DE2759128A1 - Steuersystem fuer eine sekundaerspeichereinheit - Google Patents

Steuersystem fuer eine sekundaerspeichereinheit

Info

Publication number
DE2759128A1
DE2759128A1 DE19772759128 DE2759128A DE2759128A1 DE 2759128 A1 DE2759128 A1 DE 2759128A1 DE 19772759128 DE19772759128 DE 19772759128 DE 2759128 A DE2759128 A DE 2759128A DE 2759128 A1 DE2759128 A1 DE 2759128A1
Authority
DE
Germany
Prior art keywords
control
signal
line
message
flip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE19772759128
Other languages
English (en)
Other versions
DE2759128C2 (de
Inventor
Roger E Lawson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Digital Equipment Corp
Original Assignee
Digital Equipment Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Digital Equipment Corp filed Critical Digital Equipment Corp
Publication of DE2759128A1 publication Critical patent/DE2759128A1/de
Application granted granted Critical
Publication of DE2759128C2 publication Critical patent/DE2759128C2/de
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Description

DIPL.-PHYS. F. ENDLICH d - eo34 unterpfaffenhofen 28. Dezember 197' PATENTANWALT _£"—
TELEFON PHONE
FENDLICH. POSTFACH D - BO34 U NTE RPFAFFEN HOFEN
MÜNCHEN
TELEX: B2173O
Meine Akte: D-4362
. Anmelder: Digital Equipment Corporation, Maynard, Mass., USA
Steuersystem für eine Sekundärspeichereinheit
Die Erfindung betrifft ein Steuersystem gemäß dem Oberbegriff des Hauptanspruchs.
Eine Sekundärspeichereinheit, die in einem Datenverarbeitungssystem verwendet wird, weist im allgemeinen eine Steuereinheit und ein oder mehrere mit der Steuereinheit verbundene Steuerungen auf. Die Steuerungen enthalten Speichereinrichtungen mit direktem Zugriff, beispielsweise Magnetscheiben oder Trommelspeicher sowie neuere magnetische "bubble"-Speicher.
Diese sekundären Speichereinheiten, insbesondere solche Speichere inhe iten, die magnetische, scheibenförmige Speichereinrichtungen als Steuerungen verwenden, wurden in den letzten Jahren weiterentwickelt. Die Schaltung, die in solchen Speichereinheiten verwendet wird, hat jedoch komplexeren Aufbau erhalten. Beispielsweise können einzelne Steuerungen viele Register zur Informationsspeicherung enthalten, wobei diese Information notwendig ist, um die Steuerungen zur Ausführung von Steuerfunktionen freizugeben, wie beispielsweise ein simultanes Positionieren der Lese- und der Schreibköpfe unterschiedlicher Steuerungen. Sowohl
809850/0574
die Steuer information, beispielsweise die Sektor- und Spuradressen als auch die Daten, werden durch parallele Erzeugung zugeordneter Signale übertragen. Dies erfordert einen größeren Aufwand an Hardware für jede Steuerung, da die in jeder Steuerung aufgezeichnete oder gespeicherte Information in serieller Form vorliegt .
Die Kabel und Leitungen, welche die magnetischen Steuerungen und die zugeordneten Steuereinheiten miteinander verbinden, bestehen aus einer großen Zahl von einzelnen Leitern. Dadurch wird der schwierige Aufbau der Hardware weiter vergrößert, da jeder Leiter eines derartigen Kabels wenigstens einen Empfänger und/oder Sender an jedem Leitungsende in der Steuereinheit und in jeder Steuerung erforderlich macht. Diese Kabel enthalten so viele Leiter, daß sie physikalisch groß und steif werden. Daher sind diese Kabel unhandlich in der Handhabung. Somit sind die Arbeit und die Kosten der Hardware für die Installierung der Kabel ein äußerst wichtiger Teil der Gesamtkosten einer Sekundärspeiche re inhe it.
Da diese Speichereinheiten immer komplexer werden, sind die Chancen für Fehlfunktionen größer. Die Gesamtzahl der Schaltungen und die Ausnutzung paralleler Signalübertragungen machen die Diagnose derartiger Fehlfunktionen sehr schwierig.
Der Erfindung liegt die Aufgabe zugrunde, eine Steuerung für eine Sekundärspeichereinheit zu schaffen, mit der die Zuverlässigkeit durch Reduzierung der Schaltungskomplexität verbessert wird. Diese Aufgabe wird erfindungsgemäß durch den Gegenstand des Hauptanspruchs gelöst. Weitere Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
Die Erfindung schafft eine Steuerung für eine sekundäre Speichereinheit und somit eine sekundäre Speichereinheit, deren Komplexität und Kosten für die Verbindung der Steuerung mit den Steuereinheiten gegenüber bekannten sekundären Speichereinheiten reduziert sind. Außerdem läßt sich die Diagnose von Fehlfunktionen, die in der Sekundärspeichereinheit auftreten können, vereinfacht ausführen. Die Gesamtkosten der Steuerung und der sekundären Speichereinheit sind durch Beseitigung redundanter
809850/0574
Hardware, insbesondere·in den Steuerungen, ebenfalls reduziert.
Die Erfindung bezieht sich auf Datenverarbeitungssysteme allgemein und insbesondere auf Sekundärspeichereinheiten, die zur Datenspeicherung in solchen Datenverarbeitungssystemen verwendet werden.
Bei der erfindungsgemäßen Steuerung und der sekundären Speichereinheit wird insbesondere anstelle einer parallelen Signalübertragung eine serielle Signalübertragung zwischen der Steuereinheit und der Steuerung ausgeführt» außerdem werden während diesen Signalübertragungen spezielle Techniken zur Signalverarbeitung verwendet. Beispielsweise wird die Steuerinformation, die zur Einleitung einer Datenübertragung mit einer Steuerung erforderlich ist, und die Daten, die übertragen werden, in serieller Form zwischen der Stauereinheit und der Steuerung ausgetauscht. Wenn die Steuerinformation von der Steuereinheit zu einer Steuerung geleitet ist, führt die Steuerung eine Zustandsinformation als Nachricht über den Zustand ebenfalls in serieller Form zur Steuereinheit zurück. Gemäß einer weiteren Ausführungsform der erfindungsgemäßen Steuerung oder des Steuersystems sprechen alle mit der Steuereinheit verbundenen Steuerungen anfänglich auf die Information von der Steuereinheit an, die eine der Steuerungen spezifiziert. Jedoch bleibt nur die identifizierte Steuerung ansprechbereit, nachdem die Identifizierungsinformation übertragen ist. Außerdem gibt eine Steuerung ein Signal "Achtung" ab, um einen Fehlerzustand oder die Beendigung der Positionierung eines Kopfes anzuzeigen. Weiterhin kann die Steuereinheit konstant die Signale "Achtung", die von jeder Leitung abgegeben werden, abrufen. Diese Abruf-Operation wird in Verbindung mit anderen Operationen der Speichereinheiten ausgeführt, wodurch eine vereinfachte Methode zur Identifizierung jeder Steuerung geschaffen wird, die ein Signal "Achtung*1 erzeugt, ohne dadurch die Gesamtbetriebscharakteristiken der sekundären Speichereinheit zu beeinträchtigen.
Die Erfindung schafft eine Steuerung, insbesondere ein Steuersystem für eine sekundäre Speichereinheit, die bzw. das eine Steuereinheit und eine Steuerleitung enthält, welche die
809850/0574
-tf-
Steuereinheit u.die Steuerungen miteinander verbindet. Zwischen der Steuerung und Steuereinheit werden Daten in serieller Form über eine Lese/Schreib-Datenleitung übertragen. Die Steuerinformation in Form von Steuernachrichten oder Steuerbefehlen wird zwischen der Steuerung und der Steuereinheit in serieller Form über zwei Verbindungsleitungen der Steuerleitung übertragen. Eine Befehls- oder Nachrichtenübertragung wird durch einen Abtastimpuls der Steuereinheit ( ontroller) eingeleitet und abhängig von Taktsignalen der Steuereinheit gesteuert. Während der Nachrichtenübertragung zur Steuerung wird ein Steuereinheit-zu-Steuerung-Signal abgegeben und zur Steuerung übertragen. Wenn die Nachricht vollständig ist, verändert sich das Signal Steuereinheit-zu-Steuerung in ehen "0"-Zustand und gibt die Steuerung frei, um eine Zustandsnachricht unter Steuerung der Taktsignale der Steuerung abhängig von den Taktsignalen der Steuereinheit zur Steuereinheit zurückzuübertragen, wobei die Taktsignale über die Abtastsignalleitung zur Steuereinheit zurückgeleitet werden.
Im folgenden wird eine bevorzugte Ausführungsform des erfindungsgemäßen Steuersystems anhand der Zeichnungen zur Erläuterung weiterer Merkmale beschrieben. Es zeigen:
Fig. 1 ein Blockschaltbild eines typischen Datenverarbeitungssystems, welches eine sekundäre Speichereinheit nach der Erfindung verwendet;
Fig. 2 ein grundsätzliches Blockschaltbild einer Steuereinheit, die in der sekundären Speichereinheit nach Fig. 1 verwendbar ist;
Fig. 3 ein Blockschaltbild einer Platten- oder Scheibensteuerung zur Verwendung in der sekundären Speichereinheit in Fig. 1;
Fig. 4 ein Diagramm zur Darstellung verschiedener Signale, die zwischen der Steuereinheit und der Steuerung über eine verbindende Steuerleitung übertragen werden»
Fig. 5 die während einer Nachrichtenübertragung zwischen der Steuereinheit und der Steuerung übertragbaren informationen·
Fig. 6A bis 6E detaillierte Blockschaltbilder der in Fig. gezeigten Steuereinheit»
809850/0574
Fig. 7 Einzelheiten bestimmter Register, die in der Steuereinheit nach den Fig. 6A bis 6E verwendet sind·
Fig. 8A bis 8C detaillierte Darstellungen von Teilen der Steuerschaltung nach Fig. 6A bis 6E·
Fig. 9A und 9B Flußdiagramme zur Erläuterung der Arbeitsweise der in Fig. 6A bis 6E gezeigten Schaltung»
Fig. lOA und 1OB Taktdiagramme zur Erläuterung der Nachrichtenübertragung zwischen einer Steuerung und einer Steuereinheit;
Fig. 11 ein detailliertes Blockschaltbild der in Fig. 3 gezeigten Steuerung;
Fig. 12A und 12B Einzelheiten der in Fig. 11 gezeigten Schaltung; und
Fig. 13 ein Taktdiagramm zur Erläuterung der Arbeitsweise bei der Nachrichtenübertragung zwischen einer Steuereinheit und einer Steuerung.
In Fig. 1 ist ein typisches Datenverarbeitungssystem dargestellt, welches eine zentrale Verarbeitungseinheit 10, eine Hauptspeichereinheit 11 und ein Verbindungsleitungssystem 12 enthält. Verschiedene Anschlußgeräte, beispielsweise Eingabe-/Ausgabe-Schreibmaschinen oder ähnliche Einrichtungen, die nicht dargestellt sind, sind normalerweise an das Verbindungsleitungssystem 12 angeschlossen. Außerdem ist eine sekundäre Speichereinheit dargestellt, die eine Steuereinheit 13, mehrere Plattensteuerungen 14 und eine Verbindungssteuerleitung 15 enthält, welche die Steuereinheit 13 und erste Eingänge der Plattensteuerung 14 nach Art einer "Perlenketten"-Orientierung verbindet. Aus Fig. 1 geht hervor, daß die sekundäre Speichereinheit eine wählbare Steuereinheit 16 und eine sekundäre Verbindungssteuerleitung 17 aufweist, die an zweite Eingänge jeder Platten-Steuerung 14 angeschlossen sind. Diese spezielle Anordnung ermöglicht es, daß die beiden Steuereinheiten 13 und 16 unabhängig voneinander die Operation der verschiedenen Plattensteuerungen überwachen. Bei einer derartigen Anordnung enthalten die Plattensteuerungen Steuerschaltun-
80985Θ/057Α
Ü759128
gen, um eine Entscheidung bezüglich gleichzeitiger Anforderungen von einzelnen Steuereinheiten zu treffen, wobei derartige Schaltungen bekannt sind. Die dargestellte Anordnung zeigt, daß eine sekundäre Speichereinheit gemäß der Erfindung in üblicher Weise entweder einen Betrieb mit einer einzigen Steuereinheit und mehreren Steuerungen oder mit mehreren Steuereinheiten und mehreren Steuerungen ausführen kann.
Nach Fig. 2 ist die Steuereinheit 13 an das Leitungssystem 12 und die Steuerleitung 15 über mehrere Verbindungen angeschlossen. Eine Leitungs-Interfaceeinheit 20 des Systems empfängt Daten-, Steuer- und Adressensignale von den entsprechenden Leitern des Leitungssystems 12 und überträgt die entsprechenden Signale auf der Leitung 12. Während normalerOperat ionen leiten Programme zum Betrieb der Platten oder Magnetplatten, die von Zeit zu Zeit von der zentralen Verarbeitungseinheit IO (Fig. 1) ausgeführt werden, Reihenfolgen von Ereignissen ein, um Steuerfunktionen oder Datenübertragungsfunktionen hervorzurufen. Zuerst wird die Steuerinformation über die Leitungs-Interfaceeinheit 20 des Datenverarbeitungssystems in andere Schaltungen der Plattensteuerung, beispielsweise einzelne Register in einem Register-Modul 21 übertragen. Zum Beispiel enthält diese Information für eine Datenübertragungsfunktion eine Anfangsadresse für einen Speicherplatz, von welchem die Daten empfangen oder zu welchem die Daten geleitet werden sollen, sowie einen Wert, d.h. die Zahl der Wörter für die Daten, die übertragen werden sollen. Wie nachstehend näher erläutert wird, überträgt das Register-Modul 21 in Serie zwei Steuernachrichten über ein Steuer-Modul 22 und eine Steuerleitung-Interfaceeinheit 23 auf in serieller Form angeordnetenNachrichtenleitungen, die als Nachrichtenleitung "A" und "B" an der Steuerleitung 15tezeichnet sind; gleichzeitig überträgt das Modul 21 weitere Signale zur Steuerung der Nachrichtenübertragung, d.h. die Signale MESSAGE CONTROL. Wenn die Funktion eine Datenübertragung beinhaltet, überträgt die Interfaceeinheit 23 Signale SERIAL ENCODED READ/WRITE DATA und zugeordnete Signale READ/WRITE CONTROL zwischen der Leitung 15 und anderen Modulen der Steuereinheit 13 über ein Daten-Modul 24. Ein Signal "Achtung" (ATTENTION) und andere signale, die in Fig. 2 nicht dargestellt sind, werden nach-
809850/0574
folgend noch erläutert.
Eine typische Plattensteuerung, die an die Steuerleitung angeschlossen ist, ist in Fig. 3 dargestellt. Bei der folgenden Erläuterung wird angenommen, daß die Plattensteuerung bewegliche Köpfe enthält mit mehreren Le se-Schreibköpfe 25 und eineir Servo-Kopf 26 . Außerdem enthält sie eine entfernbare Kassette
mit mehreren Platten, wobei auf einer Fläche einer Platte ständig vorliegende Servoinformationen aufgezeichnet bzw. enthalten sind. Außerdem ist jede Oberfläche in Zylinder, Spuren und Sektoren aufgeteilt. Ein Modul 27 zur Steuerung der Interfaceeinheit und Taktsteuerung empfängt alle Signale der Steuerleitung 15. Ein Modul 28 zur Servosteuerung und ein Modul 30 für eine Servo-Analogsteuerung 30 sprechen auf verschiedene Signale des Moduls 27 an, indem sie eine Einrichtung 31 zur Positionierung der Köpfe aktivieren. Außerdem empfängt das Modul 30 eine Taktsteuerinformation, die von den Signalen abgeleitet wird, welche vom Servokopf 26 und einem Phasendetektor- und Oszillator-Modul 32 übertragen werden. Das Modul 32 steuert außerdem ein Modul 33 für eine Steuerung bzw. Steuereinheit an, welches Signale erzeugt, die zu der Steuereinheit, einer Platten-Steuereinrichtung 34 und einem Schaltfeld-Steuermodul 35 übertragen werden. Das Schaltfeld-Steuermodul 35 enthält Einrichtungen wie einen RUN/STOP-Anzeigeschalter, Wählanzeigen und Schalter, die auch Eingangssignale für das Modul 27 abgeben. Außerdem ist ein Lese/Schreib-Modul 36 vorgesehen, welches verschiedene Funktionen bezüglich der Datensignale ausführt, wenn diese Signale zwischen der Leitung 15 und den Daten-Köpfen 25 übertragen werden .
In der beschriebenen Ausführungsform einer sekundären Speichereinheit überträgt das Datenverarbeitungssystem Befehle zur Steuereinheit in Fig. 2, um unterschiedliche Operationen zu bewirken. Jeder dieser Befehle identifiziert eine spezielle Plattensteuerung. Zum Zwecke der Erläuterung können diese Befehle in Befehle der Klasse A, B und C aufgegliedert werden. Ein Befehl der Klasse A enthält·
1. einen Befehl SELECT DRIVE zur Auswahl derSteuerung, wobei dieser Befehl eine Information für den Steuerzustand und
809850/0574
zur nachfolgenden Prüfung übertragen. Abhängig von dem Befehl WRITE HEADER wird auch ein Kopf ausgewählt und positioniert. Nach Empfang eines Index-Impulses überträgt die Steuereinheit Signale "0" auf der Platte, bis ein Sektor-Impuls erfaßt wird; es wird dabei für jede Umdrehung der Platte ein Index-Impuls erzeugt. Dann speichert das System ein Anfangs- oder Kopf-Vorfeld (Kopf-Präambel-Feld) , ein Kopffeld, ein Kopfprüffeld und andere Felder in dem Sektor. Die Datenwörter im Sektor werden wie alle "0"-en geschrieben. Dieser Prozeß wird für jeden folgenden Sektor wiederholt, bis der Index-Impuls wieder erfaßt wird.
Die Befehle der Klasse C leiten Datenübertragungen ein und enthalten die Befehle READ DATA (Lesen der Daten) , WRITE DATA (Schreiben der Daten) und WRITE CHECK (Lesen/Prüfen) . Abhängig zu einem Lesebefehl READ führt eine identifizierte Plattensteuerung eine Suchoperation aus und wählt einen der Lese/Schreib-Köpfe aus. Dann prüft die Steuereinheit die Sektoradressen in der Kopfinformation, die von der Plattensteuerung zurückgeleitet wird, bis eine Korrespondenz gegenüber der der Steuereinheit zugeleiteten Sektoradresse gefunden ist. Dann werden die Daten von der Platten-Kassette über das Modul 24 (Fig. 2) von aufeinanderfolgenden Sektoren, Spuren und Zylindern übertragen, bis eine spezifizierte zahl an Datenwörtern übertragen wurde. Außerdem treten auch verschiedene Prüfoperat ionen auf.
Der Befehl WRITE DATA bewirkt eine analoge Folge von Operationen und läßt die Daten vom Modul 24 auf die Platten-Kassette übertragen. Abhängig von dem Befehl WRITE CHECK (Schreiben/Prüfen) werden die Daten von einem ausgewählten Sektor gelesen und im Daten-Modul 24 Wort für Wort mit den Daten verglichen, die in dem Hauptspeicher gespeichert sind, um festzustellen, ob Fehler vorliegen .
Im folgenden wird die Steuerleitung 15 und deren Funktionsweise beschrieben. Wenn gemäß Fig. 4 Befehle der Klasse A empfangen werden, wird eine Information über die Nachrichtenleitungen A und B zusammen mit Nachrichtensteuersignalen auf einer Abtastleitung STROBE, einer von einer Steuereinheit zur Steuerung füh-
809850/0574
eine Fehlerinformation von der ausgewählten Steuerung enthält; dieser Befehl kann auch dazu benützt werden, eine Steuerung abzuwählen, wenn eine Steuerung parallel zu einem paar von Steuereinheiten geschaltet ist;
2. einen Befehl PACK ACKNOWLEDGE, der ein Flip-Flop der gewählten Plattensteuerung mit gültigem Inhalt setzt; dieses Flip-Flop bleibt gesetzt, bis die Kassette ausgetauscht wird, wobei die Plattensteuerung abgeschaltet wird oder ein anderer, zugeordneter Zustand auftritt;
3. einen 3efehl DRIVE CLEAR, der alle Fehleranzeigen sowie die Schaltung zur Erzeugung des Signals ATTENTION in der gewählten Steuerung löscht;
4. einen Befehl UNLOAD, durch den die Köpfe zurückgezogen werden und dann eine Antriebsspindel in der Plattensteuereinrichtung angehalten wird, welche die Drehung der Platte hervorruft;
5. einen Befehl START SPINDLE, der eine Steuerfolge zur Aktivierung der Antriebsspindel in der gewählten Steuerung einleitet;
6. einen Befehl RECALIBRATE, der den Kopf der ausgewählten Steuerung in die äußerstgelegene Zylinderposition bewegen läßt und dann ein Adressenregister für den laufenden Zylinder in dieser Plattensteuerung auf eine Bezugsadresse (normalerweise Zylinderadresse 000) zurückstellen läßt;
7. einen Befehl OFFSET, welcher die Köpfe in einem gegenüber der Mittellinie einer Spur der ausgewählten Steuerung spezifizierten Abstand positioniert;
8. einen Befehl SEEK, der die Köpfe über einen bestimmten Zylinder der ausgewählten Steuerung positioniert.
Die Befehle der Klasse B enthalten Befehle READ HEADER und WRITE HEADER. Abhängig von dem Befehl READ HEADER leitet die Steuereinheit eine Suchoperation in Abhängigkeit zu einem Befehl SEEK ein. Außerdem wird einer der Lese/schreib-Köpfe ausgewählt. Nach der Positionierung der Köpfe werden die ersten drei Anfangswörter im nächsten Sektor gelesen und in das Modul 24 (Fig. 2)
809850/0574
renden Leitung CTD und einer Steuertaktleitung CONTROL CLOCK übertragen. Außerdem überträgt eine Leitung SACK zur Bestätigung der Wahl ein Signal von der Plattensteuerung zur Steuereinheit. Wenn ein Befehl der Klasse B oder C empfangen wird, werden Daten über eine Leitung READ/WRITE DATA übertragen und die Übertragungen zum Teil durch Signale auf einer Leitung INDEX/SECTOR PULSES synchronisiert. Signale auf den Leitungen WRITE GATE und WRITE CLOCK werden zur Synchronisierung während der Übertragung zur Plattensteuerung verwendet.
Unter Bezugnahme auf Fig. 4 werden die Signale auf der Steuerleitung 15 näher erläutert. Impulse CONTROL CLOCK werden von der Stauereinheit 13 solange übertragen, als Leistung an diese Steuereinheit angelegt wird. Dieses Signal wird normalerweise von einem Oszillator in der Interfaceeinheit 23 abgegeben und synchronisiert die Steueroperationen. Eine typische wellenform für die Steuertaktimpulse CONTROL CLOCK ist in Fig. 5 bei A und G gezeigt. In der dargestellten Ausführungsform legen die Impulse CONTROL CLOCK zwei Folgen mit sechzehn Ze it Intervallen fest, die als Intervalle TO bis Tl5 bezeichnet sind.
Die Steuereinheit 13 oder die Plattensteuerung 14 kann einen Abtastimpuls STROBE erzeugen. Dieser Impuls wird zuerst als Einzelimpuls von der Steuereinheit 13 abgegeben und in Verbindung mit den Signalen auf der Leitung A und Leitung B verwendet, wie in Fig. 5 bei B gezeigt ist. Dadurch werden die Plattensteuerungen freigegeben, um den Empfang von Nachrichten zu beginnen; dieser Impuls synchronisiert außerdem die logischen Schaltungen der Steuerungen mit den Übertragungsoperationen der Steuereinheit. Dann überträgt die ausgewählte Plattensteuerung Nachrichten zurück zur Steuereinheit. Während dieser Übertragungsvorgänge legt das Modul 33 die Cmpulse CONTROL CLOCK an die Leitung STROBE an, wie in Fig. 5 bsi H gezeigt ist.
Das Steuermodul 22 gibt ein Signal CTD während der Übertra gung jeder Nachricht an die Plattensteuerung ab, wie aus Fig. 5 bei C ersichtlich ist. Sobald eine Nachricht vollständig ist, än dert sich das Signal CTD in einen O-Zustand, d.h. auf einen dem Nichtvorliegen dieses Signals CTD entsprechenden Pegel, wodurch
809850/0574
eine Zustandsnachricht von der Plattensfceuerung empfangen werden kann.
Die Leitungen A und B sind in zwei Richtungen führende serielle Nachrichtenleitungen zur Übersendung von Steuerinformationen zu sowie zum Empfang von Zustandsinformationen von den Plattensteuerungen. Die Nachrichten oder Signale werden gleichzeitig auf beiden Leitungen in der gleichen Richtung übertragen und jede Nachricht hat eine fest Bitzahl. Bei der beschriebenen und in Fig. 5 gezeigten Ausführungsform enthalten die Nachrichten fünfzehn Informationsbits zuzüglich einem Paritätsbit.
Entsprechend den graphischen Darstellungen bei E und F in Fig. 5 ist eine erste Information auf der Leitung A ein Steuerungs-Wählcode, der eine der Plattensteuerungen identifiziert, die an die Steuereinheit angeschlossen sind. Die erste information, die über die Leitung B übertragen wird, gibt an, welche Nachricht aus einer Gruppe von Zustandsnachrichten abgerufen werden soll. Daraufhin werden andere Signale abhängig von dem speziellen Befehl übertragen, der dann ausgeführt werden soll. Wenn beispielsweise ein Befehl der Klasse C empfangen wird, leitet ein Signal "1" zum Zeitpunkt SEEK COMM eine Suchoperation ein. Wenn das Signal der Leitung A zum Zeitpunkt SEEK COMM vorliegt, wird eine Zylinder-Adresse über die Leitung B übertragen, wogegen eine OFFSET-lnformation übertragen wird, wenn ein Befehl OFFSET ausgeführt wird; der Befehl OFFSET wird ausgeführt, wenn zu den Zeitpunkten SEEK COMM und RECAL keine Signale auf der Leitung A vorliegen und wenn auf der Leitung B zu den Zeitpunkten TlL und T12 Signale vorliegen.
Verschiedene Datenwörter oder Datenelemente für die Zustandsinformation werden dann über die Leitungen A und B zurückgeführt, wenn die übertragung von der Steuereinheit zur Plattensteuerung beendet ist. Typische Zustandsinformationen oder Zustandsnachrichten sind in den graphischen Darstellungen bei K bis N in Fig. 5 gezeigt und werden über die Leitung A übertragen, während die Signale bzw. Nachrichten gemäß den graphischen Darstellungen bei 0 bis R auf der Leitung B übertragen werden.
809850/0574
Bei einem speziellen Beispiel einer Steuernachricht und einer Zustandsnachricht wird der Steuer-Auswahlcode während der ersten drei Zeitintervalle aufgrund aller Befehle abgegeben. Das Signal DESL/RELSE wird aufgrund eines Befehls SELECT DRIVE zur Auswahl einer Steuerung abgegeben. Wenn ein Befehl SEEK, READ HEADER, WRITE HEADER, READ, WRITE oder WRITE/CHECK ausgeführt wird, wird das Signal SEEK COMM zum Zeitintervall T4 abgegeben. In diesen Fällen wird eine Zylinder-Adresse während der Zeitintervalle CYLINDER ADDRESS/OFFSETS für die Leitung B abgegeben. Das Signal START SPINDLE zur Einleitung einer Drehung der Spindel wird abhängig von dem Befehl START SPINDLE erzeugt; das Signal RTC wird aufgrund eines WRITE oder WRITE HEADER-Befehis abgegeben jnd das Signal DRIVE CLEAR wird aufgrund eines Befehls DRIVE CLEAR (Löschen der Steuerung) erzeugt. Das Signal 20 SECT FORMAT wird srzeugt, wenn die Plattensteuerung zwanzig Sektoren je Spur enthält; dieses Signal wird während solcher Operationen überwacht, 3ie aufgrund der Befehle SEEK, READ HEADER, WRITE HEADER, READ DATA, WRITE DATA und WRITE CHECK erfolgen. Ein Signal SET MED OFF jINE wird aufgrund eines Befehls UNLOAD abgegeben und ein Signal 3ET VOL VAL wird aufgrund eines Befehls PACK ACKNOWLEDGE erzeugt, signale HEAD SELECT CODE bewirken eine Informationsübertragung, *enn die Nachricht aufgrund eines Befehls SEEK, READ HEADER, fRITE HEADER, READ DATA, WRITE DATA oder WRITE CHECK übersendet 3ZW. abgegeben wird. Schließlich wird ein Signal PARITY (ParitMtssignal) entsprechend dem Zustand der übrigen Signale abgegeben.
Gemäß der graphischen Darstellung in Fig. 5 bei F identifizieren die ersten Signale die spezielle Gruppe von Zustandsiachrichten, die erwünscht ist. wie vorstehend angedeutet wurde, >ezeichnen die Signale CYLINDER ADDRESS/OFFSETS entweder die Zy-.inderadresse oder die Verlagerung eines Kopfes. Das letzte Signal >ildet ein Paritätssignal für die Nachricht.
Die ersten drei Signale in jeder Zustandsnachricht, die auf ler Leitung A zurückgeführt wird, entspricht dem Wählcode für die »teuerung. Bei einer Ausführungsform der Erfindung liefern Teile ler Nachricht eine Information, wie sie in den graphischen Darstellungen K bis R gezeigt ist. Wenn beispielsweise die gewünsch-
809850/0574
te Zustandsnachrxcht die Nachricht OO ist, übertragen die Signale eine Zustandsinformation, wie in den graphischen Darstellungen bei κ und O gezeigt ist. Zum Zeitpunkt T5 zeigt das Signal DR AVAIL an, daß die ausgewählte Steuerung verfügbar ist· dieses Signal wird verwendet, wenn eine Steuerung an zwei Steuereinheiten angeschlossen ist. Liegt das Signal VOL VAL vor, dann ist das (Speicher) Medium in geeigneter weise in der Plattensteuerung angeordnet. Das Signal DR READY wird dann erzeugt, wenn die Plattensteuerung bereitsteht, um einen Befehl zu empfangen. Wenn die Steuereinheit an unterschiedliche Steuerungen angeschlossen werden kann, zeigt das Signal DRIVE TYPE an, welche Art von zwei Steuerungen angeschlossen sind. Das Signal 20 SECT FORMAT gibt einen Hinweis auf das spezielle Sektorformat der identifizierten Plattensteuerung. Ein Signal OFFSET ON wird abhängig vom Empfang eines Befehls OFFSET, d.h. eines Verlagerungs-Befehls, erzeugt. Ein Signal WR LOCK wird abgegeben, wenn die Steuerung gegenüber Schreiboperatxonen gesperrt werden soll, was normalerweise durch Betätigung eines Schalters im Steuerfeld erfolgt. Ein Signal SPINDLE ON liegt vor, wenn der Motor der Steuerung zur Drehung des Plattenspeichers aktiviert ist. Ein Signal PIP wird abgegeben, wenn die Köpfe abhängig von einer Such-Operation, einer Nacheichungs-Operation, Verlagerungs-Operation oder Entlade-Operation bewegt werden. Das Signal DR STATUS CHANGE zeigt an, ob eine Änderung des Zustands der Plattensteuerung aufgetreten ist. Dieses DR STATUS CHANGE-Signal erzeugt das in Fig. 4 dargestellte Signal POLLED ATTENTION. Das letzte Signal ist ein Paritätssignal PARITY, welches auf dem Inhalt der jeweiligen Statusnachricht basiert.
Gleichzeitig mit der Übertragung der Zustandsnachrxcht AO gemäß der Darstellung K überträgt die Plattensteuerung eine Zustandsnachrxcht BO (Fig. 5). Eine erste Gruppe von Informationssignalen identifizieren die gewählte Nachricht» bei der dargestellten Ausführungsform gibt es zwei Gruppen dieser Informationssignale. Bei der dargestellten Ausführungsform sind diese signale 00. Ein Signal INV ADDR zeigt an, ob die Steuerung eine ungültige Kopf- oder Zylinderadresse empfangen hat. Ein Signal AC LOW wird abgegeben, wenn die Leitungsspannung der Plattensteuerung
809850/0574
unter einen bestimmten Wert abfällt. Ein Fehlersignal FAULT wird abhängig von jedem Fehlerzustand einer Steuerung abgegeben. Ein Signal NXF wird abhängig vom Empfang eines Such-Befehls SEEK oder von der Erzeugung eines Signals WRITE GATE auf der Leitung 15 abgegeben, während das Signal VOL VAL gelöscht wird. Ein Signal C-D PRTY ERR zeigt an, ob ein Paritätsfehler während der Übertragung von der Steuereinheit zur Steuerung vorlag.
Falls eine Steuerung eine Suchoperation für einen neuen Zylinder nicht erfolgreich beendet, erzeugt sie ein Signal SEEK INC. Die Steuerung erzeugt ein Signal WR LOCK, sobald das Signal WRITE GATE und WRITE LOCK gleichzeitig auftreten. Wenn die Geschwindigkeit der Spindel unter einen vorbestimmten Wert abfällt und die Köpfe entladen bzw. reaktiviert sind, jedoch kein unsicherer Zustand vorliegt, wird ein Signal SPEED LOSS abgegeben. Wenn sich die Köpfe in einem unsicheren Abstand zur Spurmittellinie befinden und das Signal WRITE GATE erzeugt wird oder wenn die Plattensteuerung nicht bereitsteht und das Signal WRITE GATE erzeugt wird, wird das Signal DR OFF TRACK erzeugt. Wenn irgendein unsicherer Zustand besteht, wird das Signal RD/WR UNSAFE abgegeben. Dieses Signal ist ein Paritätssignal, welches auf dieser Zustandsnachricht basiert.
Die Interpretation der Signale der übrigen Nachrichten wird nicht im einzelnen beschrieben. Es ist jedoch aus vorstehender Beschreibung ersichtlich, daß jede gewünschte Zustandsinformation zur Steuereinheit aufgrund dieser Zustandsnachrichten übertragen werden kann.
Ein anderes Steuersignal, welches auf der Leitung 15 auftritt, ist das die Wahl bestätigende signal SACK. Dieses Signal wird von einer Plattensteuerung dann abgegeben, wenn sie einen bestimmten Code zur Wahl einer Steuerung erkennt, welcher über die Leitung A übertragen wird. Wenn das Signal SACK vorliegt, steuert es eine ausgewählte Plattensteuerung an, um die index- und Sektorimpulse über die Leitung INDEX/SECTOR PULSES zur Steuereinheit 13 zu übertragen. Diese Impulse werden weiterhin übertragen, bis die Plattensteuerung nicht mehr gewählt ist, d.h.
809850/0574
die Verbindung von der Steuereinheit 13 zu der Plattensteuerung unterbrochen ist.
Die Leitung READ/WRITE DATA der Steuerleitung 15 liefert Daten, die während einer Schreiboperation zur Plattensteuerung 14 übertragen werden und während einer Leseoperation von der Plattensteuerung 14 abgerufen werden. Die Steuereinheit 13 überträgt außerdem ein Signal WRITE GATE während der Ausführung eines Befehls WRITE HEADER oder WRITE DATA, um dadurch die Erzeugung von Schreibströmen in der ausgewählten Steuerung zu ermöglichen. Während der Schreiboperation verwendet die Plattensteuerung außerdem die auf einerServo-Oberfläche der Platte gespeicherte Information zur Erzeugung von Impulsen WRITE CLOCK. Diese Impulse werden in einem phasenstarren Oszillator der Steuereinheit 13 zur Synchronisierung der Signale WRITE DATA mit der Platte (Plattenspeicher) verwendet. Auf diese weise wird eine Aufzeichnung mit konstanter Dichte unabhängig von kleinen Geschwindigkeitsschwankungen ermöglicht.
Die Leitung 15 überträgt auch einige andere Steuersignale. Ein Signal MULTIPLE DRIVE SELECT wird abgegeben, wenn mehr als eine Steuerung gleichzeitig auf einen vorgegebenen Auswahlcode für eine Steuerung ansprechen, welcher auf der Leitung A übertragen wird. Signale POLL DRIVE 2° bis POLL DRIVE 22 sind binär codierte Signale, die die Steuereinheit zur kontinuierlichen Abtastung aller Plattensteuerungen unabhängig von den normalen Steueroperationen freigeben, wobei die Plattensteuerungen an die Steuereinheit angeschlossen sind, wodurch das Signal ATTENTION jeder Plattensteuerung überwacht wird. Wenn eine Platte bzw. Plattensteuerung ein Signal ATTENTION erzeugt, wird ein Signal POLLED ATTENTION zur Steuereinheit zurückgeleitet, wenn die Signale POLL 'DRIVE die Plattensteuerung identifizieren.
Ein Signal CONTROLLER POWER ON zeigt an, daß die Steuereinheit aktiviert ist und daß eine Kabelverbindung zwischen der Steuereinheit und den Steuerungen besteht. Wenn dieser Leiter kein Signal überträgt, werden die Verbindungen zn den Steuerungen unterbrochen bzw. die Steuerungen werden abgewählt und die auf das
809850/0574
Abtast-Signal STROBE ansprechende Schaltung wird in der Steuereinheit gesperrt.
Ein Signal INITIALIZE ruft die Abschaltung bzw. Lösung der Verbindung zu allen Plattensteuerungen hervor (Abwahl), löscht alle Fehlerzustände der Steuerungen, alle signale ATTENTION und die Schaltung, die das Signal DR STATUS CHANGE als Teil der Nachricht OO auf der Leitung A erzeugt.
Im folgenden wird die Funktionsweise der einzelnen Schaltungen im Detail beschrieben. Als erstes werden die vorbereitenden Operationen erläutert. Zur Erläuterung der Erfindung wird eine spezielle Ausführungsform beschrieben, die zur Operation mit einem PDPll-Datenverarbeitungssystem ausgelegt ist. Um jede Operationsart mit einer sekundären Speichereinheit einzuleiten, benutzt das Datenverarbeitungssystem eine Folge von Schreiboperationen auf der Leitung 12, um die Steuerinformation in die verschiedenen Register der Steuereinheit 13 einzuspeichern. Die Speicheradresse identifiziert jedes dieser Register.
Gemäß Fig. 6A empfängt die Interfaceeinheit 20 Datensignale auf Leitern bzw. Einzelleitungen BUS D, Speicheradressensignale auf Leitungen BUS A und Richtungssteuersignale, welche eine Schreiboperation anzeigen, auf Leitungen BUS CO und Cl. Die Datensignale werden in Datensende- und Empfangsgeräten 50 empfangen, die Adressen- und Richtungssteuersignale in Adressen-Sende- und Empfangsgeräten 51. Nach einer kurzen Verzögerung empfängt die Interfaceeinheit 20 ein Signal BUS MSYN in einer Hauptlogik 52. Die Leitung-Hauptlogik 52 legt dieses Signal an eine Schaltung 53 zur Wahl einer Einrichtung an, welche die Adressensignale hoher Ordnung mit Adressensignalen von einer Schalteinrichtung 54 zur Wahl einer Einrichtung vergleicht. Wenn ein Vergleich vorliegt, erzeugt die Wählschaltung 53 ein signal SLAVE, welches eine Slave-Steuerschaltung 55 ansteuert, um ein Signal SSYN OUT abzugeben. Das Signal SSYN OUT der Nebensteuerschaltung 55 für die Leitung wird über die Leitung-Hauptlogik 52 übertragen und ergibt ein Signal BUS SSYN, welches ein über die Leitung 12 des Systems übertragenes Slave-Synchronisiersignal darstellt. Dies ermöglicht die Verbindung der Haupteinheit mit der gleichenLeitung, um einen
809850/0574
Übertragungszyklus zu beenden.
Gleichzeitig steuert die Schaltung 53 einen Register-Decoder 56 an, um das Schreibsignal auf der Leitung Cl IN des Sende- und Empfangsgeräts 51 und die Adressenbits niedriger Ordnung zur Identifizierung eines speziellen Registers zu benutzen und um einen entsprechenden Impuls LOAD REG zum Laden eines Registers zu erzeugen. Ein derartiger Impuls des Decoders 56 ist der impuls LOAD CS2, der Daten in ein Steuer- und Zustandsregister 62 einspeichert, welches in Fig. 6C gezeigt ist. Während dieser Operation wird ein Bit D05, welches für eine Steuer/Löschoperation gesetzt wird, in eine Logikschaltung 57 (Fig. 6A) eingegeben, die ihrerseits ein Signal CONTR CLR erzeugt, welches verschiedene Stufen in der Steuereinheit löscht, wenn dieses Bit DO5 eine "1" ist.
Wenn ein Datenlese- oder Schreibbetrieb ausgeführt werden soll, ist es auf ähnliche Weise erforderlich, eine Leitungsadresse in die Steuereinheit einzugeben. Abhängig von der Schreiboperation, die ein Leitungsadressenregister 60 identifiziert, gibt der Decoder 56 ein Signal LOAD BA ab, welches das Register 60 freigibt, um Signale von den Datensende- und Empfangsgeräten 50 zu speichern.
Verschiedene Befehle erfordern unterschiedliche vorbereitende Operationen. Jeder Befehl macht jedoch die Übertragung einer bestimmten, allgemeinen information an verschiedene Register erforderlich, die in der Steuereinheit verteilt sind. Beispielsweise erfordern alle Befehle die identifizierung einer Plattensteuerung. Signale, welche die adressierte bzw. einbezogene Plattensteuerung in der folgenden Operation identifizieren, werden in dem Register 62 (Fig. 6C) gespeichert. Nachrichtenidentifizierungsbits werden in ein in Fig. 6b gezeigtes Nachrichten-Auswahl-Register 61 eingespeichert, welches einen Teil eines ersten Halteregisters MRl (Fig. 6E) enthält. Diese Bits geben normalerweise die Rückgabe der Zustandsnachricht 00 an» andere Zustandsnachrichten können in Abhängigkeit von einem Auswahl-Befehl SELECT gekennzeichnet werden.
809850/0574
Bei der Vorbereitung eines Befehls WRITE HEADER ist es erforderlich, die Adresse des ersten zu schreibenden Wortes in das Leitungsadressenregister 60 einzuspeichern und die Zahl der zu schreibenden Wörter in einem Register 63 (Fig. 6C) einzuspeichern, welches die Wörter zählt. Alle Befehle der Klasse B erfordern eine Steuerinformation für das zweite Steuer- und Zustandsregister 62 (Fig. 6C) und eine Adresseninformation für erwünschte Zylinder-Register 64 (Fig. 6D) und ein Plattenadressenregister 65 (Fig. 6C).
Die Befehle der Klasse C erfordern eine information, die analog zu derjenigen information ist, die während einer Operation WRITE HEADER übertragen wird.
Die information, die in jedes der Register der zugeordneten Steuereinheit eingegeben wird, ist in Fig. 7 dargestellt; unterschiedliche Bitpositionen in jedem Register identifizieren unterschiedliche Datenwörter einer Information. Solche Register wie das Register 63 zur Ausführung einer Wortzählung und das Register für die Leitungsadressen sind nicht dargestellt.
Fig. 7 veranschaulicht, daß die vier Bitpositionen MROO-MRO3 niedriger Ordnung in dem Halteregister 61 eine Zahl von Nachrichten identifizieren, während die Bitpositionen DSO bis DS2 im Register 62 die Plattensteuerung identifizieren. Das Zylinder-Register 64 enthält zehn Bitpositionen, welche eine Zylinderadresse speichern. In dem Platten-Adressen-Pegister 65 identifizieren die fünf Bits geringerer Wertigkeit einen von zweiunddreißig Sektoren, während die drei TA-Bits eine von acht Spuren identifizieren.
Die letzte Übertragung bei Abgabe eines Befehls bewirkt ein Laden des Befehls- und Zustandsregisters 66, wie aus den Fig. 6A und 7 hervorgeht. Gemäß der Darstellung in Fig. 7 wird im Register 66 ein Bit CERR/CCLR gesetzt, um eine Löschoperation auszuführen. Die Bitpositionen 14 und 13 sind Schreibsperr-Bits, die verwendet werden, wenn der Inhalt des Registers 66 abgerufen wird. Das Bit CFMT identifiziert die Art des Sektorformats, das Bit CDT die Art der Steuerung. Die Bits BA17 und BA16 sind verlängerte Leitungsadressenbits. Wenn Unterbrechungen des Datenverarbeitungssystems zugelassen werden, wird ein
809850/0574
Bit IE gesetzt. Bits F4 bis Fl bestimmen einen von sechzehn Befehlen. Das Bit GO wird gesetzt, um die Ausführung des Befehls zu ermöglichen.
Im folgenden wird die Operation der Steuereinheit näher beschrieben. In Fig. 6A überträgt die Schaltung in dem Steuer- und Zustandsregister 66 ein Signal CONTR READY , während die Plattensteuerung sich außer Betrieb befindet. Nach Fig. 8A bewirkt das Vorliegen des Signals CONTR READY, daß ein Flip-Flop 72 vorher gesetzt und ein Flip-Flop 73 gelöscht wird, infolgedessen wird ein UND-Glied 74 nicht angesteuert, so daß eine Phasen-1-Taktschaltung 75 gesperrt ist« Gleichzeitig löscht das Signal CONTR READY die Taktschaltung 75 in den Zustand OO. Dieses Signal löscht auch eine Phasen-2-Taktschaltung 76 und ein ODER-Glied 77, wodurch ein MSG Flip-Flop 78 gesetzt wird.
Wenn der Decoder 56 in Fig. 6a den Impuls LOAD CSl abgibt, bewirkt die Vorderkante dieses impulses das Einspeichern der Daten der Datensende- und Empfangsgeräte 50 in das Register 66. Die mit dem Register 66 verbundene Schaltung erzeugt dann ein Löschsignal, um die Steuerlogik der Steuereinheit 13 in Betrieb zu setzen bzw. anzusteuern. An der Hinterflanke des Impulses LOAD CSl liefert das Register 66 das Signal GO und beendet das Signal CONTR READY. Wenn das Signal CONTR READY aufhört, wird das preset-Signal vom MSG FÜP~Fl°p 78 entfernt, jedoch liegt das MSG-Signa 1 weiterhin vor. Obgleich das Löscheingangssignal zur Taktschaltung 76 gesperrt wird, sperrt das Signal PHl des Flip-Flops 72 weiterhin diese Schaltung. Das Löscheingangssignal zur Taktschaltung 75 wird schließlich gesperrt bzw. entfernt. Das nächste CCLK-Signal setzt das Flip-Flop 73, wodurch das UND-Glied 74 angesteuert und die Taktschaltung 75 angesteuert wird. Dies entspricht dem Schritt Sl-I in Fig. 9A. Trotz des Nichtvorliegens des eine Voreinstellung bewirkenden Signals für das Flip-Flop 72 bleibt dieses Flip-Flop in einem gesetzten Zustand.
Die Taktschaltung 75 enthält eine Folgelogikschaltung, die abhängig von den Impulsen CLK fortschreitend erhöht bzw.
809850/0574
verändert wird. Bei Empfang des ersten Impulses CCLK tritt eine Zahl von Operationen auf. Beim Schritt Sl-2 setzt die in Fig. 8A gezeigte Logik entweder ein FUN-Flip-Flop 80 oder ein SEEK-Flip-Flop 81. Wenn der empfangene Befehl zur Klasse A gehört, hat ein Signal F4 einen "O"-Zustand, so daß das Flip-Flop 80 gesetzt wird, wenn die Taktschaltung 75 ein Signal SET FUN FF abgibt. Bei Vorliegen eines Befehls der Klasse B oder C liegt das Signal F4 vor, d.h. es hat den logischen Wert "1", wodurch das Flip-Flop 81 gesetzt wird.
Der nächste Taktimpuls CCLK führt zu dem Schritt Sl-3 und läßt die Takt schaltung 75 einen Impuls Pl LD A abgeben. Dieser Impuls steuert ein ODER-Glied 84 an, welches einen Impuls CLR HDR CNT abgibt und eine Information über einen in Fig. 8B gezeigten Multiplexer 85 in ein A-Schieberegister 86 einspeichert, inverter 87A und 88A steuern das Schieberegister A derartig, daß es Daten parallel abhängig von jedem Impuls CCLK empfängt. Wenn das MSG-Flip-Flop 78 (Fig. 8A) gesetzt ist, steuert ein Signal Pl LD A ein UND-Glied 90 (Fig. 8B) und ein ODER-Glied 91 an, wodurch die Funktions- und Spuradressensignale vom Multiplexer 85 in das Schieberegister 86 eingegeben werden. Das Signal CLR HDR CNT des ODER-Glieds 84 steuert gleichzeitig ein ODER-Glied 92 an, wodurch gleichzeitig die Signale DR SEL vom Register 62 (Fig. 6C) in das Schieberegister 86 eingegeben werden.
Impulse SR CLK des ODER-Glieds 91 bewirken eine Taktsteuerung der Signale MSG SEL in entsprechende Bitpositionen eines B-Schieberegisters 93, dessen Inverter 87B und 88B für eine parallele speicherung in einen entsprechenden Zustand gesteuert werden.
Beim Schritt Sl-4 gibt die Taktschaltung 75 ein Signal Pl LD B ab, welches zwei Funktionen ausführt. Zum einen wird ein Univibrator 94 (Fig. 8A) angesteuert. Das sich ergebende Signal LD B PUL geht durch ein ODER-Glied 95 (Fig. 8B) durch, um die Information von Multiplexern 96, 97 in die verbleibenden Stufen des B-Schieberegisters 93 einzugeben. Wenn das MSG-Flip-Flop 78 gesetzt ist, empfängt das Schieberegister 93 die
809850/0574
Bits CYLINDER/OFFSET. Das Signal Pl LD B steuert außerdem ein Flip-Flop 98 zur Einstellung eines Zustands, da das Signal MSG vorliegt. Der nächste Taktimpuls CCLK bewirkt die Taktsteuerung eines Flip-Flops 100 und die Abgabe eines Äbtastsignals STROBE OUT. Dieses Signal wird Sende- und Empfangseinrichtungen 101 zugeführt, welche das Signal STROBE auf der STROBE-Leitung der Steuerleitung 15 übertragen und eine Nachrichtenübertragung einleiten. Zur gleichen Zeit verschiebt eine andere Sendeeinrichtung 112 das Signal CTD auf der Leitung CTD auf einen hohen Pegel ("1"), da ein Flip-Flop 103 gelöscht ist. Die vorstehend erläuterte Arbeitsweise ist in Fig. lOA durch die graphischen Darstellungen A bis E dargestellt. Wenn ein Flip-Flop 100 gesetzt ist, läßt ein UND-Glied 104 den nächsten Taktimpuls CCLK über ein ODER-Glied 105 zum Löschen des Flip-Flops 98 und zur Ansteuerung des Flip-Flops 1OO welches durch den nächsten Impuls CCLK zurückgestellt wird, wodurch das Signal STROBE OUT beendet wird, wie dies in Fig. 1OA durch die graphische Darstellung E gezeigt ist.
Unter Bezugnahme auf die Sende- und Empfangseinrichtung lOl ist ersichtlich, daß die Leitung STROBE tatsächlich zwei Leiter aufweist, die durch positive und negative Ausgangssignale von Operationsverstärkern gesteuert werden, um auf diese Weise Differentialsignale zu übertragen. Alle Leitungen mit Ausnahme der Leitung CONTROLLER POWER ON weisen derartige Leiterpaare auf.
An der Vorderflanke des Impulses STROBE OUT bewirkt das UND-Glied Io4 gleichzeitig eine Voreinstellung eines Flip-Flops 106, welches ein Signal SEND ENABLE gemäß der graphischen Darstellung G in Fig. lOA abgibt. Dieses Signal führt zu einer Voreinstellung eines Flip-Flops lO7, welches ein Signal PARITY ENABLE (graphische Darstellung H) abgibt. Das Signal SEND ENABLE steuert ein UND-Glied 110 an, so daß ein ODER-Glied 111 durch invertierte Impulse CCLK angesteuert wird, um die impulse MSG CLK gemäß der graphischen Darstellung I abzugeben. Die impulse MSG CLK befinden sich außer Phase mit den impulsen CONTROL CLOCK einer Sende- oder Übertragungseinrichtung 113. Diese Übertragungseinrichtung 113 wird aufgrund von Signalen
809850/0574
einer phasenstarren Schleife 114 angesteuert, die Impulse CONTR DATA CLK abgibt, sowie aufgrund eines Teilers 115, der Impulse CCLK abgibt.
Jeder Impuls MSG CLK steuert die Übertragung einer Nachricht zur Steuerung. Zuerst aktiviert jeder Impuls ein NOR-Gatter 120 zur Übertragung eines Impulses SR CNT, der den Inhalt des Zählers 83 an der Hinterflanke des Impulses MSG CLK erhöhen bzw. verändern läßt. Die Vorderflanke jeden Impulses SR CNT gelangt außerdem durch ein Netzwerk, bestehend aus ODER-Gliedern 91, 92 und 95 (Fig. 8B) durch, so daß die A- und B-Schieberegister 86 und 93 taktgesteuert werden. Wenn das Flip-Flop 106 gesetzt ist, steuert ein Signal SEND ENABLE ein ODER-Gatter 122 an, so daß ein Signal SENB OR RENB wirksam ist. Die Signale FIND HDR und HEADER DATA sind jedoch nicht wirksam, so daß ein UND-Glied 123 gemäß Fig. 8A das Signal HDR AND FIND HDR nicht übertragen kann. In diesem Zustand bewirken die inverter 87A, 88A, 87B und 88B eine Zustandssteuerung der Register 86 und 93 derart, daß die Daten durch die entsprechenden Bitpositionen 00 nach rechts als Folge der Signale ASRO(OO) und BSRO(OO) verschoben werden.
Während dieses Vorganges werden die in den Schieberegistern 86 und 93 gespeicherten Signale auf die Leitung A und die Leitung B über Multiplexer 123' bzw. 124 übertragen, die durch verschiedene Signale steuerbar sind, welche direkt an diese Multiplexer und UND-Glieder 125 angelegt werden, wie aus Fig. 8B hervorgeht. Während normaler Operationen liegt kein Signal DIAG MODE vor. Da der Zähler 83 (Fig. 8A) kein Überlaufsignal am Ausgang CO während der ersten fünfzehn Zeitintervalle abgibt, wird das UND-Glied 125 gesperrt, infolgedessen werden die Ausgänge der Multiplexer 123' und 124 den Α-Eingängen zugeführt, welche die Signale ASRO(00) und BSRO(OO) empfangen. Da jedes Signal ASRO(OO) und BSRO(OO) auf die Leitung A und B verschoben wird, werden sie an eine Paritäts-A-Schaltung 126A bzw. eine Paritäts-B-Schaltung 126B angelegt. Nur die Paritäts-A-Schaltung wird im folgenden erläutert, wobei die betreffenden Bezugszeichen mit dem Zusatz "A" versehen sind.
809850/0574
In der Paritäts-A-Schaltung" 126A liegt kein SignaV RCV ' 2 ENABLE vom Flip-Flop 1O3 vor, so daß Impulse SR CNT durch einen inverter 128A und eine exklusive ODER-Schaltung 130A ohne Umkehrung durchgeführt werden und dann invertiert werden, um außerphasige Taktimpulse zu liefern. Da das Flip-Flop 106 gesetzt ist, ist das Signal SEND ENABLE wirksam, so daß die Signale ASRO(OO) an ein UND-Glied 131A und ein ODER-Glied 132A angelegt werden, so daß sie über ein UND-Glied 133A an ein JK-Flip-Flop 134A geführt werden, wobei das UND-Glied 133A durch das Signal PARITY ENABLE des Flip-Flops 1O7 (Fig. 8A) angesteuert wird. Das Flip-Flop 134A wird auf diese Weise in einen solchen Zustand versetzt, daß esauf die "1" und "0" anspricht, die auf die Leitung A verschoben werden.
Wenn im Zähler 83 (Fig. 8A) die letzte zählung vorliegt, die als Zählung 17 (octal) in der graphischen Darstellung J in Fig. 1OA identifiziert ist, erzeugt dieser Zähler das Signal CNT OFLO gemäß der graphischen Darstellung K. Wenn dies der Fall ist, wird das UND-Glied 125 in Fig. 8B angesteuert und steuert die Multiplexer 123, 124 derart an, daß deren Ausgänge jeweils mit den Eingängen B verbunden werden, so daß der nächste Impuls MSG CLK das Paritätssignal auf die Nachrichtenleitungen durchläßt.
Das Signal CNT OFLO steuert außerdem ein ODER-Glied 137 (Fig. 8A) an, so daß ein Signal END MSG hindurchgeht, welches das PARITY ENABLE-Flip-Flop lO7 direkt zurückstellt. Die Vorderflanke des nächsten Impulses CCLK läßt den Inhalt des Zählers 83 erhöhen und beendet das Signal CNT OFLO. Die Hinterflanke des Signals CNT OFLO bewirkt eine Taktsteuerung des Flip-Flops 106 in einen gelöschten Zustand und beendet das Signal SEND ENABLE. Ein Flip-Flop 140 wird am Ende des Signals CNT OFLO gemäß der graphischen Darstellung L ebenfalls gesetzt, da das Flip-Flop 78, welches das SignalMSG überträgt, ebenfalls gesetzt ist. Die hintere Flanke des nächsten Impulses CCLK setzt dann ein MSG DONE-Flip-Flop 141 (graphische Darstellung M). Dadurch wird durch den nächsten Impuls CCLK die Taktschaltung 75
809850/0574
angesteuert, so daß ein Signal CLR MSG DONE gemäß der graphischen Darstellung bei N übertragen wird.
Wird angenommen, daß das System nicht in einem Diagnosebetrieb (Fehlerdiagnosebetrieb) arbeitet, dann steuert ein UND-Glied 142 ein ODER-Glied 143 an und löscht das Flip-Flop 140, so daß die Hinterflanke des nächsten Impulses CCLK das MSG DONE-Flip-Flop 141 löscht. Diese Funktionen sind als Schritte Sl-5 und Sl-6 in Fig. 9A angegeben. Zu diesem Zeitpunkt sind die Nachrichten an die Steuerung übertragen worden.
Anschließend überprüft die Taktschaltung 75 das Signal DR SEL 03, welches dem Bit 03 in dem zweiten Steuer- und Zustandsregister entspricht. Wenn dieses Bit eine "1" enthält, muß die identifizierte Steuerung abgewählt, d.h. abgeschaltet werden, so daß keine Zustandsnachricht zurückgeführt wird. Daher wird die Taktschaltung 75 deaktiviert. Genaugenommen überprüft die Taktschaltung 75 das Signal SACK im Schritt Sl-8. Wenn dieses Signal vorliegt, setzt die Taktschaltung 75 ein UFE-Flip-Flop im Register 62 (Fig. 6C). Das UFE-Signal dieser Stufe wird über einen Multiplexer 144 geführt, der Daten aufgrund entsprechender Zustände an die Datensende- und Empfangsgeräte 50 überträgt.
Wenn dagegen das Signal SACK nicht vorliegt, wurde eine Steuerung identifiziert und abgewählt bzw. abgeschaltet, so daß das System ein Signal Pl SET READY abgibt. Dieses Signal steuert ODER-Glieder 146 und 147 an. Das ODER-Glied 146 gibt ein Signal OP DONE ab, welches die Schaltung in dem Steuer-Zustandsregister 66 das Signal GO beenden läßt und das Signal CONTR READY erzeugt, wodurch die Operation beendet wird. Das ODER-Glied 147 legt ein Löschsignal an das CLR-Flip-Flop 150 an.
Normalerweise enthält die dritte Bit-Position im Befehl keine "1", so daß der Schritt Sl-7 zum Schritt Sl-9 führt und eine Überprüfung des Signals SACK bewirkt. Wenn das Signal SACK zu diesem Zeitpunkt nicht vorliegt, wurde keine Steuerung ausgewählt. Die Taktschaltung 75 überträgt daher ein Signal
809850/0574
CLK NED, welches ein nichtexistentes Steuer-Flip-Flop in dem Register 62 setzt.
Wird angenommen, daß der normale Betrieb weiter ausgeführt wird, dann ergibt sich vom Schritt Sl-9 ein Sprung zum Schritt Sl-IO, worauf die Art des Befehles festgestellt wird. Wenn ein Befehl der Klasse C ausgeführt wurde und das Flip-Flop 15O gesetzt wurde, dann würde der Schritt Sl-IO die Steuerung auf die Taktschaltung 76 verschieben. Zu diesem Zeitpunkt ist jedoch das Flip-Flop 150 wieder zurückgestellt, so daß der Schritt Sl-IO zum Schritt Sl-Il führt. Wenn der ausgeführte Befehl der Klasse A zuzuordnen ist, dann folgt auf den Schritt Sl-Il unmittelbar der Schritt Sl-12, der die Taktschaltung 75 ein Signal GET STATUS 1 abgeben läßt, das in Fig. lOB bei B gezeigt ist. Wenn andererseits der Befehl der Klasse B oder C zuzuordnen ist, ist eine gewisse Positionierung der Köpfe erforderlich. Nach Beendigung dieser Positionierung gibt die Steuerung das Signal ATTENTION ab. Wenn dieses Signal erfaßt wird, liegt ein Signal SELECT DR ATTN vor und steuert die Taktschaltung 75 an, woraufhin das Signal GET STATUS 1 abgegeben wird.
An der Vorderflanke des Signals GET STATUS 1 setzt ein ODER-Glied 151 (Fig. 8A) ein Flip-Flop 152, wodurch ein Signal DTC MSG (graphische Darstellung C in Fig. lOB) abgegeben wird. Dieses Signal steuert ein ODER-Glied 153A in der Paritäts-A-Schaltung 126A (Fig. 8B) und eine analoge Schaltung in der Parität s-B-Schaltung 126B. Infolgedessen setzt das ODER-Glied 153A und das UND-Glied 154A direkt das Flip-Flop 134A, wenn angenommen wird, daß ein UND-Glied 155A durch ein Signal PAR TEST nicht angesteuert wird, welches während der Fehlerdiagnose-Betriebsart erzeugt wird. Dadurch werden die Paritätsschaltungen 126A und 126B so gesteuert, daß sie die ankommende Nachricht empfangen.
Der nächste Impuls CCLK steuert ein UND-Glied 156 (Fig. 8A) an, welches durch das Flip-Flop 152 in den Durchlaßzustand geschaltet ist und welches das Flip-Flop 103 direkt setzt, so daß letzteres ein Signal RCV ENABLE erzeugt (graphische Darstellung D) . Dieses Signal wird über den inverter 102 (Fig. 8B) zugeführt, um das Signal CTD des Übertragungselements 112 zu be-
809850/0574
£759128
enden und um die Übertragungselemente 156 und 157 für die Leitung A bzw. die Leitung B zu sperren.
Wenn das Flip-Flop 103 gesetzt ist, wird die Taktschaltung 75 gesperrt, bis das MSG DONE-Flip-Flop 141 gesetzt wird. Dann gibt die Taktschaltung 75 ein Signal CLK STATUS 1 ab. Die Beendigung des Signals GET STATUS 1 bewirkt ein Sperren des ODER-Glieds 151. Darüberhinaus steuert das Signal RCV ENABLE ein UND-Glied 161 an bzw. in den Durchlaßzustand, so daß anschließend Signale RCV STROBE, die von der STROBE-Leitung der Steuerleitung 15 über die Sende- und Empfangseinrichtung 101 abgegeben werden, durch das ODER-Glied 11 in Fig. 8A als MSG CLK-Impulse (graphische Darstellungen F und G) abgegeben bzw. durchgelassen werden. Der nächste Impuls MSG CLK löscht das Flip-Flop 152 (graphische Darstellung C) . Dadurch wird das Flip-Flop 107 gesetzt, so daß das Signal PARITY ENABLE (graphische Darstellung E) ,abgegeben wird.
Die Impulse MSG CLK steuern auch das ODER-Glied 120 an, so daß die impulse SR CNT abgegeben werden. Dann werden Signale MESSAGE A IN (Nachricht A liegt vor) in die Bitposition 15 der A- und B-Schieberegister 86 und 93 nacheinander eingegeben. Das Signal RCV ENABLE läßt die Nachrichtenbits durch ein ODER-Glied 162A (Fig. 8B) in die Paritäts-A-Schaltung 126A und auch in die Paritäts-B-Schaltung 126B gelangen.
Die in der in den Fig. 8A und 8B dargestellten Schaltung auftretende Taktsteuerfolge für den Empfang einer Nachricht ist im wesentlichen die gleiche wie für die Abgabe einer Nachricht an die Steuerung. Wenn der Zähler 83 überläuft (Darstellung I), wurde die Zustandsnachricht empfangen, so daß der Schritt Sl-13 in Fig. 9A zum Schritt Sl-14 übergeleitet wird. Darüberhinaus löscht die Vorderflanke des Signals CNT OFLO das Flip-Flop 103 über das ODER-Glied 137. Die hintere Flanke des Signals CNT OFLO läßt die Flip-Flops 14o und 141 setzen und löschen, wodurch das Signal MSG DONE gemäß den graphischen Darstellungen J und K erzeugt wird; außerdem wird die Taktschaltung 75 angesteuert, so daß sie den Impuls CLK STATUS 1 abgibt. Nach Beendigung des Signals CNT OFLO stellt das ODER-Glied 137 das Flip-Flop 103
809850/0574
zurück und beendet das Signal RCV ENABLE.
Die Vorderkante des Signals CLK STATUS 1 steuert ein UND-Glied 165 an, welches in den Durchlaßzustand geschaltet ist, da sich die Speichereinheit nicht in einem Fehlerdiagnosebetrieb befindet. Ein ODER-Glied 166 gibt ein Signal MSG RCVD ab, welches bestimmte Bits aus den A- und B-Schieberegistern 86 und 93 parallel in entsprechende Register übertragen läßt. Bei der dargestellten Ausführungsform wird das Signal MSG 00 empfangen, so daß ein UND-Glied 167 ein Signal LD STATUS abgibt, welches die Information in in Fig. 6Cund Fig. 7 gezeigte Register 166 und 167 für den Steuerzustand (DRIVE STATUS) und Steuerfehler (DRIVE ERROR) einspeichert. Die Taktschaltung 75 gibt auch einen Impuls CLR MSG DONE ab, der gleichzeitig mit dem Impuls GET STATUS 1 auftritt. Dieser Impuls CLR MSG DONE wird zum Flip-Flop 142 geführt und löscht dieses Flip-Flop, so daß das Flip-Flop 141 so angesteuert wird, daß es mit der hinteren Flanke des nächsten Impulses CCLK gelöscht wird.
Wenn der zur Steuerung geleitete Befehl ein Befehl der Klasse A ist, gibt die Taktschaltung 75 das Signal Pl SET RDY ab. Dieses Signal steuert das ODER-Glied 146 durch, welches dann das Signal OP DONE abgibt, das wiederum die Operation beendet, und um ein vorrangiges Löschsignal an das Flip-Flop anzulegen.
Wenn der Befehl der Klasse B oder C zuzuordnen ist, geht die Operation vom Schritt Sl-15 zum Schritt Sl-16 über. Das Flip-Flop wird gelöscht, so daß beim Schritt Sl-17 ein Signal
Pl JMP Ol erzeugt wird, welches das Flip-Flop 150 setzt. Dann
einheit kehrt die Operation der Steuer bzw. des Kontrollers zum Schritt Sl-3 zurück, um weitere Nachrichten zur Steuerung zu übertragen und um diese Nachrichten von der Steuerung zurückzuerhalten.
Wenndie Taktschaltung 75 wieder den Schritt Sl-IO erreicht, wird das Flip-Flop 150 gesetzt. Wird ein Befehl der Klasse c ausgeführt, dann wird die steuerung der folgenden Operationen von der Taktschaltung 75 ausgeführt. Wenn ein Befehl der
809850/0574
Klasse B ausgeführt wird, erfolgen Operationen vom Schritt Sl-16 zum Schritt Sl-18, wobei bei letztem Schritt der jeweilige Befehl der Klasse B festgelegt bzw. erfaßt wird. Wenn dieser Befehl ein Befehl READ HEADER ist, gibt die Taktschaltung 75 ein Signal SET RD NXT HDR ab, welches eine Voreinstellung der Flip-Flops 170 und 171 (Schritt Sl-19) bewirkt und die Steuereinrichtung (controller) den nächsten Kopf beim Schritt Sl-20 lesen läßt. Wenn der nächste Kopf empfangen wird, erzeugt die Schaltung im Datenmodul 24 (Fig. 6B) ein Signal CLR RD HDR. Die hintere Flanke dieses Signals löscht ein Flip-Flop 170, so daß der nächste impuls CCLK das Signal RD NXT HDR beenden läßt und die Taktschaltung 75 freigibt, so daß das Signal p-1 SET RDY abgegeben wird.
Wenn ein Befehl WRITE HEADER empfangen wird, geht die Operation vom Schritt Sl-18 zum Schritt Sl-21 über. Die Taktschaltung 75 erzeugt das Signal SET WHE, welches ein WRITE HDR ENB-Flip-Flop 172 voreinstellt. Wenn die Interfaceeinheit 23 nach Fig. 6E einen Impuls von der Leitung INDEX/SECTOR IMPULSE empfängt, erzeugt eine sector/index-Trennschaltung 173 ein Signal CONTR INDEX, welches den nächsten Impuls CCLK ein Flip-Flop 174 setzen und dadurch das Flip-Flop 172 löschen läßt (Fig. 8A). Außerdem bewirkt dieses Signal, daß der Kopf (HEADER) mit dem Schritt Sl-22 geschrieben wird. Wenn das Signal WRITE HDR ENB durch Löschen des Flip-Flops 172 gelöscht wird, erzeugt die Taktschaltung 75 wieder das Signal Pl SET RDY und beendet diese Taktsteuerfolge .
Wenn die Taktschaltung 75 ein Signal Pl SET RDY abgibt, liefert das ODER-dlied 146 in Fig. 8A das Signal OP DONE. Dieses Signal wird wieder zu der Schaltung zurückgeführt, die diesem Steuer- und Zustandsregistex 66 in Fig. 6A zugeordnet bzw. mit letzterem verbunden ist. Dadurch wird die stufe gelöscht, die das Signal GO erzeugt und das Register 66 wird so angesteuert, daß es das Signal CONTR READY abgibt, wodurch wieder der Betrieb der Taktschaltung 75 und der zugeordneten Schaltung eingeleitet wird.
809850/0574
Wie bereits erläutert wurde; erzeugt die Taktschaltung während ihres zweiten Zyklus ein Signal CLR PHl, wenn ein Befehl der Klasse C ausgeführt wird. Dieses Signal steuert ein ODER-Glied 180 (Fig. 8A) an, welches das Flip-Flop 72 löscht. Infolgedessen läßt ein Inverter 181 die Taktschaltung 76 Operationen beginnen. Dieser Zustand ist in Fig. 9B als Schritt S2-1 gekennzeichnet.
Es wird nunmehr angenommen, daß der Schreibbefehl WRITE zur Übertragung von 256 Wörtern in den letzten Sektor einer letzten Spur eines zwischenliegenden bzw. mittleren Zylinders in der Plattensteuerung empfangen wurde. Die Operation geht vom Schritt S2-2 auf den Schritt S2-3 über, da noch kein Suchvorgang des Sektors eingeleitet wurde und da ein Signal BAD READ DATA abhängig von dem Schreibbefehl nicht vorliegt. In ähnlicher Weise geht die Operation vom Schritt S2-3 auf den Schritt S2-4 über, da noch keine Daten übertragen wurden. Wird außerdem angenommen, daß der identifizierte Zylinder ein zwischenliegender Zylinder ist, erfolgt ein Übergang vom Schritt S2-4 auf den Schritt S2-5, um zu bestimmen, wann die Datenübertragung eingeleitet werden soll.
Im folgenden wird sich auf Fig. 6B bezogen; wenn Daten iri die Plattensteuerung eingeschrieben werden sollen, werden diese Daten als eine Wortfolge durch einen Eingangspuffer
200 in einen Silo-Speicher 201 eingegeben. Wenn der Speicher
201 bei diesem Beispiel aufgefüllt ist oder wenn alle Wörter in den Speicher 201 übertragen sind, wenn beispielsweise nur wenige Wörter von der übertragung erfaßt werden, erzeugt ein Zähler 202 ein Signal START DATA XFR, wenn der Speicher 201 gefüllt ist, so daß die Taktschaltung 76 zur Löschung des Flip-Flops 78 mit dem Schritt S2-6 angesteuert bzw. freigegeben wird. Wenn das Flip-Flop 78 in Fig. 8A gelöscht ist, erzeugt die Taktschaltung 76 einen Impuls P2 LD A beim Schritt S2-8, welcher ein ODER-Glied 185 einen Impuls P2 LD Ä abgeben läßt, der am. Ausgang des Multiplexers 85 (Fig. 8B) auf parallele Weise in das A-Schieberegister 86 eingeht. Da das Flip-Flop 78 gelöscht ist, führt der Multiplexer 85 die Zylinderadresse zum A-Schie-
809850/0574
beregister. Auf ähnliche Weise steuert das MSG-Signal den Multiplexer 97 derart an, daß er die Spuren- und Sektoradressen in Form der Signale TRK/SEC ADDRESS an den Eingang des B-Schieberegisters 93 anlegt.
Nach Erzeugung des Impulses LD der Klasse A erzeugt die Taktschaltung 76 unmittelbar ein Signal P2 LD B mit dem Schritt S2-9, infolgedessen das Signal LD B von einem ODER-Glied 186 abgegeben wird. Der Impuls LD B lädt das Schieberegister 93 und leitet die Sektor-Suche ein. Daraufhin bewirkt die Taktschaltung 76 eine Verzögerung beim Schritt S2-1O, bis sie ein Signal HDR MATCH empfängt, welches anzeigt, daß der adressierte Sektor eingestellt ist.
Die Schaltung, die den richtigen Sektor auffindet, ist in den Fig. 8A und 8C gezeigt. Die Schaltung analysiert die eingehenden Daten der Datenköpfe. Wenn der adressierte Sektor unter die Datenköpfe 25 (Fig. 3) eingestellt und in geeigneter Weise decodiert ist, liefert ein Flip-Flop 2O3 (Fig. 8C) ein Signal HDR MATCH und läßt die Taktschaltung 76 mit dem Schritt S2-11 ein Signal COR SECTOR abgeben.
Die hintere Flanke des Impulses P2 LD B, der zum Schritt S2-9 erzeugt wird, setzt ein Flip-Flop 204. Wenn der nächste Sektor an den Daten-Köpfen erscheint, wird einFlip-Flop 205 gesetzt und gibt ein Signal FIND HDR ab, welches die Kopf-Suchoperation einleitet.
Wie vorstehend erläutert wurde, erscheinen die Index-Impulse und Sektor-Impulse auf einer gemeinsamen Leitung. Die Index-Impulse werden so gesteuert, daß sie in der Mitte zwischen zwei aufeinanderfolgenden Sektor impulsen auftreten. Eine Trennschaltung 2o6, die in Fig. 6E und im Detail in Fig. 8C gezeigt ist, trennt die Index-Sektor-Impulse. Wenn der Decoder 56 nach Fig. 6A den Impuls LOAD CS2 abgibt oder wenn die'Datensende- und Empfangseinrichtung 50 das Signal INIT abgibt, bewirkt ein ODER-Glied 207 die Voreinstellung eines Flip-Flops 208. Dadurch wird ein UND-Glied 210 so angesteuert, daß es
809850/0574
gleichzeitig mit dem Signal STROBE OUT des Flip-Flops 100 (Fig. 8A) aktiviert, d.h. durchgeschaltet wird. Somit löscht das UND-Glied 210 die Flip-Flops 211 und 212. Die hintere Flanke des Signals STROBE OUT bewirkt eine Taktsteuerung des Flip-Flops 208, wodurch ein Zustand gelöscht wird und dadurch das vorrangige Löschsignal beseitigt wird.
Der erste Impuls, der auf der Leitung INDEX/SECTOR IMPULSE auftritt, geht durch einen Empfänger 213 hindurch. Die Vorderflanke dieses Impulses setzt das Flip-Flop 211 und die Hinterflanke triggert eine Univibratorschaltung 214, wodurch ein Zeitabschnitt oder Zeitfenster festgelegt wird, während welchem normalerweise ein Indeximpuls auftritt. Wenn die Vorderflanke des nächsten Impulses des Empfängers 213 das Flip-Flop 212 setzt, während der Univibrator 214 wirksam ist, dann ist dieser Impuls ein Index-Impuls und ein UND-Glied 215 überträgt den Impuls DRIVE INDEX. Wenn andererseits der Univibrator nicht aktiv ist, d.h. sich im betriebslosen Zustand befindet, erzeugt ein UND-Glied 216 einen Impuls DRIVE SEC PUL. Dann ist es der Impuls DRIVE SEC PUL, der das Flip-Flop 205 setzt und das FIND HDR-Signal hervorruft«
Die Sektor-Taktsteuerschaltung 217 des Moduls 24 (Fig. 6B) erzeugt ein Signal HEADER DATA, wenn sie das Vorliegen einer Kopf information (HEADER-lnformat ion) decodiert. Wenn dieses Signal gleichzeitig mit dem Signal FIND HDR des Flip-Flops 205 auftritt, liefert das UND-Glied 123 (Fig. 8A) das Signal HDR AND FIND HDR und beseitigt das vorrangige Löschsignal von den Flip-Flops 221 und 222 in Fig. 8C.
Impulse CONTRL DATA CLK der phasenstarren Schleife 114 in Fig. 8B werden ebenfalls an ein UND-Glied 220 (Fig. 8A) angelegt, wodurch Impulse HDR AND RCLK erzeugt werden, welche den Zähler 83 fortschreiten lassen, wodurch die aufeinanderfolgenden Datenbits gezählt werden. Das Signal CNT OFLO wird daher nach jedem empfangenen Wort abgegeben.
80 9850/05 74
Am Beginn einer ITEADER- oder Kopf-Suchoperation werden die Flip-Flops 221 und 22 und das MSG-Flip-Flop 78 (Fig. 8C bzw. 8A) gelöscht. Ein Zähler 223 wird durch Impulse SR CNT des ODER-Glieds 120 (Fig. 8A) angesteuert, wobei er synchron mit dem Zähler 83 in Fig. 8A verändert wird, d.h. eine zählung ausführt. Obgleich einzelne Zähler 83 und 223 dargestellt sind, wird tatsächlich nur ein einziger derartiger Zähler benützt. Darüberhinaus sind die Multiplexer 85 und 97 in einen solchen Zustand gesteuert, daß die gewünschte ZyIinderadresse in das A-Register und die gewünschte Sektor- und Spuradressen in das B-Register 93 geleitet werden.
Wenn die Daten, die durch das Signal NRZ RD DATA.dargestellt werden, von der Daten-Trennschaltung 206 empfangen werden, werden diese Daten in eine HEADER- bzw. Kopf-Suchlogik verschoben, wie inFig. 6D gezeigt ist. Bei der dargestellten Ausführungsform weist der HEADER bzw. Kopf drei Wörter auf. Das erste Wort enthält die Zylinderadresse für den Sektor, das zweite Wort die Spur- und Sektoradressen für den Sektor zuzüglich zwei Steuerbits, die jeweils "1" sind, und ein Format-Bit; das dritte Wort, welches eine exklusive ODER-Kombination aus den ersten beiden Wörtern bildet, ergibt das Kopf-Testwort. Am Ende des ersten Wortes setzt die hintere Flanke des Signals CNTO FLO des Zählers 223 oder des Zählers 83 ein HWC-Flip-Flop 221, wodurch ein UND-Glied 224 in einen solchen Zustand geschaltet wird, daß es für die letzten zwei Bits des zweiten Wortes durch eine Decoderschaltung 225 aktiviert bzw. durchgeschaltet werden kann, welche die Ausgänge des Zählers 223 überwacht. Am Ende des zweiten Wortes löscht das Signal CNT OFLO des Zählers 223 das Flip-Flop 221 und setzt das VRC-Flip-Flop 222. Am Ende des dritten Wortes wird das Signal HEADER DATA, welches das UND-Glied 123 ansteuert, in den nicht vorliegenden Zustand (11O") verschoben bzw. geändert, so daß auch das Signal HDR AND FIND HDR-Signal ebenfalls in den nicht vorliegenden Zustand bzw. "0"-Zustand geändert wird und die Flip-Flops 221 und 222 löscht. Dadurch wird ein HDR DONE-Flip-Flop 226 gesetzt. Die vorstehend beschriebene Schaltung identifiziert somit jedes der drei aufeinanderfol-
809850/0574
genden Wörter.
Die HEADER- bzw. Kopfdaten, die in die in Fig. 8C gezeigte Kopf-Suchlogik übertragen werden, entsprechen einem Datensignal NRZ RD. Diese ankommenden Datensignale NRZ RD DATA werden aufeinanderfolgend mit dam jeweiligen Inhalt des A- und B-Schieberegisters 86 und 93 (Fig. 8B) verglichen, wobei die Wahl der Register durch einen Multiplexer 230 (Fig. 8C) erfolgt. Eine Sperr- oder Halteschaltung wird zusammen mit dem Flip-Flop 221 gelöscht. Dadurch wird der Multiplexer 23O in einen solchen Zustand geschaltet, daß er die Ausgangssignale des A-Schieberegisters in eine exklusive ODER-Schaltung 232 verschiebt. Das Signal NRZ RD DATA bildet den zweiten Eingang zu dieser Schaltung, wenn die Bits identisch sind, liegt kein Ausgang von der exklusiven ODER-Schaltung 232 vor und die nachfolgenden Impulse HDR AND RCLK des UND-Glieds 220 in Fig. 8A können ein WRONG HDR-Flip-Flop 234 nicht setzen. Am Ende des ersten Wortes wird das Flip-Flop 221 gelöscht und dadurch wird der Multiplexer 230 in einen Zustand geschaltet, in welchem er den Ausgang des B-Schieberegisters 93 zur exklusiven ODER-Schaltung 232 überträgt. Für die letzten beiden Bits des zweiten Wortes wird das Signal BS WINDOW des UND-Glieds 224 wirksam, d.h. tritt auf und bewirkt mit dem Signal des gelöschten Flip-Flops 234 eine Freigabe eines UND-Glieds 235, um die nächsten zwei Datenbits zu prüfen, um zu bestimmen, ob diese beiden Bits jeweils eine "1" sind. Wenn diese Bits "1" darstellen, wird ein Flip-Flop 236 nicht gesetzt, so daß ein Signal BS ERROR nicht abgegeben wird. Wenn die beiden Bits eine oder zwei "0" enthalten, gibt ein UND-Glied 237 ein Signal BAD SECTOR ERR ab, wenn es durch ein ODER-Glied 24O durchgeschaltet ist. Wenn weder das Flip-Flop 236 noch das Flip-Flop 234 gesetzt ist, erzeugt ein UND-Glied 238 ein Signal HDR OK, was anzeigt, daß die Kopfwörter als gültig festgestellt wurden.
Gleichzeitig mit der vorstehenden Überprüfungsoperation werden Signale NRZ RD DATA in ein Schieberegister 241 abhängig von Impulsen RD DATA CLK eines UND-Glieds 242 eingegeben, wo-
809850/0574
bei dieses UND-Glied freigegeben ist, wenn das Signal HDR AND FIND HDR vorliegt. Anfangs wird das Schieberegister 241 durch den Impuls DRIVE SEC PUL des UND-Glieds 216 gelöscht. Nach der Eingabe des ersten Wortes wird das zweite Wort darauffolgend mit den entsprechenden Bits im ersten Wort kombiniert, da die Bits aus dem Schieberegister 241 herausgeschoben werden, wodurch ein Kopf-Prüfwort erzeugt wird. Am Ende des zweiten Wortes wird das Flip-Flop 222 gesetzt und das sich ergebende Signal VRC gibt ein UND-Glied 244 frei, so daß ein Flip-Flop 245 in einen solchen Zustand geschaltet wird, daß es nur dann gesetzt wird, wenn das empfangene Prüfwort und das Prüfwort im Schieberegister 241 unterschiedlich sind. Wenn diese Prüfwörter nicht unterschiedlich sind, bleibt das Flip-Flop 245 zurückgestellt und ein UND-Glied 246 sowie ein Flip-Flop 247 können ein Signal HVRC ERR 2 nicht abgeben. Wenn somit der Impuls DRIVE SEC PUL nicht vorliegt und das Signal HDR DONE des Flip-Flops 226 vorliegt, welches anzeigt, daß der gesamte Kopf gelesen wurde, wird vom UND-Glied 238 das Signal HDR OK abgegeben und das Flip-Flop 247 gibt kein Signal HVRC ERR 2 ab. Dadurch bewirkt das UND-Glied 227 eine Zustandssteuerung des Flip-Flops 203 derart, daß es mit der hinteren Flanke des nächsten Impulses CCLK gesetzt wird und das Signal HDR MATCH abgibt. Außerdem erzeugt ein ODER-Glied 248 ein Signal CLR FH, welches das Flip-Flop 204 und 205 löscht, wodurch das Signal FIND HDR beendet wird.
Wenn ein Wortprüffehler auftritt, erzeugt das Flip-Flop 245 das Signal HVRC ERR 1, und zwar unabhängig davon, ob der iopf der richtige Kopf ist oder nicht. Wenn andererseits der richtige Kopf vorliegt und ein Prüffehler festgestellt wird, wird das Flip-Flop 247 gesetzt und erzeugt ein Signal HVRC ERR 2, welches dann die Erzeugung des Signals HDR MATCH verhindert.
Jedesmal, wenn das Signal HDR DONE vom Flip-Flop 226 abgegeben wird, überprüft ein UND-Glied 250 das Signal WRONG HDR des Flip-Flops 234. Liegen beide Signale vor, dann erfolgt eine Taktsteuerung eines Zählers 251 durch das System. Nach der Sich-
809850/057^
tung einer ersten, vorbestimmten Zahl vpa Köpfen läuft der Zähler 251 über und setzt ein Flip-Flop 252, wodurch ein Flip-Flop 253 so angesteuert wird, daß es gesetzt wird, wenn ein weiterer Überlauf auftritt. Wenn der Zähler dann eine andere vorbestimmte zahl von Köpfen verarbeitet, ohne einen gültigen Kopf zu empfangen, wird das Flip-Flop 253 gesetzt und gibt ein Signal OPI ab, welches eines der Signale ist, die im Register 166 (Fig. 7) überwacht werden.
Im folgenden wird sich wieder auf Fig. 9B bezogen und angenommen, daß ein die Übereinstimmung der Köpfe anzeigendes Signal HDR MATCH empfangen wird; das Signal HDR MATCH läßt die Taktschaltung 76 ein Signal COR SECTOR mit dem Schritt S2-11 abgeben und die Sektorzählung mit dem Schritt S2-12 durch Erhöhung eines Zählers erhöhen, der fünf Bit-Positionen niedriger Ordnung des Plattenadressenregisters 65 aufweist. Wenn ein Sektorzählungsüberlauf, d.h. eine Sektorzählungsüberschreitung nicht auftritt, wird die Operation des Systems zum Schritt S2-2 zurückgeführt und liest den nächsten Sektor.
Wenn andererseits eine Sektorzählungsüberschreitung oder -überlauf auftritt, wird die Spurzählung im Schritt S2-14 durch Erhöhung eines Zählers erhöht, der die Stufen TAO bis TA2 im Plattenadressenregister 65 (Fig. 7) bildet. Wenn ein Überlauf auftritt, löscht das System die Sektorzählung im Schritt S2-16 und erhöht den Inhalt eines Zylinderzählers, der die Positionen DCOO bis DCO9 des jeweils gewünschten Zylinderregisters 64 aufweist. Wenn dieser Zähler überläuft, geht das System vom Schritt S2-17 zum Schritt S2-18 über, um den Spurenzähler des Plattenadressenregisters 65 zu löschen und um zur weiteren Datenverarbeitung zum Schritt S2-2 zurückzukehren. Wenn kein Zählerüberlauf auftritt, löscht das System den Spurenzähler beim Schritt S2-19 und geht dann weiter zum Schritt S2-2O/ um ein Signal POSTAMBLE zu erwarten, welches anzeigt, daß ein Postambel-Bereich eines Sektors empfangen wurde. Das Signal POSTAMBLE löscht das Signa 1 CORRECT SECTOR und läßt die Taktschaltung 76 den Steuerwort-Zähler überprüfen, welcher einen Teil des Wortzählerregisters 63 (Fig. 6C) bildet. Wenn alle Wörter nicht zwischen der
809850/0574
Plattensteuerung und der Steuereinrichtung bzw. dem Kontroller übertragen wurden, erzeugt die Taktschaltung 76 ein Signal JMP PHl, welches das Flip-Flop 72 (Fig. 8A) setzt und dadurch die Taktschaltung 76 löscht. Dadurch wird eine andere Suchoperation ermöglicht. Wenn andererseits der Steuerwort-Zähler überläuft, erzeugt die Taktschaltung 76 ein Signal WAIT mit dem Schritt S2-22 und wartet auf die Übertragung aller Wörter von dem Silo-Speicher 201 (Fig. 6B) über einen Multiplexer 255 auf die Systemleitung. Wenn die Operation beendet ist, liegt ein anderer Wortzählerüberlauf vor, so daß die Taktschaltung 76 ein Signal P2 SET READY abgibt, welches das ODER-Glied 166 in Fig. 8A ansteuert.
Aus Fig. 9B ist ersichtlich, daß bei einer Rückführung vom Schritt S2-13 oder S2-17 zum Schritt S2-2 es dann möglich ist, daß alle Wörter übertragen werden. Daher werden solche Schritte wieder ausgeführt, die den Schritten S2-22 und S2-23 analog sind. Wenn beim Schritt S2-4 ein Zylinderzählungsüberlauf vorliegt, liegt ein ERROR-Zustand vor, so daß die Taktschaltung 26 eine Stufe COE im Fehler-Register 166 (Fig. 7) setzt. Wenn auf ähnliche Weise ein Suchfehler auftritt, während ein Signal HEADER MATCH erwartet wird, werden verschiedene Fehleranzeigen oder Fehlerkennzeichen einschließlich der Stufe HVRC im Register 166 ebenfalls gesetzt.
Fig. 6 zeigt die Steuerschaltung, die von der Steuereinrichtung zur Überwachung der Zustände der Plattensteuerungen verwendet wird, die mit der Steuerschaltung verbunden sind. Diese Schaltung ist immer wirksam, jedoch dann nicht wirksam, wenn das Signal ENABLE während der Übertragung einer Steuernachricht zu einer Plattensteuerung vorliegt. Die Übertragung einer Steuernachricht kann zu einer Änderung des Zustandes der ausgewählten Steuerung führen und führt normalerweise auch zu einer derartigen Änderung, so daß es möglich ist, mehrdeutige informationen während dieser Zeitintervalle von der Plattensteuerung abzurufen bzw. zu empfangen.
Diese Schaltung enthält ein Empfängerteil, welches die Leitung POLLED ATTENTION der Steuerleitung 15 mit der Steuereinrichtung verbindet. Die Leitung POLLED ATTENTION ist allen
809850/0574
Plattensteuerungen gemeinsam zugeordnet, wie vorstehend erläutert wurde. Das Auftreten irgendeines Signals auf der Leitung zeigt daher nur an, daß eine Plattensteuerung ein Signal ATTENTION erzeugt hat. Ein POLL- oder Bestimmungsadressenregister 261 enthält einen Zähler mit einem Modul, das gleich der Zahl der Plattensteuerungen ist, die mit der Steuereinheit verbunden werden können. Bei der dargestellten Ausführungsform können acht Plattensteuerungen mit der Steuereinheit verbunden werden, so daß das Register 261 die identifizierenden Binäradressen 000 bis 111 in sich wiederholender Folge erzeugt. Diese Signale werden über Sende- oder Übertragungseinrichtungen
262 (Fig. 6E) als Signale POLL 2 bis 2 auf die Steuerleitung 15 gegeben.
Diese Signale steuern auch die Bearbeitung des von der Steuereinheit empfangenen Signals POLLED ATTENTION. Der Empfänger 260 (Fig. 6E) liefert ein Signal auf der Leitung ATTENTION, die an den Eingang des ATTENTION-Schieberegisters 263 angeschlossen ist. Jedesmal, wenn das Register 261 die Adresse ändert, verschiebt es den Inhalt des Registers 263 und behält eine Positionskorrespondenz zwischen der identifizierten Plattensteuerung und den speziellen Positionen im Schieberegister
263 bei. Wenn das Register 261 eine Adressierfolge beendet, lädt es die Signale des Schieberegisters 263 parallel in ein ATTENTION-Zuständ- Register 264. Jede Position in dem Register 264 entspricht einer der Plattensteuerungen. Ein Multiplexer 265, der durch die Steuerwählsignale einer Steuernachricht gesteuert wird, verbindet die entsprechende Stufe des Registers 264 mit dem Leiter SELCTD DR ATTN, welcher als einer der Steuereingänge für die Taktschaltung 75 vorgesehen ist.
Im folgenden wird die Steueroperation näher beschrieben. Aus vorstehender Beschreibung ist die Arbeitsweise der Steuereinheit, ihr Ansprechverhalten auf Signale der Systemleitung 12 und Nachrichten von der Leitung 15 zu verschiedenen Plattensteuerungen 14 ersichtlich. Die folgende Beschreibung bezieht sich auf die Arbeitsweise einer Plattensteuerung einschließlich
809850/0574
dem Empfang der Steuernachrichten von der Steuereinheit und der Rückübertragung der Zustandsnachrichten zu der Steuereinheit.
Wenn eine Plattensteuerung in geeigneter Weise an eine Steuereinheit angeschlossen ist, liefert die Steuereinheit ein Signal CONTROLLER POWER ON. Wenn gemäß den Fig. 11 und 12A ein Schalter 300 für einen Steuorungszugriff betätigt wird, der einen Teil des Steuerfeldmoduls 35 bildet, steuert ein UND-Glied 301 (Fig. 12Λ) mehrere Schaltungen in der Plattensteuerung an, wie aus der folgenden Erläuterung noch deutlicher hervorgeht.
Am Beginn einer Steuernachricht-Übertragung von der Steuereinheit zur Steuerung liegt das Signal CTD auf der Leitung 15 vor, wie aus der graphischen Darstellung I in Fig. 13 ersichtlich ist. Ein Empfänger 302 steuert ein UND-Glied 303 an, welches durch das UND-Glied 301 ebenfalls angesteuert wird. Das UND-Glied 303 steuert einen Empfänger 304 an, der das Signal STROBE der Leitung 15 zu anderen Teilen der in Fig. 12 gezeigten Schaltung durchläßt, wie aus der graphischen Darstellung A in Fig. 13 ersichtlich ist. Wenn die Steuerung den Impuls STROBE empfängt, bewirkt das Signal des Empfängers 304 eine Voreinstellung eines DR SEL-Flip-Flops 305, wie es aus der graphischen Darstellung G ersichtlich ist. Die Signale STROBE und CTD werden gleichzeitig an alle Steuerungen angelegt, so daß alle Flip-Flops entsprechend dem Flip-Flop 305 in Fig. 12A gleichzeitig gesetzt werden. Das Signal STROBE loscht auch ein Flip-Flop 306 über ein ODER-Gatter 307.
Das Signal DR SEL des Flip-Flops 305 steuert auch ein ODER-Glied 310 an, um ein OUT EN-Flip-Flop 311 zu löschen (graphische Darstellung E). Dadurch wird der Zähler 312 für eine Erhöhung seines Inhalts freigegeben, da ein IN EN-Flip-Flop 313 ebenfalls durch den Impuls STROBE (graphische Darstellung J) gesetzt ist. Das IN EN-Signal läßt auch die Empfänger 314 und 315 Binärsignale abgeben, die jeweils der Information auf der Leitung A bzw. B entsprechen.
Es wird angenommen, daß die Gleichstromleistung einen geeigneten Wert aufweist, dann liegt kein Signal DC LOW vor, wel-
809850/0574
ches eine zu geringe Gleichspannung anzeigen würde; das Flip-Flop 305 und das UND-Glied 30l lassen die Empfänger 316 einen Impuls CP aufgrund jeden Impulses CONTROL CLOCK, der von der Leitung 15 gemäß der graphischen Darstellung in Fig. 13 empfangen wird, abgeben. Die Vorderflanke jeden Impulses CP triggert einen Univibrator 320, wodurch ein impuls SHORT CP abgegeben wird.
Ein Decoder 321 wird so lange gesperrt, so lange das Signal SHORT CP nicht vorliegt oder das Signal STROBE abgegeben wird. Dieser Decoder 321 bestiiarat nach seiner Ansteuerung oder Freigabe die Zeitintervalle TO bis T15 nacheinander aufgrund jeden Impulses CP, wie aus der graphischen Darstellung G in Fig. 13 ersichtlich ist. Da der Zähler 312 während des ersten Impulses CP gelöscht wird, liefert der Decoder 321 ein TO-Taktsignal. ,
An der hinteren Flanke des ersten Impulses CP wird das am Ausgang des Empfängers 314 auftretende Signal, welches der am wenigsten bedeutsamen Position in der Nachricht A entspricht, gemäß der graphischen Darstellung D in ein Flip-Flop 322 geführt, welches ein erstes Flip-Flop in einem dreistufigen Register ist. Gleichzeitig wird das erste Bit der Nachricht B vom Empfänger 315 in ein einstufiges Schieberegister geführt, welches ein Flip-Flop 323 (graphische Darstellung E) aufweist. Der Zähler wird ebenfalls an der hinteren Flanke jeden Impulses CP weitergeschaltet, wie aus den graphischen Darstellungen L bis 0 ersichtlich ist.
Die Vorderflanke des nächsten Impulses CP triggert den Univibrator 320 und der Impuls SHORT CP bestimmt ein Tl-intervall gemäß der graphischen Darstellung C. Während des zweiten und dritten Intervalls gehen die nächsten zwei Bits auf der Leitung A und B durch die Empfänger 314 und 315 zu den Flip-Flops 322 bzw. 323 durch.
Die hinteren Flanken der Taktsteuerimpulse TO und Tl bewirken die Eingabe der Signale des STAT ADD-Flip-Flops 323 in das Flip-Flop 324 bzw. 326. Nach Beendigung des Impulses Tl bestimmen diese beiden Flip-Flops die Nachricht, die zurückgelei-
80 98 5 0/057 4
tet werden muß und ein Decoder 327 erzeugt eines von mehreren Signalen STROBE MUX 0-3, die zur Auswahl der Zustandsnachricht benützt werden.
Während des Intervalls T2 werden wiederum Daten in die Flip-Flops 322 und 323 verschoben. Nach Ablauf des Intervalls enthalten die Flip-Flops 322 und 325 sowie ein drittes Flip-Flop 330 im Schieberegister den Code für die Wahl der Steuerung. Ein Komparator 331 vergleicht diese Signale mit denjenigen Signalen, die von einer Steuerungs-Identifizierschaltung 332 abgegeben werden. Wenn eine Korrespondenz vorliegt^ bewirkt die hintere Flanke des Taktimpulses T2 nochmals eine Taktsteuerung des Flip-Flops 3O5, jedoch bleibt dieses Flip-Flop gesetzt, da der Komparator ein Signal SET DR SEL abgibt (graphische Darstellung C) .
Wenn kein Vergleich vorliegt, wird das Flip-Flop 3O5 gelöscht und die Plattensteuerung spricht nicht langer auf eingehende Signale an. Die Verschiebung des Signals DR SEL in einen nicht vorliegenden oder "O"-Zustand löscht das Flip-Flop 313, so daß das Signal IN EN beendet wird. Daher können keine weiteren Nachrichtensignale durch die Empfänger 314, 315 und 316 durchgehen.
Wenn eine Nachricht bzw. ein Signal MESSAGE A eine Steuerung bestimmt, die abgewählt, d.h. abgeschaltet werden soll, wird das Flip-Flop 322 während des Zeitintervalls T3 gesetzt. Der Taktimpuls T3 steuert ein UND-Glied 333 und ein ODER-Glied 334 zum Löschen des DR SEL-Flip-Flops 305 an und bewirkt die Abschaltung der Plattensteuerung von der Steuereinheit.
Wenn die Steuerung gewählt ist, setzt die Vorderflanke des Taktimpulses T4 des Decoders 321 das Flip-Flop 306, so daß eine Übertragungseinheit oder Sendeeinheit 335 das Signal SACK auf die Leitung 15 (graphische Darstellung H) gibt.
Wenn eine Kassette ausgewechselt wird, ist es erforderlich, einen Befehl PACK ACKNOWLEDGE abzugeben. Dieser Befehl läßt ein UND-Glied 336 ein VOL VAL-Flip-Flop 33 7 setzen. Wenn
809850/0574
jedoch das Flip-Flop 337 gesetzt ist und keine Positionierung auftritt, wie durch den "0"-Pegel des PiP-Signals angezeigt wird, steuert ein Taktimpuls T4 ein UND-Glied 338 an und setzt ein ADD EN-Flip-Flop 339, welches einen Serienaddierer 339A in dem Modul 28 (Fig. 11) anschaltet bzw. freigibt. Darüberhinaus wird ein SEEK-Flip-Flop in einer CYCLUS-ADRESSEN-REGISTER-Schaltung 340 (Fig. 11) gesetzt. Wenn dieser Zustand vorliegt, werden aufeinanderfolgende Signale von den Empfängern 315 und einem Zustands-Additions-Puffer 323 (STAT ADD) in den Serienaddierer 339A geführt, um mit der Adresse des Signals CYL ADDRS REG verglichen zu werden. Der Ausgang des Addierers 339A ist mit einem Register 341 (CYL DIFF (&OFFSET)) und einer Übertrag- oder Halteschaltung 342 verbunden. Die Information im Register 341 bestimmt die Zahl der Spuren, die bewegt werden müssen, während die Information in der Übertragschaltung die Richtung der Bewegung anzeigt. Die absolute Differenz wird in einen ABS DIFF-Zähler 344 übertragen. Eine Spurzählschaltung 343 bewirkt die Taktsteuerung des Zählers 344 jedesmal dann, wenn er eine Spur überschreitet. Wenn auf diese Weise der Zähler 344 den Wert "O" erreicht, sind die Daten-Köpfe 25 in geeigneter Weise über der richtigen Spur positioniert. Diese Adressensignale werden vom Empfänger 315 in das Modul 28 während der Zeitintervalle T4 bis T12 gleichzeitig nit der Übertragung der Nachricht auf der Leitung A geladen. Eine weitere Erläuterung der Arbeitsweise dieser Schaltung abhängig von den Signalen der Leitung B ist somit überflüssig.
Wenn das Flip-Flop 322 (Fig. 12A) während des Zeitintervalls T5 abhängig vom Befehl RECALIBRATE für eine Nachstellung oder Nacheichung gesetzt wird; wird die CYL ADDRS REG-Schaltung 340 (Fig. 11) gelöscht und das RTZ-Flip-Flop des Servo-Steuermoduls 28 wird so gesetzt, daB die Servosteuer- und Servoanalogmodule 28, 30 die Datenköpfe 25 über einen Bezugszylinder (normalerweise Zylinder OOO) bewegen.
Wenn das Flip-Flop 322 im Zeitintervall T6 gesetzt wird, lassen eine Zwischensperrschaltung 345 (Fig. 11) für die Kopf-Eingabe und die übrige Schaltung im Steuermodul 33 die Spindel
809850/0574
anlaufen. Dann werden die Köpfe geladen. Diese Operation tritt aufgrund des Befehls START SPINDEL auf.
Jedesmal, wenn eine Schreiboperation vorliegt, steuert der Empfänger 314 das Flip-Flop 322 derart, daß es während des Intervalls T7 gesetzt wird. Infolgedessen löscht dieses Signal ein OPFSET-Flip-Flop und die OFFSET & RTC-Schaltung 346 (Fig. 11) und sperrt einen weiteren Betrieb der Plattensteuerung aufgrund eines Befehls OFFSET.
Wenn das Flip-Flop 322 während des Ze it Intervalls T8 gesetzt wird, wird ein UND-Glied 350 (Fig. 12Λ) angesteuert und liefert zwei Signale. Das Signal CLR ERR tritt am Ausgang eines ODER-Glieds 351 auf und ein Signal PU CLR ERR tritt am Ausgang eines ODER-Glieds 352 auf. Das Signal CLR ERR löscht eine bestimmte Zahl von Fehleranzeigen, die in der Steuerung vorliegen, einschließlich jener Fehleranzoigen in dem Modul 33. Auf ähnliche Weise löscht das Signal PU CLR ERR andere Fehleranzeigen, beispielsweise ein PAR ERR-Flip-Flop 353.
Das Ausgangssignal des Pufferspeichers 322' während des Intervalls T9 setzt oder löscht ein FORMAT-Flip-Flop in einer 20/22-Sektor-Wählschaltung 354, die in Fig. 11 gezeigt ist. Dadurch wird die Erzeugung von Sektor- und Index-Markierungen durch das Modul 33 gesteuert.
Die Wahl des Pufferspeichers 322' während des Zeitintervalls TlO bewirkt die Abschaltung der identifizierten Plattensteuerung. Während dieses Zustandes bewirkt eine Spindel-Steuerschaltung 355 das Entladen der Köpfe und das Abschalten der Spindel.
Der Befehl PACK ACKNOWLEDGE erzeugt auf der Leitung A eine Nachricht, die das Flip-Flop 322 während des Zeitintervall s TlI setzt, um das VOL VAL-Flip-Flop 337 einzustellen.
Während der Zeitintervalle Tl2 und T13 empfangen erste und zweite Pufferspeicher 322' und 325 den Code für die Kopf-Wahl. Das Taktsignal T14 gibt dann eine HEAD REG DECODER-Schaltung 356 frei, um zu identifizieren, welche der einzelnen Datenköpfe 25 ausgewählt sind.
809850/0574
Da jedes Signal in der Plattensteuerung über die Nachrichtenleitungen übertragen wird, wird es von einer Paritätsschaltung überwacht. Gemäß Fig. 12A schaltet der Ausgang des ersten Puffer-Flip-Flops 322 ein Flip-Flop 360 abhängig von dem Signal SHORT CP, vorausgesetzt, daß das Flip-Flop 322 gesetzt ist. Auf ähnliche Weise steuert jeder Impuls SHORT CP ein UND-Glied 361 an und steuert ein Flip-Flop 362, wenn das STAT ADD-Flip-Flop gesetzt ist. Wenn die Nachrichten ohne Paritätsfehler empfangen werden, sind die beiden Flip-Flops 360 und 362 während des Zeitintervalls T14 gesetzt. Somit wird ein ODER-Glied 363 durch die hintere Flanke des Taktimpulses nicht angesteuert, infolgedessen das Flip-Flop gelöscht bleibt. Wenn das ODER-Glied 363 angesteuert ist, was einen Paritätsfehler anzeigt, wird dagegen das Flip-Flop 353 gesetzt.
Die hintere Flanke des Taktimpulses T15 löscht auch das IN EN-Flip-Flop 313 und schaltet dadurch die Empfänger ab und löscht die Flip-Flops 322, 323, 325, 330 und den Zähler 312.
Daraufhin wartet die Plattensteüerung auf das Ende des Signals CTD des Steuereinheit. Wenn dies der Fall ist, wird ein UND-Glied 364 angesteuert, so daß die hintere Flanke des nächsten Impulses CP das Flip-Flop 311 setzt und ein Signal OUT EN überträgt, welches die Empfänger in der Plattensteuerung anschaltet. Das Setzen des Flip-Flops 311 ermöglicht eine Weiterzählung des Zählers 312, so daß der Decoder 321 eine weitere Folge von Taktimpulsen T0-T15 erzeugen kann«
Aus Fig. 12B geht hervor, daß mehrere Register durch einzelne Flip-Flops und andere Schaltungen gebildet sind, die innerhalb der Plattensteuerung verteilt sind. Typische Anordnungen bzw. Plätze sind in Fig. 11 für solche Schaltungen dargestellt, die fähig sind, solche informationen zu sammeln. Diese Plätze enthalten Multiplexer 370 und 371 in dem Steuerinterface- und Taktmodul 27 zum Empfang verschiedener Signale, die zur Codierung der Nachrichten AO und BO verwendet werden. Außerdem werden Multiplexer 372 bis 377 benutzt, um die erforderliche information zur Erzeugung von drei zusätzlichen zustandsnachrichten
809850/0 57 4
für eine Rückübertragung zur Steuereinheit zu erzeugen. Die Auswahl einer einzelnen Nachricht wird vom Decoder 327 (Fig. 12A) ausgeführt, wie bereits beschreiben ist.
Aus Fig. 12B geht hervor, daß die Wahl eines der Eingangssignale, die am Ausgang eines der Multiplexer 370 bis 373 auftreten sollen, von dem Signal STROBE MUX und den Signalen CLK CTR des Zählers 312 in Fig. 12A abhängt. Jeder Impuls des Zählers 312 wählt eines der Eingangssignale aus, die als AOO, AOl, BOO und BOl CONDX-Signale dargestellt sind. Die Schaltung zur Übertragung dieser Signale auf die Leitung A und die Leitung B ist die gleiche. Daher wird nur die mit der Leitung A verbundene Einheit im einzelnen erläutert. Es werden jedoch gleiche Bezugszeichen für die beiden Nachrichtenleitungen verwendet, wobei der Unterschied zwischen den beiden Nachrichtenleitungen durch den Zusatz "A" und "B" hervorgehoben ist. Mit jedem Taktimpuls steuert das Ausgangssignal eines gewählten Multiplexers der Multiplexer 370, 372 oder anderer Multiplexer ein ODER-Glied 38OA an. Die Vorderflanke eines Impulses SHORT CP setzt oder löscht dann das Flip-Flop 381 abhängig vom Zustand des gewählten Signals. Der Ausgang des Flip-Flops 381 bildet das Signal TR MESS A, welches an einen in Fig. 12A gezeigten Sender 382A angelegt wird, wobei dieser Sender angesteuert wird, wenn die Gleichstromsignale innerhalb geeigneter Werte liegen und das Flip-Flop 311 gesetzt ist. Die hintere Flanke des Impulses CP steuert ein UND-Glied 383A an, wenn das TR MESS A-Flip-Flop 381 gesetzt ist. jede "1", die übertragen wird, schaltet ein Flip-Flop 384A. Der Rückstellausgang des Flip-Flops 384A wird zur bedeutendsten Bitposition im Decoder 370* zurückgeführt, so daß dessen Wert als das letzte Bit in der Nachricht übertragen wird. Auf diese Weise werden Paritätsbits für die Rückübertragung zur Steuereinheit erzeugt, in welcher sie in der vorstehend erläuterten Weise decodiert werden.
Es sind weiterhin zusätzliche Schaltungen vorgesehen, wie ausFig. 12A hervorgeht, die zur Erzeugung weiterer Signale auf der Steuerleitung dienen. Ein Sender (Nachrichtenquelle) 390, der in Fig. 12A gezeigt ist, wird angesteuert, wenn die
809850/0574
Gleichspannung über einem Minimalwert liegt und wenn das Flip-Flop 311 gesetzt ist. Jeder Impuls CP des Empfängers 316 steuert diesen Sender bzw. diese Nachrichtenquelle an, so daß impulse CP über die Leiter STROBE (Eig. 5) zurückübertragen werden, wie auch aus der graphischen Darstellung A in Fig. 13 ersichtlich ist.
Wenn eine Nachricht beendet ist bzw. vollständig ist, bewirkt der nächste Impuls CP ein Fortschalten des Zählers 312 in den Null-Zustand. Zum Zeitpunkt dieses Übergangs wird ein Ausgangssignal "1" des Zählers 312 erzeugt, welches ein Flip-Flop 391 löscht. Das Flip-Flop löscht das OUT EN-Flip-Flop 311.
Bei dieser Plattensteuerung ist es erforderlich, zu gewährleisten, daß zwei Plattensteuerungen, die mit dem gleichen Kontroller verbunden sind, nicht gleichzeitig ausgewählt werden. Im Normalbetrieb werden Impulse INDEX/SECTOR von einem ODER-Glied 392 in dem Modul 33 an die in Fig. 12A gezeigte Schaltung angelegt, die einen Sender 395 (der wie alle anderen Sender als Nachrichtenquelle wirkt) aufweist, wobei dieser Sender durch das Signal DR SEL des Flip-Flops 305 und - wenn es gesetzt ist - von einem Flip-Flop 396 angesteuert wird. Das Flip-Flop 396 wird normalerweise zurückgestellt, wenn das Flip-Flop 305 gelöscht wird. Wird eine einzelne Steuerung ausgewählt und das Flip-Flop 305 gesetzt, kann das Flip-Flop 396 durch einen Univibrator 397 gesetzt werden. Die hintere Flanke Jeden Impulses INDEX/SECTOR triggert den Univibrator 397, wenn das SACK-Flip-Flop 306 gesetzt ist. Der Impuls des Univibrators 397 setzt dann das Flip-Flop 396 und die Plattensteuerung kann mit der Übertragung von lndex-u.Signal-Impulsen auf der Leitung INDEX/SECTOR-IMPULSE beginnen.
Während der Operation überwacht jede Steuerung die Leitung INDEX/SECTOR-IMPULSE und erzeugt Ausgangssignale an einem Empfänger 4OO. Diese Signale werden zur Taktsteuerung eines Flip-Flops 4Ol verwendet, welches so angesteuert ist, daß es gesetzt wir.d, wenn der Impuls INDEX/SECTOR nicht vorliegt, wobei der Empfänger 4OO angeschaltet ist, da dies eine andere
809850/0574
Quelle von Index- und Sektor-Impulsen anzeigt. Wenn dies der Fall ist, wird das Flip-Flop 401 gesetzt und läßt einen Sender 402 das Signal MUf-TIPLE DRIVE SKLECT abgeben, das zur Steuereinheit zurückgeführt wird. An der Steuereinheit wird das Signal zum Multiplexer 144 (Fig. 6C) als Signal MUL DR SEL geleitet.
Jedesmal, wenn die vorstehend erwähnten Operationen ausgeführt werden, worden Signale POLL 2° bis 2 an Empfänger 403 angelegt. Ein Komparator 404 steuert ein UND-Glied 405 so lange an, als der Komparator kein Signal OUTPUT abgibt, wodurch ein Flip-Flop 406 im gelöschten Zustand gehalten wird. Wenn jedoch der Komparator 404 ein Signal abgibt, beseitigt es das vorrangige Löschsignal vom Flip-Flop 406 und läßt einen monostabilen Multivibrator 407 durch die hintere Flanke dieses Zeitintervalls triggern. Dadurch wird das Flip-Flop 406 gesetzt und ein Sender 41O liefert ein Signal ATTENTION, wenn eine DSC-Sperr- oder Haiteschaltung gesetzt wurde. Jeder der überwachten Fehlerzustände setzt die DSC-Sperrschaltung 411, während das Signal PU CLR ERR des ODER-Glieds 352 diese Schaltung 411 löscht. Somit überträgt eine Plattensteuerung das Signal ATTENTION nur dann, wenn es die Abruf- oder Polling-Schaltung in der Steuereinheit als solches identifiziert.
Die Übertragungen der tatsächlichen Daten von den Kopfoder Datenabschnitten des Speichermediums kann somit festgelegt werden, wie aus Fig. 11 hervorgeht. Die in Fig. 11 gezeigte Ausführungsform ist zur Verwendung mit einem abgewandelten Frequenzmodulationssystem geeignet, welches als weiteres Merkmal ein durch eine eigene Taktsteuerung kontinuierlich verlaufende Impuls-Prozedur aufweist. Die mit dem Servokopf 25 verbundene Schaltung überträgt Taktsignale CLOCKING von der Servospur in eine PLO-Schaltung 414 (Abruf-Schaltung) zur Erzeugung von Impulsen WRCLK. Wie aus Fig. 12A hervorgeht, werden diese impulse an einen Sender 415 angelegt, der angesteuert oder angeschaltet wird, wenn die Gleichspannungsleistung über einem ausreichenden Wert liegt und das SACK-Flip-Flop 3o6 gesetzt ist. In der Steuereinheit werden gemäß Fig. 6E die impulse an die phasenstarre Schleife 114 angelegt, um dadurch die Schreiboperation mit den
809850/0574
Taktsignalen zu synchronisieren, die fortlaufend auf den Platten aufgezeichnet werden. Während einer Schfiiboperation überträgt die Steuereinheit auch ein Signal WRITE GATE, das von einem Empfänger 416 empfangen wird. Wenn einervon mehreren Zuständen vorliegt (beispielsweise ein unsicherer Zustand, ein eine Spurversetzung definierender Zustand oder ein Schreib-Sperrzustand), sperrt ein UND-Glied 417 jede tatsächliche Schreiboperation. Wenn jedoch das UND-Glied 417 angesteuert ist, gelangen Signale READ/WRITE DATA durch einen Empfänger 418 hindurch, der vom UND-Glied 417 angesteuert ist. Die Signale WR DATA werden dann über die Schreibschaltung geführt, um an einen der Datenköpfe 25 angelegt zu werden.
Während des Lesebetriebs werden Signale von den Datenköpfen 25 durch eine Leseschaltung 420 geführt, die als Teil einer Digitalschaltung 421 einen Sender 422 aufweist. Die Signale RD DATA, die der Information von einem ausgewählten Datenkopf 25 entsprechen, liefern Signale READ/WRITE DATA, wenn ein UND-Glied 423 angesteuert ist. Dieses UND-Glied 423 wird dann angesteuert, wenn das Signal WRITE GATE vorliegt, die Steuerung sich im Bereitschaftszusfcand befindet und die betreffende Steuerung ausgewählt ist.
Aus vorstehender Beschreibung ist ersichtlich, daß die Schaltung zur Ausführung der Erfindung wesentlich einfacher als viele der hochentwickelten Systeme ist, die bisher kommerziell verwendet wurden. Darüberhinaus wurde diese Vereinfachung der Schaltung ohne unangemessene Beeinträchtigung der Ansprechgeschwindigkeit erreicht, da die wichtigsten Faktoren, welche die Datenübertragung zwischen einer Plattensteuerung und der zugeordneten Steuereinheit sowie anderen Teilen eines Datenverarbeitungssystems bestimmen, die Geschwindigkeit des Mediums selbst und die Datendichte auf dem Speicher-Medium sind. Die Gründe für die Vereinfachung sind somit ohne- weiteres ersichtlich, da wesentlich weniger Hardware in der erfindungsgemäßen Speichereinheit notwendig ist. jede Parallel-Serien-Umsetzung wird in der Steuereinheit ausgeführt und es besteht kein großer
809850/0574
Verlust an Datendurchsatz, da eine Steuereinheit normalerweise mit nur einer Steuerung während einer Übertragung zusammenarbeitet.
Die erfindungsgemäße Steuerung bzw. die zugeordnete Speichereinheit können bei jedem Datenverarbeitungssystem verwendet werden, wenn entsprechende Änderungen vorgenommen werden, um Unterschiede bezüglich der Signale zu kompensieren, welche ein derartiges Datenverarbeitungssystem charakterisieren.
809850/0574

Claims (8)

  1. 2 7 S 9 12 8
    DIPL.-PHYS. F. ENDLICH d - B034 un-.er.>fa. fenhcfen 2S. Dezetrber
    PATENTANWALT S/Ei
    TELEFON
    PHONt MÜNCHEN 843β3β
    F. ENDLICH, POSTFACH D - ΘΟ34 U NTE R PFAFFEN HO F EN ,
    TELEGRAMMADRESSE
    CABLE ADDRESS: PATENDL1CHMUNCHEN
    TELEX: S2I73O
    Meine Akte: D-4362 Digital Equipment Corp.
    Patentansprüche
    (l J Steuersystem für eine Sekundärspeichereinheit mit einer Steuereinheit zur Operationssteuerung, einer Steuerleitung zur Übertragung der Signale zwischen dem Steuersystem und der Steuereinheit, wobei die Steuereinheit eine Einrichtung zur digitalen Datenübertragung in serieller Form zu und von einer Datenleitung der Steuerleitung enthält, einer Einrichtung zur Übertragung eines Schreibsteuersignals auf eine Schreib-Gatter-Leitung der Steuerleitung für die Ausführung einer digitalen Datenübertragung von der Steuereinheit zum Steuersystem, einer Einrichtung zur Übertragung einer Steuernachricht in serieller Form über eine Nachrichtenleitung der Steuerleitung zu dem Steuersystem zur Einleitung einer digitalen Datenübertragung und einer Einrichtung zur Erzeugung eines Abtastsignals auf einer Abtast-Leitung der Steuerleitung, wenn die die StE uernachricht übertragende Einrichtung eine Übertragung einleitet, dadurch gekennzeichnet, daß ein Speichermedium und eine Lese- und Schreibeinrichtung (25) zum Abrufen von Daten von und zur Übertragung von Daten zu dem Speichermedium vorgesehen sind, daß zu der Lese- und Schreibeinrichtung (25) Datenwege herstellbar sind, die zu der Datenleitung der Steuerleitung (15) und der Schreib-Gatter-Leitung zum Empfang von Signalen von der Einrichtung zur digitalen Datenübertragung und der Schreibsteuersignale erzeugenden Einrichtung in der Steuereinheit zur Übertragung digitaler Daten in serieller Form zu und von der Lese- und Schreibeinrichtung führen, daß Interfaceeinheiten (20, 23) zum Empfang der Steuernachricht von der Nachrichten-Leitung (A, B) in Serienform
    809850/0574
    angeordnet sind und daß eine Steuereinrichtung auf den Empfang des Abtast-Signals (STROBE) von der Abtastleitung und auf den Empfang einer Steuernachricht von der Nachrichtenleitung (A, B) über die Interfaceeinheit zur Freigabe einer seriellen Datenübertragung zwischen der Datenleitung der Steuerleitung (15) und dem Speichermedium über die Lese- und Schreibeinrichtung und die Datenwege anspricht.
  2. 2. Steuersystem nach Anspruch 1, dadurch gekennzeichnet, daß die Steuereinheit während der Übertragung einer Nachricht von der Steuereinheit (13) über eine von der Steuereinheit zur Steuerung führenden Leitung (CTD) ein Richtungssteuersignal abgibt, und daß die Interfaceeinheit Empfänger (113, 260, 302, 304, 314 bis 316, 4OO, 403), welche Signale von der Steuerleitung (15) in die Interfaceeinheit leiten, sowie eine auf das Abtastsignal und das Steuersignal ansprechende Einrichtung zur Anschaltung der Empfänger aufweist.
  3. 3. Steuersystem nach Anspruch 2, dadurch geken n-
    ze ichnet, daß eine eine Steuerung (14) identifizierende Nummer übertragen wird und daß die Steuernachricht Informationen zur Wahl von Steuerungen enthält, und daß die Interfaceeinheit Schieberegister (86, 93), die durch das Abtastsignal zum Empfang serieller Steuernachrichten von der Nachrichtenleitung (A) ansteuerbar sind, eine Decodiereinrichtung (225), welche auf die eine Steuerung wählende information der Steuernachricht zur Abgabe eines Signals (DRIVE SELECTED) anspricht, so daß die Steuerung auf weitere Signale in der Steuernachricht anspricht, sowie eine Einrichtung enthält, die auf das Abtastsignal (STRODE) der Abtastleitung anspricht, um die Decodiereinrichtung ein Signal (DRIVE SELECTED) abgeben zu lassen.
  4. 4. Steuersystem nach Anspruch 3, dadurch gekennzeichnet, daß die Interfaceeinheit (23) eine Einrichtung zur Umwandlung der von der Nachrichtenleitung (A, B) zugeführten Wähl information für Steuerungen <14) in parallel erzeugte Wählsignale aufweist, wobei die Decodiereinrichtung die
    809850/0574
    parallelen Wählsignale mit der Identifizierungsnummer für die Steuerungen vergleicht, sowie eine Einrichtung zum Sperren der Decodiereinrichtung und zum Beenden des DRIVE SELECTED-Signals bei Nichtvorliegen einer Übereinstimmung der eingegebenen Information zur Wahl einer Steuerung mit der Identifizierungsnummer für die Steuerung.
  5. 5. Steuersystem nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß eine Einrichtung (16, 17) zur gleichzeitigen Übertragung einer zweiten Steuernachricht auf eine Nachrichtenleitung einer zweiten Steuerleitung mit der ersten Steuernachricht vorgesehen ist und daß die Interfaceeinheit eine Einrichtung zum Empfang der zweiten Steuernachricht von der zweiten Nachrichtenleitung synchron mit der ersten Steuernachricht enthält.
  6. 6. Steuersystem nach Anspruch 5, dadurch gekennzeichnet, daß mehrere Schaltungen zur Überwachung von Signalzuständen und mehrere Multiplexer (144, 255, 370 bis 377) zur Signalübertragung von den Schaltungen auf eine Nachrichtenleitung der Steuerleitung vorgesehen sind, so daß eine Übertragung zu der Steuereinheit stattfindet, wobei die zweite Steuernachricht eine Gruppe der Schaltungen identifiziert, daß die Interfaceeinheit auf die zweite Steuernachricht ansprechende zusätzliche Zustand-Einrichtungen (62) enthält, welche auf die
    auf zweite Steuernachricht anspricht, um eine der Signal-Zustand gruppen, die über die Nachrichtenleitühg zur Steuereinheit als Zustand -Nachricht übertragen werden soll, anzusprechen, wobei diese Zustandsnachricht die ausgewählte Gruppe von Signalzuständen identifiziert.
  7. 7. Steuersystem nach Anspruch 6, dadurch gekennzeichnet, daß die Einrichtung (62) eine Einheit zur Erzeugung von Zustand-Nachrichten aufweist, die gleichzeitig über die beiden Nachrichtenleitungen (A, B) zur Rückführung
    8008 50/0 574
    zur Steuereinheit (13) übertragen werden.
  8. 8. Steuersystem nach Anspruch 4, dadurch gekennzeichnet, daß die Interfaceeinheit (23) eine Taktsteuereinrichtung zur Erzeugung von Taktsignalen synchron zum Empfang einer Steuernachricht von den Nachrichtenleitungen (A, B) der Steuerleitung (15) sowie eine Einrichtung aufweist, die auf eines der Taktsignale und auf das DRIVE SELECTED-Signal anspricht, um ein Bestätigungssignal auf einer Bestätigungsleitung der Steuerleitung (15) abzugeben, welches die Wahl aufgrund der Steuernachricht anzeigt.
    809850/0574
DE19772759128 1977-06-06 1977-12-30 Steuersystem fuer eine sekundaerspeichereinheit Granted DE2759128A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US05/804,171 US4183084A (en) 1977-06-06 1977-06-06 Secondary storage facility with serial transfer of control messages

Publications (2)

Publication Number Publication Date
DE2759128A1 true DE2759128A1 (de) 1978-12-14
DE2759128C2 DE2759128C2 (de) 1990-12-13

Family

ID=25188345

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19772759128 Granted DE2759128A1 (de) 1977-06-06 1977-12-30 Steuersystem fuer eine sekundaerspeichereinheit

Country Status (5)

Country Link
US (1) US4183084A (de)
JP (2) JPS543436A (de)
CA (1) CA1120585A (de)
DE (1) DE2759128A1 (de)
GB (1) GB1602271A (de)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315308A (en) * 1978-12-21 1982-02-09 Intel Corporation Interface between a microprocessor chip and peripheral subsystems
EP0050109B1 (de) * 1980-02-28 1984-10-31 Intel Corporation Steuervorrichtung für eine mikroprozessorschnittstelle
US4825406A (en) * 1981-10-05 1989-04-25 Digital Equipment Corporation Secondary storage facility employing serial communications between drive and controller
AU560352B2 (en) * 1981-10-05 1987-04-02 Digital Equipment Corporation Secondary storage facility employing serial communications between drive and controller
US4811278A (en) * 1981-10-05 1989-03-07 Bean Robert G Secondary storage facility employing serial communications between drive and controller
US4628446A (en) * 1982-12-06 1986-12-09 At&T Bell Laboratories Multichannel interface
US4612613A (en) * 1983-05-16 1986-09-16 Data General Corporation Digital data bus system for connecting a controller and disk drives
US4928193A (en) * 1984-07-13 1990-05-22 International Business Machines Corporation Diskette drive type determination
US4773036A (en) * 1984-07-13 1988-09-20 Ibm Corporation Diskette drive and media type determination
JPS61107426A (ja) * 1984-10-30 1986-05-26 Sanyo Electric Co Ltd 情報フアイル装置
US4813011A (en) * 1985-05-13 1989-03-14 International Business Machines Corporation Data processing peripheral subsystems having a controller and a plurality of peripheral devices
WO1987002154A1 (en) 1985-09-27 1987-04-09 Burroughs Corporation Self-testing peripheral controller system for multiple disk drive modules
JPH087662B2 (ja) * 1985-10-18 1996-01-29 株式会社日立製作所 データ転送制御方法
US4747047A (en) * 1985-12-06 1988-05-24 Unisys Corporation Data transfer system using two peripheral controllers to access dual-ported data storage units
JPH0525082Y2 (de) * 1986-04-04 1993-06-24
FR2598836B1 (fr) * 1986-05-15 1988-09-09 Copernique Dispositif intercalaire de connexion independante a un ensemble informatique d'unites de memoire auxiliaire
US4862411A (en) * 1987-02-26 1989-08-29 International Business Machines Corporation Multiple copy data mechanism on synchronous disk drives
JPH01501661A (ja) * 1987-07-01 1989-06-08 ユニシス コーポレーシヨン タグ高速転送の改良
US4843544A (en) * 1987-09-25 1989-06-27 Ncr Corporation Method and apparatus for controlling data transfers through multiple buffers
GB2211006B (en) * 1987-10-13 1992-06-03 Standard Microsyst Smc Interface circuit
US5146587A (en) * 1988-12-30 1992-09-08 Pitney Bowes Inc. System with simultaneous storage of multilingual error messages in plural loop connected processors for transmission automatic translation and message display
US5097439A (en) * 1989-11-08 1992-03-17 Quantum Corporation Expansible fixed disk drive subsystem for computer
US5388243A (en) * 1990-03-09 1995-02-07 Mti Technology Corporation Multi-sort mass storage device announcing its active paths without deactivating its ports in a network architecture
DE4033464A1 (de) * 1990-10-20 1992-04-23 Fischer Gmbh Gert Anordnung zur selektiven kopplung mehrerer module mit einem prozessor
DE69131551T2 (de) * 1990-11-09 2000-02-17 Emc Corp Logische Aufteilung eines Speichersystems mit redundanter Matrix
WO1992017836A1 (en) * 1991-03-29 1992-10-15 Sharples Kenneth R Electronic floppy disk emulation system
JP3224326B2 (ja) * 1994-06-24 2001-10-29 富士通株式会社 ディスク装置及びディスクサブシステム
US5881249A (en) * 1995-07-31 1999-03-09 Hewlett-Packard Company I/O bus
US5870630A (en) * 1995-07-31 1999-02-09 Hewlett-Packard Company System for online SCSI drive repair utilizing detachable secondary I/O buses pigtailed to primary I/O bus wherein each secondary I/O bus has a length in excess of 100mm
JPH11510929A (ja) * 1995-08-11 1999-09-21 シーメンス ニクスドルフ インフオルマチオーンスジステーメ アクチエンゲゼルシヤフト 周辺記憶装置を接続するための装置
US20060075164A1 (en) * 2004-09-22 2006-04-06 Ooi Eng H Method and apparatus for using advanced host controller interface to transfer data
US7797394B2 (en) * 2005-04-18 2010-09-14 Dell Products L.P. System and method for processing commands in a storage enclosure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1423409A (en) * 1921-05-04 1922-07-18 Victor H Fairless Hose protector
US3629860A (en) * 1969-11-10 1971-12-21 Ibm Record locate apparatus for variable length records on magnetic disk units
US3824563A (en) * 1973-04-13 1974-07-16 Ibm Data storage track padding apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3355718A (en) * 1965-08-11 1967-11-28 Sperry Rand Corp Data processing system having programably variable selection for reading and recordin interlaced data on a magnetic drum
FR1509022A (de) * 1965-11-26 1968-03-25
US3525080A (en) * 1968-02-27 1970-08-18 Massachusetts Inst Technology Data storage control apparatus for a multiprogrammed data processing system
US3999163A (en) * 1974-01-10 1976-12-21 Digital Equipment Corporation Secondary storage facility for data processing systems
US4047157A (en) * 1974-02-01 1977-09-06 Digital Equipment Corporation Secondary storage facility for data processing
JPS5177208A (ja) * 1974-12-27 1976-07-05 Hitachi Ltd Jikideisukukiokuseigyohoshiki

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1423409A (en) * 1921-05-04 1922-07-18 Victor H Fairless Hose protector
US3629860A (en) * 1969-11-10 1971-12-21 Ibm Record locate apparatus for variable length records on magnetic disk units
US3824563A (en) * 1973-04-13 1974-07-16 Ibm Data storage track padding apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
THURBER et ali., A systematic approach to the design of digital bussing structures Computer Conference, 1972, S. 719-725 *

Also Published As

Publication number Publication date
GB1602271A (en) 1981-11-11
US4183084A (en) 1980-01-08
DE2759128C2 (de) 1990-12-13
JPS63155544U (de) 1988-10-12
JPS543436A (en) 1979-01-11
CA1120585A (en) 1982-03-23
JPH0138691Y2 (de) 1989-11-20

Similar Documents

Publication Publication Date Title
DE2759128A1 (de) Steuersystem fuer eine sekundaerspeichereinheit
DE2500721C2 (de) Sekundärspeicher für digitale Datenverarbeitungssysteme
DE2921387C2 (de) Verfahren zum Austauschen von Informationen zwischen einer Datenverarbeitungsanlage und einem Magnetplattenspeicher
DE3151251C2 (de)
DE3134947C2 (de)
DE2460825C2 (de) Verfahren zur Informationsübertragung zwischen Zentraleinheit und Peripheriegeräten und Datenverarbeitungsanlage zur Durchführung des Vefahrens
DE3126941C2 (de) Eingabedaten-Synchronisierungsschaltung
DE2448212A1 (de) Asynchrone sammelleitung zur selbstbestimmten kommunikation zwischen mutterrechnergeraeten und tochtergeraeten
DE3420169A1 (de) Synchronsignal-detektorschaltung in einem digitalsignaluebertragungssystem
DE2122338A1 (de) Schaltungsanordnung zur Steuerung des Datenflusses in Datenverarbeitungsanlagen
DE3004799C2 (de)
DE2334867A1 (de) Interface-anpassungsschaltung zur steuerung eines datenflusses
DE2315598A1 (de) Datenuebertragungsanordnung
DE2133661C2 (de) Pufferspeicher-Einrichtung mit einem Speicher
DE1524111B2 (de) Elektronische Datenverarbeitungsanlage
DE2115971A1 (de) Datenverarbeitungssystem
DE2517170C2 (de) Schaltungsanordnung zum Unterbrechen des Programmablaufs in Datenverarbeitungsanlagen mit mehreren Ansteuereinrichtungen von Sekundärspeichern und dergleichen Speichereinheiten mit sequentiellem Zugriff
EP0350016B1 (de) Verfahren und Einrichtung zum Duplizieren des Inhalts von Datenträgern
DE2312415A1 (de) Schaltungsanordnung zur verbindung einer datenverarbeitungseinheit mit einer vielzahl von uebertragungsleitungen
DE2842603C3 (de) Schnittstelle zwischen einem Wartungsprozessor und einer Mehrzahl einzeln zu prüfender Funktionseinheiten eines datenverarbeitenden Systems
DE2723485A1 (de) Schaltung fuer die trennscharfe unterscheidung waehrend des lesens von in verschiedenen codes vorher aufgezeichneten daten
DE2951766C2 (de)
DE3220645A1 (de) Geraet und verfahren zur ueberwachung des betriebs eines motorsteuercomputers
DE2817135C3 (de)
EP0029216B1 (de) Datenübertragungseinrichtung mit Pufferspeicher und Einrichtungen zur Sicherung der Daten

Legal Events

Date Code Title Description
8110 Request for examination paragraph 44
8125 Change of the main classification

Ipc: G06F 13/04

8125 Change of the main classification

Ipc: G06F 13/38

D2 Grant after examination
8364 No opposition during term of opposition