DE102007057432A1 - Hydrodynamische Kopplungseinrichtung - Google Patents

Hydrodynamische Kopplungseinrichtung Download PDF

Info

Publication number
DE102007057432A1
DE102007057432A1 DE102007057432A DE102007057432A DE102007057432A1 DE 102007057432 A1 DE102007057432 A1 DE 102007057432A1 DE 102007057432 A DE102007057432 A DE 102007057432A DE 102007057432 A DE102007057432 A DE 102007057432A DE 102007057432 A1 DE102007057432 A1 DE 102007057432A1
Authority
DE
Germany
Prior art keywords
area
torsional vibration
vibration damper
coupling device
hydrodynamic coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102007057432A
Other languages
English (en)
Other versions
DE102007057432B4 (de
Inventor
Ralf Fambach
Reinhard Feldhaus
Christoph Dr. Sasse
Erwin Wack
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Priority to DE102007057432.2A priority Critical patent/DE102007057432B4/de
Publication of DE102007057432A1 publication Critical patent/DE102007057432A1/de
Application granted granted Critical
Publication of DE102007057432B4 publication Critical patent/DE102007057432B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/021Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type three chamber system, i.e. comprising a separated, closed chamber specially adapted for actuating a lock-up clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0226Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers
    • F16H2045/0231Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means comprising two or more vibration dampers arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0221Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means
    • F16H2045/0247Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type with damping means having a turbine with hydrodynamic damping means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H45/00Combinations of fluid gearings for conveying rotary motion with couplings or clutches
    • F16H45/02Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type
    • F16H2045/0273Combinations of fluid gearings for conveying rotary motion with couplings or clutches with mechanical clutches for bridging a fluid gearing of the hydrokinetic type characterised by the type of the friction surface of the lock-up clutch
    • F16H2045/0284Multiple disk type lock-up clutch

Abstract

Eine hydrodynamische Kopplungseinrichtung, insbesondere Drehmomentwandler, umfasst ein Gehäuse (12) mit einem Pumpenrad (23), ein in einem Innenraum (26) des Gehäuses (12) angeordnetes Turbinenrad (28) und eine Überbrückungskupplungsanordnung (42) mit einer ersten Reibflächenformation (44), die mit dem Gehäuse (12) zur gemeinsamen Drehung um eine Drehachse (A) verbunden ist, einer zweiten Reibflächenformation (46), die mit dem Turbinenrad (28) zur gemeinsamen Drehung verbunden ist, und einem Kolbenelement (56), wobei die zweite Reibflächenformation (46) über eine Torsionsdämpferanordnung (34) mit einer Turbinenradnabe (36) des Turbinenrads (28) gekoppelt ist, wobei die Torsionsdämpferanordnung (34) einen ersten Torsionsschwingungsdämpferbereich (64) mit einem mit der zweiten Reibflächenformation (46) verbundenen ersten Eingangsbereich (68) und einem über eine Mehrzahl erster Dämpferfedereinheiten (76) mit dem ersten Eingangsbereich (68) gekoppelten ersten Ausgangsbereich (72) sowie einen zweiten Torsionsschwingungsdämpferbereich (66) mit einem mit dem ersten Ausgangsbereich (72) verbundenen zweiten Eingangsbereich (78) und einem über eine Mehrzahl zweiter Dämpferfedereinheiten (84) mit dem zweiten Eingangsbereich (78) gekoppelten zweiten Ausgangsbereich (82) umfasst, ist dadurch gekennzeichnet, dass der erste Ausgangsbereich (72) mit dem zweiten Eingangsbereich (78) über einen dritten Torsionsschwingungsdämpferbereich (94) verbunden ist.

Description

  • Die vorliegende Erfindung betrifft eine hydrodynamische Kopplungseinrichtung, insbesondere Drehmomentwandler, umfassend ein Gehäuse mit einem Pumpenrad, ein in einem Innenraum des Gehäuses angeordnetes Turbinenrad und eine Überbrückungskupplungsanordnung mit einer ersten Reibflächenformation, die mit dem Gehäuse zur gemeinsamen Drehung um eine Drehachse verbunden ist, einer zweiten Reibflächenformation, die mit dem Turbinenrad zur gemeinsamen Drehung verbunden ist, und einem Kolbenelement, wobei die zweite Reibflächenformation über eine Torsionsdämpferanordnung mit einer Turbinenradnabe des Turbinenrads gekoppelt ist, wobei die Torsionsdämpferanordnung einen ersten Torsionsschwingungsdämpferbereich mit einem mit der zweiten Reibflächenformation verbundenen ersten Eingangsbereich und einem über eine Mehrzahl erster Dämpferfedereinheiten mit dem ersten Eingangsbereich gekoppelten ersten Ausgangsbereich sowie einen zweiten Torsionsschwingungsdämpferbereich mit einem mit dem ersten Ausgangsbereich verbundenen zweiten Eingangsbereich und einem über eine Mehrzahl zweiter Dämpferfedereinheiten mit dem zweiten Eingangsbereich gekoppelten zweiten Ausgangsbereich umfasst.
  • Eine hydrodynamische Kopplungseinrichtung in Form eines Drehmomentwandlers, wie sie vor allem hinsichtlich des Aufbaus der Torsionsdämpferanordnung auch aus der DE 103 17 634 A1 bekannt ist, wird nachfolgend mit Bezug auf die 1 beschrieben.
  • In 1 ist ein hydrodynamischer Drehmomentwandler allgemein mit 10 bezeichnet. Der Drehmomentwandler 10 umfasst ein Wandlergehäuse 12, das zwei Gehäuseschalen 14, 16 umfasst. Diese sind radial außen beispielsweise durch Verschweißung fest verbunden. Die Gehäuseschale 14 weist in ih rem radial inneren Bereich einen Lagerzapfen 18 auf, der in einer Aussparung einer über eine Kopplungsanordnung 20 und eine Flexplatte o. dgl. zur Drehung um eine Drehachse A anzukoppelnden Antriebswelle, beispielsweise Kurbelwelle, gelagert werden kann.
  • Die Gehäuseschale 16 bildet eine Pumpenradschale eines Pumpenrads 23, die in ihrem radial inneren Endbereich mit einer Pumpennabe 22 zum Antrieb einer in einem Getriebe vorgesehenen Ölpumpe verbunden ist und an ihrer Innenseite eine Mehrzahl von um die Drehachse A aufeinander folgend angeordneten Pumpenradschaufeln 24 trägt.
  • In einem Innenraum 26 des Wandlergehäuses 12 ist ein Turbinenrad 28 vorgesehen. Dieses weist eine Turbinenradschale 30 und eine Mehrzahl von um die Drehachse A aufeinander folgend daran vorgesehenen Turbinenradschaufeln 32 auf. Das Turbinenrad 28 ist im dargestellten Beispiel über eine Torsionsdämpferanordnung 34 mit einer Turbinenradnabe 36 zur Drehung gekoppelt. Über diese Turbinenradnabe 36 ist der hydrodynamische Drehmomentwandler 10 mit einer Abtriebswelle, beispielsweise einer Getriebeeingangswelle, drehgekoppelt.
  • Zwischen dem Turbinenrad 28 und dem Pumpenrad 23 ist ein allgemein mit 38 bezeichnetes Leitrad vorgesehen. Dieses ist über eine Freilaufanordnung 40 auf einer nicht dargestellten Stützhohlwelle getragen und somit nur in einer Richtung um diese Drehachse A drehbar, um eine Momentenabstützfunktionalität zu erreichen.
  • Eine Überbrückungskupplungsanordnung 42 umfasst zwei Reibflächenformationen 44, 46. Jede dieser Reibflächenformationen 44, 46 weist eine Mehrzahl von Reiblamellen bzw. Reibelementen 48, 50 auf. Die Reibelemente 48 der Reibflächenformation 44 sind mit einer an der Gehäuseschale 14 gebildeten Verzahnung 52 in Drehkopplungseingriff. Die Reibelemente 50 der Reibflächenformation 46 sind mit einer Verzahnung 54 an einem Reibelemententräger 57 in Drehkopplungseingriff. Dieser Reibelemententräger 57 wiederum ist über die Torsionsdämpferanordnung 34 mit dem Turbinenrad 28 bzw. der Turbinenradnabe 36 zur Drehmomentübertragung gekoppelt. Die beiden Verzahnungen 52, 54 sind im Wesentlichen in axialer Richtung langgestreckt, um eine Axialbewegbarkeit der Reibelemente 48, 50 zu gewährleisten.
  • Ein Kolben 56 ist an der Gehäuseschale 14 axial bewegbar geführt und radial innen und radial außen durch entsprechende Dichtungselemente fluiddicht abgeschlossen. Der Kolben 56 unterteilt den Innenraum 26 des Wandlergehäuses 12 in einen ersten Raumbereich 58, welcher auch das Turbinenrad 28, das Leitrad 38 sowie die Reibflächenformationen 44, 46 enthält, und einen zweiten Raumbereich 60, welcher im Wesentlichen zwischen dem Kolben 56 und der Gehäuseschale 14 begrenzt ist. In seinem radial äußeren Bereich weist der Kolben 56 einen Beaufschlagungsbereich 62 auf, mit welchem er bei Verschiebung in Richtung Einrücken die Reibflächenformationen 44, 46 gegeneinander presst und somit in Reibeingriff bringt. Ein am Gehäusedeckel 14 vorgesehener Sicherungsring 64 sorgt für eine axiale Abstützung.
  • Die Bewegung des Kolbens 56 in Richtung Einrücken, also mit seinem Beaufschlagungsbereich 62 auf die Reibflächenformationen 44, 46 zu, wird durch die Zufuhr von Fluid in den zweiten Raumbereich 60 erlangt. Durch die Variation des Fluiddrucks im zweiten Raumbereich 60 im Vergleich zum Fluiddruck im ersten Raumbereich 58 kann die Lage des Kolbenelements 56 und somit der Drehmomentübertragungszustand der Überbrückungskupplungsanordnung 42 beeinflusst werden.
  • Die Torsionsdämpferanordnung 34 umfasst zwei Torsionsschwingungsdämpferbereiche 64, 66. Ein erster Eingangsbereich 68 des radial äußeren ersten Torsionsschwingungsdämpferbereichs 64 umfasst ein Zentralscheibenelement 70, das durch einen bzw. durch mehrere Nietbolzen mit dem Reibelemententräger 57 fest verbunden ist. Ein erster Ausgangsbereich 72 des ersten Torsionsschwingungsdämpferbereichs 64 umfasst den radial äu ßeren Bereich zweier Deckscheibenelemente 74, 77, die beidseits des Zentralscheibenelements 70 angeordnet sind und miteinander beispielsweise durch mehrere das Zentralscheibenelement 70 auch mit Umfangsbewegungsspiel durchsetzende Niezbolzen miteinander fest verbunden sind. Über eine Mehrzahl erster Dämpferfedereinheiten 76 sind der erste Eingangsbereich 68 und der erste Ausgangsbereich 72 zur Drehmomentübertragung miteinander gekoppelt, auf Grund der Federelastizität der ersten Dämpferfedereinheiten 76 jedoch bezüglich einander um die Drehachse A drehbar. Es sei darauf hingewiesen, dass selbstverständlich das Zentralscheibenelement 68 und die Deckscheibenelemente 74, 77 für die ersten Dämpferfedereinheiten 76 jeweilige Umfangsabstützbereiche aufweisen, um ein Drehmoment aufnehmen bzw. weiterleiten zu können.
  • Der radial innen liegende zweite Torsionsschwingungsdämpferbereich 66 umfasst als zweiten Eingangsbereich 78 den radial inneren Bereich der beiden Deckscheibenelemente 74, 77, so dass durch integrale Ausgestaltung an den jeweiligen Deckscheibenelementen 74, 77 der erste Ausgangsbereich 72 und der zweite Eingangsbereich 78 miteinander verbunden sind. Ein weiteres Zentralscheibenelement 80 bildet im Wesentlichen den zweiten Ausgangsbereich 82 des zweiten Torsionsschwingungsdämpferbereichs 66. Dieser zweite Ausgangsbereich 82 ist radial innen durch Verschweißung mit der Turbinenradnabe 36 fest verbunden. Ferner sind radial innen die beiden Deckscheibenelemente 74, 77 miteinander und der Turbinenradschale 30 fest verbunden, so dass die Turbinenradschale 30 des Turbinenrads 28 mit dem zweiten Eingangsbereich 78 und mithin dem ersten Ausgangsbereich 72 fest verbunden ist.
  • Eine Mehrzahl zweiter Dämpferfedereinheiten 84, die, ähnlich wie die ersten Dämpferfedereinheiten 76, ebenfalls in Umfangsrichtung aufeinander folgend um die Drehachse A herum angeordnet sind, stellt eine Kopplung zwischen dem zweiten Eingangsbereich 78, also den radial innen liegenden Bereichen der Deckscheibenelemente 74, 77, und dem zweiten Ausgangsbereich 82, also dem zweiten Zentralscheibenelement 80 her. Auch hier wei sen die jeweiligen Eingangs- bzw. Ausgangsbereiche Umfangsabstützbereiche für die zweiten Dämpferfedereinheiten 84 auf.
  • Zu den ersten Dämpferfedereinheiten 76 bzw. den zweiten Dämpferfedereinheiten 84 sei ausgeführt, dass diese im Allgemeinen mit Schraubendruckfedern ausgebildet sind, die beispielsweise in Umfangsrichtung gekrümmt verlaufend angeordnet sind. Je nach erforderlicher Dämpfungscharakteristik, können beispielsweise bei jedem der Torsionsschwingungsdämpferbereiche 64, 66 in Umfangsrichtung aufeinander folgend zwei derartige Dämpferfedereinheiten 76, 84 vorgesehen sein, die näherungsweise über einen Winkelbereich 180° langgestreckt sind. Wie bereits ausgeführt, können die Dämpferfedereinheiten 76, 84 eine Schraubendruckfeder umfassen, können jedoch auch mit mehreren in Umfangsrichtung aufeinander folgenden und näherungsweise tangential sich erstreckenden und in Umfangsendbereichen aneinander abgestützten Schraubendruckfedern ausgebildet sein. Auch können, wie dies in der 1 anhand der Dämpferfedereinheiten 84 des radial innen liegenden zweiten Torsionsschwingungsdämpferbereichs 66 veranschaulicht ist, die Dämpferfedereinheiten ineinander geschachtelte Schraubendruckfedern umfassen, die durch unterschiedliche Längenausgestaltung abhängig vom Relativdrehwinkel zwischen einem jeweiligen Eingangsbereich und einem Ausgangsbereich gestuft wirksam werden können.
  • Bei der in 1 dargestellten Torsionsdämpferanordnung 34 ist also der radial äußere erste Torsionsschwingungsdämpferbereich 64 dann wirksam, wenn ein Drehmoment über die Überbrückungskupplungsanordnung 42 übertragen wird. Das Drehmoment wird dann über den ersten Eingangsbereich 68 und über die ersten Dämpferfedereinheiten 76 auf den ersten Ausgangsbereich 72 übertragen. Von diesem bzw. dem damit fest verbunden ausgebildeten zweiten Eingangsbereich 78 gelangt das Drehmoment über die zweiten Dämpferfedereinheiten 84 und den zweiten Ausgangsbereich 82 zur Turbinenradnabe 36. Die beiden Torsionsschwingungsdämpferbereiche 64, 66 sind also seriell wirksam.
  • Bei ausgerückt gehaltener Überbrückungskupplungsanordnung 42 und Drehmomentübertragung bzw. Verstärkung über den Fluidkreislauf, der zwischen dem Turbinenrad 28 und dem Pumpenrad 23 bzw. dem Leitrad 38 umgewälzt wird, wird das Drehmoment über die Turbinenradschale 30 in den ersten Ausgangsbereich 72 bzw. den zweiten Eingangsbereich 78 eingeleitet und mithin über die zweiten Dämpferfedereinheiten 84 und den zweiten Ausgangsbereich 82 auf die Turbinenradnabe 36 übertragen.
  • Eine grundlegende Problematik derartiger hydrodynamischer Kopplungseinrichtungen bzw. der darin vorgesehenen Torsionsdämpferanordnungen ist die Entkopplungsgüte insbesondere zwischen dem Wandlergehäuse und einem Abtriebsbereich, also der Turbinenradnabe bzw. einer damit drehfest gekoppelten Getriebeeingangswelle. Obgleich durch das Vorsehen zweier seriell wirkender Torsionsschwingungsdämpferbereiche bereits eine deutliche Verbesserung gegenüber Ausgestaltungsformen mit nur einem Torsionsschwingungsdämpferbereich, beispielsweise im Drehmomentenfluss zwischen einer Turbinenradschale und der Turbinenradnabe, erzielt wird, kann mit einer derartigen Anordnung nicht für alle Betriebszustände eine ausreichende Entkopplungsgüte erzielt werden. Die Entkopplungsgüte hängt von verschiedenen Parametern, insbesondere der Lage der Eigenfrequenz ab, die idealerweise deutlich unter demjenigen Drehzahlbereich sein sollte, in welchem eine Brennkraftmaschine als Antriebsaggregat normalerweise betrieben wird. Die Eigenfrequenz eines derartigen Schwingungssystems hängt im Wesentlichen von den primärseitigen und sekundärseitigen Massenträgheiten und der Steifigkeit bzw. den Steifigkeiten der Dämpferfedereinheiten ab. Eine Erhöhung der Massenträgheiten, die sich auf die Lage der Eigenfrequenz positiv auswirken würde, ist auf Grund des begrenzten Bauraums sowie auf Grund des oftmals nachteilhaften Einflusses auf die Fahrdynamik nur in wenigen Ausnahmen möglich. Eine weitere Möglichkeit, die Eigenfrequenz zu senken, involviert die Absenkung der Federsteifigkeiten insbesondere des radial inneren, zweiten Torsionsschwingungsdämpferbereichs. Auch die hier möglichen Variationsbereiche führen jedoch nicht zu einer eine ausreichende Erhöhung der Entkopplungsgüte sicherstellenden Absenkung der Steifigkeit.
  • Es ist die Aufgabe der vorliegenden Erfindung, eine hydrodynamische Kopplungseinrichtung, insbesondere Drehmomentwandler, vorzusehen, mit welcher eine verbesserte Entkopplungsgüte bei der Übertragung von Drehungleichförmigkeiten erzielt wird.
  • Erfindungsgemäß wird diese Aufgabe gelöst durch eine hydrodynamische Kopplungseinrichtung, insbesondere Drehmomentwandler, umfassend ein Gehäuse mit einem Pumpenrad, ein in einem Innenraum des Gehäuses angeordnetes Turbinenrad und eine Überbrückungskupplungsanordnung mit einer ersten Reibflächenformation, die mit dem Gehäuse zur gemeinsamen Drehung um eine Drehachse verbunden ist, einer zweiten Reibflächenformation, die mit dem Turbinenrad zur gemeinsamen Drehung verbunden ist, und einem Kolbenelement, wobei die zweite Reibflächenformation über eine Torsionsdämpferanordnung mit einer Turbinenradnabe des Turbinenrads gekoppelt ist, wobei die Torsionsdämpferanordnung einen ersten Torsionsschwingungsdämpferbereich mit einem mit der zweiten Reibflächenformation verbundenen ersten Eingangsbereich und einen über eine Mehrzahl erster Dämpferfedereinheiten mit dem ersten Eingangsbereich gekoppelten ersten Ausgangsbereich sowie einen zweiten Torsionsschwingungsdämpferbereich mit einem mit dem ersten Ausgangsbereich verbundenen zweiten Eingangsbereich und einen über eine Mehrzahl zweiter Dämpferfedereinheiten mit dem zweiten Eingangsbereich gekoppelten zweiten Ausgangsbereich umfasst, wobei weiter vorgesehen ist, dass der erste Ausgangsbereich mit dem zweiten Eingangsbereich über einen dritten Torsionsschwingungsdämpferbereich verbunden ist.
  • Durch das Eingliedern eines bzw. ggf. mehrerer zusätzlicher Torsionsschwingungsdämpferbereiche in den Drehmomentübertragungsweg zwischen einem Wandlergehäuse und einer Turbinenradnabe bzw. auch zwischen eine Turbinenradschale und eine Turbinenradnabe wird eine deutliche Verbesserung der Entkopplungsqualität erzielt.
  • Beispielsweise kann dabei vorgesehen sein, dass der erste Ausgangsbereich mit dem zweiten Eingangsbereich über einen dritten Torsionsschwingungsdämpferbereich verbunden ist.
  • Für die Einbeziehung der Turbinnenradschale in die Staffelung der verschiedenen seriell wirksamen Torsionsschwingungsdämpferbereiche bestehen verschiedene Möglichkeiten. So kann die Turbinenradschale mit dem dritten Eingangsbereich, dem dritten Ausgangsbereich, dem ersten Ausgangsbereich oder dem ersten Eingangsbereich verbunden sein. Dies bedeutet, dass auch im Drehmomentübertragungsweg zwischen der Turbinenradschale und der Turbinenradnabe je nach Anbindung der Turbinenradschale ein, zwei oder drei Torsionsschwingungsdämpferbereiche wirksam sein können.
  • Der dritte Ausgangsbereich kann mit dem zweiten Eingangsbereich verbunden sein. Diese Verbindung kann direkt, also durch mechanisch steife Verbindung erfolgen. Alternativ kann vorgesehen sein, dass der dritte Ausgangsbereich mit dem zweiten Eingangsbereich über einen vierten Torsionsschwingungsdämpferbereich verbunden ist.
  • Auch für diesen weiteren, vierten Torsionsschwingungsdämpferbereich kann vorgesehen sein, dass er einen mit dem dritten Ausgangsbereich verbundenen vierten Eingangsbereich und einen über eine Mehrzahl vierter Dämpferfedereinheiten mit dem vierten Eingangsbereich gekoppelten vierten Ausgangsbereich umfasst.
  • Um den in einer hydrodynamischen Kopplungseinrichtung allgemein sehr begrenzten Bauraum möglichst effizient zu nutzen, wird weiter vorgeschlagen, dass wenigstens ein Torsionsschwingungsdämpferbereich in einem von dem Turbinenrad und dem Pumpenrad umgebenen Ringraum angeordnet ist. Der in den Ringraum eingegliederte Torsionsschwingungsdämpferbereich kann dabei der dritte oder vierte Torsionsschwingungsdämpferbereich sein, so dass sichergestellt ist, dass der erste Torsionsschwingungsdämpfer bereich und der zweite Torsionsschwingungsdämpferbereich, welche die unmittelbare Anknüpfung an das Gehäuse einerseits und die Turbinenradnabe andererseits sicherstellen, sehr einfach an diese Baugruppen angebunden werden können.
  • Gemäß einem weiteren in Verbindung mit den vorangehend beschriebenen Aspekten grundsätzlich aber auch selbstständig zu betrachtenden Aspekt wird vorgeschlagen, dass wenigstens ein Torsionsschwingungsdämpferbereich wenigstens zwei Torsionsschwingungsdämpfereinheiten aufweist.
  • Durch das Vorsehen mehrerer Torsionsschwingungsdämpfereinheiten in einem Torsionsschwingungsdämpferbereich, welche Torsionsschwingungsdämpfereinheiten dann im Wesentlichen parallel wirken, wird ein weiterer erheblicher Einfluss auf die Dämpfungscharakteristik möglich.
  • Dabei kann beispielsweise vorgesehen sein, dass die wenigstens zwei Torsionsschwingungsdämpfereinheiten eines Torsionsschwingungsdämpferbereichs axial aufeinander folgend angeordnet sind, was auf Grund der parallelen Wirksamkeit der Torsionsschwingungsdämpfereinheiten eine leichte Kombination derselben ermöglicht.
  • Weiter wird vorgeschlagen, dass jede Torsionsschwingungsdämpfereinheit eines Torsionsschwingungsdämpferbereichs eine Mehrzahl von Dämpferfedereinheiten dieses Torsionsschwingungsdämpferbereichs aufweist.
  • Die parallele Wirksamkeit der verschiedenen Torsionsschwingungsdämpfereinheiten kann dadurch einfach realisiert werden, dass jede Torsionsschwingungsdämpfereinheit einen Eingangsbereich und einen Ausgangsbereich aufweist und dass die Eingangsbereiche der Torsionsschwingungsdämpfereinheiten eines Torsionsschwingungsdämpferbereichs im Wesentlichen den Eingangsbereich dieses Torsionsschwingungsdämpferbereichs bilden und die Ausgangsbereiche der Torsionsschwingungsdämpfereinheiten eines Torsionsschwingungsdämpferbereichs im Wesentlichen den Aus gangsbereich dieses Torsionsschwingungsdämpferbereichs bilden.
  • Auch bei Ausgestaltung mit mehreren Torsionsschwingungsdämpfereinheiten kann der zur Verfügung stehende Bauraum sehr effizient dadurch genutzt werden, dass wenigstens eine Torsionsschwingungsdämpfereinheit in einem von dem Turbinenrad und dem Pumpenrad umgebenen Ringraum angeordnet ist.
  • Gemäß einem weiteren, in Verbindung mit den vorangehenden Aspekten jedoch auch selbstständig zu betrachtenden Aspekt wird vorgeschlagen, dass bei wenigstens einem Torsionsschwingungsdämpferbereich wenigstens eine Dämpferfedereinheit eine Mehrzahl von in Umfangsrichtung aufeinander folgenden und bezüglich einander abgestützten Dämpferfedern umfasst.
  • Auch das Vorsehen mehrerer seriell wirksamer Dämpferfedern innerhalb einer Dämpferfedereinheit vergrößert das bei Drehmomentübertragung nutzbare Federvolumen und verbessert somit die Entkopplungsgüte. Diese Dämpferfedern können über wenigstens ein Zwischenabstützelement bezüglich einander abgestützt sein, wobei dieses Zwischenabstützelement ringartig ausgebildet sein kann und somit keine Maßnahmen zur Radialabstützung desselben erfordert. Der Torsionsschwingungsdämpferbereich, in dem zwei derartige Dämpferfedern seriell wirken, kann beispielsweise der zweite Torsionsschwingungsdämpferbereich sein.
  • Um bereits im Drehmomentenfluss vor dem Gehäuse der hydrodynamischen Kopplungseinrichtung Drehungleichförmigkeiten bzw. Vibrationen dämpfen bzw. herausfiltern zu können, wird weiter vorgeschlagen, dass im Drehmomentenfluss vor dem Gehäuse ein Torsionsschwingungsdämpfer vorgesehen ist, dessen Eingangsbereich mit einem Antriebsorgan zur gemeinsamen Drehung um die Drehachse zu koppeln ist und dessen Ausgangsbereich mit dem Gehäuse zur gemeinsamen Drehung um die Drehachse zu koppeln ist.
  • Gemäß einem weiteren Aspekt betrifft die vorliegende Erfindung ein An triebssystem für ein Fahrzeug, umfassend eine Brennkraftmaschine, eine die Brennkraftmaschine mit einem Getriebe koppelnde hydrodynamische Kopplungseinheit, vorzugsweise in Verbindung mit einem oder mehreren der vorangehend beschriebenen Merkmale, eine das Getriebe mit wenigstens zwei Antriebsrädern über jeweilige Antriebsradwellenanordnungen koppelnde Differentialanordnung, wobei für die Gesamtsteifigkeit G der Antriebsradwellenanordnungen gilt: G = A × z [Nm/°],wobei
  • A
    = eine Zahl im Bereich von 30 bis 70, vorzugsweise 40 bis 50, ist
    z
    = die Anzahl der Zylinder der Brennkraftmaschine ist.
  • Gemäß diesem Aspekt wird zum Eingliedern einer Elastizität in ein Antriebssystem mit der Intention, Drehungleichförmigkeiten abzufangen, die Torsionselastizität der verschiedenen Baugruppen, hier insbesondere der Antriebsradwellenanordnungen, genutzt. Liegt deren Gesamtsteifigkeit, welche hier selbstverständlich eine Torsionssteifigkeit ist und beispielsweise angegeben ist in Nm, die erforderlich sind, um eine Torsion um eine Winkeleinheit, beispielsweise ein Grad, zu erreichen, in dem angegebenen Bereich, der wiederum abhängig ist von der Anzahl der Zylinder und somit primär auch der Anregungsfrequenz, kann bereits auch außerhalb der möglicherweise mit einem Torsionsschwingungsdämpfer versehenen hydrodynamischen Kopplungseinheit für eine vergleichsweise starke Bedämpfung von auftretenden Schwingungen gesorgt werden.
  • Die vorliegende Erfindung wird nachfolgend mit Bezug auf die beiliegenden Zeichnungen detailliert beschrieben. Es zeigt:
  • 1 eine Teil-Längsschnittansicht einer hinsichtlich des grundsätzlichen Aufbaus bekannten hydrodynamischen Kopplungseinrichtung;
  • 2 die in 1 in konstruktiver Ausführung gezeigte Kopplungseinrichtung in prinzipartiger Darstellung;
  • 3 eine der 2 entsprechende Prinzipdarstellung einer erfindungsgemäßen Ausgestaltungsart einer Kopplungseinrichtung mit drei seriell geschalteten Torsionsschwingungsdämpferbereichen;
  • 4 eine weitere der 2 entsprechende Darstellung einer erfindungsgemäßen Ausgestaltungsform mit drei seriell geschalteten Torsionsschwingungsdämpferbereichen;
  • 5 eine weitere der 2 entsprechende Darstellung einer erfindungsgemäßen Ausgestaltungsform mit drei seriell geschalteten Torsionsschwingungsdämpferbereichen;
  • 6 eine weitere der 2 entsprechende Darstellung einer erfindungsgemäßen Ausgestaltungsform mit drei seriell geschalteten Torsionsschwingungsdämpferbereichen;
  • 7 eine weitere der 2 entsprechende Darstellung einer erfindungsgemäßen Ausgestaltungsform mit drei seriell geschalteten Torsionsschwingungsdämpferbereichen;
  • 8 eine weitere der 2 entsprechende Darstellung einer erfindungsgemäßen Ausgestaltungsform mit drei seriell geschalteten Torsionsschwingungsdämpferbereichen;
  • 9 eine weitere der 2 entsprechende Darstellung einer erfindungsgemäßen Ausgestaltungsform mit drei seriell geschalteten Torsionsschwingungsdämpferbereichen;
  • 10 eine weitere der 2 entsprechende Darstellung einer erfindungs gemäßen Ausgestaltungsform mit vier seriell geschalteten Torsionsschwingungsdämpferbereichen;
  • 11 eine der 2 entsprechende Darstellung einer erfindungsgemäßen Ausgestaltungsform einer Kopplungseinrichtung mit zwei seriell geschalteten Torsionsschwingungsdämpferbereichen, wobei einer davon zwei Torsionsschwingungsdämpfereinheiten aufweist;
  • 12 eine der 2 entsprechende Darstellung einer erfindungsgemäßen Ausgestaltungsform einer Kopplungseinrichtung mit drei seriell geschalteten Torsionsschwingungsdämpferbereichen, wobei zwei davon jeweils zwei Torsionsschwingungsdämpfereinheiten aufweisen;
  • 13 eine Abwandlung der in 12 gezeigten Ausgestaltungsform, bei der alle Torsionsschwingungsdämpferbereiche zwei Torsionsschwingungsdämpfereinheiten umfassen;
  • 14 eine der 2 entsprechende Darstellung einer erfindungsgemäßen Kopplungseinrichtung mit zwei seriell geschalteten Torsionsschwingungsdämpferbereichen, wobei einer davon zwei Torsionsschwingungsdämpfereinheiten umfasst;
  • 15 eine der 2 entsprechende Darstellung einer erfindungsgemäßen Kopplungseinrichtung mit zwei seriell geschalteten Torsionsschwingungsdämpferbereichen, von welchen jeder zwei Torsionsschwingungsdämpfereinheiten umfasst;
  • 16 eine der 1 entsprechende Darstellung einer erfindungsgemäßen Kopplungseinrichtung, bei welcher ein zweiter Torsionsschwingungsdämpferbereich zwei parallele Torsionsschwingungsdämpfereinheiten umfasst;
  • 17 eine prinzipartige Darstellung eines Antriebssystems für ein Fahr zeug.
  • Im Folgenden werden mit Bezug auf die 3 bis 16 verschiedene Ausgestaltungsformen erfindungsgemäß aufgebauter hydrodynamischer Kopplungseinrichtungen in Form von hydrodynamischen Drehmomentwandlern beschrieben, die hinsichtlich der grundsätzlichen Ausgestaltung dem vorangehend mit Bezug auf die 1 bereits deutlich erläuterten Aufbau entsprechen. Gezeigt sind jedoch zumeist prinzipartige Darstellungen, wie sie auch in 2 für den in 1 gezeigten Aufbau veranschaulicht ist. Da bei den im Folgenden erläuterten Ausführungsformen hinsichtlich des grundsätzlichen Aufbaus des Drehmomentwandlers zum vorangehend Beschriebenen keine elementaren Abwandlungen vorhanden sind oder sein müssen, werden im Folgenden im Wesentlichen nur diejenigen Aspekte erläutert, in welchen die erfindungsgemäßen Ausgestaltungsformen sich hinsichtlich des in 2 auch prinzipiell veranschaulichten Stands der Technik unterscheiden.
  • In der 3 ist ein Aufbau gezeigt, bei welchem zumindest der radial innere, zweite Torsionsschwingungsdämpferbereich 66 der Torsionsdämpferanordnung 34 bei seinen jeweiligen zweiten Dämpferfedereinheiten 84 jeweils zwei bzw. zumindest zwei in Serie geschaltete Dämpferfedern 86 aufweist. Diese stützen sich in Umfangsrichtung an jeweiligen Umfangsabstützbereichen des zweiten Eingangsbereichs 78 bzw. des zweiten Ausgangsbereichs 82 ab bzw. stützen sich über jeweilige ringartige Zwischenabstützelemente 88, 90 in Umfangsrichtung aneinander ab. Da diese ringartigen Zwischenabstützelemente 88, 90 in sich geschlossen sind, ist keine weitere Fliehkraftabstützung nach radial außen erforderlich.
  • Sind die zweiten Dämpferfedereinheiten 84 beispielsweise mit zwei jeweils seriell geschalteten Dämpferfedern 86 ausgebildet, können die beiden ringartigen Zwischenabstützelemente 88, 90 miteinander fest verbunden sein und selbstverständlich für jede zweite Dämpferfedereinheit 84 jeweilige Abstützbereiche für deren Dämpferfedern 86 bereitstellen, welche im Allgemeinen als Schraubendruckfedern ausgebildet sind. Es sei hier darauf hingewie sen, dass die Dämpferfedern bzw. Schraubendruckfedern auch ineinander geschachtelte Pakete von Schraubendruckfedern umfassen können.
  • Sind bei den einzelnen zweiten Dämpferfedereinheiten 84 beispielsweise drei in Umfangsrichtung aufeinander folgende Dämpferfedern 86 vorhanden, von welchen jeweils zwei in Umfangsrichtung bezüglich einander abzustützen sind, so kann beispielsweise das ringartige Zwischenabstützelement 88 jeweils für eine der so gebildeten Federpaarungen Abstützbereiche für die zweiten Dämpferfedereinheiten 84 bereitstellen, und das andere ringartige Zwischenabstützelement 90 kann für die andere der Federpaarungen bei den verschiedenen zweiten Dämpferfedereinheiten 84 Abstützbereiche bereitstellen. Die beiden Zwischenabstützelemente 88, 90 sind in diesem Falle dann zum Ermöglichen der Kompression aller drei seriell liegenden Dämpferfedern 86 in Umfangsrichtung bezüglich einander verdrehbar.
  • Mit derartiger Ausgestaltung der zweiten Dämpferfedereinheiten 84 wird es möglich, ein deutlich vergrößertes Federvolumen in Umfangsrichtung bereitzustellen, so dass einerseits durch entsprechende Auslegung des Gesamtfederwegs und andererseits durch entsprechende Auslegung der Federsteifigkeit eine wesentlich bessere Entkopplungsgüte realisiert werden kann. Es sei darauf hingewiesen, dass eine derartige Ausgestaltung der Dämpferfedereinheiten auch im radial äußeren, ersten Torsionsschwingungsdämpferbereich 64 bzw. dessen ersten Dämpferfedereinheiten 76 oder alternativ im ersten Torsionsschwingungsdämpferbereich 64 realisiert sein kann.
  • Eine alternative Ausgestaltungsform ist in 4 gezeigt. Bei dieser Ausgestaltungsvariante umfasst die Torsionsdämpferanordnung 34 drei zueinander seriell geschaltetete und radial gestaffelte Torsionsschwingungsdämpferbereiche. Man erkennt ganz radial außen den ersten Torsionsschwingungsdämpferbereich 64 mit seinem ersten Eingangsbereich 68, beispielsweise bereitgestellt durch ein Zentralscheibenelement, und seinem ersten Ausgangsbereich 72, beispielsweise bereitgestellt durch zwei Deckscheibenele mente. Diese beiden Deckscheibenelemente bilden mit ihrem radial inneren Bereich den dritten Eingangsbereich 92 eines dritten Torsionsschwingungsdämpferbereichs 94, der unmittelbar radial innerhalb des ersten Torsionsschwingungsdämpferbereichs 64 angeordnet ist. Ein dritter Ausgangsbereich 96 dieses dritten Torsionsschwingungsdämpferbereichs 94, hier beispielsweise ausgebildet als Zentralscheibenelement, ist mit dem dritten Eingangsbereich 92 über eine Mehrzahl dritter Dämpferfedereinheiten 98 gekoppelt.
  • Der dritte Ausgangsbereich 96 bildet nunmehr gleichzeitig mit seinem radial inneren Bereich den auch hier in Form eines Zentralscheibenelements beispielsweise dann ausgebildeten zweiten Eingangsbereich 78 des zweiten Torsionsschwingungsdämpferbereichs 66, der mit seinem hier zwei Deckscheibenelemente umfassenden zweiten Ausgangsbereich 82 an die Turbinenradnabe 36 angebunden ist. Der zweite Torsionsschwingungsdämpferbereich 66 liegt radial innerhalb des dritten Torsionsschwingungsdämpferbereichs 94.
  • Durch die serielle Staffelung dreier Torsionsschwingungsdämpferbereiche 64, 94, 66 wird ein deutlich größeres Federvolumen und mithin eine geringere Gesamtsteifigkeit erzielt, wodurch sich eine deutlich bessere Entkopplungsgüte ergibt.
  • Bei der in 4 gezeigten Ausgestaltungsvariante ist die Turbinenradschale 30 an den ersten Ausgangsbereich 92 bzw. den dritten Eingangsbereich 92 angekoppelt. D. h., bei Drehmomentübertragung über das Turbinenrad 28 bei beispielsweise vollständig ausgerückter Überbrückungskupplungsanordnung 42 sind die beiden Torsionsschwingungsdämpferbereiche 94, 66 als solche wirksam.
  • Bei der in 5 gezeigten Ausgestaltungsvariante, welche im Wesentlichen der vorangehend mit Bezug auf die 4 beschriebenen entspricht, ist die Turbinenradschale 30 des Turbinenrads 28 nunmehr an den dritten Aus gangsbereich 96 und somit auch den zweiten Eingangsbereich 78 angebunden. Während hier also bei Drehmomentübertragung über die Überbrückungskupplungsanordnung 42 wieder alle drei Torsionsschwingungsdämpferbereiche 64, 94, 66 wirksam sind, ist bei Drehmomentübertragung über das Turbinenrad 28, also beispielsweise im Drehmomentwandlungsbetrieb, lediglich der zweite und unmittelbar an die Turbinenradnabe 36 angebundene Torsionsschwingungsdämpferbereich 66 wirksam.
  • Auch bei der in 6 gezeigten Ausgestaltungsvariante sind wieder die drei radial gestaffelten Torsionsschwingungsdämpferbereiche 64, 94, 66 vorgesehen, die bei eingerückter Überbrückungskupplungsanordnung 42 das Drehmoment in Richtung Turbinenradnabe 36 leiten. Die Turbinenradschale 30 des Turbinenrads 28 ist hier an den ersten Eingangsbereich 68 angekoppelt, so dass bei ausgerückter Überbrückungskupplungsanordnung 42 und Drehmomentübertragung bzw. Drehmomentverstärkung über die Turbinenradschale 30 alle drei Torsionsschwingungsdämpferbereiche 64, 94 und 66 wirksam sind, ebenso wie in dem Fall, in dem die Überbrückungskupplungsanordnung 42 eingerückt ist. Bei dieser Ausgestaltungsform ist eine vergleichsweise hohe Masse der Turbinenradschale 30 mit den daran vorgesehenen Turbinenradschaufeln 32 besonders vorteilhaft, da dann in sehr effektiver Art und Weise diese Turbinenradschale 30 durch die beiden Torsionsschwingungsdämpferbereiche 64, 94 von einer Pumpenbewegung entkoppelt werden kann.
  • Man erkennt in 6 weiter, dass im Vergleich zu den vorangehend beschriebenen Ausgestaltungsformen hier bei den jeweiligen Eingangs- und Ausgangsbereichen die Ausgestaltung mit Zentralscheibenelement einerseits bzw. Deckscheibenelementen andererseits vertauscht ist. In 6 weist also der erste Eingangsbereich 68 zwei Deckscheibenelemente auf, während der erste Ausgangsbereich 72 ein Zentralscheibenelement aufweist. Auch der dritte Eingangsbereich 92 ist nunmehr als Zentralscheibenelement ausgebildet, während der dritte Ausgangsbereich 96, ebenso wie der zweite Eingangsbereich 78 mit den beiden Deckscheibenelementen aus gebildet ist. Der zweite Ausgangsbereich 82 ist hier wieder als Zentralscheibenelement realisiert. Es sei darauf hingewiesen, dass auch bei den anderen vorangehend beschriebenen Ausgestaltungsformen hier eine beliebige Ausgestaltung der Eingangs- bzw. Ausgangsbereiche mit Zentralscheibenelement oder Deckscheibenelementen gewählt werden kann.
  • Eine weitere Abwandlung einer Torsionsdämpferanordnung 34 mit drei seriell geschalteten Torsionsschwingungsdämpferbereichen ist in 7 gezeigt. Man erkennt hier wieder die radial ineinander gestaffelt liegenden Torsionsschwingungsdämpferbereiche 64, 94, wobei der hier beispielsweise mit einem Zentralscheibenelement ausgebildete Ausgangsbereich 96 des dritten Torsionsschwingungsdämpferbereichs 94 an die Turbinenradschale 30 angebunden ist.
  • Der dritte Torsionsschwingungsdämpferbereich 66 ist in einem um die Drehachse sich ringartig erstreckenden Ringraum 100 angeordnet, welcher im Wesentlichen von der Turbinenradschale 30, der Pumpenradschale 16 bzw. auch dem Leitrad 38 umgeben bzw. begrenzt ist. Der hydrodynamische Kreislauf zirkuliert hier also um den zweiten Torsionsschwingungsdämpferbereich 66, dessen zweiter Ausgangsbereich 82, hier wieder mit einem Zentralscheibenelement ausgebildet, in einem Zwischenraum zwischen dem Turbinenrad bzw. der Turbinenradschale 30 und den daran vorgesehenen Turbinenradschaufeln 32 und dem Leitrad 38 hindurchgreift und an die Turbinenradnabe 36 angebunden ist. Bei Drehmomentübertragung über die Turbinenradschale 30 ist hier also im Wesentlichen nur der zweite Torsionsschwingungsdämpferbereich 66 wirksam.
  • Die 8 zeigt eine Ausgestaltungsvariante, bei welcher der erste Torsionsschwingungsdämpferbereich 64 und der zweite Torsionsschwingungsdämpferbereich 66 radial gestaffelt liegen. Die Turbinenradschale 30 ist an den ersten Ausgangsbereich 72 angebunden. Der dritte Torsionsschwingungsdämpferbereich 94 ist nunmehr im Ringraum 100 angeordnet. Dessen hier beispielsweise mit zwei Deckscheibenelementen ausgebildeter dritter Ein gangsbereich 92 ist an die Turbinenradschale 30 bzw. die damit verbundenen Turbinenradschaufeln 32 angebunden. Der mit einem Zentralscheibenelement hier ausgebildete dritte Ausgangsbereich ist an den zweiten Eingangsbereich 78 des zweiten Torsionsschwingungsdämpferbereichs 66 angebunden.
  • Bei ausgerückter Überbrückungskupplungsanordnung 42 liegen also im Drehmomentübertragungsweg zwischen der Turbinenradschale 30 und der Turbinenradnabe 36 die zueinander seriell geschalteten, jedoch axial aufeinander folgend angeordneten Torsionsschwingungsdämpferbereiche 94 und 66.
  • Bei der in 9 gezeigten Ausgestaltungsform ist wiederum der dritte Torsionsschwingungsdämpferbereich 94 im Ringraum 98 liegend angeordnet. Sein beispielsweise mit zwei Deckscheibenelementen ausgebildeter dritter Eingangsbereich 92 ist mit dem ersten Ausgangsbereich 72 des ersten Torsionsschwingungsdämpferbereichs 64 verbunden. Der dritte Ausgangsbereich 96 ist über die Turbinenradschale 30 an den zweiten Eingangsbereich 78 des zweiten Torsionsschwingungsdämpferbereichs 66 angekoppelt.
  • Bei dieser Ausgestaltungsvariante liegen also grundsätzlich bei Drehmomentübertragung über die Überbrückungskupplungsanordnung 42 die drei Torsionsschwingungsdämpferbereiche 64, 94, 66 wieder in serieller Schaltung. Bei ausgerückter Überbrückungskupplungsanordnung 42 ist lediglich der zweite Torsionsschwingungsdämpferbereich 66 zwischen der Turbinenradschale 30 bzw. den Turbinenradschaufeln 32 derselben und der Turbinenradnabe 36 wirksam.
  • Die 10 zeigt eine Ausgestaltungsvariante mit vier in Serie geschalteten Torsionsschwingungsdämpferbereichen. Man erkennt auch hier wieder den ersten Torsionsschwingungsdämpferbereich 64, dessen erster Eingangsbereich 68, beispielsweise wieder mit einem Zentralscheibenelement ausgebildet, an die Überbrückungskupplungsanordnung 42 angekoppelt ist. Der ers te Ausgangsbereich 72 ist wieder in Verbindung mit dem dritten Eingangsbereich 92 des dritten Torsionsschwingungsdämpferbereichs 94. Der dritte Ausgangsbereich 96 ist an die Turbinenradschale 30 des Turbinenrads 28 angebunden. Ein vierter Torsionsschwingungsdämpferbereich 102 ist nunmehr im Ringraum 100 angeordnet. Der vierte Torsionsschwingungsdämpferbereich 102 weist einen vierten Eingangsbereich 104, beispielsweise ausgebildet mit zwei Deckscheibenelementen, auf, der hier an die Turbinenradschale und somit auch die damit fest verbundenen Turbinenradschaufeln 32 angebunden ist. Ein vierter Ausgangsbereich 106 des vierten Torsionsschwingungsdämpferbereichs 102, welcher Ausgangsbereich hier mit einem Zentralscheibenelement ausgebildet sein kann, ist an den zweiten Eingangsbereich 78 des zweiten Torsionsschwingungsdämpferbereichs 66 angebunden, dessen zweiter Ausgangsbereich 82 mit der Turbinenradnabe 36 verbunden ist. Über vierte Dämpferfedereinheiten 108 sind der vierte Eingangsbereich 104 und der vierte Ausgangsbereich 106 zur Drehmomentübertragung so gekoppelt, dass sie sich, wie auch bei allen anderen Torsionsschwingungsdämpferbereichen, unter Kompression der Dämpferfedereinheiten bezüglich einander drehen können.
  • Man erkennt bei der in 10 gezeigten Ausgestaltungsvariante, dass der erste Torsionsschwingungsdämpferbereich 64 und der dritte Torsionsschwingungsdämpferbereich 94 im Drehmomentenfluss zwischen der Überbrückungskupplungsanordnung 42 und der Turbinenradschale 30 liegen, während der vierte Torsionsschwingungsdämpferbereich 102 und der zweite Torsionsschwingungsdämpferbereich 66 im Drehmomentübertragungsweg zwischen der Turbinenradschale 30 und der Turbinenradnabe 36 liegen. Bei eingerückter Überbrückungskupplungsanordnung 42 sind daher alle vier in Serie geschalteten Torsionsschwingungsdämpferbereiche 64, 94, 102 und 66 wirksam. Bei ausgerückter Überbrückungskupplungsanordnung 42 wirken nur die beiden Torsionsschwingungsdämpferbereiche 102 und 66 zur Schwingungsdämpfung zwischen der Turbinenradschale 30 und der Turbinenrdnabe 36.
  • Bei der in 10 gezeigten Ausgestaltungsform wird der zur Verfügung stehende Bauraum besonders effizient genutzt, da drei der Torsionsschwingungsdämpferbereiche radial gestaffelt liegen, während ein weiterer axial versetzt liegt, und zwar in dem ansonsten bauraummäßig nicht genutzten Ringraum 100. Um bei dem im Ringraum 100 liegenden vierten Torsionsschwingungsdämpferbereich 102, dessen Ausgangsbereich, wie vorangehend bereits dargelegt, durch eine zwischen dem der Turbinenradschale 30 und dem Leitrad 38 hindurchgreifenden Abschnitt mit einer im Drehmomentenfluss folgenden Baugruppe gekoppelt ist, eine ungewünschte Wechselwirkung der Fluidzirkulation im Übergangsbereich zwischen der Turbinenradschale 30 und dem Leitrad 38 zu vermeiden, kann dieser Verbindungsabschnitt mit mehreren in Umfangsrichtung diskret liegenden und mit vergleichsweise großen Zwischenräumen angeordneten Stegen ausgebildet sein, zwischen welchen das zirkulierende Fluid im Wesentlichen ungehindert hindurchtreten kann.
  • In 11 ist ein weiterer erfindungsgemäß ausgestalteter Drehmomentwandler 10 gezeigt, bei dem grundsätzlich im Drehmomentübertragungsweg zwischen dem Gehäuse 12 und der Turbinenradnabe 36 zwei Torsionsschwingungsdämpferbereiche 64, 66 seriell wirksam sind. Bei dem Ausgestaltungsbeispiel weist jedoch der zweite Torsionsschwingungsdämpferbereich 66 zwei zueinander parallel wirksame Torsionsschwingungsdämpfereinheiten 66', 66'' auf. Die erste Torsionsschwingungsdämpfereinheit 66' des zweiten Torsionsschwingungsdämpferbereichs 66 ist dabei radial gestaffelt zum ersten Torsionsschwingungsdämpferbereich 64 angeordnet. Die zweite Torsionsschwingungsdämpfereinheit 66'' des zweiten Torsionsschwingungsdämpferbereichs 66 ist im Ringraum 100 angeordnet. Die beiden Torsionsschwingungsdämpfereinheiten 66', 66'' liegen somit also näherungsweise auf gleichem radialem Niveau und axial aufeinander folgend bzw. mit axialem Versatz.
  • Jede dieser Torsionsschwingungsdämpfereinheiten 66', 66'' ist wiederum mit einem hier beispielsweise jeweils mit zwei Deckscheibenelementen ausge bildeten Eingangsbereich 78', 78'' ausgebildet, die in Gesamtheit den zweiten Eingangsbereich 78 bereitstellen. Dabei sind die Eingangsbereiche 78', 78'' miteinander über die Turbinenradschale 30 verbunden und sind weiterhin an den ersten Ausgangsbereich 72 des ersten Torsionsschwingungsdämpferbereichs 64 angebunden.
  • Gleichermaßen weisen die beiden Torsionsschwingungsdämpfereinheiten 66', 66'' einen Ausgangsbereich 82', 82'' auf, hier beispielsweise jeweils mit einem Zentralscheibenelement ausgebildet, die miteinander fest verbunden sind und in ihrer Gesamtheit den zweiten Ausgangsbereich 82 bereitstellen. In jeder der Torsionsschwingungsdämpfereinheiten 66', 66'' sind beispielsweise mindestens zwei zweite Dämpferfedereinheiten 84' bzw. 84'' des zweiten Torsionsschwingungsdämpferbereichs 66 vorgesehen.
  • Es sei hier darauf hingewiesen, dass beispielsweise bei dieser Ausgestaltungsvariante der Aufbau der einzelnen Torsionsschwingungsdämpfereinheiten 66', 66'' so gewählt sein kann, wie er bei der in 8 gezeigten Ausgestaltungsvariante für den zweiten Torsionsschwingungsdämpferbereich 66 und den dritten Torsionsschwingungsdämpferbereich 94 vorgesehen ist, wobei der Unterschied darin besteht, dass bei der Ausgestaltungsvariante der 8 eine serielle Anordnung und Wirkung vorhanden ist, während bei der Ausgestaltungsform gemäß 11 eine parallele Wirkungsweise vorhanden ist.
  • Durch die Parallelwirkung mehrerer Torsionsschwingungsdämpfereinheiten 66', 66'' in einem Torsionsschwingungsdämpferbereich 66 wird es möglich, eine Ausgestaltung auch für sehr große zu übertragende Drehmomente zu realisieren, da eine größere Anzahl an Dämpferfedern gleichzeitig parallel komprimiert werden kann bzw. muss.
  • In 12 ist eine Ausgestaltungsvariante des Drehmomentwandlers 10 gezeigt, bei dem wiederum drei Torsionsschwingungsdämpferbereiche 64, 94 und 66 grundsätzlich seriell wirksam sind. Während der erste Torsions schwingungsdämpferbereich 64 wieder so ausgebildet sein kann, wie vorangehend beschrieben, sind beim zweiten Torsionsschwingungsdämpferbereich 66 und beim dritten Torsionsschwingungsdämpferbereich 94 jeweils zwei zueinander parallel wirksame Torsionsschwingungsdämpfereinheiten 66', 66'', 94', 94'' vorhanden.
  • Die Eingangsbereiche 92', 92'' der Torsionsschwingungsdämpfereinheiten 94', 94'' des dritten Torsionsschwingungsdämpferbereichs 94 bilden zusammen dessen dritten Eingangsbereich 92, der mit dem ersten Ausgangsbereich 72 und im dargestellten Beispiel auch der Turbinenradschale 30 des Turbinenrads 28 verbunden ist. Die Ausgangsbereiche 96', 96'' der Torsionsschwingungsdämpfereinheiten 94', 94'' bilden wieder zusammen den dritten Ausgangsbereich 96 des dritten Torsionsschwingungsdämpferbereichs 94. Dieser dritte Ausgangsbereich 96 ist verbunden mit dem zweiten Eingangsbereich 78 des zweiten Torsionsschwingungsdämpferbereichs 66, wobei dieser zweite Eigangsbereich 78 wieder die Eingangsbereiche 78', 78'' der Torsionsschwingungsdämpfereinheiten 66', 66'' des zweiten Torsionsschwingungsdämpferbereichs 66 umfasst.
  • Auch bei dieser Ausgestaltungsvariante wird eine sehr kompakte Bauweise erhalten, bei welcher insbesondere dann, wenn ein Drehmoment über die Turbinenradschale 30 zu übertragen ist, durch die serielle Wirksamkeit zweier Torsionsschwingungsdämpferbereiche einerseits und dabei die parallele Wirksamkeit von jeweils zwei Torsionsschwingungsdämpfereinheiten andererseits für einen großen Drehmomentenbereich eine hervorragende Entkopplungsgüte erzielt werden kann.
  • In 13 ist eine weitere Qualitätssteigerung bei der Entkopplungsgüte dadurch erzielt, dass nunmehr auch der erste Torsionsschwingungsdämpferbereich 64 mit zwei Torsionsschwingungsdämpfereinheiten 64', 64'' ausgebildet ist, die, ähnlich wie die Torsionsschwingungsdämpfereinheiten 94', 94'' und 66', 66'', axial nebeneinander liegend angeordnet sind. Der erste Eingangsbereich 68 umfasst dabei die Eingangsbereiche 68', 68'' der Torsions schwingungsdämpfereinheiten 64', 64''. Der erste Ausgangsbereich 72, welcher hier auch mit dem dritten Eingangsbereich 92 verbunden ist, umfasst die beiden Ausgangsbereiche 72' und 72'' der Torsionsschwingungsdämpfereinheiten 64', 64''. Ansonsten entspricht insbesondere hinsichtlich der Ausgestaltungsart der Torsionsschwingungsdämpferbereiche 94 und 66 diese Ausgestaltunsform dem vorangehend mit Bezug auf die 12 beschriebenen. Da hier neben den Dämpferfedereinheiten 98', 98'' des dritten Torsionsschwingungsdämpferbereichs 94 und 84', 84'' des zweiten Torsionsschwingungsdämpferbereichs 66 auch die parallel zueinander wirksamen Dämpferfedereinheiten 76', 76'' des ersten Torsionsschwingungsdämpferbereichs 64 bzw. von dessen Torsionsschwingungsdämpfereinheiten 64', 64'' zur Drehmomentübertragung genutzt werden können, ist der in 13 gezeigte Drehmomentwandler 10 insbesondere für sehr große zu übertragende Drehmomente bzw. Drehmomentschwankungen geeignet.
  • Die 14 zeigt eine Ausgestaltungsvariante, bei welcher der erste Torsionsschwingungsdämpferbereich 64 mit zwei Torsionsschwingungsdämpfereinheiten 64', 64'' ausgebildet ist, von welchen die Torsionsschwingungsdämpfereinheit 64'' im Ringraum 100 angeordnet ist. Die Turbinenradschale 30 ist z. B. mit ihren Turbinenradschaufeln 32 an den ersten Ausgangsbereich 72 angebunden, mit welchem auch der zweite Eingangsbereich 78 des hier nur eine Einheit umfassenden zweiten Torsionsschwingungsdämpferbereichs 66 verbunden ist. Hier sind also die beiden Ausgangsbereiche 72' und 72'' des ersten Torsionsschwingungsdämpferbereichs 34 über die Turbinenradschale 30 miteinander verbunden. Der Eingangsbereich 68'' der im Ringraum 100 angeordneten Torsionsschwingungsdämpfereinheit 64'' ist über ein den spaltartigen Zwischenraum zwischen dem Pumpenrad 23 und dem Turbinenrad 28 durchgreifendes Element mit dem Eingangsbereich 68 der Torsionsschwingungsdämpfereinheit 64' verbunden. Auch dieses Verbindungselement kann mit mehreren vergleichsweise dünnen Stegen ausgebildet sein, um die Fluidzirkulation zwischen dem Pumpenrad 23 und dem Turbinenrad 28 so wenig als möglich zu beeinträchtigen, wie dies bei allen Varianten mit im Ringraum 100 angeordnetem Torsionsschwingungsdämpfer vorgesehen sein kann.
  • In 15 ist eine Ausgestaltungsvariante gezeigt, bei welcher die beiden im Wandlergehäuse 12 angeordneten Torsionsschwingungsdämpferbereiche 64, 66 grundsätzlich wieder radial zueinander gestaffelt angeordnet sind und jeweils zwei axial nebeneinander liegende Torsionsschwingungsdämpfereinheiten 64', 64'' bzw. 66', 66'' umfassen. Die Turbinenradschale 30 ist an den ersten Eingangsbereich 68 angebunden, so dass auch im Drehmomentwandlungszustand beide Torsionsschwingungsdämpferbereiche 64, 66 wirksam sind. Um hier die Schwingungsverhältnisse vorteilhaft zu beeinflussen, können verschiedene beispielsweise ringartig ausgebildete Masseteile 110, 112 bzw. 114 vorgesehen sein. Das Masseteil 110 ist an der Turbinenradschale 30 bzw. dem ersten Eingangsbereich 68 vorgesehen, während das Masseteil 112 am zweiten Eingangsbereich 78 bzw. ersten Ausgangsbereich 72, also schwingungstechnisch zwischen den Dämpferfedereinheiten 76', 76'' des ersten Torsionsschwingungsdämpferbereichs und 84', 84'' des zweiten Torsionsschwingungsdämpferbereichs 66 vorgesehen ist. Die Zusatzmasse 114 kann beispielsweise als Anlasserzahnkranz ausgebildet sein und außen am Gehäuse 12 oder einer diesem vorgeschalteten Baugruppe vorgesehen sein. Diese Baugruppe ist in der in 15 dargestellten Ausgestaltungsvariante als weiterer Torsionsschwingungsdämpfer 116 ausgebildet, dessen beispielsweise zwei Deckscheibenelemente umfassender Eingangsbereich 118 an ein Antriebsorgan, also beispielsweise die Kurbelwelle einer Brennkraftmaschine, angekoppelt ist, während sein beispielsweise als Deckscheibenelement ausgebildeter Ausgangsbereich 120 an das Gehäuse 12 angebunden ist. Auch hier dienen mehrere Dämpferfedereinheiten 126 zur Drehmomentübertragungskopplung zwischen dem Eingangsbereich 118 und dem Ausgangsbereich 120. Der Ausgangsbereich 120 kann dabei mit dem Gehäuse 12 beispielsweise durch eine Verzahnungsformation axial verschiebbar gekoppelt sein, wobei hier vorzugsweise eine Umfangsverspannung vorgesehen ist, um eine klapperfreie Verbindung zu realisieren. Die Montage in einem Antriebsstrang kann beispielsweise so erfolgen, dass zunächst der Torsionsschwingungsdämpfer 116 an einer Kurbelwelle ange bracht wird, während der Drehmomentwandler 10 an einem Getriebe bzw. dessen Eingangswelle vormontiert wird. Beim Zusammensetzen des Getriebes mit der Brennkraftmaschine wird dann die angesprochene Steckverbindung hergestellt.
  • Es sei darauf hingewiesen, dass selbstverständlich alternativ oder zusätzlich auch an anderen Bauteilen oder Baugruppen Zusatzmassen vorgesehen sein können. So kann beispielsweise die Masse des zweiten Ausgangsbereichs 22 ebenso erhöht werden.
  • Die in 15 gezeigte Ausgestaltungsvariante ist besonders deshalb vorteilhaft, da bereits vor Drehmomenteneinleitung in den Drehmomentwandler 10 Drehschwingungen, die insbesondere durch die Schwingungsanregung durch periodische Zündvorgänge in einer Brennkraftmaschine erzeugt werden, durch den Torsionsschwingungsdämpfer 116 zumindest vorgefiltert werden können, so dass die am Drehmomentwandler 10 auftretende Belastung bereits deutlich reduziert ist. Von weiterem Vorteil ist bei dieser Ausgestaltungsform, dass die Überbrückungskupplungsanordnung 42 sehr weit radial außen, insbesondere radial außerhalb der beiden Torsionsschwingungsdämpferbereiche 64, 66 angeordnet werden kann. Da diese durch die jeweils parallel wirkenden Torsionsschwingungsdämpfereinheiten 64', 64'', 66', 66'' bereits ein großes Federvolumen aufweisen, können sie mit etwas reduzierter radialer Baugröße ausgebildet werden. Auf Grund dieser Möglichkeit, die radiale Baugröße zu verringern, rücken auch die Dämpferfedereinheiten 76', 76'', 84', 84'' weiter nach radial innen, so dass deren Fliehkraftbelastung und damit innerhalb der jeweiligen Torsionsdämpfereinheiten auftretende Reibkräfte vermindert werden können, was wiederum die Entkopplungsgüte steigert.
  • Es sei darauf hingewiesen, dass bei allen beschriebenen erfindungsgemäßen Ausgestaltungsvarianten ein derartiger zusätzlicher Torsionsschwingungsdämpfer 116 im Drehmomentenfluss vor dem Gehäuse 12 (bezogen auf den Schubzustand) angeordnet sein kann.
  • Die 16 zeigt in konstruktiver Ausführung einen Drehmomentwandler 10, der in weiten Bereichen dem vorangehend bereits mit Bezug auf die 1 beschriebenen Drehmomentwandler entspricht. Es ist daher hinsichtlich des grundsätzlichen Aufbaus auf die vorangehenden Ausführungen zu verweisen. Man erkennt jedoch hier, dass der radial innen liegende zweite Torsionsschwingungsdämpferbereich 66 mit den beiden vorangehend auch bereits erläuterten Torsionsschwingungsdämpfereinheiten 66' und 66'' in axialer Staffelung ausgebildet ist. Der Eingangsbereich 78' der Torsionsschwingungsdämpfereinheit 66' umfasst ein ringartig ausgebildetes und die Funktionalität eines Zentralscheibenelements übernehmendes Bauteil 130, das radial innen durch Nietbolzen 132 mit den beiden Deckscheibenelementen 74, 77 und auch der Turbinenrdschale 30 fest verbunden ist. Dabei stellen die beiden Deckscheibenelemente 74, 77 in ihrem radial inneren Bereich den Eingangsbereich 78'' der Torsionsschwingungsdämpfereinheit 66'' bereit.
  • Ein weiteres beispielsweise ebenfalls als Blechformteil ausgebildetes Bauteil 132 umgreift die Dämpferfedereinheiten 84' U-förmig und ist radial innen mit der Turbinenradnabe 36 und dem Zentralscheibenelement 80 durch Nietbolzen 134 fest verbunden. Während das Bauteil 132 im Wesentlichen den Ausgangsbereich 82' der Torsionsschwingungsdämpfereinheit 66' bereitstellt, stellt das Zentralscheibenelement 80 im Wesentlichen den Ausgangsbereich 82'' der Torsionsschwingungsdämpfereinheit 66'' bereit.
  • Man erkennt hier eine besonders effektive Ausnutzung des insgesamt zur Verfügung stehenden Bauraums, da einerseits der erste Torsionsschwingungsdämpferbereich 64 und die Torsionsschwingungsdämpfereinheit 66'' des zweiten, radial inneren Torsionsschwingungsdämpferbereichs 66 direkt radial gestaffelt angeordnet sind und auf gleichem Axialniveau liegen. Die beiden Torsionsschwingungsdämpfereinheiten 66' und 66'' liegen wieder axial unmittelbar einander benachbart und näherungsweise auf gleichem radialen Niveau. Unmittelbar radial außerhalb der Torsionsschwingungsdämp fereinheit 66' liegt die Überbrückungskupplungsanordnung 42 mit ihren Reibelementen 48, 50. Hier wird nicht nur eine besonders bauraumeffiziente Anordnung der Torsionsschwingungsdämpfereinheit 66' erreicht, sondern auf Grund von deren Anordnung vergleichsweise weit radial innen ist die Fliehkraftbelastung ebenfalls gering mit der Folge einer sehr guten Entkopplungsqualität.
  • Insofern, als im vorliegenden Text davon die Rede ist, dass die Turbinenradschale bzw. Turbinenradschaufeln an einen Eingangsbereich bzw. einen Ausgangsbereich angebunden sind, ist dies so zu verstehen, dass hier entweder eine direkte Verbindung z. B. durch Annieten, eine integrale Verbindung durch integrale Ausgestaltung in einem einzigen Bauteil oder aber auch eine mittelbare Verbindung unter Einsatz eines eine Verbindungswirkung herstellenden zusätzlichen Bauteils vorgesehen sein kann.
  • Die 17 zeigt in prinzipartiger Darstellung ein Antriebssystem 140 für ein Fahrzeug. Man erkennt eine Brennkraftmaschine 142, die über ihre Antriebswelle 144, also ihre Kurbelwelle, an eine hydrodynamische Kopplungseinrichtung 10, beispielsweise wie vorangehend beschrieben, angekoppelt ist. Der Abtrieb aus der hydrodynamischen Kopplungseinrichtung 10, also beispielsweise einem Drehmomentwandler, erfolgt über eine Getriebeeingangswelle 146 zu einem beispielsweise als automatisches Getriebe ausgebildeten Getriebe 148. Dessen Ausgangswelle 150 leitet das Drehmoment zu einem Differenzial 152 weiter. Das Differenzial 152 verteilt das zu übertragende Drehmoment über Radantriebswellen 154, 156 auf die beiden angetriebenen Räder 158, 160. Die verschiedenen Baugruppen, welche Drehmomente übertragen, insbesondere auch die hier als Wellen 144, 146, 150, 154 und 156 ausgebildeten Baugruppen, tragen auf Grund ihrer mehr oder weniger stark ausgeprägten Drehelastizität zum Entstehen von Schwingungen, vor allem Lastwechselschwingungen im niederen Frequenzbereich bei. Derartige Lastwechselschwingungen machen sich in einem Fahrzeug durch ausgeprägte Längsbeschleunigungsschwankungen bemerkbar. Werden insbesondere die Radialantriebswellen 154, 156 jedoch zu drehsteif ausgelegt, entstehen Geräuschprobleme, da vor allem hochfrequente Schwingungen, die nicht ausreichend in einem Torsionsschwingungsdämpfer herausgefiltert werden können, auf die Aufhängung bzw. Karosserie übertragen werden. Dies führt zu einem im Fahrzeuginnenraum wahrnehmbaren Brummen.
  • Um diesen Problemen entgegenzutreten, ist gemäß einem weiteren Aspekt der vorliegenden Erfindung vorgesehen, die Radantriebswellen 154, 156 mit definierter Torsionssteifigkeit auszubilden, bei welcher sich gezeigt hat, dass hinsichtlich des Vermeidens von Lastwechselschwingungen einerseits und hinsichtlich des Vermeidens einer Übertragung hochfrequenter Schwingungen auf die Karosserie andererseits ein guter Kompromiss erzielt werden kann. Insbesondere wird erfindungsgemäß vorgeschlagen, dass eine Gesamtsteifigkeit G, welche durch die beiden Radantriebswellen 154, 156 bereitgestellt wird, die Bedingung erfüllt: G = A × z [Nm/°],wobei
  • A
    = eine Zahl im Bereich von 30 bis 70, vorzugsweise 40 bis 50, ist
    z
    = die Anzahl der Zylinder der Brennkraftmaschine 142 ist.
  • Bei Auslegung der Steifigkeit in diesem Bereich wird unter Berücksichtigung der Zylinderzahl der Brennkraftmaschine 142 und somit der Anregungsfrequenz vor allem hochfrequenter Schwingungen sowohl das Auftreten von Lastwechselschwingungen, als auch das Übertragen hochfrequenter Geräusche in die Karosserie weitestgehend vermieden.
  • Es sei abschließend darauf hingewiesen, dass selbstverständlich bei einem erfindungsgemäß aufgebauten Antriebssystem bzw. einer erfindungsgemäßen hydrodynamischen Kopplungseinrichtung die vorangehend beschriebenen Aspekte beliebig kombiniert werden können. So können selbstverständlich auch bei vier in Serie geschalteten Torsionsschwingungsdämpferberei chen einer oder mehrere davon mit zwei oder mehr parallel wirkenden Torsionsschwingungsdämpfereinheiten ausgebildet sein. Unabhängig davon, wie viele Torsionsschwingungsdämpferbereiche bzw. Torsionsschwingungsdämpfereinheiten bei den einzelnen Bereichen vorgesehen sind, können diese, den Prinzipien der 3 folgend mit Dämpferfedereinheiten mit mehreren seriell geschalteten Dämpferfedern ausgebildet sein.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • - DE 10317634 A1 [0002]

Claims (23)

  1. Hydrodynamische Kopplungseinrichtung, insbesondere Drehmomentwandler, umfassend ein Gehäuse (12) mit einem Pumpenrad (23), ein in einem Innenraum (26) des Gehäuses (12) angeordnetes Turbinenrad (28) und eine Überbrückungskupplungsanordnung (42) mit einer ersten Reibflächenformation (44), die mit dem Ggehäuse (12) zur gemeinsamen Drehung um eine Drehachse (A) verbunden ist, einer zweiten Reibflächenformation (46), die mit dem Turbinenrad (28) zur gemeinsamen Drehung verbunden ist, und einem Kolbenelement (56), wobei die zweite Reibflächenformation (46) über eine Torsionsdämpferanordnung (34) mit einer Turbinenradnabe (36) des Turbinenrads (28) gekoppelt ist, wobei die Torsionsdämpferanordnung (34) einen ersten Torsionsschwingungsdämpferbereich (64) mit einem mit der zweiten Reibflächenformation (46) verbundenen ersten Eingangsbereich (68) und einem über eine Mehrzahl erster Dämpferfedereinheiten (76) mit dem ersten Eingangsbereich (68) gekoppelten ersten Ausgangsbereich (72) sowie einen zweiten Torsionsschwingungsdämpferbereich (66) mit einem mit dem ersten Ausgangsbereich (72) verbundenen zweiten Eingangsbereich (78) und einem über eine Mehrzahl zweiter Dämpferfedereinheiten (84) mit dem zweiten Eingangsbereich (78) gekoppelten zweiten Ausgangsbereich (82) umfasst, dadurch gekennzeichnet, dass der erste Ausgangsbereich (72) mit dem zweiten Eingangsbereich (78) über einen dritten Torsionsschwingungsdämpferbereich (94) verbunden ist.
  2. Hydrodynamische Kopplungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der dritte Torsionsschwingungsdämpferbereich (94) einen mit dem ersten Ausgangsbereich (72) verbundenen dritten Eingangsbereich (92) und einen über eine Mehrzahl dritter Dämpferfedereinheiten (98) mit dem dritten Eingangsbereich (92) gekoppelten dritten Ausgangsbereich (96) aufweist.
  3. Hydrodynamische Kopplungseinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Turbinenradschale (30) des Turbinenrads (28) mit dem dritten Eingangsbereich (92) verbunden ist.
  4. Hydrodynamische Kopplungseinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Turbinenradschale (30) des Turbinenrads (28) mit dem dritten Ausgangsbereich (96) verbunden ist.
  5. Hydrodynamische Kopplungseinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Turbinenradschale (30) des Turbinenrads (28) mit dem ersten Ausgangsbereich (72) verbunden ist.
  6. Hydrodynamische Kopplungseinrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass eine Turbinenradschale (30) des Turbinenrads (28) mit dem ersten Eingangsbereich (68) verbunden ist.
  7. Hydrodynamische Kopplungseinrichtung nach Anspruch 2 oder einem der Ansprüche 3 bis 6, sofern auf Anspruch 2 rückbezogen, dadurch gekennzeichnet, dass der dritte Ausgangsbereich (96) mit dem zweiten Eingangsbereich (78) verbunden ist.
  8. Hydrodynamische Kopplungseinrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der dritte Ausgangsbereich (96) mit dem zweiten Eingangsbereich (78) über einen vierten Torsionsschwingungsdämpferbereich (102) verbunden ist.
  9. Hydrodynamische Kopplungseinrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der vierte Torsionsschwingungsdämpferbereich (102) einen mit dem dritten Ausgangsbereich (96) verbundenen vierten Eingangsbereich (104) und einen über eine Mehrzahl vierter Dämpferfedereinheiten (108) mit dem vierten Eingangsbereich (104) gekoppelten vierten Ausgangsbereich (106) umfasst.
  10. Hydrodynamische Kopplungseinrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass wenigstens ein Torsionsschwingungsdämpferbereich (94; 102) in einem von dem Turbinenrad (28) und dem Pumpenrad (23) umgebenen Ringraum (100) angeordnet ist.
  11. Hydrodynamische Kopplungseinrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der dritte Torsionsschwingungsdämpferbereich (94) in dem Ringraum (100) angeordnet ist.
  12. Hydrodynamische Kopplungseinrichtung nach Anspruch 8 und Anspruch 11, dadurch gekennzeichnet, dass der vierte Torsionsschwingungsdämpferbereich (108) in dem Ringraum (100) angeordnet ist.
  13. Hydrodynamische Kopplungseinrichtung nach einem der Ansprüche 1 bis 12 oder dem Oberbegriff des Anspruchs 1, dadurch gekennzeichnet, dass wenigstens ein Torsionsschwingungsdämpferbereich (64, 66, 94) wenigstens zwei Torsionsschwingungsdämpfereinheiten (64', 64'', 66', 66'', 94', 94'') aufweist.
  14. Hydrodynamische Kopplungseinrichtung nach Anspruch 13, dadurch gekennzeichnet, dass die wenigstens zwei Torsionsschwingungsdämpfereinheiten (64', 64'', 66', 66'', 94', 94'') eines Torsionsschwingungsdämpferbereichs (64, 66, 94) axial aufeinander folgend angeordnet sind.
  15. Hydrodynamische Kopplungseinrichtung nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass jede Torsionsschwingungsdämpfereinheit (64', 64'', 66', 66'', 94', 94'') eines Torsionsschwingungsdämpferbereichs (64, 66, 94) eine Mehrzahl von Dämpferfedereinheiten (76', 76'', 84', 84'', 98', 98'') dieses Torsionsschwingungsdämpferbereichs (64, 66, 94) aufweist.
  16. Hydrodynamische Kopplungseinrichtung nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass jede Torsionsschwingungsdämpfereinheit (64', 64'', 66', 66'', 94', 94'') einen Eingangsbereich (68', 68'', 78', 78'', 92', 92'') und einen Ausgangsbereich (72', 72'', 82', 82'', 96', 96'') aufweist und dass die Eingangsbereiche der Torsionsschwingungsdämpfereinheiten (64', 64'', 66', 66'', 94', 94'') eines Torsionsschwingungsdämpferbereichs (64, 66, 94) im Wesentlichen den Eingangsbereich (68, 78, 92) dieses Torsionsschwingungsdämpferbereichs (64, 66, 94) bilden und die Ausgangsbereiche (72, 72'', 82', 82'', 96', 96'') der Torsionsschwingungsdämpfereinheiten (64', 64'', 66', 66'', 94', 94'') eines Torsionsschwingungsdämpferbereichs (64, 66, 94) im Wesentlichen den Ausgangsbereich (72, 82, 96) dieses Torsionsschwingungsdämpferbereichs (64, 66, 94) bilden.
  17. Hydrodynamische Kopplungseinrichtung nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass wenigstens eine Torsionsschwingungsdämpfereinheit (84'') in einem von dem Turbinenrad (28) und dem Pumpenrad (23) umgebenen Ringraum (100) angeordnet ist.
  18. Hydrodynamische Kopplungseinrichtung nach einem der Ansprüche 1 bis 17 oder dem Oberbegriff von Anspruch 1, dadurch gekennzeichnet, dass bei wenigstens einem Torsionsschwingungsdämpferbereich (66) wenigstens eine Dämpferfedereinheit (84) eine Mehrzahl von in Umfangsrichtung aufeinander folgenden und bezüglich einander abgestützten Dämpferfedern (86) umfasst.
  19. Hydrodynamische Kopplungseinrichtung nach Anspruch 18, dadurch gekennzeichnet, dass die Dämpferfedern (86) über wenigstens ein Zwischenabstützelement (88, 90) bezüglich einander abge stützt sind.
  20. Hydrodynamische Kopplungseinrichtung nach Anspruch 19, dadurch gekennzeichnet, dass das wenigstens eine Zwischenabstandselement (88, 90) ringartig ausgebildet ist.
  21. Hydrodynamische Kopplungseinrichtung nach einem der Ansprüche 18 bis 20, dadurch gekennzeichnet, dass der wenigstens eine Torsionsschwingungsdämpferbereich (66) der zweite Torsionsschwingungsdämpferbereich (66) ist.
  22. Hydrodynamische Kopplungseinrichtung nach einem der Ansprüche 1 bis 21, dadurch gekennzeichnet, dass im Drehmomentenfluss vor dem Gehäuse (12) ein Torsionsschwingungsdämpfer (116) vorgesehen ist, dessen Eingangsbereich (118) mit einem Antriebsorgan zur gemeinsamen Drehung um die Drehachse (A) zu koppeln ist und dessen Ausgangsbereich (120) mit dem Gehäuse (12) zur gemeinsamen Drehung um die Drehachse A zu koppeln ist.
  23. Antriebssystem für ein Fahrzeug, umfassend eine Brennkraftmaschine (142) eine die Brennkraftmaschine (142) mit einem Getriebe (148) koppelnde hydrodynamische Kopplungseinrichtung (10), vorzugsweise nach einem oder mehreren der vorangehenden Ansprüche, eine das Getriebe (148) mit wenigstens zwei Antriebsrädern (158, 160) über jeweilige Antriebsradwellenanordnungen (154, 156) koppelnde Differentialanordnung (152), wobei für die Gesamtsteifigkeit G der Antriebsradwellenanordnungen (154, 156) gilt: G = A × z [Nm/°],wobei A = eine Zahl im Bereich von 30 bis 70, vorzugsweise 40 bis 50, ist, z = die Anzahl der Zylinder der Brennkraftmaschine (142) ist.
DE102007057432.2A 2007-11-29 2007-11-29 Hydrodynamische Kopplungseinrichtung Active DE102007057432B4 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102007057432.2A DE102007057432B4 (de) 2007-11-29 2007-11-29 Hydrodynamische Kopplungseinrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007057432.2A DE102007057432B4 (de) 2007-11-29 2007-11-29 Hydrodynamische Kopplungseinrichtung

Publications (2)

Publication Number Publication Date
DE102007057432A1 true DE102007057432A1 (de) 2009-06-04
DE102007057432B4 DE102007057432B4 (de) 2020-01-09

Family

ID=40585786

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102007057432.2A Active DE102007057432B4 (de) 2007-11-29 2007-11-29 Hydrodynamische Kopplungseinrichtung

Country Status (1)

Country Link
DE (1) DE102007057432B4 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2567120B1 (de) * 2010-05-07 2015-03-18 ZF Friedrichshafen AG Drehmomentübertragungsbaugruppe, insbesondere hydrodynamischer drehmomentwandler, fluidkupplung oder nasslaufende kupplung
JP2017166585A (ja) * 2016-03-16 2017-09-21 アイシン・エィ・ダブリュ株式会社 ダンパ装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317634A1 (de) 2003-04-17 2004-11-04 Zf Sachs Ag Drehmomentwandler

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19828709B4 (de) * 1998-02-06 2007-01-04 Zf Sachs Ag Hydrodynamische Kupplungseinrichtung mit einer Überbrückungskupplung
DE19846444B4 (de) * 1998-10-08 2015-09-24 Zf Friedrichshafen Ag Hydrodynamischer Drehmomentwandler
JP2004308904A (ja) 2003-04-05 2004-11-04 Zf Sachs Ag 捩り振動ダンパ

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317634A1 (de) 2003-04-17 2004-11-04 Zf Sachs Ag Drehmomentwandler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2567120B1 (de) * 2010-05-07 2015-03-18 ZF Friedrichshafen AG Drehmomentübertragungsbaugruppe, insbesondere hydrodynamischer drehmomentwandler, fluidkupplung oder nasslaufende kupplung
JP2017166585A (ja) * 2016-03-16 2017-09-21 アイシン・エィ・ダブリュ株式会社 ダンパ装置

Also Published As

Publication number Publication date
DE102007057432B4 (de) 2020-01-09

Similar Documents

Publication Publication Date Title
EP2577108B1 (de) Drehschwingungsdämpfungsanordnung
DE102007057431B4 (de) Hydrodynamische Kopplungseinrichtung
EP1941171B2 (de) Kopplungseinrichtung zur übertragung eines drehmoments
DE10358901C5 (de) Torsionsschwingungsdämpfer
DE19736843C2 (de) Torsionsschwingungsdämpfer an einer Überbrückungskupplung mit Planetengetriebe
DE10017801B4 (de) Torsionsschwingungsdämpfer
EP1464873A2 (de) Torsionsschwingungsdämpfer für Drehmomentwandler
DE112011101904B4 (de) Überbrückungsvorrichtung für einen Drehmomentwandler
DE102011075244A1 (de) Hydrodynamische Kopplungseinrichtung, insbesondere Drehmomentwandler
WO2009015632A1 (de) Vorrichtung zur dämpfung von schwingungen, insbesondere einen mehrstufigen drehschwingungsdämpfer
DE102012218729A1 (de) Drehschwingungsdämpfungsanordnung für den Antriebsstrang eines Fahrzeugs
DE102011075243A1 (de) Hydrodynamische Kopplungseinrichtung, insbesondere Drehmomentwandler
WO2012146451A1 (de) Drehmomentübertragungsanordnung
DE102008033955A1 (de) Verfahren und Vorrichtung zur Verhinderung des Spiels unter Verwendung von Schraubenfedern
DE102013201619A1 (de) Drehschwingungsdämpfungsanordnung für den Antriebsstrang eines Fahrzeugs
EP2157336B1 (de) Hydrodynamische Kopplungseinrichtung
DE4336178C2 (de) Gefaltete Flachfeder, sowie damit versehene Dämpfungsscheibenausbildung, Dämpfungsvorrichtung und Schwungradausbildung
DE102013201617A1 (de) Drehschwingungsdämpfungsanordnung für den Antriebsstrang eines Fahrzeugs
DE19846445A1 (de) Torsionsschwingungsdämpfer an einer Überbrückungskupplung mit Planetengetriebe
EP1726847B1 (de) Kombination aus einem Torsionsschwingungsdämpfer und einer Kupplung
DE102007057432B4 (de) Hydrodynamische Kopplungseinrichtung
DE102015207825A1 (de) Drehschwingungsdämpfungsanordnung für den Antriebsstrang eines Fahrzeugs
DE102011017655A1 (de) Reibungskupplung, insbesondere nasslaufende Reibungskupplung
DE102011017657A1 (de) Drehmomentübertragungsanordnung für den Antriebsstrang eines Fahrzeugs
DE102013201621A1 (de) Drehschwingungsdämpfungsanordnung für den Antriebsstrang eines Fahrzeugs

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R082 Change of representative
R012 Request for examination validly filed

Effective date: 20140904

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final