DE1150369B - Verfahren zum UEberfuehren von Zirkonium und Uran enthaltenden Massen in bestaendige Loesungen - Google Patents

Verfahren zum UEberfuehren von Zirkonium und Uran enthaltenden Massen in bestaendige Loesungen

Info

Publication number
DE1150369B
DE1150369B DEU7524A DEU0007524A DE1150369B DE 1150369 B DE1150369 B DE 1150369B DE U7524 A DEU7524 A DE U7524A DE U0007524 A DEU0007524 A DE U0007524A DE 1150369 B DE1150369 B DE 1150369B
Authority
DE
Germany
Prior art keywords
uranium
zirconium
solution
fluoride
peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DEU7524A
Other languages
English (en)
Inventor
Theodore Arthur Gens
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Atomic Energy Commission (AEC)
Original Assignee
US Atomic Energy Commission (AEC)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Atomic Energy Commission (AEC) filed Critical US Atomic Energy Commission (AEC)
Publication of DE1150369B publication Critical patent/DE1150369B/de
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/42Reprocessing of irradiated fuel
    • G21C19/44Reprocessing of irradiated fuel of irradiated solid fuel
    • G21C19/46Aqueous processes, e.g. by using organic extraction means, including the regeneration of these means
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G43/00Compounds of uranium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • C22B60/0226Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors
    • C22B60/0239Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using acidic solutions or liquors nitric acid containing ion as active agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0221Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching
    • C22B60/0247Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes by leaching using basic solutions or liquors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/026Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries liquid-liquid extraction with or without dissolution in organic solvents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B60/00Obtaining metals of atomic number 87 or higher, i.e. radioactive metals
    • C22B60/02Obtaining thorium, uranium, or other actinides
    • C22B60/0204Obtaining thorium, uranium, or other actinides obtaining uranium
    • C22B60/0217Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes
    • C22B60/0252Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries
    • C22B60/0278Obtaining thorium, uranium, or other actinides obtaining uranium by wet processes treatment or purification of solutions or of liquors or of slurries by chemical methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies

Description

INTERNAT.KL. C 01 g
DEUTSCHES
PATENTAMT
U7524IVa/12n
ANMELDETAG: 18. OKTOBER 1960
BEKANNTMACHUNG DER ANMELDUNG UNDAUSGABE DER AUSLEGESCHRIFT: 20. JUNI 1963
Die Erfindung betrifft ein Verfahren zum Lösen von Zirkonium und Uran enthaltenden Massen. Insbesondere bezieht sie sich auf ein Verfahren zum Überführen von neutronenbestrahlten, Zirkonium und Uran enthaltenden Massen in eine beständige Lösung, aus der Uran und andere Wertstoffe durch Extraktion in flüssiger Phase gewonnen werden können.
Zirkonium und seine Legierungen stellen in Anbetracht ihrer physikalischen und kernphysikalischen Eigenschaften ausgezeichnete Wertstoffe zur Verwendung in Kernreaktoren dar. Besonders nützlich ist die Anwendung des Zirkoniums in Form einer Zirkonium-Uran-Legierung. Zirkoniumlegierungen, die Uran enthalten und von einem bei hohen Temperaturen korrosionsbeständigen Stoff, wie Zirkonium, umhüllt sind, erfreuen sich weitester Verwendung als feste Spaltstoffelemente in Kernreaktoren, die bei thermischen und mittleren Neutronenenergien arbeiten.
Zirkonium-Uran-Spaltstoffelemente müssen, ebenso wie andere Spaltstoffelemente, von Zeit zu Zeit aus dem in Betrieb befindlichen Kernreaktor entfernt und aufgearbeitet werden. Ein Hauptgrund für die periodische Entfernung des bestrahlten Spaltstoffes aus dem Reaktor liegt darm, daß die auf die Ansammlung von Spaltproduktgiften zurückzuführende Minderung der Reaktionsfähigkeit in dem Reaktor vermieden und der nicht abgebrannte Spaltstoff abgetrennt und zurückgewonnen werden muß. Reaktorspaltstoffelemente müssen bereits aus dem Reaktor entfernt werden, wenn erst ein Bruchteil ihres Spaltstoffgehaltes abgebrannt ist. Daher sind viele Abbrand- und Aufarbeitungszyklen nötig, um das Äquivalent einer einzigen Spaltstoffbeschickung auszunutzen. Ein Trennverfahren zur Rückgewinnung des Spaltstoffes muß daher in jedem Zyklus hohe Ausbeuten liefern und niedrige Kosten verursachen.
Eines der wichtigsten Zerlegungsverfahren für uranhaltige Kernspaltstoffe bedient sich für seinen wichtigsten Trennvorgang der Lösungsmittelextraktion. Für bestrahlte Spaltstoffelemente gehört zu den hauptsächlichen Stufen bei der Lösungsmittelextraktion eine Verfahrensstufe der Auflösung, bei der mindestens der Spaltstoffteil des bestrahlten Spaltstoffelementes in wäßrige Lösung übergeführt wird, die dann als Beschickungslösung für eine in flüssiger Phase durchgeführte Extraktion dient. Diese wäßrige Beschickungslösung wird mit einem selektiven organischen Lösungsmittel behandelt, welches spaltbare und brütbare Wertstoffe daraus extrahiert und einen großen Prozentsatz an radioaktivenSpaltprodukten hinterläßt. Die weitere Aufarbeitung der angereicherten Verfahren zum Überführen
von Zirkonium und Uran enthaltenden Massen in beständige Lösungen
Anmelder:
United States Atomic Energy Commission, Germantown, Md. (V. St. A.)
Vertreter: Dr.-Ing. W. Abitz, Patentanwalt, München 27, Pienzenauer Str. 28
Beanspruchte Priorität: V. St. v. Amerika vom 7. März 1960 (Nr. 13 405)
Theodore Arthur Gens, Oak Ridge, Term. (V. St. Α.), ist als Erfinder genannt worden
organischen Phase gestattet die Konzentrierung und weitere Reinigung unter Gewinnung eines Produktes von niedriger Radioaktivität. Das Endprodukt kann dann zu Spaltstoffelementen verarbeitet werden, die in einemKernreaktorwiederverwendetwerden können.
Zweck der Erfindung ist die Überführung einer neutronenbestrahlten, Zirkonium und Uran enthaltenden Masse in eine beständige Lösung, die sich als wäßrige Beschickungslösung für ein in flüssiger Phase durchgeführtes Extraktionsverfahren eignet.
Zum besseren Verständnis der Erfindung werden zunächst die Probleme kurz erörtert, die bei der Herstellung einer wäßrigen Beschickungslösung der beschriebenen Art auftreten. Ein optimales Erfordernis ist die Bildung einer beständigen Lösung. Hierunter wird eine Lösung verstanden, deren sämtliche gelöste Bestandteile innerhalb eines weiten Konzentrationsund Temperaturbereiches in einer homogenen flüssigen Phase löslich sind. Eine beständige Beschickungslösung ist für die wirksame Flüssig-flüssig-Extraktion erforderlich. Wenn irgendwelche in der Lösung enthaltenen Stoffe ausfallen, so führt dies gewöhnlich zu einer gleichzeitigen Mitausfällung von Uranverbindungen. Wenn sich andererseits zwei oder mehrere wäßrige Phasen bilden, können sich Uran und/oder andere Wertstoffe zwischen mehreren Phasen verteilen. In beiden Fällen wird der Wirkungsgrad der
309 617/157
3 4
nachfolgenden Lösungsmittelextraktion beeinträch- mittelextrahierbaren Zustand überführt und das Uran
tigt. Eine beständige Lösung ist auch deshalb not- sowie gegebenenfalls noch andere Wertstoffe mit
wendig, weil die Möglichkeit der Bildung einer kri- einem organischen Lösungsmittel extrahiert.
tischen Masse verhindert oder wenigstens vermindert Zu den erfindungsgemäß zu behandelnden Massen
werden muß. Bei jedem Verfahren, bei dem nennens- 5 gehört metallisches Uran, welches mit metallischem
werte Mengen an spaltbaren Stoffen behandelt wer- Zirkonium oder einer Zirkoniumlegierung, wie Zir-
den, besteht die Gefahr einer zufälligen und unbeab- konium-Zinn-Legierung, überzogen ist. Die Erfindung
sichtigten Kettenkernreaktion. Die Wahrscheinlichkeit kann jedoch auch mit Vorteil zur Herstellung be-
des Auftretens eines solchen Unfalles kann auf ein ständiger Lösungen aus Uranlegierungen angewandt
Minimum beschränkt werden, wenn das spaltbare io werden, die mit metallischem Zirkonium oder Zirko-
Material in einem einzigen physikalischen Zustand, niumlegierungen überzogen sind.
z. B. in Lösung, behandelt werden kann statt in zwei Es wird angenommen, daß die Auflösung des Zir-
oder mehreren Zuständen, wie sie auftreten, wenn koniums in siedender Arnmonfluoridlösung nach der
das Uran sowohl in Lösung als auch in Form einer folgenden Gleichung verläuft:
Aufschlämmung oder eines Niederschlages vorliegt. 15
Weiterhin ist es wichtig, daß das Volumen der wäß- Zr + 6 NH F
rigen Beschickungslösung so klein wie möglich ist, ~πτ.. 7· ρ , , -^t , ^ jj η \
die Lösung aber gleichzeitig die größtmögliche Menge ^ ih β 3 2
g gg
die Lösung aber gleichzeitig die größtmögliche Menge
an gelöstem Uran enthält. Große Volumenmengen
an uranhaltigen Beschickungslösungen führen zu ao Dieses Verfahren zum Lösen von Zirkonium ohne großen Volumenmengen an radioaktiven Abfallösun- gleichzeitige Auflösung von Uran wurde bereits zum gen. Die Lösung wird durch Auflösen des festen, Entfernen der Hülle von Reaktorspaltstoffelementen uranhaltigen Spaltstoffelementes hergestellt. Zweck- angewandt. Die selektive Auflösung von Zirkonübermäßigerweise soll das Löseverfahren durch eine hohe, zügen von Reaktorspaltstoffelementen in einer Löaber steuerbare Lösegeschwindigkeit gekennzeichnet 25 sung von Ammonfluorid ist in einer Arbeit von und so anpaßbar sein, daß man uranhaltige Lösungen J. L. Swanson in »Second International Conference aus uranarmen Legierungen mit einem Urangehalt on the Peaceful Uses of Atomic Energy«, Bd. 17, von nur 1 Gewichtsprozent, aber auch aus uran- 1959, S. 154 bis 161, beschrieben. Die rasche und reichen Legierungen mit einem Urangehalt von vollständige Auflösung von Zirkonium kann erzielt 15 Gewichtsprozent erhält, ohne daß sich nachträg- 30 werden, indem man das Zirkonium mit einer 4- bis lieh ein Niederschlag bildet. Schließlich soll das ge- 8molaren siedenden Lösung von Ammonfluorid besamte Löseverfahren unter Verwendung einer mög- handelt. Bei der großtechnischen Arbeitsweise ist die liehst geringen Anzahl von chemischen Reagenzien Anwesenheit von gasförmigem Wasserstoff, wie sie und Verfahrensstufen zu der gewünschten Lösung sich aus der obigen Gleichung ergibt, von Nachteil, führen. 35 weil Gemische von Wasserstoff und Luft explosiv
Es sind bereits verschiedene Verfahren zum Lösen sind. Es wurde gefunden, daß die Bildung von von Zirkonium und Uran enthaltenden Massen be- Wasserstoff durch Zusatz geringer Mengen an Amkannt. Jedem dieser Verfahren fehlen jedoch ein oder monnitrat, bis zu einer Konzentration von lmolar, zu mehrere der obenerwähnten kritischen Merkmale. So der Arnmonfluoridlösung auf ein Mindestmaß bekann man z.B. Uran in Salpetersäure schnell zu einer 40 schränkt werden kann. Weiter wurde gefunden, daß Lösung von Uranylnitrat lösen. Behandelt man jedoch unter den gleichen Bedingungen, die die schnelle und Zirkonium-Uran-Legierungen, die weniger als 75 Ge- vollständige Auflösung des Zirkoniums fördern, etwas wichtsprozent Uran enthalten, mit Salpetersäure, so von dem als Metall, Oxyd oder Legierung vorliegenfindet keine Lösung statt. Einige Zirkonium-Uran- den Uran in Ammoniumuranofluorid übergeht, ein Legierungen lassen sich zwar in Salpetersäure in 45 Salz, welches in Zerkonium-Ammonfluorid-Lösungen Lösung bringen, das Löseverfahren ist jedoch oft nur sehr wenig löslich ist.
von heftigen Explosionen begleitet. Man hat auch Im Gegensatz zu diesem bekannten Verfahren zum
schon wäßrige Flußsäurelösungen zum Lösen von Ablösen der Hülle betrifft die Erfindung ein Verfah-Zirkonium-Uran-Legierungen verwendet. Jedoch ren zum Lösen von Zirkonium-Uran-Legierungen, wird die Löslichkeit des dabei entstehenden Uran- 50 welches in einer Mindestanzahl von Verfahrensstufen tetrafluorids in der schließlich erhaltenen Lösung eine beständige Lösung von Zirkonium und Uran Heüberschritten, wenn man wäßrige Flußsäure zum fert, aus der Uran und brütbare Wertstoffe durch Lö-Lösen von Uran-Zirkonium-Legierungen verwendet, sungsmittelextraktion in flüssiger Phase gewonnen die mehr als etwa 1 Gewichtsprozent Uran enthalten. werden können. Ein wesentlicher Vorteil der Erfin-Außerdem wirkt die so erhaltene Lösung auf die 55 dung ergibt sich aus Fig. 1, die in Form eines Diameisten Baustoffe stark korrosiv. gramms die Abhängigkeit der Löslichkeit von 4wer-
Das erfindungsgemäße Verfahren zum Überführen tigern bzw. 6wertigem Uran in Zirkonium-Ammonvon Zirkonium und Uran enthaltenden Massen, ins- fluorid-Lösungen von der Konzentration der Lösunbesondere solchen, in denen das Uran mit Zirkonium gen an freiem Fluorid darstellt. Die Kurven A und A' überzogen, legiert oder vermischt ist, in beständige 60 zeigen die Urankonzentration als Ammoniumurano-Lösungen, aus denen Uran und andere Wertstoffe fluorid bei etwa 105 bzw. 22° C als Funktion der zu extrahieren sind, ist dadurch gekennzeichnet, daß Konzentration der Lösung an freiem Fluorid. man die Masse bei etwa 100° C mit einer wäßrigen Kurve B zeigt die erhöhte Löslichkeit des Urans beim 4- bis 6molaren Lösung von Ammonfluorid unter Oxydieren des Urans zum öwertigen Zustand bei Zusatz einer dem Urangehalt im Überschuß ent- 65 80° C in Lösung und Kurve B' bei 25° C. Besonders sprechenden Menge Peroxyd, insbesondere Wasser- bemerkenswert ist die bedeutend höhere Löslichkeit stoffperoxyd, behandelt, und das dabei gebildete des öwertigen Urans, insbesondere bei niedrigen Kon-Uranylsalz durch Salpetersäurezusatz in einen lösungs- zentrationen an freiem Fluorid. Sobald man die Zir-
konium-Uranfluorid-Lösung erhalten hat, mischt man sie mit Salpetersäure, um das Uran in mit organischen Lösungsmitteln extrahierbare Nitrate überzuführen.
Salpetersäurelösungen, die freie Fluoridionen enthalten, sind äußerst korrosiv, und um die Korrosivität zu vermindern, wird ein anorganisches Salz, wie Aluminiumnitrat, zugesetzt, welches eine lösliche Fluoridkomplexverbindung bildet. Je mehr Aluminiumnitrat man benötigt, desto größer wird das Volumen des bei der Lösungsmittelextraktion entstehenden wäßrigen radioaktiven Abfalls. Man erkennt daher, daß ein Verfahren, welches mit einem möglichst kleinen Gehalt an freiem Fluorid arbeiten und trotzdem die größtmögliche Löslichkeit des Urans erzielen kann, äußerst vorteilhaft ist. Die Konzentration an freiem Fluorid ist definiert als die gesamte Fluoridkonzentration vermindert um das 6fache der Zirkoniumkonzentration, wobei die Konzentrationen in Mol ausgedrückt wenden können.
Bei der Durchführung einer Ausführungsform der Erfindung wird eine Zirkonium-Uran-Legierung mit siedender Ammonfluoridlösung, d. h. bei einer Temperatur im Bereich von 100 bis HO0C, behandelt, wobei so lange von Zeit zu Zeit Wasserstoffperoxyd zugesetzt wird, bis die Legierung mit einer praktisch hohen Lösungsgeschwindigkeit vollständig in Lösung gegangen ist und eine Lösung entstanden ist, in der das Molverhältnis von gesamtem Fluorid zu Zirkonium mindestens 6 beträgt. Es wurde gefunden, daß im Interesse einer hohen Lösungsgeschwindigkeit die Konzentration an AmmonfLuorid mindestens etwa 4- bis 6molar sein soll. Bei niedrigeren Konzentrationen kann zwar vollständige Lösung erreicht werden, die Lösungsgeschwindigkeit ist jedoch für praktische Zwecke zu niedrig. Bei höheren Konzentrationen bildet sich ein unlösliches Zirkoniumsalz, und auch dies führt zu einer zu niedrigen Lösungsgeschwindigkeit.
Während der anfänglichen teilweisen Auflösung der Legierung vor dem ersten Zusatz von Wasserstoffperoxyd schlägt die Farbe der Ammonfluoridlösung von Farblos nach Grün um, was auf die Oxydation des Urans zum 4wertigen Zustand hindeutet. Durch den Zusatz eines Peroxyds, vorzugsweise Wasserstoffperoxyd, in einzelnen Anteilen zu der erhitzten Ammoniumfluoridlösung, in der die Uran-Zirkonium-Legierung gelöst wird, wird alles Uran in ein lösliches Uranylsalz, d. h. ein Salz des 6wertigen Urans, übergeführt. Diese Umwandlung kann an der Farbänderung der Lösung von Grün in Gelb verfolgt werden. Wenn die Lösung gelbe Farbe angenommen hat, ist alles in der Lösung enthaltene Uran in ein lösliches Uranylsalz umgewandelt. Innerhalb einiger Minuten nach dem Zusatz von Wasserstoffperoxyd kann die Lösung infolge der erneuten Bildung von Ammoniumuranofluorid durch weitere Auflösung und bzw. oder Reduktion des löslichen Ammoniumuranylfiuorids durch die in Lösung gehende Legierung wieder grüne Farbe annehmen. Wenn jedoch am Ende des Lösevorganges genügend Wasserstoffperoxyd zugesetzt worden ist, bleibt die gelbe Farbe bestehen, was die vollständige Umwandlung zu 6wertigem Uran anzeigt. Um die vollständige Umwandlung des gesamten (4wertigen) Ammoniumuranofluorids in (öwertiges) Ammoniumuranylfluorid zu gewährleisten, wird im Laufe des Löseverfahrens vorzugsweise so viel Wasserstoffperoxyd zugesetzt, daß die schließlich entstehende Lösung etwa 0,lmolar an Wasserstoffperoxyd sein würde, wenn kein Peroxyd verbraucht worden wäre. Enthält die schließlich entstehende Lösung erheblich mehr Peroxyd, so besteht die Gefahr, daß sich ein unlösliches Uranperoxyd bildet.
Die genaue Menge des zur Umwandlung des Urans in Uranylfluorid erforderlichen Wasserstoffperoxyds kann aus mehreren Gründen nicht genau vorausgesagt werden. Erstens wird das Wasserstoffperoxyd
ίο durch die heiße Lösung rasch zersetzt. Zweitens sind Menge und Art der anderen Bestandteile bei verschiedenen Lösungen verschieden, und jeder Bestandteil reagiert bis zu einem gewissen Ausmaße mit dem Wasserstoffperoxyd. Es wurde gefunden, daß während des Lösevorganges ein mindestens etwa 2OO°/oiger stöchiometrischer Überschuß an Wasserstoffperoxyd zugesetzt werden muß, um das Uran vollständig in den owertigen Zustand überzuführen und in diesem Wertigkeitszustand zu erhalten. Die
ao stöchiometrische Menge errechnet sich aus der folgenden Gleichung:
NH4UF5 + 2NH4F + H2O2
(NH4)3UO2F5
(2)
Die genaue Zusammensetzung des sich in der Lösung bildenden Uranylsalzes ist nicht bekannt. Es kann jedoch angenommen werden, daß es sich dabei um das in Gleichung (2) angegebene Ammoniumuranylfluorid handelt.
Man kann zwar erfindungsgemäß eine beständige Lösung von Zirkonium und einem löslichen Uranylsalz herstellen; es hat sich jedoch herausgestellt, daß die Lösungsgeschwindigkeit des Zirkoniums einen für praktische Zwecke zu niedrigen Wert annimmt, wenn die Lösung zu große Mengen an Uranylsalz enthält. Die Wirkung des Uranylions auf die Lösungsgeschwindigkeit des Zirkoniums ergibt sich aus Fig. 2 und 3. Das Diagramm der Fig. 2 zeigt die Abhängigkeit der Lösungsgeschwindigkeit des Zirkoniums in AirirnonfLuoridlösungen von der molaren Konzentration an öwertigem Uran und dem Molverhältnis von gesamtem Fluorid zu Zirkonium in der Lösung.
Diese Kurven wurden durch Auflösen von Proben einer Zirkonium-Uran-Legierung mit einem Urangehalt von 7 Gewichtsprozent in Ammonftuoridlösungen gewonnen, zu denen verschiedene Mengen an Uranylfluorid im Konzentrationsbereich von 0,0001-bis 0,lmolar zugesetzt worden waren. Die ursprünglichen Lösungen wurden so eingestellt, daß sie eine Zirkoniumlösung mit einem Molverhältnis von gesamtem Fluorid zu Zirkonium im Bereich von etwa 7 bis 9 ergaben. Alle Lösungen wurden an Wasserstoffperoxyd 0,lmolar gemacht, um zu gewährleisten, daß keine Reduktion der Uranylionen stattfinden konnte. Dann wurden die Legierungsproben in die Lösungen eingetaucht und nach 10 Minuten herausgenommen, um ihre Lösungsgeschwindigkeiten festzustellen. Um aufzuzeigen, daß das Uran in der Uran-Zirkonium-Legierung nicht für die Verminderung der Lösungsgeschwindigkeit bei höheren Konzentrationen an öwertigem Uran in der Lösung verantwortlich war, wurde eine Zirkonium-Zinn-Legierung (Zusammensetzung 1,5% Zinn, 0,15% Eisen, 0,1% Chrom, 0,05% Nickel, Rest Zirkonium) unter den gleichen Bedingungen in Lösung gebracht. Die Ergebnisse sind in Fig. 2 dargestellt. Man sieht daß die Lösungsge-
schwindigkeiten der Zirkonium-Zinn-Legierung und der Uran-Zirkonium-Legierung mit einem Urangehalt von 7% bis zu einer Konzentration von 10~2-molar verhältnismäßig unabhängig von der Konzentration an 6wertigem Uran, jedoch abhängig von dem Molverhältnis von Fluorid zu Zirkonium in der Zirkoniumlösung sind.
Die Abhängigkeit der Lösungsgeschwindigkeit der Uran-Zirkonium-Legierung in 1- bis 6molarem Am-
Beispiel
Proben einer Zirkonium-Uran-Legierung mit einem Zirkoniumgehalt von 7 Gewichtsprozent wurden in eine 5,5molare wäßrige Ammonfluoridlösung getaucht, die eine geringe Menge Ammonnitrat enthielt. Die Lösungen wurden zum Siedepunkt von etwa 1050C erhitzt. Zu den erhitzten Lösungen wurde während des ganzen Vorganges der Auflösung der
monfluorid von dem Verhältnis von gesamtem freiem io Legierung eine wäßrige Wasserstoffperoxydlösung zu-Fluorid zu Uranylfluorid ergibt sich aus den Kurven gesetzt. Als die Legierungsproben vollständig in Löder Fig. 3. Man ersieht hieraus, daß die Lösungsge- sung gegangen und die erforderlichen Mengen an schwindigkeit der Legierung ziemlich konstant bleibt, Salpetersäure und Aluminiumnitrat zugesetzt worden bis das Molverhältnis von gesamtem Fluorid zu waren, wurden die Lösungen auf Raumtemperatur Uranylfiuorid einen Wert von etwa 60 erreicht, und 15 gekühlt, ohne daß sich Niederschläge bildeten. Die daß bei diesem Wert ein scharfer Abfall der Kurve Ergebnisse zweier typischer Versuche sind in der auftritt. Eine ähnliche Wirkung auf die Lösungsge- Tabelle zusammengestellt.
schwindigkeiten derartiger Legierungen ist auch bei Die Erfindung findet besondere Anwendung bei der
uranarmen Legierungen, die nur 1 % Uran enthalten, Aufarbeitung verbrauchter, neutronenbestrahlter sowie auch bei uranreichen Legierungen, die 15 % 20 Spaltstoffe aus Zirkonium-Uran-Legierungen, die so-Uran enthalten, zu bemerken. gar 15 Gewichtsprozent Uran enthalten können, unter
Daher soll im Interesse einer vollständigen Auflösung der Legierung mit größtmöglicher Lösungsgeschwindigkeit das Molverhältnis von gesamtem
freiem Fluorid zu Uranylionen (6wertigem Uran) un- 25
ter Verwendung einer mindestes 4molaren wäßrigen
Ammonfluoridlösung mindestens 60 betragen. Um
ein Verhältnis von freiem Fluorid zu Uranylionen
(öwertigem Uran) von mindestens 60 für Zirkoniumlegierungen, die 10 Gewichtsprozent Uran enthalten, 30 strahlter Zirkonlum-Uran-Massen. zu gewährleisten, soll das Molverhältnis von Fluorid
zu Zirkonium in der Lösung der Legierung etwa 9
betragen. Bei Zirkoniumlegierungen, die etwa 1%
Uran enthalten, soll das Molverhältnis von Zirkonium
zu freiem Fluorid in der Lösung der Legierung min- 35
destens etwa 6 betragen.
Wenn sich die Zirkonium-Uran-Lösung gebildet hat, wird sie bei einer Temperatur im Bereich von 50 bis 110° C mit so viel Salpetersäure gemischt, daß das
g p ,
Bildung beständiger Beschickungslösungen für die Lösungsmittelextraktion, in denen das Uran an dem Isotopen 235U angereichert ist.
Ein sehr wichtiger Vorteil der Erfindung ist die verminderte Korrosivität der aus Ammonsalzen und Wasserstoffperoxyd zusammengesetzten Lösungen auf die üblichen Baustoffe der Lösegefäße und anderer Vorrichtungen zum Aufarbeiten neutronenbehl Ziki
Probe, g .
H2O2, Mol
Mol
Anfangskonzentration an NH4F, Molarität
Gesamte Lösungszeit, Stunden..
Mittlere Lösungsgeschwindigkeit,
mm/Stunde
1,63
0,0024
0,0048
5,5 8,25
0,02 0,5
3,556
1,51
0,0025
0,0075
5,5 8,25
0,02 0,67
2,64
Während in der obigen Beschreibung die Verwendung von Wasserstoffperoxyd zur Herstellung beständiger Lösungen für die Lösungsmittelextraktion beEndmolverhältnis F: Zr
Uran in das durch organische Lösungsmittel extra- 40 Endkonzentration an U, hierbare Uranylnitrat übergeht. Ferner wird Alu- Molarität
miniumnitrat oder ein anderes anorganisches Nitrat in ausreichender Menge zugesetzt, um die freien Fluoridionen in der Lösung in eine Komplexverbindung überzuführen und eine aussalzende Wirkung für die nachfolgende Lösungsmittelextraktion zu erzielen. Dann wird die Lösung auf Raumtemperatur gekühlt und kann als Beschickungslösung für das Extraktionsverfahren verwendet werden.
Die Lösungsmittelextraktion von Uran und brüt- 50 schrieben ist, liegt es im Rahmen der Erfindung, anbaren Wertstoffen aus dieser Beschickungslösung dere Peroxyde, wie anorganische und organische Perkann nach verschiedenen bekannten Verfahren er- oxyde, zum gleichen Zweck zu verwenden. Hierbei folgen. Ein solches Verfahren ist in der Arbeit müssen jedoch solche Peroxyde von der Verwendung »Reprocessing of Fuel Containing Zirconium« von ausgeschlossen werden, die den pa-Wert der Lösung D. G. Reid, C. E. Stevenson, R. B. Lemon und 55 so stark ändern, daß sie alkalisch wird. Ebenso sollen F. K. Wrigley in »Second International Conference
on the peaceful Uses of Atomic Energy«, Bd. 17,
Genf, 1958, S. 145, beschrieben.
Es hat sich gezeigt, daß diese Beschickungslösungen innerhalb weiter Temperaturbereiche lange Zeit beständig sind. Zum Beispiel konnten erfindimgsgemäß hergestellte Beschickungslösungen, die an Salpetersäure etwa lmolar waren, 1 Stunde auf Rückflußtemperatur erhitzt und mehrere Wochen bei
solche organischen Peroxyde vermieden werden, die in den Lösungen heftig reagieren könnten, wie aromatische Peroxyde.

Claims (6)

PATENTANSPRÜCHE: 25° C aufbewahrt werden, ohne daß sich ein Niederschlag bildete. Das folgende Beispiel dient zur Erläuterung einer besonderen Ausführungsform der Erfindung.
1. Verfahren zum Überführen von Zirkonium und Uran enthaltenden Massen, insbesondere solchen, in denen das Uran mit Zirkonium überzogen, legiert oder vermischt ist, in beständige Lösungen, aus denen Uran und andere Wertstoffe zu extrahieren sind, dadurch gekennzeichnet, daß man die Masse bei etwa 100° C mit einer wäßrigen 4- bis 6molaren Ammonfluoridlösung unter
Zusatz einer dem Urangehalt im Überschuß entsprechenden Menge Peroxyd, insbesondere WasserstofiEperoxyd, behandelt und das dabei gebildete Uranylsalz durch Salpetersäurezusatz in einen lösungsmittelextrahierbaren Zustand überführt und das Uran sowie gegebenenfalls noch andere Wertstoffe mit einem organischen Lösungsmittel extrahiert.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man die Behandlung mit einer Ammonfluoridlösung durchführt, die eine Konzentration an Ammonnitrat bis 1 Mol je Liter aufweist.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß man die Menge des Ammonfluorids so bemißt, daß die entstehende Lösung vor dem Zusatz der Salpetersäure ein Molverhältnis von freiem Fluorid zu öwertigem Uran von mindestens 60 aufweist.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß man die Menge des Ammonfluorids so bemißt, daß die entstehende Lösung vor dem Zusatz des Peroxyds ein Molverhältnis von Fluorid zu Zirkonium von mindestens 6 aufweist.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß man das Peroxyd in einem mindestens 2OO°/oigen stöchiometrischen Überschuß über die in der Ausgangsmasse enthaltene Menge des Urans zusetzt.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß man der der Lösungsmittelextraktionsstufe zuzuführenden Lösung zur Bindung der freien Fluoridionen in Form einer löslichen Komplexverbindung und zur Erzielung einer Aussalzwirkung für die nachfolgende Extraktion ein anorganisches Nitrat zusetzt.
Hierzu 1 Blatt Zeichnungen
© 309 617/157 6.63
DEU7524A 1960-03-07 1960-10-18 Verfahren zum UEberfuehren von Zirkonium und Uran enthaltenden Massen in bestaendige Loesungen Pending DE1150369B (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US1340560 US2992886A (en) 1960-03-07 1960-03-07 Method for dissolving zirconiumuranium compositions

Publications (1)

Publication Number Publication Date
DE1150369B true DE1150369B (de) 1963-06-20

Family

ID=21759801

Family Applications (1)

Application Number Title Priority Date Filing Date
DEU7524A Pending DE1150369B (de) 1960-03-07 1960-10-18 Verfahren zum UEberfuehren von Zirkonium und Uran enthaltenden Massen in bestaendige Loesungen

Country Status (4)

Country Link
US (1) US2992886A (de)
DE (1) DE1150369B (de)
GB (1) GB920113A (de)
NL (1) NL257570A (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243257A (en) * 1963-09-11 1966-03-29 Charles F Coleman Recovery of uranium and zirconium from aqueous fluoride solutions
US3238014A (en) * 1964-07-06 1966-03-01 Theodore A Gens Recovery of uranium and plutonium values from aqueous solutions of ammonium fluoride
US3832439A (en) * 1973-01-10 1974-08-27 Atomic Energy Commission Method for the suppression of hydrogen during the dissolution of zirconium and zirconium alloys
FR2432888A1 (fr) * 1978-08-09 1980-03-07 Atomic Energy Authority Uk Procede de dissolution d'une matiere, telle que des troncons d'aiguilles de combustible nucleaire, dans une cavite partiellement fermee

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2820692A (en) * 1955-07-14 1958-01-21 Roberta S Shor Process of dissolving zirconium alloys
US2921836A (en) * 1956-04-24 1960-01-19 Carborundum Co Process of treating metals

Also Published As

Publication number Publication date
GB920113A (en) 1963-03-06
US2992886A (en) 1961-07-18
NL257570A (de) 1900-01-01

Similar Documents

Publication Publication Date Title
DE1592427A1 (de) Aufarbeitung von bestrahltem Kernbrennstoff
DE2855821A1 (de) Verfahren zur wiedergewinnung von palladium und technetium
DE2154655B2 (de) Verfahren zur Auftrennung von Uran, Transurane und die als Spaltprodukte von Kernbrennstoffen auftretenden Elemente enthaltenden Gemischen durch Gegen- oder Querstromelektrolyse
DE3332954C2 (de)
DE1150207B (de) Verfahren zur Gewinnung von Plutonium
EP0049827B1 (de) Verfahren zum Auflösen schwerlöslicher Plutoniumoxide
DE1592418B2 (de) Verfahren zur aufarbeitung waessriger loesungen bestrahlter reaktorbrennstoffe
DE1926827A1 (de) Verfahren zum Aufarbeiten von Brenn- und/oder Brutelementen fuer Kernreaktoren
DE3504743A1 (de) Verbessertes verfahren zur behandlung von kernbrennstoff
DE1150369B (de) Verfahren zum UEberfuehren von Zirkonium und Uran enthaltenden Massen in bestaendige Loesungen
EP0170795B1 (de) Verfahren zur Rückgewinnung von Uran-Werten in einem extraktiven Wiederaufarbeitungsprozess für bestrahlte Kernbrennstoffe
EP0170796A2 (de) Verfahren zur Trennung von grossen Mengen Uran von geringen Mengen von radioaktiven Spaltprodukten, die in wässrigen, basischen, karbonathaltigen Lösungen vorliegen
DE1592541A1 (de) Fluessigkeits-Fluessigkeits-Extraktionsverfahren zum Abtrennen des Plutoniums von Uran
DE1467313A1 (de) Verfahren zur Trennung von Uran und Plutonium
DE2610947C3 (de) Verfahren zur Gewinnung von Molybdän-99 aus mit Neutronen bestrahlter, spaltbare Stoffe und Spaltprodukte enthaltender Matrix
DE3307403A1 (de) Verfahren zur rueckgewinnung von plutonium aus salpetersauren waessrigen loesungen
DE1467322B2 (de) Verfahren zur wiederaufbereitung von oxydischen kernreaktorbrennstoffen
DE1159920B (de) Verfahren zur Trennung von Uranoxyden von den Oxyden des Thoriums und bzw. oder des Plutoniums
DE3345199A1 (de) Verfahren zur reduktiven plutonium-rueckextraktion aus einer organischen wiederaufarbeitungsloesung in eine waessrige, salpetersaure loesung unter anwendung eines elektrolysestromes
DE1181190B (de) Verfahren zur Gewinnung von Uranverbindun-gen aus einem Uran-Molybdaen-Legierungen enthaltenden Material
DE3211286C2 (de)
DE2057760A1 (de) Verfahren zur verbesserten Spaltproduktabtrennung bei der waessrigen Wiederaufarbeitung von abgebrannten Kernbrennstoffen
DE3009077C2 (de)
DE1159921B (de) Verfahren zur Entfernung von Zirkoniumionen und Fluoridionen aus einer diese Ionen neben Ionen des Urans enthaltenden Loesung
DE1126850B (de) Behandlung von Plutoniumdioxyd