, die in die Befestigungsgewinde 4 eingreifen, drehfest verbunden ist.
  • Das Gehäuse 2 ist durch eine der antreibenden Welle benachbarte Gehäuseschale 5, sowie eine an dieser befestigten weiteren Gehäuseschale 6, die von der antreibenden Welle entfernt ist, gebildet. Die beiden Gehäuseschalen 5 und 6 sind radial außen über eine Schraubverbindung 7 fest miteinander verbunden und mit Hilfe eines Dichtansatzes 8 abgedichtet. Der eine Teil des Dichtungsbereiches 8 ist durch ein ringflanschartiges Teil 9 gebildet, das seinerseits mit der Gehäuseschale 6 fest verbunden ist. In dem dargestellten Ausführungsbeispiel wird zur Bildung der äußeren Schale des Pumpenrades 10 die Gehäuseschale 6 direkt herangezogen. In an sich bekannter Weise sind hierfür die Schaufelbleche 11 mit der Gehäuseschale 6 verbunden. Axial zwischen dem Pumpenrad 10 und der radialen Wandung 12 der Gehäuseschale 5 ist ein Turbinenrad 13 vorgesehen, das drehbar auf einer Abtriebsnabe 14, die über eine Innenverzahnung mit einer Getriebeeingangswelle drehfest koppelbar ist, gelagert ist. Axial zwischen den inneren Bereichen des Pumpen- 10 und des Turbinenrades 13 ist ein Leitrad 15 vorgesehen.
  • In dem durch die beiden Gehäuseschalen 5 und 6 gebildeten Innenraum ist weiterhin ein drehelastischer Dämpfer 16 aufgenommen, der eine drehelastische Koppelung der Abtriebsnabe 14 mit einem antreibenden Teil, das bei der dargestellten Ausführungsform mittels einer Verschraubung 17 mit dem Turbinenrad 13 fest verbunden ist, gewährleistet. In Reihe mit dem drehelastischen Dämpfer 16 ist eine Wandlerüberbrückungskupplung 18 vorgesehen.
  • Der drehelastische Dämpfer 16 umfaßt Kraftspeicher 19, die in dem dargestellten Ausführungsbeispiel durch je zwei ineinandergeschachtelte Schraubenfedern 20, 21 gebildet sind. Die Kraftspeicher 19 können sich dabei zumindest annähernd über den halben Umfang der Einrichtung 1 erstrecken, können jedoch auch wie dies insbesondere aus 3 zu ersehen ist, jeweils den größten Teil eines Viertelkreises überdecken. Je nach Anwendungsfall ist es zweckmäßig, wenn ein Kraftspeicher 19 sich, in Umfangsrichtung betrachtet, über einen Winkel erstreckt, der in der Größenordnung zwischen 70 und 175 Grad liegt. Die einzelnen Schraubenfedern 20, 21 können dabei in zweckmäßiger Weise zumindest annähernd auf den, beispielsweise aus 3 ersichtlichen, Radius, der dem Einbauradius entspricht, vorgekrümmt werden, wodurch die Montage der Einrichtung erheblich vereinfacht wird, da keine zusätzlichen Mittel erforderlich sind, um die Krümmung der Federn 20, 21 zu erhalten. Zumindest unter Fliehkraft stützen sich die Kraftspeicher 19 bzw. die Schraubenfedern 20, 21 an einem die Kraftspeicher 19 axial übergreifenden Bereich 22 ab, der mit dem zumindest teilweise die Beaufschlagungsbereiche für die Kraftspeicher 19 bildenden scheibenartigen Bauteil 23 verbunden ist. Das Bauteil 23 ist in dem dargestellten Beispiel mit Hilfe der Verbindungsschrauben 17 mit dem Turbinenrad 13 verbunden, wobei dieser Zusammenbau radial innen verdrehbar auf der Abtriebsnabe 14 gelagert ist. Bei einer anders ausgeführten Lagerung des Turbinenrades 13 auf der Abtriebswelle 14 ist es jedoch auch möglich, das scheibenartige Bauteil 23 durch ein kreisringförmiges, torusähnliches Gebilde zu ersetzen, das dann beispielsweise in Bereich 23a mittels einer Verschweißung oder einer anderen Verbindungstechnik fest mit dem Turbinenrad 13 verbunden werden kann.
  • Zur Reduzierung des Verschleißes können zwischen dem axialen Bereich 22 und den Windungen der äußeren Schraubenfeder 20 zusätzliche Abstützschalen, die hier nicht näher dargestellt sind, vorgesehen sein.
  • Diese Abstützschalen können sich dabei über die Länge der Kraftspeicher 19 erstrecken, wie dies beispielsweise in 3 dargestellt ist und sind im Querschnitt bogenförmig ausgebildet, so daß sie zumindest annähernd an die Außenkontur der Windungen der Schraubenfeder 20 angepaßt sind, wodurch die Kontaktbereiche zwischen den Schraubenfederwindungen und den Abstützschalen vergrößert werden können und somit der Verschleiß entsprechend verkleinert oder gar vermieden werden kann.
  • Radial innerhalb der Kraftspeicher ist das scheibenartige Bauteil 23 über Abstandsmittel wie Niete 24 mit einem kreisringförmigen Bauteil 25 axial – und drehfest verbunden. Dieses kreisringförmige Bauteil 25 bildet im Durchmesserbereich der Kraftspeicher 19 Beaufschlagungsbereiche für diese, die entsprechend den dort angeordneten Beaufschlagungsbereichen des scheibenartigen Bauteils 23 angeordnet sind. Die Beaufschlagungsbereiche in den Bauteilen 23 und 25 können durch axiale Verformungen der Bauteile aufeinander zu gebildet sein, wie beispielsweise durch angeprägte Taschen. Bei anderen Ausführungsformen kann es zweckmäßig sein, diese Beaufschlagungsbereiche durch zusätzlich angebrachte Bauteile zu bilden, beispielsweise durch Anschweißen von kreissegmentartigen Bereichen.
  • Radial innerhalb der Vernietung 24 weist das kreisringförmige Bauteil 25 einen Verbindungsbereich 26 auf, über den dieses drehfest mit dem im wesentlichen scheibenförmig ausgebildeten Kolben 27 der Wandlerüberbrückungskupplung 18 verbunden ist. Die drehfeste Verbindung im Bereich 26 läßt eine axiale Verlagerung des Kolbens 27 relativ zum Turbinenrad 13 und den mit diesem verbundenen Teilen zu und ist hier stirnverzahnungsähnlich ausgebildet. Die drehfeste, aber axial nachgiebige oder verlagerbare Verbindung im Verbindungsbereich 26 kann jedoch auch über andere geeignete Mittel, wie beispielsweise Blattfedern, hergestellt werden. Der Kolben 27 der Wandlerüberbrückungskupplung 18 ist mit seinem radial inneren, sich in Axialrichtung von der antriebsseitigen Wandung 12 des Gehäuseteiles 5 wegerstreckenden, Bereich 28 auf dem Nabenteil 14 axial verschieblich und relativ zu diesem verdrehbar gelagert. Mit Hilfe der Dichtung 29 sind der Kolben 27 der Wandlerüberbrückungskupplung 18 und die Nabe 14 zueinander abgedichtet und können so einen druckdichten Raum 30 bilden, der sich im wesentlichen radial nach außen zwischen der Gehäusewandung 12 und der dieser zugewandten Seite des Kolbens 27 erstreckt. Die radial äußere Abdichtung des druckdichten Raums 30 wird – bei geschlossener Wandlerüberbrückungskupplung 18 – durch die Reibbereiche 31 des Kolbens 27 und 32 der Gehäusewandung 12 sowie den Reibbelag 33 gebildet, der auf einen der beiden Reibbereiche 31, 32 aufgebracht ist.
  • Die Kraftspeicher 19 bzw. die Schraubenfedern 20, 21 sind, wie dies aus den Figuren hervorgeht, auf dem größtmöglichen Durchmesser angeordnet, so daß ein Maximum an Federkapazität, das heißt ein größtmögliches Federvolumen untergebracht werden kann. Dies ermöglicht sehr große Federwege bzw. sehr große Verdrehwinkel bei gleichzeitig relativ niedriger Federrate. Die dadurch ermöglichten Verdrehwinkel können beispielsweise in der Größenordnung zwischen 40 und 75° liegen und die realisierbaren Verdrehraten in der Größenordnung zwischen 2 und 15 Nm/°. Die hier angeführten Werte verstehen sich bei Verwendung eines einzigen drehelastischen Dämpfers, also bei Verwendung eines einzigen Federnsatzes, wobei die Federn untereinander in Parallelschaltung wirksam sind. Für viele Anwendungsfälle kann es zweckmäßig sein, die Verdrehsteifigkeit bzw. die Verdrehrate des drehelastischen Dämpfers in die Größenordnung zwischen 4 und 12 Nm/° zu legen.
  • Das Ausgangsteil des drehelastischen Dämpfers 16 ist durch ein flanschförmiges bzw. scheibenartiges Bauteil 34 gebildet, das an seinem Außenumfang, also an seiner Außenperipherie, radiale Ausleger bzw. Arme 35 für die Beaufschlagung der Kraftspeicher 19 besitzt. Im Ruhezustand der Einrichtung 1 befinden sich diese Ausleger 35 in Axialrichtung zwischen den Taschen bzw. den Beaufschlagungsbereichen, die in die Bauteile 23 und 25 eingebracht sind. Dabei können, wie beispielsweise in Verbindung mit 3 ersichtlich ist, die Kraftspeicher 19, in Umfangsrichtung betrachtet, etwas kürzer als der winkelmäßige Abstand zwischen zwei benachbarten Auslegern 3 und 30 ausgeführt sein, so daß, ausgehend von der Nullstellung oder Ruhestellung der Einrichtung, zunächst eine gewisse Verdrehung möglich ist, ohne daß die Kraftspeicher 19 komprimiert werden.
  • In seinem radial inneren Bereich ist der Flansch 34 mit einem axial sich erstreckenden flanschartigen Abschnitt der Nabe 14, beispielsweise über Niete 36 fest verbunden. Diese Vernietung kann auch, anders als beim dargestellten Beispiel, unter direkter Heranziehung von Material aus der Nabe 14 gebildet werden. Zwischen der der Gehäusewandung 12 zugewandten radial sich erstreckenden axialen Begrenzungsfläche der Nabe 14 und der dieser zugewandten Seite der Gehäusewandung 12 ist eine Anlaufscheibe 37 angeordnet. Die Anlaufscheibe 37 begrenzt die axiale Verlagerung aller mit der Nabe 14 verbundenen Bauteile in Richtung auf die Gehäusewandung 12 zu und ist im wesentlichen kreisringförmig ausgeführt. Durch in Axialrichtung sich erstreckende Bereiche 38, die aus der Anlaufscheibe in Richtung von der Gehäusewandung 12 weg aufgestellt sind und die in entsprechende Ausnehmungen der Nabe 14 eingreifen, wird die Anlaufscheibe 37 in Umfangsrichtung auf der Nabe 14 fixiert. Um gute Gleiteigenschaften der Anlaufscheibe 37 zu den mit ihr in Gleitverbindung stehenden Teilen sicherzustellen, kann diese beispielsweise aus einem beschichteten Blech oder einem Bronzeblech hergestellt sein. Weiterhin ist es möglich, an dieser Stelle ein Kunststoffteil einzusetzen.
  • Die Überbrückungskupplung 18 wird durch den von der im Innenraum des Gehäuses 2 enthaltenen Flüssigkeit, wie Öl, erzeugten Druck, der auf die dem Turbinenrad 13 zugewandten Seite des Kolbens 27 eine Axialkraft in Richtung auf die Gehäusewandung 12 zu erzeugt, geschlossen. Zum Öffnen der Überbrückungskupplung 18 wird über den Zufuhrkanal 39 Druckmedium in den Ringraum 30 eingeführt, bis die daraus resultierende Axialkraft eine genügende Höhe erreicht, um den Kolben 27 axial in Richtung Turbinenrad 13 zu verschieben, und somit die Reibbereiche 31 des Kolbens 27 und 32 der Gehäusewandung 12 voneinander abgehoben werden. Bei geöffneter Überbrückungskupplung 18 kann Druckmittel zwischen den Reibbereichen 31 des Kolbens 27 und 32 der Gehäusewandung 12 aus dem Ringraum 30 radial nach außen abfließen.
  • Die in den 2 und 3 dargestellte Einheit 101 ist vorwiegend in der Funktion, aber auch im Aufbau, der im Zusammenhang mit 1 beschriebenen Einheit 1 ähnlich, und Teile, die eine ähnliche oder gleiche Funktion ausführen wie im Zusammenhang mit 1 beschrieben, weisen ähnliche Bezugszeichen auf, die jedoch um 100 erhöht sind.
  • In der Kraftübertragungseinheit 101 ist ebenfalls zwischen dem Pumpenrad 110 und der radialen Wandung 112 der Gehäuseschale 105 ein Turbinenrad 113 angeordnet, das drehbar und axial verschieblich auf einem Zwischenteil 140 gelagert ist, welches wiederum unter Beifügung einer Dichtung 141 auf der Abtriebsnabe 114, die über eine Innenverzahnung mit der Getriebeeingangswelle drehfest koppelbar ist, gelagert ist. Das Zwischenteil 140 kann dabei als Kunststoffteil ausgeführt sein, oder aber auch beispielsweise aus Aluminium hergestellt sein. In dem durch die beiden Gehäuseschalen 105 und 106 gebildeten Innenraum ist wiederum ein drehelastischer Dämpfer 116 aufgenommen, der die Abtriebsnabe 114 mit einem antreibenden Teil, das hier in einem radial äußeren Bereich mit dem Turbinenrad 113 verschweißt ist, verbindet. Weiterhin ist in Reihe mit dem drehelastischen Dämpfer 116 eine Wandlerüberbrückungskupplung 118 vorgesehen.
  • Die Kraftspeicher 119 stützen sich zumindest unter Fliehkraft an dem sie axial übergreifenden Bereich 122 des Antriebsteiles 123, das einen etwa L-förmigen Querschnitt aufweist, ab. Das Turbinenrad 113 ist in seinem radial äußeren Bereich mit dem Antriebsteil 123 über eine Schweißnaht 142 fest verbunden.
  • An dem freien, radial nach innen weisenden Schenkel 143 des L-förmigen Antriebsteiles 123, der der Gehäusewandung 112 direkt benachbart ist, ist der Reibbereich 131 der Wandlerüberbrückungskupplung 118 angeordnet. Diesem Reibbereich 131 gegenüber liegt der Reibbereich 132 der Gehäusewandung 112, wobei zwischen den beiden Reibbereichen 131 und 132 ein Reibbelag 133 angeordnet ist. Radial innerhalb der Reibfläche 131 ist der im wesentlichen radial verlaufende Schenkel 143 über eine Vernietung 144 mit einem Beaufschlagungsbereiche für die Kraftspeicher 119 bildenden Bauteil 125 verbunden. Dieses Bauteil 125 weist einen im wesentlichen U-förmigen Querschnitt auf, dessen einer Schenkel 125a sich radial weiter nach innen erstreckt, um eine Vernietung des Bauteiles 125 mit dem Antriebsteil 123 über die Niete 144 zu ermöglichen. Wie insbesondere aus 3 hervorgeht, weist das Bauteil 125 im Durchmesserbereich seiner Vernietung eine wesentlich größere Erstreckung in Umfangsrichtung auf als in dem Durchmesserbereich, der zur Beaufschlagung der Kraftspeicher 119 ausgebildet ist. Die beiden Schenkel 125a, 125b des U-förmigen Bauteiles 125 erstrecken sich in radialer Richtung über die gesamte radiale Ausdehnung der Kraftspeicher 119, wobei der die beiden Schenkel 125a und 125b verbindende axial verlaufende Bereich radial außerhalb des Außendurchmessers der Kraftspeicher 119 angeordnet ist.
  • Die Kraftspeicher 119 stützen sich zumindest unter Fliehkraft an den Abstützschalen 145 ab, die die Kraftspeicher 119 zumindest über Teile ihres Außenumfangs umfassen, und die sich ihrerseits an dem axial verlaufenden Abschnitt 122 des Antriebsteils 123 in Radialrichtung abstützen können. Die Abstützschalen 145 erstrecken sich in Umfangsrichtung jeweils zwischen zwei benachbarten Beaufschlagungsteilen 125 und werden durch diese durch entsprechende Ausnehmungen in deren axial verlaufendem Verbindungsbereich zwischen den beiden Schenkeln 125a und 125b sowohl in Umfangsrichtung als auch in Axialrichtung gehalten. Die die Beaufschlagungsbereiche für die Kraftspeicher 119 bildenden Schenkel 125a und 125b des Beaufschlagungsteiles 125 können zur Verminderung des Verschleißes gehärtet ausgeführt sein.
  • Das Ausgangsteil des drehelastischen Dämpfers 116 ist durch ein flanschartiges Bauteil 134 gebildet, das an seiner Außenperipherie radiale Ausleger 135 für die Beaufschlagung der Kraftspeicher 119 aufweist. Im Ruhezustand der Einrichtung 101 befinden sich diese Ausleger 135 in Axialrichtung zwischen den beiden Schenkeln 125a und 125b des Beaufschlagungsbauteiles 125 und werden so gewissermaßen von diesem U umschlossen. Dabei kann die Anordnung der Kraftspeicher 119 und der sie beaufschlagenden Teile 135 und 125 wiederum so ausgeführt sein, daß, ausgehend von der Nullstellung der Einrichtung, zunächst eine gewisse Verdrehung möglich ist, ohne die Kraftspeicher 119 zu komprimieren.
  • In seinem radial inneren Bereich ist der Flansch 134 mit der Nabe 114 fest verbunden, wie dies in dem Beispiel mit einer Schweißnaht dargestellt ist. Radial außerhalb dieser Verschweißung, also außerhalb des Verbindungsbereiches mit der Nabe 114, ist zwischen einem radial verlaufenden Abschnitt des Flansches 134, der der Gehäusewandung 112 zugewandt ist, und der Gehäusewandung 112 eine Anlaufscheibe 137 angeordnet. Die Anlaufscheibe 137 ist wiederum über axial sich erstreckende Bereiche 138, die in entsprechende Ausnehmungen des Flansches 134 eingreifen, in Umfangsrichtung fixiert.
  • Bei geschlossener Wandlerüberbrückungskupplung 118 ist ein Druckraum 130 gebildet, der in der einen axialen Richtung durch die Gehäusewandung 112 der Gehäuseschale 105 und in der entgegengesetzten axialen Richtung durch das Turbinenrad 113 und das Zwischenteil 140 begrenzt wird. Die Abdichtung des Druckraums erfolgt radial innen im Bereich der Nabe durch die Dichtung 141, weiterhin am radial inneren Zentrierbereich des Turbinenrades 113 durch die Dichtung 147 und radial außen über die Reibbereiche 131 des radial sich erstreckenden Schenkels 143 und 132 der Gehäusewandung 112, wobei zwischen diesen Reibbereichen ein Reibbelag 133 angeordnet ist. Die Dichtungen 141 und 147 können in vorteilhafter Weise durch sogenannte O-Ringe gebildet werden.
  • Die Wandlerüberbrückungskupplung 118 wird durch den von der in dem Innenraum, der durch das Pumpenrad 110, das Turbinenrad 113 und das Leitrad 115 gebildet wird, enthaltenen Flüssigkeit, wie beispielsweise Öl, erzeugten Druck, der auf die dem Pumpenrad 110 zugewandte Seite des Turbinenrades 113 eine Axialkraft in Richtung auf die Gehäusewandung 112 zu erzeugt, geschlossen. Zum Öffnen der Überbrückungskupplung 118 wird über einen nicht näher dargestellten Zufuhrkanal Druckmedium in den Druckraum 130 eingeführt, bis die daraus resultierende Axialkraft eine genügende Höhe erreicht, um das gesamte Turbinenrad 113 mit den daran befestigten Bauteilen 123 und 125 sowie den Kraftspeichern 119 und den Verschleißschalen 145 in Richtung Pumpenrad 110 zu verschieben, wodurch die Reibbereiche 131 des radial sich erstreckenden Schenkels 143 und 132 der Gehäusewandung 112 in einen axialen Abstand zueinander gebracht werden. Das eingebrachte Druckmedium kann bei geöffneter Überbrückungskupplung 118 zwischen den Reibbereichen 131 des radial verlaufenden Schenkels 143 des L-förmigen Bauteils 123 und 132 der Gehäusewandung 112 aus dem Ringraum 130 radial nach außen abfließen. Bei der hier dargestellten Ausführungsform wirken also zumindest Teile der Außenschale des Turbinenrades 113 selbst als Kolben.
  • In 4 ist eine weitere Ausführungsmöglichkeit einer erfindungsgemäßen Kraftübertragungseinrichtung dargestellt, wobei Teile, die in der Funktion bisher beschriebenen Teilen gleichen oder ähneln, gleiche Bezugszeichen aufweisen, die jedoch wiederum um 100 erhöht sind.
  • Die Einrichtung 201 besitzt ein Gehäuse 202, das einen hydrodynamischen Drehmomentwandler 203 aufnimmt. Das Gehäuse 202 ist beispielsweise mit der Kurbelwelle einer Brennkraftmaschine verbunden. Dabei ist die drehfeste Verbindung zwischen der Welle und dem Gehäuse 202 über das Antriebsblech 247 hergestellt, das radial innen mit der antreibenden Welle und radial außen mit dem Gehäuse 202 über Befestigungsmittel 204 drehfest verbunden ist. Das Antriebsblech 247 trägt weiterhin in seinem radial äußeren Bereich den Anlasserzahnkranz 248.
  • Die beiden Gehäuseschalen 205 und 206 sind radial außen über eine Schweißverbindung 207 fest miteinander verbunden und abgedichtet. In dem dargestellten Ausführungsbeispiel wird wiederum zur Bildung der äußeren Schale des Pumpenrades 210 die Gehäuseschale 206 direkt herangezogen. Axial zwischen dem Pumpenrad 210 und der radialen Wandung 212 der Gehäuseschale 205 ist ein Turbinenrad 213 angeordnet, das drehbar auf eine Abtriebsnabe 214, die wiederum mit einer Getriebeeingangswelle drehfest koppelbar ist, gelagert ist. Weiterhin ist ein Leitrad 215 vorgesehen, das axial zwischen den inneren Bereichen des Pumpenrades 210 und des Turbinenrades 213 angeordnet ist.
  • In dem durch die beiden Gehäuseschalen 205 und 206 gebildeten Innenraum ist weiterhin ein drehelastischer Dämpfer 249 aufgenommen, der eine drehelastische Verbindung der Abtriebsnabe 214 mit einem antreibenden Teil gewährleistet, das in diesem Fall durch Teile des Gehäuses 202 gebildet ist. Der drehelastische Dämpfer 249 weist zwei Dämpfungsstufen auf, wobei die Dämpfungsstufe oder der Dämpfer 216 radial innen angeordnet ist, und die Dämpfungsstufe bzw. der Dämpfer 250 im radial äußeren Bereich des Gehäuses 202. Zwischen dem radial außen liegenden Dämpfer 250 und dem radial innen liegenden Dämpfer 216 ist in Reihenschaltung eine Wandlerüberbrückungskupplung 218 angeordnet.
  • Der drehelastische Dämpfer 250 umfaßt Kraftspeicher 251, die sich zumindest annähernd über den halben Umfang der Einrichtung 201 erstrecken können, oder aber auch ähnlich angeordnet sein können, wie dies in Zusammenhang mit 3 beschrieben ist. Die gewählte umfangsmäßige Erstreckung der Kraftspeicher 251 ist beispielsweise abhängig vom benötigten Federvolumen und von der benötigten Federrate, wobei auch die Anzahl der Kraftspeicher und deren Schaltung untereinander (Reihenschaltung oder Parallelschaltung) Einfluß nehmen. Aus den bereits weiter oben beschriebenen Gründen kann es weiterhin zweckmäßig sein, die Kraftspeicher zumindest annähernd auf den Radius vorzukrümmen, der ihrem Einbaudurchmesser in der Einrichtung 201 entspricht. Zumindest unter Fliehkrafteinwirkung stützen sich die Kraftspeicher 251 an der Gehäuseschale 205 radial ab, wofür diese einen die Kraftspeicher 251 axial übergreifenden Bereich 222 besitzt. Zur Reduzierung des Verschleißes sind wiederum zwischen dem axialen Bereich 222 und dem Kraftspeicher 251 Abstützschalen 245 vorgesehen, die ähnlich ausgebildet sind, wie dies in Zusammenhang mit den 2 und 3 beispielhaft beschrieben wurde.
  • Zur Krafteinleitung in den Kraftspeicher 251 trägt die Gehäuseschale 205 unmittelbar Beaufschlagungsbereiche 252, die bei dem dargestellten Ausführungsbeispiel durch in das Blechmaterial der Gehäuseschale 205 eingeprägte Taschen gebildet sind, die zwischen benachbarte Kraftspeicher 251 sowohl axial als auch radial eingreifen. Auf der der Gehäusewandung 212 abgekehrten Seite der Kraftspeicher 251 sind weitere Beaufschlagungsbereiche 253 vorgesehen, die am axialen Bereich 222 der Gehäuseschale 205 befestigt sind. Die Beaufschlagungsbereiche 253 werden durch Taschen gebildet, die an einem kreisringförmigen Bauteil 254 angeprägt sind. Die Beaufschlagungsbereiche 253 erstrecken sich axial und radial zwischen benachbarte Kraftspeicher 251 und sind den Beaufschlagungsbereichen 252 gegenüberliegend angeordnet. Das kreisringförmige Bauteil 254 besitzt einen L- bzw. winkelförmigen Querschnitt, wobei in dem radial verlaufenden Schenkel die Beaufschlagungsbereiche 253 axial eingeprägt sind. Der äußere, axial verlaufende Schenkel des kreisringförmigen Bauteils 254 bildet eine Hülse, deren Außendurchmesser dem Innendurchmesser des axialen Bereiches 222 angepaßt ist, wobei dieser axiale Schenkel mit dem axialen Bereich 222 beispielsweise über eine Schweißverbindung verbunden ist. Die Beaufschlagungsbereiche 252 und 253 dienen gleichzeitig zur Verdrehsicherung der Abstützschalen 245.
  • Das Ausgangsteil des Dämpfers 250 ist durch ein kreisringförmiges Bauteil 255 gebildet, das an seiner radial äußeren Peripherie radiale Ausleger 256 besitzt. Im Ruhezustand der Einrichtung 201 befinden sich diese Arme 256 – in Axialrichtung betrachtet – zwischen den Beaufschlagungsbereichen 252 und 253. Die Anordnung der Beaufschlagungsbereiche für die Kraftspeicher zueinander kann wiederum in ähnlicher Weise erfolgen wie bisher beschrieben, so daß wiederum zuerst eine gewisse Verdrehung ermöglicht ist, ohne die Kraftspeicher zu komprimieren.
  • Radial innerhalb der Arme 256 bildet das kreisringförmige Bauteil 255 das Eingangsteil der Wandlerüberbrückungskupplung 218. Hierfür weist der Flansch 255 an seinen beiden axialen Begrenzungsflächen Reibbereiche auf, die mit entsprechend angeordneten Reibbereichen 231 an dem Kolbenbauteil 227 und 257 an den mit dem Turbinenrad 213 verbundenen Krafteinleitungsteil 223 zusammenwirken. Hierfür sind jeweils zwischen den sich gegenüberliegenden Reibbereichen Reibbeläge 233 angeordnet.
  • Das Krafteinleitungsteil 223 ist in seinem radial äußeren Bereich über eine Schweißverbindung 258 mit dem Turbinenrad 213 fest verbunden. Im Bereich seines radial nach innen sich erstreckenden Flansches 259 ist das Krafteinleitungsteil 223 über eine Vernietung 260 mit zwei Seitenscheiben 261 und 262 axial – und drehfest verbunden, die wiederum das Eingangsteil des Dämpfers 216, der radial innen angeordnet ist, bilden. Hierfür weisen die beiden Seitenscheiben 261 und 262 Ausnehmungen oder Fenster auf, die dazu geeignet sind, die Kraftspeicher 219 des Dämpfers 216 aufzunehmen und diese mit einer in Umfangsrichtung wirksamen Kraft zu beaufschlagen.
  • Die Seitenscheibe 262 und das Kolbenteil 227 der Wandlerüberbrückungskupplung 218 sind, beispielsweise über einen Niet 263, relativ zueinander verdrehfest, jedoch axial verschieblich zueinander gehalten.
  • Die Kraftspeicher 219 des radial innen liegenden Dämpfers 216 stützen sich andererseits an Beaufschlagungsbereichen 235 des als Ausgangsteil dienenden Flansches 234 ab, der seinerseits in seinem radial inneren Bereich axial- und drehfest mit der abtriebsseitigen Nabe 214 verbunden ist. In seinem radial äußeren Bereich bildet der Flansch 234 mit seiner in Axialrichtung sich erstreckenden, radialen Begrenzungsfläche 264 eine Zentrierung, auf der der Ausgangsflansch 255 des radial außen liegenden Dämpfers 250 in Radialrichtung zentriert gehalten ist, sich aber in Axialrichtung bewegen kann.
  • Der Kolben 227 der Wandlerüberbrückungskupplung 218 ist in seinem radial inneren Bereich mit einem in Axialrichtung sich erstreckenden, hülsenartigen Ansatz 265 verdrehbar und axial verschieblich auf einem Zwischenteil 266 gelagert, das sowohl als Zentrierung für den Kolben 227 als auch als Anlaufscheibe für die Nabe 214 dient. Zur Zentrierung des Kolbens 227 weist das Zwischenteil 266, das aus Kunststoff oder beispielsweise auch Aluminium gefertigt sein kann, einen in Axialrichtung sich erstreckenden, zylinderförmigen Bereich 267 auf, der weiterhin noch die Dichtung 268 aufnimmt.
  • Auf der dem Zwischenteil 266 gegenüberliegenden axialen Seite der Nabe 214 ist das Turbinenrad 213 über ein Bauteil 269, das einen L-förmigen Querschnitt aufweist, verdrehbar auf der Nabe 214 gelagert, wobei wiederum zwischen dem Bauteil 269 und einem axialen Ansatz der Nabe 214 eine Dichtung 270 vorgesehen ist. Die Dichtungen 268 und 270 können vorteilhafterweise durch O-Ringe ausgeführt sein.
  • Bei der hier dargestellten Ausführungsform ist also der radial außen liegende Dämpfer 250 wirkungsmäßig zwischen den Antrieb, also das Gehäuse 202, und das Turbinenrad 213 geschaltet, wobei zwischen dem Dämpfer 250 und dem Turbinenrad 213 in Reihe zu dem Dämpfer 250 die Wandlerüberbrükungskupplung 218 angeordnet ist. Der radial innen liegende Dämpfer 216 ist, ähnlich wie dies bisher beschrieben wurde, zwischen dem Turbinenrad 213 und der abtriebsseitigen Nabe 214 wirksam. Es kann jedoch auch eine derartige Anordnung vorgesehen sein, daß derjenige Dämpfer, der zwischen dem Turbinenrad 213 und der abtriebsseitigen Nabe 214 wirksam ist, im radial äußeren Bereich des Gehäuses 202 angeordnet ist, und der zwischen der Antriebsseite und dem Turbinenrad 213 wirksame Dämpfer – wirkungsmäßig also der Dämpfer 250 – im radial inneren Bereich angeordnet werden kann. Ebenso kann die Wandlerüberbrückungskupplung 218 in Reihe mit zumindest einem der beiden Dämpfer geschaltet sein.
  • Die Wandlerüberbrückungskupplung 218 wird durch den von der in dem Innenraum des Gehäuses 202 enthaltenen Flüssigkeit erzeugten Druck, der den Kolben 227 mit einer Axialkraft in Richtung auf das Turbinenrad 213 zu beaufschlagt, geschlossen. Zum Öffnen der Überbrückungskupplung 218 wird über den Zufuhrkanal 239 Druckmedium in den Ringraum 230 eingeführt, wodurch der Kolben 227 in Richtung auf die Gehäusewandung 212 zu bewegt wird, und somit der Reibbereich 231 des Kolbens 227 von dem Reibbereich des Flansches 255 abgehoben wird. Dadurch kann sich der Flansch 255 axial von dem Krafteinleitungsteil 257 wegbewegen, wodurch die dort einander zugekehrten Reibbereiche, von denen einer einen Reibbelag 233 trägt, voneinander in Abstand gebracht werden. Bei dieser nun geöffneten Überbrückungskupplung 218 kann das Druckmittel zwischen den Reibbereichen des Kolbens 227, des Flansches 255 und des Krafteinleitungsteiles 223 aus dem Ringraum 230 in Radialrichtung nach außen abfließen.

Claims (3)

  1. Kraftübertragungseinrichtung mit Flüssigkeitskeitskupplung mit wenigstens einem, mit einer Antriebswelle verbindbaren Gehäuse, das wenigstens ein über das Gehäuse angetriebenes Pumpenrad und wenigstens ein mit der Eingangswelle eines anzutreibenden Stranges verbindbares Turbinenrad sowie gegebenenfalls wenigstens ein zwischen Pumpen- und Turbinenrad angeordnetes Leitrad aufnimmt, weiterhin mit wenigstens einem im Kraftfluß zwischen dem Gehäuse (2) und einem Abtriebsteil (14) der Einrichtung angeordneten drehelastischen Dämpfer (16) mit zumindest einem in Umfangsrichtung wirksamen Kraftspeicher (20), wobei der Kraftspeicher radial außen und im Kraftfluß zwischen einem Turbinenrad (13) und dem Abtriebsteil (14) der Kraftübertragungseinrichtung angeordnet ist, wobei die Beaufschlagungsbereiche des Dämpfers axial und drehfest mit dem Turbinenrad (13) verbunden sind und zusammen mit diesem axial verlagerbar und relativ dazu verdrehbar zumindest indirekt auf dem Abtriebsteil (14) der Kraftübertragungseinrichtung gelagert sind.
  2. Kraftübertragungseinrichtung nach Anspruch 1, wobei ein zumindest teilweise die Beaufschlagungsbereiche für die Kraftspeicher (19) bildendes scheibenartiges Bauteil (23) vorgesehen ist, das fest mit dem Turbinenrad (13) verbunden ist.
  3. Kraftübertragungseinrichtung nach Anspruch 2, wobei das scheibenartige Bauteil (23) mit einer Verschweißung oder einer anderen Verbindungstechnik fest mit dem Turbinenrad (13) verbunden ist.
DE4397755.3A 1992-10-12 1993-10-01 Kraftübertragungseinrichtung Expired - Lifetime DE4397755B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE4397755.3A DE4397755B4 (de) 1992-10-12 1993-10-01 Kraftübertragungseinrichtung

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DEP4234304.6 1992-10-12
DE4234304 1992-10-12
DE4397755.3A DE4397755B4 (de) 1992-10-12 1993-10-01 Kraftübertragungseinrichtung

Publications (1)

Publication Number Publication Date
DE4397755B4 true DE4397755B4 (de) 2014-11-27

Family

ID=6470230

Family Applications (4)

Application Number Title Priority Date Filing Date
DE4397755T Pending DE4397755A5 (de) 1992-10-12 1993-10-01 Kraftübertragungseinrichtung
DE4345617A Expired - Lifetime DE4345617B4 (de) 1992-10-12 1993-10-01 Kraftübertragungseinrichtung
DE4397755.3A Expired - Lifetime DE4397755B4 (de) 1992-10-12 1993-10-01 Kraftübertragungseinrichtung
DE4333562A Expired - Lifetime DE4333562C5 (de) 1992-10-12 1993-10-01 Kraftübertragungseinrichtung

Family Applications Before (2)

Application Number Title Priority Date Filing Date
DE4397755T Pending DE4397755A5 (de) 1992-10-12 1993-10-01 Kraftübertragungseinrichtung
DE4345617A Expired - Lifetime DE4345617B4 (de) 1992-10-12 1993-10-01 Kraftübertragungseinrichtung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE4333562A Expired - Lifetime DE4333562C5 (de) 1992-10-12 1993-10-01 Kraftübertragungseinrichtung

Country Status (6)

Country Link
US (1) US7083029B2 (de)
JP (1) JP3913277B2 (de)
BR (1) BR9304213A (de)
DE (4) DE4397755A5 (de)
FR (1) FR2696802B1 (de)
GB (1) GB2271411B (de)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950008208A (ko) * 1993-09-23 1995-04-17 그레그 지질레워스키 비틀림 댐퍼
DE4414519C2 (de) * 1994-04-26 1997-02-27 Ford Werke Ag Hydrokinetischer Drehmomentwandler mit Überbrückungskupplung
US5667042A (en) * 1994-04-26 1997-09-16 Luk Lamellen Und Kupplungsbau Gmbh Torque transmitting apparatus with hydrokinetic torque converter
US5769195A (en) * 1995-06-09 1998-06-23 Exedy Corporation Lock-up clutch for a torque convertor
FR2749633B1 (fr) * 1996-06-10 1998-08-28 Valeo Appareil d'accouplement hydrocinetique, notamment pour vehicule automobile
FR2775747B1 (fr) * 1998-03-03 2000-07-13 Valeo Appareil d'accouplement hydrocinetique, notamment pour vehicule automobile
DE19826351C2 (de) * 1998-06-12 2001-06-28 Daimler Chrysler Ag Antriebsanordnung mit hydrodynamischen Drehmomentwandler und zwei Dämpfern
US6231472B1 (en) 1998-08-27 2001-05-15 Mannesmann Sachs Ag Torsional vibration damper in a lockup clutch with planetary gear set
DE19846445A1 (de) * 1998-08-27 2000-03-02 Mannesmann Sachs Ag Torsionsschwingungsdämpfer an einer Überbrückungskupplung mit Planetengetriebe
DE19846444B4 (de) * 1998-10-08 2015-09-24 Zf Friedrichshafen Ag Hydrodynamischer Drehmomentwandler
DE10152007A1 (de) * 2001-10-22 2003-04-30 Zf Sachs Ag Drehmomentwandler mit einem Turbinentorsionsschwingungsdämpfer
DE10152008B4 (de) * 2001-10-22 2011-12-08 Zf Sachs Ag Hydraulische Kupplung mit einem Turbinentorsionsschwingungsdämpfer
DE10210342A1 (de) * 2002-03-08 2003-09-25 Zahnradfabrik Friedrichshafen Drehmomentwandler oder hydrodynamische Kupplung
FR2837551B1 (fr) * 2002-03-22 2004-05-14 Valeo Appareil d'accouplement hydrocinetique et procede de montage de cet appareil
JP2004308904A (ja) * 2003-04-05 2004-11-04 Zf Sachs Ag 捩り振動ダンパ
DE10358901C5 (de) 2003-04-05 2018-01-04 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer
DE10317634B4 (de) * 2003-04-17 2012-01-26 Zf Sachs Ag Drehmomentwandler
DE102004019223A1 (de) * 2004-04-21 2005-11-10 Zf Friedrichshafen Ag Torsionsschwingungsdämpfer
US7284645B2 (en) * 2004-06-22 2007-10-23 Yutaka Giken Co., Ltd. Fluid transmission device
JP4945831B2 (ja) * 2005-03-26 2012-06-06 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 複合伝動装置
US7938243B2 (en) * 2005-08-04 2011-05-10 Schaeffler Technologies Gmbh & Co. Kg Thrust washer to take torque converter axial loading
KR100660567B1 (ko) * 2005-08-30 2006-12-22 한국파워트레인 주식회사 토크 컨버터
CN101356390A (zh) * 2006-01-12 2009-01-28 卢克摩擦片和离合器两合公司 在两个减振器之间具有跨接偶合器的变矩器
CN101438081A (zh) * 2006-05-01 2009-05-20 卢克摩擦片和离合器两合公司 用于变矩器的减振弹簧接收部的在使用涡轮叶片的舌的情况下的固定装置和用于制造该固定装置的方法
US20080149444A1 (en) * 2006-11-29 2008-06-26 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Torsional vibration damper
WO2008080381A1 (de) 2006-12-27 2008-07-10 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Kraftübertragungsvorrichtung und verfahren zur steuerung der reibarbeit einer vorrichtung zur dämpfung von schwingungen in einer derartigen kraftübertragungsvorrichtung
DE102008020682B4 (de) * 2007-05-09 2021-12-09 Schaeffler Technologies AG & Co. KG Drehmomentwandler mit einer ausgestanzten Führung, die an den Deckel des Drehmomentwandlers geschweißt ist
JP5078535B2 (ja) * 2007-10-10 2012-11-21 株式会社エクセディ ロックアップ装置およびそれを備えた流体式トルク伝達装置
FR2922620B1 (fr) 2007-10-17 2010-03-19 Valeo Embrayages Dispositif d'accouplement hydrocinetique comportant un disque de friction qui est porte par un element de liaison en rotation d'une roue de turbine avec un voile d'amortisseur
DE102008052451A1 (de) * 2007-11-14 2009-05-20 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Drehmomentwandler mit Überbrückungskupplung, die einen geteilten Kolben aufweist
US8135525B2 (en) 2007-11-14 2012-03-13 Schaeffler Technologies AG & Co. KG Torque converter with turbine mass absorber
US20090258756A1 (en) * 2008-04-15 2009-10-15 Long Charles F Fly-by-wire control for multi-speed planetary transmission
DE102008040080B4 (de) 2008-07-02 2019-05-16 Zf Friedrichshafen Ag Torsionsschwingungsdämpferbaugruppe für eine hydrodynamische Kopplungseinrichtung, insbesondere Drehmomentwandler
JP5595390B2 (ja) 2008-07-04 2014-09-24 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 流体力学式のトルクコンバータ
DE102010054249B4 (de) 2009-12-21 2023-11-30 Schaeffler Technologies AG & Co. KG Kraftübertragungsvorrichtung
US9765872B2 (en) 2014-10-23 2017-09-19 Valeo Embrayages Hydrokinetic torque coupling device having turbine-piston lockup clutch with drive-clutch component, and related method
US9500259B1 (en) 2015-08-11 2016-11-22 Gm Global Technology Operations, Llc High performance torsional vibration isolator
US10006517B2 (en) 2016-03-03 2018-06-26 GM Global Technology Operations LLC Torsional vibration damper with planetary gear enhanced by inertial mass
US10337562B2 (en) 2016-06-17 2019-07-02 GM Global Technology Operations LLC Clutch for a transmission
US10323698B2 (en) 2016-11-01 2019-06-18 GM Global Technology Operations LLC Torque transferring clutch separation
US10274067B2 (en) 2016-11-29 2019-04-30 Valeo Embrayages Hydrokinetic torque-coupling device having lock-up clutch operatively connected to torsional vibration damper, and related methods
WO2019105551A1 (en) * 2017-11-30 2019-06-06 Valeo Embrayages Hydrokinetic torque-coupling device having lock-up clutch operatively connected to torsional vibration damper, and related methods
EP4134567A1 (de) * 2021-08-10 2023-02-15 Valeo Otomotiv Sanayi ve Ticaret A.S. Flansch für torsionsdämpfungsvorrichtungen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2123924A (en) * 1982-06-21 1984-02-08 Honda Motor Co Ltd Torque converters

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4138003A (en) * 1977-08-12 1979-02-06 General Motors Corporation Vibration damper for a torque converter lock-up clutch
JPS54145860A (en) 1978-05-08 1979-11-14 Toyota Motor Corp Fluid type torque converter with direct-coupled clutch
US4240532A (en) 1978-09-21 1980-12-23 Chrysler Corporation Torsional isolator for torque converter lock-up mechanism
JPS5794164A (en) 1980-12-03 1982-06-11 Daihatsu Motor Co Ltd Lockup clutch for torque convertor
US4422535A (en) * 1981-05-20 1983-12-27 Ford Motor Company Compound damper assembly for an automatic transmission
DE3227809A1 (de) * 1982-07-24 1984-01-26 LuK Lamellen und Kupplungsbau GmbH, 7580 Bühl Drehschwingungsdaempfer, insbesondere fuer mit drehmomentenwandlern ausgeruestete kraftfahrzeugantriebe
FR2576654B1 (fr) 1985-01-29 1987-04-24 Valeo Dispositif amortisseur de torsion a grand debattement angulaire, notamment pour vehicule automobile
JPS61206868A (ja) * 1985-03-11 1986-09-13 Nissan Motor Co Ltd トルクコンバ−タのスリツプ制御装置
JPS63251661A (ja) * 1987-04-08 1988-10-19 Daikin Mfg Co Ltd トルクコンバ−タ用のダンパ−装置
US5224576A (en) 1988-04-25 1993-07-06 Kabushiki Kaisha Daikin Seisakusho Damper disk
US4924977A (en) * 1988-08-02 1990-05-15 Borg-Warner Automotive, Inc. Multi-stage torque converter with integrated damper
US4867290A (en) 1988-09-02 1989-09-19 Ford Motor Company High excursion torsional vibration damper for controlled energy absorption
JPH0643866B2 (ja) 1988-10-26 1994-06-08 株式会社大金製作所 トルクコンバータ用ロックアップクラッチの摩擦装置
US5020647A (en) * 1989-03-20 1991-06-04 Kabushiki Kaisha Daikin Seisakusho Lock-up damper device for torque converter
DE3934798A1 (de) * 1989-10-19 1991-04-25 Fichtel & Sachs Ag Torsions-schwingungsdaempfer mit vorgekruemmten schraubenfedern
DE4117584B4 (de) 1990-05-31 2006-09-07 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Geteiltes Schwungrad
JP2595775B2 (ja) * 1990-06-13 1997-04-02 日産自動車株式会社 ロックアップピストン付流体伝動装置
DE4213341C2 (de) * 1991-05-02 2003-09-25 Luk Lamellen & Kupplungsbau Hydrodynamische Einheit
JP3219834B2 (ja) * 1991-05-02 2001-10-15 ルーク ラメレン ウント クツプルングスバウ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング トルク伝達装置
JP2938219B2 (ja) 1991-05-29 1999-08-23 株式会社ユニシアジェックス 自動変速機の動力伝達装置
JPH05231495A (ja) 1992-02-17 1993-09-07 Daikin Mfg Co Ltd トルクコンバータのロックアップ装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2123924A (en) * 1982-06-21 1984-02-08 Honda Motor Co Ltd Torque converters

Also Published As

Publication number Publication date
DE4333562A1 (de) 1994-04-14
GB2271411A (en) 1994-04-13
DE4397755A5 (de) 2013-07-11
GB2271411B (en) 1996-12-04
US20050042106A1 (en) 2005-02-24
FR2696802B1 (fr) 1997-09-26
US7083029B2 (en) 2006-08-01
JP3913277B2 (ja) 2007-05-09
GB9320312D0 (en) 1993-11-17
DE4333562C5 (de) 2008-01-17
DE4333562C2 (de) 2003-01-02
FR2696802A1 (fr) 1994-04-15
JPH06193707A (ja) 1994-07-15
DE4345617B4 (de) 2013-09-19
BR9304213A (pt) 1994-04-19

Similar Documents

Publication Publication Date Title
DE4397755B4 (de) Kraftübertragungseinrichtung
DE19515302B4 (de) Kraftübertragungseinrichtung mit Flüssigkeitskupplung
DE19881219B4 (de) Hydrodynamischer Drehmomentwandler
DE10358901C5 (de) Torsionsschwingungsdämpfer
DE19964646B3 (de) Kraftübertragungseinrichtung
DE10010953B4 (de) Schwingungsdämpfer
DE102011007118A1 (de) Drehschwingungsdämpfungsanordnung
EP2212587B1 (de) Hydrodynamische kopplungseinrichtung
DE3447926A1 (de) Einrichtung zum kompensieren von drehstoessen
DE4225304A1 (de) Scheibenfoermiges bauteil
EP1464873A2 (de) Torsionsschwingungsdämpfer für Drehmomentwandler
DE8535705U1 (de) Einrichtung zum Kompensieren von Drehstößen
DE102009039997A1 (de) Drehschwingungsdämpfer
DE3616301A1 (de) Torsionsschwingungsdaempfer
DE4213341A1 (de) Kraftuebertragungseinrichtung
DE19846445A1 (de) Torsionsschwingungsdämpfer an einer Überbrückungskupplung mit Planetengetriebe
DE19812687A1 (de) Drehmomentwandler
DE102011017655A1 (de) Reibungskupplung, insbesondere nasslaufende Reibungskupplung
DE102009009146A1 (de) Schwingungsdämpfungseinrichtung, insbesondere Zweimassenschwungrad
DE3745197B4 (de) Einrichtung zum Dämfen von Schwingungen
DE3745088B4 (de) Einrichtung zum Dämpfen von Schwingungen
DE3745142C2 (de) Torsions-Schwingungsdämpfer
DE102007057432A1 (de) Hydrodynamische Kopplungseinrichtung
DE4244806B4 (de) Kraftübertragungseinrichtung
DE19846444B4 (de) Hydrodynamischer Drehmomentwandler

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: F16H0045020000

Ipc: F16H0045000000

R129 Divisional application from

Ref document number: 4345617

Country of ref document: DE

Effective date: 20130225

R016 Response to examination communication
R071 Expiry of right
R081 Change of applicant/patentee

Owner name: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140214

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES AG & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20140214

R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R081 Change of applicant/patentee

Owner name: SCHAEFFLER TECHNOLOGIES AG & CO. KG, DE

Free format text: FORMER OWNER: SCHAEFFLER TECHNOLOGIES GMBH & CO. KG, 91074 HERZOGENAURACH, DE

Effective date: 20150408

R020 Patent grant now final