DE1771503C3 - Thermisch kristallisierbares Glas und Glaskeramik auf der Basis SiO2-PbO-BaO-Al2O3-TiO2 und ihre Verwendung - Google Patents
Thermisch kristallisierbares Glas und Glaskeramik auf der Basis SiO2-PbO-BaO-Al2O3-TiO2 und ihre VerwendungInfo
- Publication number
- DE1771503C3 DE1771503C3 DE1771503A DE1771503A DE1771503C3 DE 1771503 C3 DE1771503 C3 DE 1771503C3 DE 1771503 A DE1771503 A DE 1771503A DE 1771503 A DE1771503 A DE 1771503A DE 1771503 C3 DE1771503 C3 DE 1771503C3
- Authority
- DE
- Germany
- Prior art keywords
- glass
- weight
- percent
- dielectric
- bao
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 title claims description 45
- 239000002241 glass-ceramic Substances 0.000 title description 20
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title description 5
- 239000000203 mixture Substances 0.000 claims description 20
- 239000004020 conductor Substances 0.000 claims description 15
- 239000000463 material Substances 0.000 claims description 11
- 239000013078 crystal Substances 0.000 claims description 10
- 238000010304 firing Methods 0.000 claims description 10
- 229910010293 ceramic material Inorganic materials 0.000 claims description 7
- 239000000843 powder Substances 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 5
- 238000013459 approach Methods 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000011737 fluorine Substances 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- XUKUURHRXDUEBC-KAYWLYCHSA-N Atorvastatin Chemical compound C=1C=CC=CC=1C1=C(C=2C=CC(F)=CC=2)N(CC[C@@H](O)C[C@@H](O)CC(O)=O)C(C(C)C)=C1C(=O)NC1=CC=CC=C1 XUKUURHRXDUEBC-KAYWLYCHSA-N 0.000 claims 1
- 241000282320 Panthera leo Species 0.000 claims 1
- 239000003795 chemical substances by application Substances 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 claims 1
- 230000000704 physical effect Effects 0.000 claims 1
- 230000001737 promoting effect Effects 0.000 claims 1
- 238000007493 shaping process Methods 0.000 claims 1
- 229920001169 thermoplastic Polymers 0.000 claims 1
- 239000004416 thermosoftening plastic Substances 0.000 claims 1
- 239000006112 glass ceramic composition Substances 0.000 description 25
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 24
- 229910010413 TiO 2 Inorganic materials 0.000 description 14
- 239000011787 zinc oxide Substances 0.000 description 12
- CXKCTMHTOKXKQT-UHFFFAOYSA-N cadmium oxide Inorganic materials [Cd]=O CXKCTMHTOKXKQT-UHFFFAOYSA-N 0.000 description 10
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000003990 capacitor Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 238000007639 printing Methods 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- JUWSSMXCCAMYGX-UHFFFAOYSA-N gold platinum Chemical compound [Pt].[Au] JUWSSMXCCAMYGX-UHFFFAOYSA-N 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 4
- 239000000919 ceramic Substances 0.000 description 4
- 239000003989 dielectric material Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 4
- 229910015999 BaAl Inorganic materials 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000001856 Ethyl cellulose Substances 0.000 description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910006404 SnO 2 Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910000410 antimony oxide Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- CFEAAQFZALKQPA-UHFFFAOYSA-N cadmium(2+);oxygen(2-) Chemical compound [O-2].[Cd+2] CFEAAQFZALKQPA-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 229920001249 ethyl cellulose Polymers 0.000 description 2
- 235000019325 ethyl cellulose Nutrition 0.000 description 2
- 239000010433 feldspar Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000006124 glass-ceramic system Substances 0.000 description 2
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000010970 precious metal Substances 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000018 strontium carbonate Inorganic materials 0.000 description 2
- PBCFLUZVCVVTBY-UHFFFAOYSA-N tantalum pentoxide Inorganic materials O=[Ta](=O)O[Ta](=O)=O PBCFLUZVCVVTBY-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 229910001887 tin oxide Inorganic materials 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 101100400378 Mus musculus Marveld2 gene Proteins 0.000 description 1
- JXASPPWQHFOWPL-UHFFFAOYSA-N Tamarixin Natural products C1=C(O)C(OC)=CC=C1C1=C(OC2C(C(O)C(O)C(CO)O2)O)C(=O)C2=C(O)C=C(O)C=C2O1 JXASPPWQHFOWPL-UHFFFAOYSA-N 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000012700 ceramic precursor Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- YAFKGUAJYKXPDI-UHFFFAOYSA-J lead tetrafluoride Chemical compound F[Pb](F)(F)F YAFKGUAJYKXPDI-UHFFFAOYSA-J 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- YEXPOXQUZXUXJW-UHFFFAOYSA-N lead(II) oxide Inorganic materials [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- VTRUBDSFZJNXHI-UHFFFAOYSA-N oxoantimony Chemical compound [Sb]=O VTRUBDSFZJNXHI-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000004457 water analysis Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/08—Inorganic dielectrics
- H01G4/12—Ceramic dielectrics
- H01G4/129—Ceramic dielectrics containing a glassy phase, e.g. glass ceramic
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
- C03C10/0054—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/14—Conductive material dispersed in non-conductive inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C17/00—Apparatus or processes specially adapted for manufacturing resistors
- H01C17/06—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
- H01C17/065—Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
- H01C17/06506—Precursor compositions therefor, e.g. pastes, inks, glass frits
- H01C17/06573—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder
- H01C17/0658—Precursor compositions therefor, e.g. pastes, inks, glass frits characterised by the permanent binder composed of inorganic material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4685—Manufacturing of cross-over conductors
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2204/00—Glasses, glazes or enamels with special properties
- C03C2204/04—Opaque glass, glaze or enamel
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Glass Compositions (AREA)
- Inorganic Insulating Materials (AREA)
- Joining Of Glass To Other Materials (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
9 ^i* 4 ZrO2, a) eine niedrige Dielektrizitätskonstante, um eine
kapazitive Wechselspannungskopplung zwischen isolierten Stromkreisen zu vermeiden,
b) ein geringer elektrischer Verlust (hoher Q-Wert), um eine dielektrische Erhitzung zu vermeiden,
c) eine geringe Neigung zur Nadellochbildung und eine geringe Neigung zur Gasentwicklung beim
Brennen,
d) eine passende Erweichungstemperatur des Glaskeramikvorläufers, damit der Anfangsbrennprozeß
in Verbindung mit Siebdruck durchführbar ist.
c) eine hohe Beständigkeit gegen HaarriSbi'dung
unter der Einwirkung von Wärmestößen und
f) eine geringe Empfindlichkeit für Wasserdampf und elektrische Folgestreuverluste.
4. Glaskeramik, dadurch gekennzeichnet, daß Es besteht dementsprechend ein fortgesetzter Bedarf
sie bei einer stöchiometrischen Zusammensetzung an besseren Glaskeramikmaterialien, die in dielekgemäß
einem der Ansprüche 1 bis 3 weniger als 60 trischen Massen, Widerstandsmassen, Leitermassen
Gewichtsprozent kristalline Phase aufweist. und allgemein in all den Fällen verwendbar sind, in
5. Verwendung der Glaskeramik nach Anspruch4 denen Gläser bei ddr Herstellung elektrischer Schalals
Dielektrikum. tungen und deren Teile eingesetzt werden.
6. Verwendung von 1 bi«, 96 Gewichtsprozent des In der deutschen Auslegeschrift 1 045 056 werden
(^thermisch kristallisierbaren Glases nach Anspruch 1 65 Glasversätze beschrieben, die als Hauptbestandteile
mmVfjw>'M&*s<
3 m Gemiscn mit " his 4 Gewichtsprozent SiO2, Al2O2. TiO2 und PbO sowie BaO enthalten, wobei
llfi^^pfEilHmetallpulver als Metallisicrungsmassc. diese Bestandteile insgesamt mindestens 90 Gewichts-
iMmMi^^^'i _____ prozent des Gemisches ausmachen sollen. Versuche, die
| 9 bis 13 | Al2O3. | . SS und |
| 3 bis 15 | TiO2, | |
| 4 bis 12 | BaO, .o | |
| O bis 20 | ZnO, * | |
| O bis 4 | SrO, | |
| O bis 4 | ZrO2, | |
| O bis 4 | Ta2O5, | |
| O bis 4 | WO3, ., | |
| O bis 4 | CdO, 45 | |
| O bis 4 | SnO2 und | |
| O bis 4 | Sb2O3. | |
| 3. Glas nach Anspruch 2, gekennzeichnet durch | ||
| folgende Zusammensetzung in Gewichtsprozenten: 50 | ||
| 30 SiO2, | ||
| 32 PbO, | ||
| 11 Ai2O. | ||
| 9 TiO2, | ||
| 8 BaO | ||
| 10 ZnO. | ||
| i | 1 bis 25 | AI2O3, |
| 2 bis 20 | TiO2, | |
| V ! | 2 bis 15 | Bao, |
| 0 bis 25 | ZnO, | |
| *V I | Obis 5 | SrO, |
| Obis 5 | ZrO21 | |
| V | O bis 5 | |
| O bis 5 | CdO,' | |
| O bis 5 | SnO2 | |
| Obis 5 | Sb-O-. |
*, 3
ψ- bekannten Glasversälze als Glaskerainikmaterial für Glases im Gemisch mit 99 bis 4 Gewichtsprozent
p Uberkreuzungs-Dielcktrika einzusetzen, haben er- Edelmetallpulver als Mctallisierungsmasse.
f geben, daß diese hierfür ungeeignet .sind. Das Glaskeramikmaterial enthält eine kristalline
f geben, daß diese hierfür ungeeignet .sind. Das Glaskeramikmaterial enthält eine kristalline
ψ Gegenstand der Brandung ist ein thermisch kristalü- Phase in einer Menge von unter 40 Gewichtsprozent.
Α sierbares Glas auf der Basis 5 Die beim Brennen entstehenden Kristalle haben die
if' molaren Zusammensetzungen BaAl2Si2Q1, und AI2 HO0.
|i SiOg — PbO — BaO — AI2O8 — TiO2, Die im Röntgendiagramm identifizierte Kristailhaupt-
* , phase BaAl.jSi.jO,, (Hexacelsian) stellt einen kubisch
|: gegebenenfalls im Gemisch mit einem inerten Träger, symmetrischen Feldspat dar. In kleinen Mengen kann
I das durch die folgende Zusammensetzung in Gewichts- io auch das AI2TiO6 vorliegen. Das BaO in dem
I Prozenten gekennzeichnet ist; BaAlsSi2Oe-Kristall kann zum Teil durch SrO ersetzt
20 bis 38 SiO sein' und das Veihältnis von Si zu Al ist mit dem
I 21 bis 59 Pbo' durch Austausch von Sauerstoff gegen Hydroxyl er-
I ' haltenen Ladungsausgleich variabel. Drei der wenent-
T wobei eine stöchiometrisch äquivalente Menge Sauer- 15 liehen Bestandteile der Glasvorläufermasse sind daher
ί stoff durch O bis 3 Gewichtsprozent Fluor ersetzt sein BaO, Al2O3 und SiO2. Das TiO2 stellt den Kernbildner
; kann, da!· und ergibt in der eingesetzten Menge eine starke
' Lenkung des Kristallgehaltes des gebrannten Glas-
keramikmaterials. Das TiO2 und seine Menge sind
zo som't ^1 d'e Zwecke der Erfindung kritisch. Das
^O lst a's P'u^m'tte' wichtig, stellt aber das einzige
anwesende Flußmittel dar; Alkali oder B2O3 liegt in
der Masse mcnl vor» da A^ali sich schädlich auf die
elektrischen Eigenschaften und B2O3 nachteilig auf
35 die Kristallinität auswirkt.
' ^as Glaskeramikmaterial muß mindestens 2 Ge-
Λ wichtsprozent TiO2 enthalten; geringere Mengen er-
geben keine zur Bildung eines brauchbaren Glas-
t% keramikmaterials genügende Kristallisation. Bei einer
|· " wobei der eventuell vorhandene Träger im Glas als 30 Konzentration von 3 Gewichtsprozent wird ein wesent-
I feinteiliges Pulver dispergiert ist. lieber Kiistallinitatsgrad erhalten, und die gebrannten
\ t Bevorzugt ist ein Glas der folgenden Zusammen- Glaskeramikmaterialien besitzen noch ein halbglän-
J t, setzung in Gewichtsprozenten: zendes Aussehen. Mit zunehmender TiO2-Menge
ß! < γι ν ρ 39 SO nimmt die Mattheit zu, und bei TiO2-Mengen von
κ 'f 22 b'J 51 PbO 35 ^ b's ^ Gewichtsprozent werden dementsprechend
ρ ' zusammenhaltende, gebrannte Giaskeramikmaterta-
W' wobei eine stöchiometrisch äquivalente Menge Sauer- lien erhalten, die, wenn überhaupt, nur einen geringen
t; ι stoff durch O bis 2 Gewichtsprozent Fluor ersetzt sein Oberflächenglanz aufweisen. Eine TiO2-Menge von
Γ kann, über 20 Gewichtsprozent ist nachteilig, da die Glas-
«ι,· τ» αϊ η 4° keramikniaterialien zu kristallin sind. Eine hohe
'-; 3 Pg f i *:*r3' Kristallinität (z. B. von 50 Gewichtsprozent und dar-
4 h' 1? R n' über) ist für Elektronikzwecke unerwünscht, da hoch-
n . !s ^n 7 a (-> >
knstalline Glaskeramikmaterialien auf Keramikunter-
O b'S 4 SO iagen keine dichten>
porenfreien Glaskeramikschichten
s „,Is . J" ' 45 ergeben. Glaskeramik materialien mit einer Kristallini-
' η' -S 2 τη tät von mindesten!>
20 und unter 4° Gewichtsprozent
ί " jPis 1 w*r 6>
sind am zweckmäßigsten und werden für die herkömm-
ί nu-S2 γλΑ' lichen elektronischen Zwecke bevorzugt. Da das TiO2
I " ^!s \ pir' . somit eine starke Lenkung des Kristallinitätsgrades
I " £!s \ ""X? una so ergibt, müssen die TiO2-Anteile im Bereich von 2 bis
*' υ Dss 4 bö2u3. 20, vorzugsweise 3 bis 15°/0 vom Gewicht des Glas-
Ein besonders geeignetes Glas hat die folgende Zu- keramikmaterials liegen.
* sammensetzung in Gewichtsprozent: Das SiO2 muß in einer Menge von mindestens 20°/0
vorn ^evjiC"1 des Glaskeramikmaterials eingesetzt
55 werden. Bei Mengen von unter 20 Gewichtsprozent
11 Ai η werden fluide Schmelzen erhalten, die beim Drucken
Q ?}.fr3t als Überkreuzungs-Dielektrikum Form und Lage
^"_2' nicht beibehalten. Die mit mehr als 38 Gewichtspro-
° ^aS? und zent SiO2 erhaltenen Glaskeramikvoriäufer genügen
10 ZnO. 6o ^εη Bfenntemperaturanforderungen der herkömm-
Eingeschlossen in die Erfindung sind auch die durch lichen Siebdruckverfahren nicht, da die Vorl/iufer-
Brennen dieser Gläser erhaltenen Glaskeramikmateria- glaser zu hoch schmelzen.
lien, die unter 40 Gewichtsprozent kristalline Phase Das AI2O3 muß in Mengen ab 1 % vom Gewicht
enthalten. des Glaskeramikmaterials vorliegen. Bei weniger als Die Erfindung betrifft arch die Verwendung der 65 1 Gewichtsprozent Al2O3 tritt ein Kristallisationsvorher
genannten Glaskeramik als Dielektrikum und versagen ein; das Maximum des Kristallinitätsantdis
ebenfalls die Verwendung von 1 bis 96 Gewichtspro- des gebrannten Giaskeramikmaieriuib wird hei etwa
zent des vorher genannten thermisch krislallisierbaren 10 Gewichtsprozent AI2Oj erhalten. Größere Mengen
führen wieder au einer geringeren Krislallinitüt, und
bei einem AI2O3-AiUeU von über etwa 25% wird das
•Glaskeramikmaterial zu schwer schmelzbar. Auf Grund seiner kritischen Rolle in der HexaceisianiJCristallphase
muß die BaO-Mengc mindestens 2% ,vom Gewicht des G<askera:mikmaterials betragen.
Ein Einsatz von über 15 Gewichtsprozent führt auf ,Grund des hohen Schmelzpunktes des BaO zu einer
überhöhten Porosität.
Das PbO dient als Flußmittel und stellt das einzige in dem Glaskeramiksystem vorliegende Flußmittel
' dar; das Flußmittel hat den Zweck, den Schmelzpunkt und die Viskosität zu erniedrigen. Bei einem PbO-Gehalt
des Glaskeramikmaterials von unter 21 Gewichtsprozent ist die Brenntemperatur zu hoch; bei
Mengen von über 59 Gewichtsprozent ist die Brenntemperatur zu niedrig und die Fluidität zu hoch, und
das Glaskeraniikmaterial nimmt.eine Gelbfärbung an.
Bevorzugt werden 22 bis 51 Gewichtsprozent PbO. Fluor kann vorhanden sein und kann bis zu 3 Gewichtsprozent
der stochiometrisch äquivalenten Menge Sauerstoff, vorzugsweise bis zu 2 Gewichtsprozent,
ersetzen. Ein Teil des PbO kann durch ZnO ersetzt werden. Vorzugsweise liegt das Zinkoxid in Mengen
von zu 25 Gewichtsprozent des Glaskeramikmaterials vor. Ein ZnO-Anteil von 25 Gewichtsprozent hat sich
als die \ on dem Glaskeramiksystem tolerierte Höchstmenge erwiesen, da größere Mengen zu einem schlechten
Brennen und einer hohen Porosität führen.
Es hai sich gezeigt, daß SrO, ZrOai Ta8O6, WO3,
CdO, SnO4, Sb4O3 ynd PbF2 ohne besondere nachteilige
Auswirkung einführlmr sind. Darüber hinaus
inhibiert MgO die Kristallisation, führt NbA *»
gelbgefärbten Produkten, und MoOs unterliegt einer
Teilreduktion, was zu einer Schwarzfärbung ui;u unerwünscht
geringen Werten des elektrischen Widerstandes des Glaskeramikmaterials führt. Von SrO
abgesehen sind keine besonderen Vorteile eines
ίο Zusatzes der normalen, gewöhnlich in der Technik
eingesetzten Glasbestandteile erkennbar, Von der/ gewöhnlichen Glasbestandteilen dürfen naturgemäß
nur diejenigen Stoffe eingesetzt werden, welche die Eigenschaften des Glaskeramikmaterials nicht nachteilig
beeinflussen.
Zur Herstellung der Glaskeramikmaterialien gemäß der Erfindung wird der die vorgesehenen Metalloxide
und Mengenanteile ergebende Ansatz geschmolzen. Verschiedene Ansätze, die beim Schmelzen
so Glaskeramikvorläufer der Zusammensetzung gernälJ
der Erfindung liefern, sind in der Tabelle I zusammengestellt. Bei der Durchführung der Erfindung wird
zunächst der einzusetzende Ansatz hergestellt und dann zur Bildung eines im wesentlichen homogenen,
as fiuiden Glases geschmolzen. Die während des Schmelzens
aufrechterhaltene Temperatur ist nicht kritisch, Hegt aber gewöhnlich im Bereich von 1100 bis 1500"C,
um eine rasche Homogenisierung der Schmelze /u erhalten. Vorzugsweise arbeitet man bei etwa 1450 C.
SiO2, Flint
Al(OH)3, Aluminiumhydrat
TiOjj, Titandioxid
PbO, Bleiglätte
BaCO3, Bariumcarbonat ...
ZnO, Zinkoxid
SrCO3, Strontiumcarbonat .
ZrO2, Opax
Ta4O5, Tantalpentoxid
WO8, Wolframtrioxid
CdO, Cadmiumoxid
SnO1, Zinnoxid ,
SbjjO3, Antimonoxid
PbF2, Bleifiuorid
Ansatz-Zusammensetzungen, Gewichtsprozent
4 15 6 17 8 9
4 15 6 17 8 9
27,8 15,5
8,3 29,6
9,5
9,3
25,0 15,5 11,1 29,6
9,5
9,3
22,2
15,5
13,9
29,6
15,5
13,9
29,6
9,5
9,3
30,5
15,5
15,5
5,6
29,6
29,6
9,5
9,3
33,1
15,5
15,5
2,8
29,6
29,6
9,5
9,5
34,3
7,3
8,6
30,5
30,5
9,8
9,5
26,5
27,1
27,1
8,0
20,4
20,4
9,1
8,9
27,4
19,5
19,5
8,2
26,4
26,4
9,4
9,1
27,8
15,5
15,5
8,3
38,9
38,9
9,5
10
27,8
15,5
15,5
8,3
34,3
34,3
9,5
4,6
Tabelle I (Fortsetzung)
, 1SiO2, Flint
/",'AI(OH)3, Aluminiumhydrat
p-T\Ot, Titandioxid
%PbO Bleiglätte..
BaCO3, Bariumcarbonat ...
ZnO, Zinkoxid
SrCO3, Strontiumcarbonat .
ZrO2, Opax
Ta2O3, Tantalpentoxid
WO3, Wolframtrioxid
CdO, Cadmiumoxid
SnO1J, Zinnoxid
„_Antimonoxid
Bieifiuorid
12
Ansatz-Zusammensetzungen, Gewichtsprozent
j 15 j 16 j 17 I 18 J 19 I 20
j 15 j 16 j 17 I 18 J 19 I 20
21
| 27,5 | 27,8 | 27,8 | 27,4 | 24,1 | 27,8 | 27,8 | 28,1 | 27,8 | 27,8 | 27,7 |
| 15,4 | 15,5 | 15,5 | 15,3 | 15,5 | 15,5 | 15,5 | 15,7 | 15,5 | 15,5 | 15,5 |
| 8,2 | 8,3 | 8,3 | 8,2 | 8,3 | 4,6 | 4,6 | 8,4 | 4,6 | 4,6 | 8,3 |
| 25,6 | 25,0 | 20,4 | 29,2 | 29,6 | 29,6 | 29,6 | 29,9 | 29,6 | 29,6 | 20,4 |
| 14,2 | 9,5 | 9,5 | 4,7 | 9,5 | 9,5 | 9,5 | 4,9 | 9,5 | 9.5 | 9,5 |
| 9,1 | 13,9 | 18,5 | 9,1 | 9,3 | 9,3 | 9,3 | 9,3 | 9,3 | 9,3 | 9,3 |
| O | O | O | 6,1 | O | O | O | O | O | O | O |
| O | O | O | O | 3,7 | O | O | O | O | O | O |
| O | O | O | O | O | 3,7 | O | O | O | O | O |
| O | O | O | O | O | O | 3,7 | O | O | O | O |
| O | O | O | O | O | O | O | 3,7 | O | O | O |
| O | O | O | O | O | O | O | O | 3,7 | O | O |
| O | O | O | O | O | O | O | O | O | 3,7 | O |
| O | O | O | O | O | O | O | O | O | O | 9.3 |
Nachdem die Bildung eines homogenen, fluiden Glases sichergestellt ist, erfolgt die weitere Behandlung
bzw. Verarbeitung nach an sich bekannten Methoden. Zum Beispiel kann man der Masse durch
Ziehen, Blasen oder Pressen die gewünschte Form geben. Im allgemeinen wird das homogene Glasfluid
zur Bildung einer Fritte, die man anschließend zu einem Pulver rrjablen oder zerkleinern kann, in Wasser
oder eine andere Flüssigkeit gegossen. Das Produktglas stellt den Glaskeramikvorläufer gemäß der Erfindung
dar. Zur Bildung des Glaskeramikproduktes gemäß der Erfindung wird der Vorläufer bei 800 bis
9000C gebrannt, wobei dieser Brennstufe eine besondere
Bedeutung zukommt. Der Glaskeramikvorläufer, der ein beim Schmelzen des Ansatzes und Abschrecken
der-Schmelze gebildetes Glas darstellt, wird vorzugsweise
bei einer Temperatur gebrannt, bei der sich, durch Wärmedifferentialanalyse bestimmt, die maximale
Kristallisationsgeschwindigkeit einstellt. Herkömmliche Verfahren und Bestimmungen zur Wärmedifferentialanalyse
sind in W. J. Smothers,
»Differential Thermal Analysis«, Chemical Publishing Company, New York, 1958, beschrieben. Wichtig ist,
daß die Kernbildung und Kristallhition in einer
einzigen Stsife bei der gleichen Brenntemperatur unter
Bildung eines Glaskeramikmaterials innerhalb kurzer Zeit (z. B. 1 Minute) erfolgt. Während des Brennens
bilden sich Kristalle, die bis zum Undurchsichtrgwerden
des Glaskeramikfilms wachsen. Diese Arbeitsweise führt zu den Glaskeramikprodukten gemäß der
Erfindung, die unter 40% der Kristallphase enthalten,
ίο während der R^st von der remanenten Glasphase
gebildet wird.
Bei der Durchführung der Erfindung können die Mischungsansätze nach Tabelle I oder andere Ansätze
zur Bildung der Gläser der Zusammensetzung nach Tabelle II eingesetzt werden, die man dann zur Herstellung
von siebdruckfähigen Überkreuzungs-Dielektrikum-, Kondensator-Dielektrikum-. Widerstands-
und bzw. oder Leitermassen einsetzen kann.
In den folgenden Beispielen beziehen sich Teil-,
In den folgenden Beispielen beziehen sich Teil-,
»o Verhältnis- und Prozentangaben für die Materialien
oder Komponenten auf das Gewicht.
| 1 | 2 | Zusammensetzung der geschmolzenen Massen 3 j 4 J 5 I 6 j 7 |
33 | 36 | 36 | 30 | , Gewicht 8 |
sprozent 9 |
10 | 34 | |
| SiO | 30 | 27 | 24 | 11 | 11 | 5 | 20 | 30 | 30 | 30 | 11 |
| A],O | 11 | Π | 11 | 6 | 3 | 9 | 9 | 14 | 11 | 11 | 9 |
| TiO2 | 9 | 12 | 15 | 32 | 32 | 32 | 23 | 9 | 9 | 9 | 32 |
| PbO | 32 | 32 | 32 | 8 | 8 | 8 | 8 | 29 | 42 | 37 | 4 |
| ßaO | 8 | 8 | 8 | 10 | 10 | 10 | 10 | 8 | 8 | 8 | 10 |
| ZnO | 10 | 10 | 10 | 0 | 0 | 0 | 0 | 10 | 0 | 5 | 0 |
| SrO | O | 0 | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ZrO2 | O | 0 | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| O | 0 | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| WO? | O | 0 | O | 0 | 0 | 0 | 0 . | 0 | 0 | 0 | 0 |
| CdO | O | 0 | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| O | 0 | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Λ | |
| SbX), | O | 0 | O | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| PbP2 | O | 0 | O | 0 | 0 | 0 | |||||
| η | η | Tabelle II | lensetzun IS |
[Fortsetzung) | •fimolzene 17 |
ii Massen 18 |
, Gewichtsprozent 19 j 20 |
30 | 21 | 22 | |
| 30 | 30 | Zusamn | 30 | g der ge« 16 |
30 | 30 | 30 | 11 | 30 | 30 | |
| SiO | 11 | 1.1 | 30 | 11 | 26 | 11 | 11 | 11 | 5 | 11 | 11 |
| Al4Ox .,.,, | 9 | 9 | 11 | 9 | 11 | 5 | 5 | 9 | 32 | 5 | 9 |
| 28 | 27 | 9 | 32 | 9 | 32 | 32 | 32 | 8 | 32 | 32 | |
| PhO ,,., | 12 | 8 | 22 | 4 | 32 | 8 | 8 | 4 | 10 | 8 | 8 |
| BaO ,,,,.,,,,,.,, | 10 | 15 | 8 | 10 | 8 | 10 | 10 | 10 | 0 | 10 | 10 |
| 7ηΟ , ...,..,..,,.., | 0 | 0 | 20 | 4 | 10 | 0 | 0 | 0 | 0 | 0 | 0 |
| SrO .. ..,,.,,,.. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| ZrO- . .,..·,.·' | 0 | 0 | 0 | 0 | 4 | 4 | 0 | 0 | 0 | .0 | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | |
| V/O-, .,..,,,> | 0 | 0 | 0 | 0 | 0 | 0 | 0 | '-4 | " ":tsj.A Λ. | - i-0 | 0 |
| CdO ■ ,..,.<>. | 0 | 0 | 0 | 0 | 0 | 0 > | -0 | 0 - | 0 | 10 | 0 |
| SnO- ,, ,,,.,,.,, .. | 0 | 0 | 0 | 0 | 0 | 0 | » 0 | 0 | 0 ' | -4 | 0 |
| α ο, , .,,,,,,,,.,. | 0 | 0 | 0 | ν 0 | 0 | 0 | - 0 | 0 | TO | ||
| Pb?'2 . ,,. > >'' ·' " " | 0 | 0 | |||||||||
| ti'; ./ | %-a- t. | ||||||||||
Heinρ>
e-Je 1. bίs 22 *
Die GiMkcramikvori&Ufcr-Ol^zusammenmiiingen „
rn/ίίί Tflfiei/e " v/f/rdcnHn Fritfeförnraus dertfejit-""
gern/Mi
sprechend zusammengesetzten Ansätzen 2 Bis 22 nach
Tabelle I hergesiellti%Özu die trockenen Ansatzkom-.,pönenten
ausgesogen, gründlich gemischt tund in" einer) Disthenticgel eingegeben wurden/ der inAcinen,
9 10
elektrischen Ofen von 14500C eingesetzt und auf nuten bei etwa 85O°C und bei einer Einwirkung der
dieser Temperatur gehalten wurde, bis jegliche Gas- Spitzentemperatur von etwa 5 Minuten Dauer,
entwicklung aufhörte und der Tiegelinhalt klar und Auf das Glaskeramikmaterial wurde, der Form der durchsichtig war. Hierauf wurde der Tiegel aus dem Glaskeramik-Dielektrikumschicht entsprechend, ein Ofen entnommen und sein Inhalt langsam in kaltes 5 Platin-Gold-Leiterbeleg aufgedruckt und 10 Minuten Wasser gegossen, wobei sich beim Gießen die hohe bei 7500C gebrannt. In jedem Falle erfolgte das Auf-Viskosität des Glaskeramikvorläufers als vorteilhaft drucken und Brennen dieser Leiteroberbeläge ohne erwies. Die erhaltene Fritte wurde auf eine Kugel- Erweichen des Dielektrikums und dementsprechend mühle aufgegeben, welche die normale (halbe) Füllung ohne Kurzxhlußwegbildi/ng.
entwicklung aufhörte und der Tiegelinhalt klar und Auf das Glaskeramikmaterial wurde, der Form der durchsichtig war. Hierauf wurde der Tiegel aus dem Glaskeramik-Dielektrikumschicht entsprechend, ein Ofen entnommen und sein Inhalt langsam in kaltes 5 Platin-Gold-Leiterbeleg aufgedruckt und 10 Minuten Wasser gegossen, wobei sich beim Gießen die hohe bei 7500C gebrannt. In jedem Falle erfolgte das Auf-Viskosität des Glaskeramikvorläufers als vorteilhaft drucken und Brennen dieser Leiteroberbeläge ohne erwies. Die erhaltene Fritte wurde auf eine Kugel- Erweichen des Dielektrikums und dementsprechend mühle aufgegeben, welche die normale (halbe) Füllung ohne Kurzxhlußwegbildi/ng.
mit Mahlkörpern (Keramikkugeln) und die ent- io Die kristallinen Phasen der Dielektrika wurden
sprechende Gewichtsmenge an Wasser enthielt, und röntgenoanalytisch unter Verwendung von CuK*-
auf eine solche Feinheit gemahlen, daß sich auf Strahlung und eines Nickelfilters an Pulverdiagrammen
einem Sieb von 0,044 mm lichter Masebenweite identifiziert und durch experimentelle Synthese des
(325-Maschen-Sieb) ein Rückstand von unter 1 Ge- Feldspates, Ba(AIjSi2)O8, bestätigt. Ferner ergaben
wichtsprozent ergab. Normalerweise sind für eine 15 sich kleine Mengen an AI2TiO5.
genügende Mahlung einer 1500-g-Charge auf einer Die gebrannten Überkreuzungs-Dielektrika wurden
3,8-1-KugelmühIe mit 120 ml Wasser 16 Stunden er- vor und nach einer Wärmestoßprüfung, bei der das
forderlich. Die gesiebte Aufschlämmung wurde auf Material in fünf Zyklen zwischen sieöendem Wasser
Filtrierpapier (Whatman Nr. X) abfiftriert und 16 Stun- und Eiswasser und umgekehrt belastet wurde, mit
den bei 1050C getrocknet. Der getrocknete Filter- 20 einem Stereomikroskop bei 30facher Vergrößerung
kuchen wurde zum Aufbrechen der trocknenden und bei normaler und einfallender Strahlung unter-
Aggregate feingemahlen (Micropulverizer). Die an- sucht. Alle aus den Gläsern der Zusammensetzungen
fallenden, feinteiligen Glaskeramik vorlauf er-Pulver nach Tabelle II erhaltenen Glaskeramikmaterialien
waren für jeden gewünschten Verwendungszweck bestanden diese scharfe Prüfung ohne Haarrißbildung,
einsatzbereit. 35 Bei einer weitergehenden Bestimmung des Glas-
Die Glaszusammensetzungen nach Tabelle II eignen keramikmiuierials von Beispiel 23 ergab sich eine
sich, wie die folgenden Beispiele zeigen, besonders gut Dielektrizitätskonstante von 13,9 bei 1 kHz, ein Ver-
als siebdruckfähige Überkreuzungs-Dielektrika. lustfaktor von 0,05%, ein Q-Wert von 580 bei 1 MHz
ο ··,.,,.· AA und 100 hei 5 MHz, ein Gleichspannungswiderstand
B e ι s ρ ι c 1 e 2, b 1 s 44 3O &h öberkreuzungs-Dieiekirikum in Kondensatorform
Die nach Beispiel 1 bis 22 erhaltenen, feinen Glas- von über 10e Ohm bei einer Kapautätsvariation von
keramikvorläufer-Pulver wurden in einem inerten 7 bis 265 pF, eine Stehwechselspännung von über
Träger aus 8% ÄthylcelluJose und 92% /7-Terpineol 250 V'0,025 mm bei einem Kondensator von 125 pF
dispergiert. Die anfallende Paste, deren Brookfield- und ein Ansteigen des Verlustfaktors in 150 Stunden
Viskosität 600 P bei 10 U/Μίπ. betrug, war druck- 35 bei 95% relativer Feuchte und 850C auf 7,32% bei
fertig. einem jedoch noch über 10* Ohm liegenden Isolations-
In einer gesonderten Stufe wurde eine Keramik- widerstand. Der Widerstand des Platin-Gold-Leiier;
unterlage mit einem Aluminiumoxidgehalt von 96 Ge- auf dem Überkreuzungs-Dielektrikum betrug 58 MiIIi-
wichtsprozent im Siebdruck mit einem leitfähigen ohm/Quadrat im Vergleich zu 72 Milliohm auf der
Belag einer feinieüigen (Teilchengröße 0,1 bis 20 Mi- 45 Unterlage (Widerstand eines Silber-Leiiers 4,8 im
krön) Platin-Gold-Leitermasse folgender Zusammen- Vergleich zu 4,3 Milliohm auf der Unterlage) und der
setzung versehen: Widerstand des gelöteten Platin-Golds 10,9 im Ver-
gleich zu 14·5 Müliohm/Quadrat auf der Unterlage
(Sj]ber 73 jm v ,ejch zu 3,3 iVIilliohm auf der
Ul
% 45 Unterlage).
:, Die dielektrischen Eigenschaften wurden mit einer
",οο>"ζ>ί.">"iV;
Kapazitätsmeßbrücke der Bauart «Genera! Radio«
££ Vr-( [\ AthylcelluIose· „ Typ 1615-A bei 1 kHz bestimmt.
r-.! mirSn^PntrH^isor ' Die Bestimmung des Q-Wertes erfolgte mit einem
Glas (63,1 Gewichtsprozent CdO, 16 9 Ge- Meßgerät der Bauart »Boonton Radio« Modell 260-A
wichtsprozent B2O3, 12 7 Gewichtspro- bd 1 MHz und die Bestimmung ^ hohen G,cich.
zent S1O2, 7,3 Gew.chtsprozent Na2O) 3 stromwiderstände mit einem Meßgerät der Bauart
Dieser leitfähige Unterbelag wurde 2 Minuten bei »Mideastern Megatrometer« Modell 710 und der ver-10500C
gebrannt (diese Temperatur ist nicht kritisch; häiinismäßig geringen Wäderetänds 5r.it einstn MiHisic
wird in allgemeinen entsprechend der Temperatur- 55 ohmmeter der Bauart »Keithley« Modell 502-A.
verträglichkeit der Metailphase in dem Leiter zur Als Innenwiderstände (i. R.) der Glaskeramik-
verträglichkeit der Metailphase in dem Leiter zur Als Innenwiderstände (i. R.) der Glaskeramik-
lirzielung einer guten Haftung möglichst hoch ge- materialien der Beispiele 24 bis 44 wurden Werte
wühlt). zwischen 10· und 10" Ohm erhalten. Die Stchspan-
Dicsc vorbedruckten Unterlagen wurden unter nung des Dielektrikums lag stets über 200 V/0,025 mm
limsatz der in der obigen Weise erhaltenen Disper- βρ (Wechselstrom).
«ionen der Massen nach Tabelle If durch Bedrucken ψ y Die Glaskeramikmaterialien gemäß der Erfindung
mit einem Überkreuzungs-Dielektrikum in Form ||* können, ;wie das folgende Beispiel erläutert, äucK als ,,
•einer vollständigen Abdeckung) einschließlich der ^r" Dielektrikum in Kondensatoren eingesetzt wcrdcfi.
R/Indcr, ausgenommen ein Feld an einer Ecjicjüm,'^ , ηΐί.η. , -- .,■
Anschluß des Unterbelages, belegt. PJfeiJ^fo^Jfi^. Hej;spici 45
folgten zur Erzielung einer rech^dicken; &ψ§ΰα\&ύ; ^| w;D^s*},jfeinteilige GlaskeramiKpulyer y m Beispiel 6
Schicht des Glaskeramikmateriais ,durch' -W^l^S^^^iitdei^ einem Jrterten Träger^aus. 8.%^,ihyiceliulosc
Miischen-.Sicbschablone. Das Brennen erfolgte 10Μί-ί**!|ηΰ!92?/β /f-TerpSheoi zu einer dielektrischen Masse
11 12
<■ «dispergiert, mit der dann in herkömmlicher Weise Die Glaskeramikmaterialien gemäß der Erfindung
"(wie nach USA.-Patentschrift, 2 398 176) ein elek- bieten auch in Widerstandsmassen einen wichtigen
"irischer Kondensator hergestellt wurde, Vorteil, in denen die Umwandlung des fluiden Glases
- Zur Kondensatorherstellung wurde auf einer Unter- in Keramikmateria! die Sini ving der Edelmetall'
'lage mit einem Aluminiumo^'d-Gehalt von 96 Ge- 5 pulver hemmt und zu einer nur sehr geringen Widerwichtsprozent
ein 3,1 · 3,1 mm Eiektrouenaufdruck Standsveränderung mit der Brennzeit führt,
einer Platin-Gold-Metallisierungsmasse (in Beispiel 23 Die Glaskeramik materialien gemäß der Erfindung bis 44 beschrieben) 10 Minuten bei 75O0C gebrannt. eignen sich auch zur Einbettung bzw. -kapselung Die vorgebrannte Unterelektrode wurde dann mit elektronischer Schaltungsteile und zur Ausbildung der obengenannten Glaskeramikmasse von Beispiel 6 io hermetischer Abdichtungen bzw. Verschlüsse, wobei in einem organischen Träger bedruckt und getrocknet. die neuen Glaskeramikmaterialien an Stelle der htr-Schließlich wurde auf den Dielektrikumdruck ein kömmlichen Gläser eingesetzt werden können, die dritter Aufdruck mit der gleichen Metallisierungs- heute auf de η Gebiete der Einbettung und -kapselung masse (Gegenelektrode) aufgebracht und der Druck- und des hermetischen Verschlusses von elektronischen aufbau zur Bildung des gebrannten Kondensators 15 Bauteilen Verwendung finden.
10 Minuten bei 7500C zum Verwachsen gebracht Bei der Herstellung der Übe.rkreuzungs-Dielektri-(»koalesziert« bzw. gebrannt). kum-, Kondensator-Dielektrikum-, Widerstands- oder Der mit der Giaskeramikniasse gemäß der Erfin- Leitermassen kann als Träger jede inerte Flüssigkeit dung als Dielektrikum erhaltene Kondensator hat eingesetzt werden.
einer Platin-Gold-Metallisierungsmasse (in Beispiel 23 Die Glaskeramik materialien gemäß der Erfindung bis 44 beschrieben) 10 Minuten bei 75O0C gebrannt. eignen sich auch zur Einbettung bzw. -kapselung Die vorgebrannte Unterelektrode wurde dann mit elektronischer Schaltungsteile und zur Ausbildung der obengenannten Glaskeramikmasse von Beispiel 6 io hermetischer Abdichtungen bzw. Verschlüsse, wobei in einem organischen Träger bedruckt und getrocknet. die neuen Glaskeramikmaterialien an Stelle der htr-Schließlich wurde auf den Dielektrikumdruck ein kömmlichen Gläser eingesetzt werden können, die dritter Aufdruck mit der gleichen Metallisierungs- heute auf de η Gebiete der Einbettung und -kapselung masse (Gegenelektrode) aufgebracht und der Druck- und des hermetischen Verschlusses von elektronischen aufbau zur Bildung des gebrannten Kondensators 15 Bauteilen Verwendung finden.
10 Minuten bei 7500C zum Verwachsen gebracht Bei der Herstellung der Übe.rkreuzungs-Dielektri-(»koalesziert« bzw. gebrannt). kum-, Kondensator-Dielektrikum-, Widerstands- oder Der mit der Giaskeramikniasse gemäß der Erfin- Leitermassen kann als Träger jede inerte Flüssigkeit dung als Dielektrikum erhaltene Kondensator hat eingesetzt werden.
eine außergewöhnliche Kombination elektrischer so Der Träger kann zur Förderung eines raschen
Eigenschaften ergeben. Der Kondensator ergab über Erstarrens nach der Aufbringung flüchtige Flüssigerwünschte
Q-Werte hinaus eine niedrige Dielektri- keiten erhalten oder von diesen gebildet werden ocl ,r
zitätskonstante, einen geringen dielektrischen Verlust Wachse, thermoplastische Harze oder ähnliche Stoffe
und eine nur geringe Kapazitätsveränderung mit der enthalten, die Thermofluide darstellen, so daß man
Temperatur. as die den Träger enthaltende Masse bei erhöhter Tem-Die
Glaskeramikmaterialien gemäß der Erfindung peratur auf einen verhältnismäßig kalten Keramikkönnen
auch bei einer Vielfalt anderer Zwecke Ver- körper aufbringen und hierauf sofort ein Erstarren
Wendung finden. Zum Beispiel ist das Glaskeramik- der Masse erhalten kann.
material als unorganisches Bindemittel für Leiter- Das Verhältnis des inerten Trägers zu den Festr.iassen
vorteilhaft. Die ;ehr hohe mechanische 30 stoffen (Glas, Metalle usw.) in den dielektrischen
Festigkeit des Glaskeramikmaterials führt bei diesem Massen und Metallisierungsmassen gemäß der ErEinsatz
zu gedruckten und gebrannten Leitern sehr findung Lann in Abhängigkeit von der Art und Weise,
hoher Haftung, da bei dieser Verwendung die Festig- in welcher der Anstrichstoff oder die Paste aufzukeit
des anorganischen Bindemittels von Wichtigkeit ist. bringen ist, und der Art des Trägers sehr verschieden
Dies ist in dem folgenden Beispiel erläutert. 35 gewählt werden. Im allgemeinen arbeitet man zur
„ . . . ., Bildung eines Anstrichstoffs oder einer Paste dir
Beispiel 40 erwünschten Konsistenz mit 1 bis 20 Gewichtsteilen
Auf eine Kcramikunterlage mit einem Aluminium- Feststoff (Glas, Metalle usw.) je Teil Träger. Vorzugsoxidgehalt
von 96 Gewichtsprozent wurde durch weise werden 4 bis 10 Gewichtsteile Teile Feststoffe je
Siebdruck eine /einteilige (Teilchengröße 0,1 bis 40 Teil Träger eingesetzt.
20 Mikron) Leitermasse der folgenden Zusammen- In den Elektrodenbeiägen der Kondensatoren, den
setzung aufgebracht: Widerstandsmassen und den Leitermassen gemäß der
_ . , Erfindung kann eine breite Vielfalt von Metaller
r ., ewic ι sprozen eingesetzt werden. Vorzugsweise arbeitet man mit
rj0'? i?~ 45 Edelmetallen, insbesondere Gold, Silber. Platin,
Platin ··■■·········■···'■■
15 Palladiu 1, Rhodium und Iridium und Legierungen,
mV, '/^(8°/, Athylcellulose, Oxi(Jen und Mischungen derselben. Auch alle anderen
91 /0 p-1 erpineoij ···.".·;·.
V3. in Metallisierungsmassen verwendeten Metalle kön-
Glaskeramikvorläufet: von Beispiel 4.... 15 nen eingesetzt *erden>
z. B. Molybdän, Wolfram,
Der gedruckte und gebrannte Leiter ergab eine 50 Eisen, Nickel, Kupfer, Chrom, Zirkonium und
gute Leitfähigkeit, sine ausgezeichnete Haftung und Thorium und Oxide, Legierungen und Mischungen
eine gute Lötbarkeit. derselben.
• ,; .,fa
,'■ -''Λ 'I
«r-t
-sy
'"V
J- iJf ·
Claims (1)
- „.,-,. Das GlwkeramJlHnaierfol 'to al» polykristallin«;Patentansprüche: , jüsrdroJkmaterial definiert, das durch gelenkte Krwtall»1, Thermisch krisfalJisfetons Glas auf der Basis satios eines Glasss in situ heimjelll wird. CewöbnlKhPbu ~ BaO—AJ4O3 - TiO* ^ A -^. fc „bildenden oder kratflllisa-gegebenenfalls im Gemisch mit einem inerten lionsfördernden Mittel versetzt, der Ansatz j
^Träger, gekenn 7, eichnetdurch folgende zen, die Schmelze gleichzeitig zum Glaskörper geformtH Zusammensetzung in Gewichtsprozenten: und abgekühlt und der erhaltene Formkörper nach-m w i9 c-n ?imm kntiicfaen Zeil-Temperatur-Programm wärme-^ E'-8 <o oi^?' Io behandelt. Der Glasform körper wird durch diese/ι öjs ^y ρου, Wärmebehandlung in einen Körper übergeführt, derwobei eine stöchiometrisch äquivalente Menge aus feinkörnigen, regellos (statistisch ungeordnet) Sauerstoff durch O bis 3 Gewichtsprozent Fluor orientierten, im wesentlichen gleichmäßig in einemersetzt sein kann, glasigen Träger dispergieren Kristallen aufgebaut ist,...,,..„ 15 wobei die Kristalle den Hauptteil des Körpers bilden,-j h'S ν. τ-η Der kristalline Aufbau des Körpers führt gewöhnlich;*!„ 'J7*' zu physikalischen Eigenschaften, die sich von den-n i!· 7^ r η jenigen des ursprünglichen Glases beträchtlich unter-y DiS /;> 4-nu, scheiden. Der Körper kann jedoch, da er ursprünglichη h'S * 7 η ao ein Glas darsteHt. unter Anwendung herkömmlicherη h-S s τη Verfahren zur Glasformung in praktisch jede Form"P! ? Afo fracht v/erden. Keramikmaterialien finden einefi h « ηϊη verbreitete Anwendung in der Elektro- bzw. Elekiro-fik· I Q η α nikmdustrie als dielektrische Körper,η ν % Ihn 2S Ein »Überkreuzungsi-Dielektrikum stellt im wesent-υ ms a SD2Uj, |-chen einen Jso]ator niedriger Dielektrizitätskonstantewobei der eventuell vorhandene Träger im Glas dar, der zwei Leiteranordnungen beim Durchlaufen als feinteiliges Pulver dkperfpert ist, mehrerer Brennstufen zu trennen vermag. Bisher sind■ 2. Glas nach Ansprach I1 gekennzeichnet durch als Dielektrikum hochschmelzende, viskose Gläser folgende Zusammensetzung in Gewichtsprozenten: 30 eingesetzt worden, wodurch das Brennen des oberen 22 b' 'tt «TO Leitungsweges unterhalb der Temperatur erfolgen22hg51 PhO ' kann, bei welcher eine Erweichung des Dielektrikums' eintreten würde. Ein Schmelzen oder Erweichen deswobei eine stöchiometrisch äquivalente Menge Überkreuzungs-Dielektrikums ist von einer Kurz-•Sauerstoff durch O bis 2 Gewichtsprozent Fluor 35 Schließung der beiden Leiteranordnuiigen miteinander ersetzt sein kann, unter Versagen der elektrischen Schaltung begleitet.Q hi« η Air» Das Haupterfordernis eines Überkreuzungs-Dielek-r \ ?■ \i 2..'fr3' trikums bildet die Beherrschung des Wiedererweichensβ iDi5JDJiu2, bzw. des thermoplastischen Verhaltens in der Stufe,in welcher der obere Leiter gebrannt wird. Andere Anforderungen an die Eigenschaften sind
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US64641467A | 1967-06-01 | 1967-06-01 | |
| US717410A US3586522A (en) | 1967-06-01 | 1968-03-29 | Glass-ceramics containing baal2si208 crystalline phase |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| DE1771503A1 DE1771503A1 (de) | 1972-02-10 |
| DE1771503B2 DE1771503B2 (de) | 1973-03-08 |
| DE1771503C3 true DE1771503C3 (de) | 1973-10-11 |
Family
ID=27094924
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DE1771503A Expired DE1771503C3 (de) | 1967-06-01 | 1968-05-31 | Thermisch kristallisierbares Glas und Glaskeramik auf der Basis SiO2-PbO-BaO-Al2O3-TiO2 und ihre Verwendung |
Country Status (4)
| Country | Link |
|---|---|
| US (2) | US3586522A (de) |
| JP (1) | JPS4642917B1 (de) |
| DE (1) | DE1771503C3 (de) |
| GB (1) | GB1182987A (de) |
Families Citing this family (26)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3812688A (en) * | 1970-09-14 | 1974-05-28 | Corning Glass Works | Frit capacitor and method for obtaining the dielectric constant thereof |
| US3785837A (en) * | 1972-06-14 | 1974-01-15 | Du Pont | Partially crystallizable glasses for producing low-k crossover dielectrics |
| US3837869A (en) * | 1972-07-20 | 1974-09-24 | Du Pont | Celsian containing dielectric crossover compositions |
| US3787219A (en) * | 1972-09-22 | 1974-01-22 | Du Pont | CaTiO{11 -CRYSTALLIZABLE GLASS DIELECTRIC COMPOSITIONS |
| US3956558A (en) * | 1972-11-03 | 1976-05-11 | Commercial Decal, Inc. | Ceramic decalcomania and method |
| US3862844A (en) * | 1972-11-03 | 1975-01-28 | Ceramic Color & Chemical Manuf | SnO{HD 2 {B containing lead silicate glass having a low melting point |
| US3857746A (en) * | 1972-11-03 | 1974-12-31 | Commercial Decal Inc | Color decalcomania and method |
| IT999087B (it) * | 1972-12-27 | 1976-02-20 | Beckman Instruments Inc | Materiale resistivo |
| US4028121A (en) * | 1975-07-18 | 1977-06-07 | Corning Glass Works | Lead feldspar glass-ceramic bodies |
| FR2388381A1 (fr) * | 1976-12-27 | 1978-11-17 | Labo Electronique Physique | Composition dielectrique, pate serigraphiable comportant une telle composition et produits obtenus |
| FR2512262B1 (fr) * | 1981-08-28 | 1986-04-25 | Trw Inc | Materiau emaille a resistance, resistance electrique et leur procede de fabrication |
| EP0086812A4 (de) * | 1981-09-01 | 1985-06-10 | Motorola Inc | Glasleimungsmittel und verfahren. |
| US4800421A (en) * | 1981-09-01 | 1989-01-24 | Motorola, Inc. | Glass bonding means and method |
| NL8301604A (nl) * | 1983-05-06 | 1984-12-03 | Philips Nv | Dielektrisch glas in meerlagenschakelingen en hiermee uitgeruste dikke filmschakelingen. |
| JPS60117517A (ja) * | 1983-11-28 | 1985-06-25 | 松下電器産業株式会社 | 制御装置 |
| JPS6179315U (de) * | 1984-10-26 | 1986-05-27 | ||
| US4820661A (en) * | 1986-07-15 | 1989-04-11 | E. I. Du Pont De Nemours And Company | Glass ceramic dielectric compositions |
| US5397830A (en) * | 1994-01-24 | 1995-03-14 | Ferro Corporation | Dielectric materials |
| US5714246A (en) * | 1994-05-13 | 1998-02-03 | Ferro Corporation | Conductive silver low temperature cofired metallic green tape |
| US5910459A (en) * | 1995-10-31 | 1999-06-08 | Corning Incorporated | Glass-ceramic containing a stabilized hexacelsian crystal structure |
| US6395663B1 (en) | 2000-06-16 | 2002-05-28 | National Science Council | Low temperature sintered BI2O3-ZNO-NB2O5 ceramics and method for its formation |
| US8161862B1 (en) * | 2007-01-08 | 2012-04-24 | Corning Incorporated | Hybrid laminated transparent armor |
| US7867932B2 (en) * | 2007-08-28 | 2011-01-11 | Corning Incorporated | Refractory glass ceramics |
| CN102220109B (zh) * | 2011-04-25 | 2013-10-02 | 苏州晶讯科技股份有限公司 | 一种用于静电器件的浆料制备方法 |
| EP2913313A1 (de) * | 2014-02-26 | 2015-09-02 | Heraeus Precious Metals North America Conshohocken LLC | Wolframhaltige Glasfritte für elektrisch leitfähige Pastenzusammensetzung |
| JP6438594B2 (ja) * | 2015-02-27 | 2018-12-19 | フエロ コーポレーション | 低誘電率及び中誘電率ltcc誘電体組成物及び装置 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1045056B (de) * | 1956-06-04 | 1958-11-27 | Corning Glass Works | Verfahren zum Herstellen kristalliner oder glasig-kristalliner Erzeugnisse und danach hergestellte Gegenstaende |
-
1968
- 1968-03-29 US US717410A patent/US3586522A/en not_active Expired - Lifetime
- 1968-05-31 JP JP3682468A patent/JPS4642917B1/ja active Pending
- 1968-05-31 GB GB26337/68A patent/GB1182987A/en not_active Expired
- 1968-05-31 DE DE1771503A patent/DE1771503C3/de not_active Expired
-
1970
- 1970-12-18 US US99510A patent/US3656984A/en not_active Expired - Lifetime
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE1045056B (de) * | 1956-06-04 | 1958-11-27 | Corning Glass Works | Verfahren zum Herstellen kristalliner oder glasig-kristalliner Erzeugnisse und danach hergestellte Gegenstaende |
Also Published As
| Publication number | Publication date |
|---|---|
| GB1182987A (en) | 1970-03-04 |
| JPS4642917B1 (de) | 1971-12-18 |
| US3656984A (en) | 1972-04-18 |
| DE1771503B2 (de) | 1973-03-08 |
| DE1771503A1 (de) | 1972-02-10 |
| US3586522A (en) | 1971-06-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE1771503C3 (de) | Thermisch kristallisierbares Glas und Glaskeramik auf der Basis SiO2-PbO-BaO-Al2O3-TiO2 und ihre Verwendung | |
| DE2347709C3 (de) | Dielektrische Masse | |
| DE69514633T2 (de) | Kadmiumfreie und bleifreie Dickschichtzusammensetzung | |
| DE69017804T2 (de) | Thermistorzusammensetzung. | |
| DE3151206C2 (de) | Glasiertes, keramisches Trägermaterial | |
| DE69016605T2 (de) | Kristallisierbare Gläser und Dickschichtzusammensetzungen daraus. | |
| DE2746320C2 (de) | Kupfer-Glas-Stoffzusammensetzung und ihre Verwendung | |
| DE1194539B (de) | Widerstandsglasurmasse | |
| DE2609356A1 (de) | Widerstandsmaterial sowie aus ihm hergestellter widerstand und verfahren zu seiner herstellung | |
| DE2330381C3 (de) | Feinzerteilte, beim Wärmebehandeln einen dichten Glaskeramikkörper bildende Glasmasse zur Erzielung von Mehrschicht-Schaltungsanordnungen mit niedrigen Dielektrizitätskonstanten | |
| DE2755935A1 (de) | Dielektrische zusammensetzung, siebdruckpaste mit einer derartigen zusammensetzung und durch diese erhaltene erzeugnisse | |
| DE1596851A1 (de) | Widerstandsmaterial und aus diesem Widerstandsmaterial hergestellter Widerstand | |
| EP0163004B1 (de) | Elektrische Widerstandszusammensetzung und Verfahren zur Herstellung der Widerstandselemente | |
| DE2058253A1 (de) | Masse zur Herstellung elektrischer Elemente | |
| DE2154898A1 (de) | Nicht reduzierbare teilweise kristallisierte Überkreuzungsdielektrika und Gläser zu deren Herstellung | |
| DE2946753A1 (de) | Widerstandsmaterial, elektrischer widerstand und verfahren zur herstellung desselben | |
| DE2419858A1 (de) | Beschichtungsglas fuer elektrische isolierungen | |
| DE1640524A1 (de) | Elektrischer Widerstand | |
| DE69325871T2 (de) | Zusammensetzung fuer einen dickschichtwiderstand | |
| DE69205557T2 (de) | Zusammensetzung für Dickschicht-Widerstand. | |
| DE3033511A1 (de) | Spannungsabhaengiger widerstand | |
| DE2305728A1 (de) | Vanadiumoxid und borsilicid enthaltende massen, die sich an der luft brennen lassen, sowie daraus hergestellte vorrichtungen | |
| DE4127845C1 (de) | ||
| DE602005001242T2 (de) | Eine Dickschicht-Widerstandspaste, ein Dickschicht-Widerstand hergestellt unter Verwendung der Dickschicht-Widerstandspaste und eine elektronische Vorrichtung umfassend den Dickschicht-Widerstand | |
| EP0124943A1 (de) | Dielektrisches Glas für Mehrschichtschaltungen und damit versehene Dickfilmschaltungen |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| C3 | Grant after two publication steps (3rd publication) | ||
| E77 | Valid patent as to the heymanns-index 1977 |