DE112017006341T5 - Kautschukzusammensetzung für Reifen und pneumatischer Reifen, der diese verwendet - Google Patents

Kautschukzusammensetzung für Reifen und pneumatischer Reifen, der diese verwendet Download PDF

Info

Publication number
DE112017006341T5
DE112017006341T5 DE112017006341.8T DE112017006341T DE112017006341T5 DE 112017006341 T5 DE112017006341 T5 DE 112017006341T5 DE 112017006341 T DE112017006341 T DE 112017006341T DE 112017006341 T5 DE112017006341 T5 DE 112017006341T5
Authority
DE
Germany
Prior art keywords
rubber
parts
mass
copolymer
hydrogenated copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE112017006341.8T
Other languages
English (en)
Other versions
DE112017006341B4 (de
Inventor
Hiroyuki Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Publication of DE112017006341T5 publication Critical patent/DE112017006341T5/de
Application granted granted Critical
Publication of DE112017006341B4 publication Critical patent/DE112017006341B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0025Compositions of the sidewalls
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/011Crosslinking or vulcanising agents, e.g. accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

Es werden eine Kautschukzusammensetzung für einen Reifen, die in dem Fall, bei dem ein hydriertes Copolymer und ein flüssiger Kautschuk in Kombination verwendet werden, eine verbesserte Bruchfestigkeit und eine verbesserte Abriebfestigkeit aufweist, während die Verarbeitbarkeit, die eine Eigenschaft eines flüssigen Kautschuks ist, aufrechterhalten wird, und ein pneumatischer Reifen bereitgestellt, der diese verwendet.
Die Kautschukzusammensetzung für einen Reifen, weist eine feste Kautschukkomponente, die ein hydriertes Copolymer (A), das durch ein Hydrieren eines aromatischen mit Vinyl konjugierten Diencopolymers erhalten worden ist, wobei das hydrierte Copolymer ein im Gewicht gemitteltes Molekulargewicht, das durch eine Gelpermeationschromatographie gemessen wird, von 300.000 oder mehr und ein Hydrierungsverhältnis einer konjugierten Dieneinheit von 80 Molprozent oder mehr aufweist, einen flüssigen Kautschuk (B), und einen Schwefel, enthält, wobei der Anteil des hydrierten Copolymers (A) 80 bis 95 Massenteile beträgt und der Anteil des flüssigen Kautschuks (B) 5 bis 20 Massenteile pro 100 Massenteile der Kautschukkomponente beträgt, und der Anteil des Schwefels 15 bis 30 Massenteile pro 100 Massenteile des flüssigen Kautschuks (B) beträgt.

Description

  • Technisches Gebiet
  • Die vorliegende Erfindung betrifft eine Kautschukzusammensetzung für einen Reifen und einen pneumatischen Reifen, der diese verwendet.
  • Hintergrund der Technik
  • Ein pneumatischer Reifen muss eine ausgezeichnete Abriebfestigkeit und Bruchfestigkeit aufweisen. Als ein Verfahren zur Verbesserung der Abriebfestigkeit und der Bruchfestigkeit offenbaren die Patentdokumente 1 und 2 die Verwendung eines hydrierten Copolymers mit einem Hydrierungsverhältnis einer konjugierten Dieneinheit von 75 Molprozent oder mehr aufweist und das durch ein Copolymerisieren eines aromatischen Vinyls und einer konjugierten Dienverbindung erhalten worden ist.
  • Bei einem hydrierten Copolymer, das ein hohes Hydrierungsverhältnis aufweist, besteht jedoch das Problem, dass die Viskosität hoch ist und die Verarbeitbarkeit schlecht ist. Das Patentdokument 3 schlägt ein Verfahren zur Herstellung eines hydrierten Copolymers vor, das eine zufriedenstellende Verarbeitbarkeit aufweist, das ein Hydrieren eines konjugierten Dienpolymers umfasst, das einen Anteil einer Vinylbindung einer konjugierten Dieneinheit von 20 bis 70 % aufweist, in dem sich eine Alkoxysilylgruppe und eine primäre Aminogruppe befinden, die geschützt sein können und an ein Polymer gebunden worden sind, das mindestens eine konjugierte Dieneinheit enthält, so dass das Hydrierungsverhältnis der konjugierten Dieneinheit 50 % oder mehr beträgt, wodurch ein hydriertes Dienpolymer erhalten wird und mindestens eine Metallhalogenidverbindung und eine organische saure Verbindung mit dem erhaltenen hydrierten Dienpolymer umgesetzt werden. Allerdings ist weiterhin eine Verbesserung bei dem Verfahren erforderlich.
  • Liste der Anführungen
  • Patentliteratur
    • Patentdokument 1: JP 2016-56349 A
    • Patentdokument 2: JP 2016-56350 A
    • Patentdokument 3: JP 2009-132907 A
    • Patentdokument 4: JP 2003-253051 A
  • Zusammenfassung der Erfindung
  • Aufgabe, die von der Erfindung gelöst werden soll
  • Die Erfinder der vorliegenden Erfindung haben festgestellt, dass die Verarbeitbarkeit durch ein Hinzufügen eines flüssigen Kautschuks an ein hydriertes Copolymer verbessert wird. In einem solchen Fall wird jedoch der Verbesserungseffekt der Bruchfestigkeit und der Abriebfestigkeit, die Eigenschaften des hydrierten Copolymers sind, nicht ausreichend erhalten, und es ist eine weitere Verbesserung erforderlich.
  • In Anbetracht des Vorstehenden liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Kautschukzusammensetzung für einen Reifen, die in dem Fall, bei dem ein hydriertes Copolymer und ein flüssiger Kautschuk in Kombination verwendet werden, eine verbesserte Bruchfestigkeit und Abriebfestigkeit aufweist, während die Verarbeitbarkeit beibehalten wird, die eine Eigenschaft eines flüssigen Kautschuks ist, und pneumatischen Reifen bereitzustellen, der diese verwendet.
  • Die Kautschukzusammensetzung, die in dem Patentdokument 4 offenbart ist, unterscheidet sich von der vorliegenden Erfindung darin, dass das verwendete hydrierte Copolymer ein im Gewicht gemitteltes Molekulargewicht von etwa 5.000 bis 200.000 aufweist und dass das hydrierte Copolymer hauptsächlich flüssig ist. Weiterhin weisen die hydrierten Copolymere, die in den Beispielen verwendet werden, ein im Gewicht gemitteltes Molekulargewicht von etwa 10.000 auf und haben daher eine kurze Molekülkette. Außerdem ist die Anzahl der Vernetzungspunkte aufgrund der hydrierten Copolymere gering. Daher werden die Copolymere, obwohl sie vernetzt sind, lediglich an ein Styrol-Butadien-Copolymer der Komponente (A) angehängt und daran gebunden und sie sind nicht in einem Netzwerk eingeschlossen, das eine Kautschukelastizität zeigt.
  • Mittel zur Lösung der Aufgabe
  • Um die oben beschriebenen Aufgaben zu lösen, weist die Kautschukzusammensetzung für einen Reifen nach der vorliegenden Erfindung eine Kautschukkomponente, die ein hydriertes Copolymer (A) enthält, das durch ein Hydrieren eines aromatischen mit Vinyl konjugierten Diencopolymers erhalten worden ist, wobei das hydrierte Copolymer ein im Gewicht gemitteltes Molekulargewicht, das durch eine Gelpermeationschromatographie gemessen wird, von 300.000 oder mehr und ein Hydrierungsverhältnis einer konjugierten Dieneinheit von 80 Molprozent oder mehr aufweist, einen flüssigen Kautschuk (B) und einen Schwefel auf, wobei der Anteil des hydrierten Copolymers (A) 80 bis 95 Massenteile beträgt und der Anteil des flüssigen Kautschuks (B) 5 bis 20 Massenteile pro 100 Massenteile der Kautschukkomponente beträgt, und der Anteil des Schwefels 15 bis 30 Massenteile pro 100 Massenteile des flüssigen Kautschuks (B) beträgt.
  • Der flüssige Kautschuk (B) kann mindestens einer sein, der aus der Gruppe ausgewählt worden ist, die einen Isopren-Kautschuk, einen Butadien-Kautschuk, einen Styrol-Butadien-Kautschuk, einen Isopren-Butadien-Kautschuk, einen Isopren-Styrol-Kautschuk und einen Isopren-Butadien-Styrol-Kautschuk umfasst.
  • Der pneumatische Reifen nach der vorliegenden Erfindung wird mit der Kautschukzusammensetzung für einen Reifen hergestellt.
  • Wirkungen der Erfindung
  • Nach der Kautschukzusammensetzung für einen Reifen der vorliegenden Erfindung können die Bruchfestigkeit und die Abriebfestigkeit, die Eigenschaften des hydrierten Copolymers sind, ausreichend gezeigt werden, während die Verarbeitbarkeit, die eine Eigenschaft des flüssigen Kautschuks ist, aufrechterhalten wird.
  • Modus zur Durchführung der Erfindung
  • Die Punkte, die sich auf das Ausführungsbeispiel der vorliegenden Erfindung beziehen, werden nachstehend ausführlich beschrieben.
  • Die Kautschukzusammensetzung für einen Reifen nach diese Ausführungsbeispiel weist eine Kautschukkomponente, die ein hydriertes Copolymer (A) enthält, das durch ein Hydrieren eines aromatischen mit Vinyl konjugierten Diencopolymers erhalten worden ist, wobei das hydrierte Copolymer ein im Gewicht gemitteltes Molekulargewicht, das durch eine Gelpermeationschromatographie gemessen wird, von 300.000 oder mehr und ein Hydrierungsverhältnis einer konjugierten Dieneinheit von 80 Molprozent oder mehr aufweist, einen flüssigen Kautschuk (B) und einen Schwefel auf. Der hier verwendete flüssige Kautschuk bedeutet einen flüssigen Kautschuk, der eine Fließfähigkeit bei Raumtemperatur (23 °C) aufweist.
  • Das hydrierte Copolymer (A), das bei der Kautschukzusammensetzung nach diesem Ausführungsbeispiel verwendet wird, ist ein hydriertes Copolymer, das durch ein Hydrieren eines aromatischen mit Vinyl konjugierten Diencopolymers erhalten worden ist, wobei das hydrierte Copolymer ein im Gewicht gemitteltes Molekulargewicht, das durch eine Gelpermeationschromatographie gemessen wird, von 300.000 oder mehr und ein Hydrierungsverhältnis einer konjugierten Dieneinheit von 80 Molprozent oder mehr aufweist. In der vorliegenden Beschreibung ist das durch eine Gelpermeationschromatographie (GPC) gemessene im Gewicht gemittelte Molekulargewicht ein Wert, der in Form von Polystyrol basierend auf dem im Handel erhältlichen Standardpolystyrol unter den Bedingungen berechnet wird, dass ein Detektor mit differenzieller Brechzahl (RI) als der Detektor verwendet wird, ein Tetrahydrofuran (THF) als das Lösungsmittel verwendet wird, die Messtemperatur 40 °C beträgt, die Flussrate 1,0 ml/min beträgt, die Konzentration 1,0 g/l beträgt und die Injektionsmenge 40 µl beträgt. Das Hydrierungsverhältnis ist ein Wert, der aus einer Spektrumabnahmerate einer ungesättigten Bindungseinheit eines Spektrums berechnet wird, das durch eine Messung des H1-NMR erhalten wird.
  • Das aromatische Vinyl, welches das aromatische mit Vinyl konjugierte Dien-Copolymer bildet, ist nicht besonders beschränkt, jedoch umfassen die Beispiele hierfür ein Styrol, ein α-Methylstyrol, ein 1-Vinylnaphthalin, ein 3-Vinyltoluol, ein Ethylvinylbenzol, ein Divinylbenzol, ein 4-Cyclohexylstyrol und ein 2,4,6-Trimethylstyrol. Diese können alleine oder als eine Kombination von zwei oder mehreren Arten verwendet werden.
  • Das konjugierte Dien, welches das aromatische mit Vinyl konjugierte Dien-Copolymer bildet, ist nicht besonders beschränkt, jedoch umfassen die Beispiele hierfür ein 1,3-Butadien, ein Isopren, ein 1,3-Pentadien, ein 2,3-Dimethylbutadien, ein 2-Phenyl-1,3-Butadien und ein 1,3-Hexadien. Diese können alleine oder als eine Kombination von zwei oder mehreren Arten verwendet werden.
  • Das aromatische mit Vinyl konjugierte Diencopolymer ist nicht besonders beschränkt, jedoch ist ein Copolymer aus einem Styrol und einem 1,3-Butadien (Styrol-Butadien-Copolymer) bevorzugt. Daher ist das hydrierte Copolymer bevorzugt ein hydriertes Styrol-Butadien-Copolymer. Das hydrierte Copolymer kann ein statistisches Copolymer sein, es kann ein Blockcopolymer sein und es kann ein alternierendes Copolymer sein. Das aromatische mit Vinyl konjugierte Diencopolymer kann mit mindestens einer funktionellen Gruppe, die aus der Gruppe ausgewählt worden ist, die eine Aminogruppe, eine Hydroxylgruppe, eine Epoxygruppe, eine Alkoxygruppe, eine Alkylsilylgruppe, eine Alkoxysilylgruppe und eine Carboxylgruppe umfasst, an einem molekularen Ende oder in einer Molekülkette modifiziert sein.
  • Das hydrierte Copolymer (A) kann synthetisiert werden, indem zum Beispiel ein aromatisches mit Vinyl konjugiertes Dien-Copolymer synthetisiert wird und eine Hydrierungsbehandlung durchgeführt wird. Das Verfahren zum Synthetisieren des aromatischen mit Vinyl konjugierten Dien-Copolymers ist nicht besonders beschränkt, aber die Beispiele hierfür umfassen ein Lösungspolymerisationsverfahren, ein Gasphasenpolymerisationsverfahren und ein Massepolymerisationsverfahren, wobei ein Lösungspolymerisationsverfahren bevorzugt ist. Die Polymerisationsform kann ein diskontinuierlicher und ein kontinuierlicher Typ sein. Das aromatische mit Vinyl konjugierte Dien-Copolymer kann die kommerziell erhältlichen Copolymere verwenden.
  • Das Hydrierungsverfahren ist nicht besonders beschränkt, und das aromatische mit Vinyl konjugierte Dien-Copolymer wird durch das herkömmliche Verfahren unter den herkömmlichen Bedingungen hydriert. Die Hydrierung wird im Allgemeinen bei 20 bis 150 °C unter einem Wasserstoffdruck von 0,1 bis 10 MPa in Gegenwart eines Hydrierungskatalysators durchgeführt. Das Hydrierungsverhältnis kann gegebenenfalls eingestellt werden, indem die Menge eines Hydrierungskatalysators, der Wasserstoffdruck bei der Hydrierung, die Reaktionszeit und dergleichen geändert werden. Der Hydrierungskatalysator kann im Allgemeinen eine Verbindung verwenden, welche die Metalle der Gruppen 4 bis 11 des Periodensystems enthält. Zum Beispiel kann eine Verbindung, die ein Ti-, V-, Co-, Ni-, Zr-, Ru-, Rh-, Pd-, Hf-, Re- oder Pt-Atom enthält, als der Hydrierungskatalysator verwendet werden. Die Beispiele für die spezifischeren Hydrierungskatalysatoren umfassen eine Metallocenverbindung wie zum Beispiel Ti, Zr, Hf, Co, Ni, Pd, Pt, Ru, Rh oder Re, einen heterogenen Katalysator vom Trägertyp, der einen Träger wie zum Beispiel Kohlenstoff, Siliziumdioxid, Aluminiumoxid oder Diatomeenerde und ein Metall wie zum Beispiel Pd, Ni, Pt, Rh oder Ru, das darauf getragen wird, umfasst, einen homogenen Ziegler-Katalysator, der eine Kombination aus einem organischen Salz oder einem Acetylacetonsalz eines Metallelements wie zum Beispiel Ni oder Co und einem Reduktionsmittel wie zum Beispiel ein organisches Aluminium aufweist, eine organische Metallverbindung oder ein Komplex von Ru oder Rh, und eine Fulleren- oder Kohlenstoffnanoröhre mit darin eingeschlossenem Wasserstoff.
  • Das Hydrierungsverhältnis des hydrierten Copolymers (A) (Anteil der hydrierten Einheit in der konjugierten Dieneinheit des aromatischen mit Vinyl konjugierten Diencopolymers) beträgt 80 Molprozent oder mehr und bevorzugt 90 Molprozent oder mehr. Wenn das Hydrierungsverhältnis 80 Molprozent oder mehr beträgt, ist der Verbesserungseffekt der Bruchfestigkeit und der Abriebfestigkeit aufgrund der Homogenisierung der Vernetzung hervorragend.
  • Das im Gewicht gemittelte Molekulargewicht des hydrierten Copolymers (A) ist nicht besonders beschränkt, solange es 300.000 oder mehr beträgt. Das im Gewicht gemittelte Molekulargewicht beträgt bevorzugt 300.000 bis 2.000.000, besonders bevorzugt 300.000 bis 1.000.000 und noch mehr bevorzugt 300.000 bis 600.000.
  • Das Verhältnis des Anteils des hydrierten Copolymers (A) pro 100 Massenteile der Kautschukkomponente beträgt 80 bis 95 Massenprozent und bevorzugt 80 bis 90 Massenprozent. Wenn das Verhältnis des Anteils 80 bis 95 Massenprozent beträgt, ist der Verbesserungseffekt der Abriebbeständigkeit und der Bruchfestigkeit ausgezeichnet.
  • Die Kautschukzusammensetzung dieses Ausführungsbeispiels enthält einen flüssigen Kautschuk (B), der bei Raumtemperatur (23 °C) flüssig ist.
  • Der flüssige Kautschuk (B) ist nicht besonders beschränkt, er ist jedoch bevorzugt ein flüssiger Dien-Kautschuk, und die Beispiele hierfür umfassen einen Isopren-Kautschuk, einen Butadien-Kautschuk, einen Styrol-Butadien-Kautschuk, einen Isopren-Butadien-Kautschuk, einen Isopren-Styrol-Kautschuk, einen Isopren-Butadien-Styrol-Kautschuk, ein Isobutylen und einen Ethylen-Propylen-Dien-Kautschuk (EPDM). Diese flüssigen Kautschuke können Kautschuke sein, die durch eine Carboxylierung, eine Methacrylierung oder dergleichen modifiziert worden sind. Wenn der flüssige Kautschuk ein Copolymer ist, kann das Copolymer ein alternierendes Copolymer sein, kann es ein Blockcopolymer sein und kann es ein statistisches Copolymer sein. Diese flüssigen Kautschuke können allein oder als eine Mischung von zwei oder mehreren Arten verwendet werden.
  • Der flüssige Kautschuk (B) kann im Handel erhältliche flüssige Kautschuke verwenden. Die Beispiele des Isopren-Kautschuks umfassen einen LIR-30, einen LIR-50, einen LIR-310, einen LIR-390, einen LIR-410, einen UC-203, UC-102, einen LIR-290 und einen LIR-700, die von der Kuraray Co., Ltd. hergestellt worden sind. Die Beispiele des Butadien-Kautschuks umfassen einen LBR-307, einen LBR-305 und einen LBR-352, die von der Kuraray Co., Ltd. hergestellt worden sind. Die Beispiele für den Styrol-Butadien-Kautschuk umfassen einen L-SBR-820 und einen L-SBR-841, die von der Kuraray Co., GmbH hergestellt worden sind.
  • Das im Gewicht gemittelte Molekulargewicht des flüssigen Kautschuks (B) ist nicht besonders beschränkt, es beträgt aber bevorzugt 1.000 bis 100.000 und besonders bevorzugt 2.000 bis 50.000.
  • Der Anteil des flüssigen Kautschuks (B) (Gesamtmenge bei Verwendung von zwei oder mehr Arten) ist nicht besonders beschränkt, er beträgt aber 5 bis 20 Massenteile und besonders bevorzugt 10 bis 20 Massenteile pro 100 Massenteile der Kautschukkomponente.
  • Die Kautschukkomponente kann einen anderen Dien-Kautschuk als das hydrierte Copolymer (A) und den flüssigen Kautschuk (B) enthalten. Die Beispiele für den Dien-Kautschuk umfassen einen Naturkautschuk (NR), einen Isopren-Kautschuk (IR), einen Butadien-Kautschuk (BR), einen Styrol-Butadien-Kautschuk (SBR), einen Styrol-Isopren-Copolymerkautschuk, einen Butadien-Isopren-Copolymerkautschuk und einen Styrol-Isopren-Butadien-Copolymerkautschuk. Diese Dien-Kautschuke können allein oder als eine Mischung aus zwei oder mehreren Arten verwendet werden.
  • Die Kautschukzusammensetzung nach diesem Ausführungsbeispiel enthält wie vorstehend beschrieben einen Schwefel als ein Vulkanisationsmittel.
  • Die Beispiele für den Schwefel umfassen Schwefelkomponenten wie zum Beispiel einen pulverisierten Schwefel, einen ausgefällten Schwefel, einen kolloidalen Schwefel, einen unlöslichen Schwefel und einen hoch dispergierbaren Schwefel ein. Obwohl er nicht besonders beschränkt ist, beträgt der Anteil an Schwefel bevorzugt 15 bis 30 Massenteile und besonders bevorzugt 20 bis 30 Massenteile pro 100 Massenteile des flüssigen Kautschuks (B). Weiterhin kann die Kautschukzusammensetzung einen optionalen Vulkanisationsbeschleuniger enthalten, und dessen Anteil beträgt bevorzugt 10 bis 70 Massenteile und besonders bevorzugt 20 bis 50 Massenteile pro 100 Massenteile des flüssigen Kautschuks (B).
  • Bei der Kautschukzusammensetzung nach diesem Ausführungsbeispiel können ein Ruß und / oder ein Siliziumdioxid als der verstärkende Füllstoff verwendet werden. Mit anderen Worten kann der verstärkende Füllstoff nur der Ruß sein, er kann nur das Siliziumdioxid sein und er kann eine Kombination aus dem Ruß und dem Siliziumdioxid sein. Bevorzugt wird eine Kombination aus dem Ruß und dem Siliziumdioxid verwendet. Der Anteil des verstärkenden Füllstoffs ist nicht besonders beschränkt und er beträgt zum Beispiel bevorzugt 10 bis 150 Massenteile, besonders bevorzugt 20 bis 100 Massenteile und noch mehr bevorzugt 30 bis 80 Massenteile pro 100 Massenteile der Kautschukkomponente.
  • Der Ruß ist nicht besonders beschränkt und verschiedene herkömmliche Arten können verwendet werden. Der Anteil des Rußes beträgt bevorzugt 1 bis 70 Massenteile und besonders bevorzugt beträgt er 1 bis 60 Massenteile pro 100 Massenteile der Kautschukkomponente.
  • Das Siliziumdioxid ist nicht besonders beschränkt, jedoch wird bevorzugt ein feuchtes Siliziumdioxid wie zum Beispiel ein feucht ausgefälltes Siliziumdioxid oder ein feucht geliertes Siliziumdioxid verwendet. Wenn das Siliziumdioxid enthalten ist, beträgt sein Anteil bevorzugt 10 bis 120 Massenteile und besonders bevorzugt 15 bis 100 Massenteile pro 100 Massenteile der Kautschukkomponente, unter den Gesichtspunkten des Gleichgewichts von dem tanδ des Kautschuks, der Verstärkungseigenschaften und dergleichen.
  • Wenn das Siliziumdioxid enthalten ist, kann ferner ein Silanhaftvermittler wie zum Beispiel ein Sulfidsilan oder ein Mercaptosilan enthalten sein. Wenn der Silanhaftvermittler enthalten ist, beträgt sein Anteil bevorzugt 2 bis 20 Massenprozent bezogen auf den Anteil des Siliziumdioxids.
  • Zusätzlich zu den obigen Komponenten können die Verbindungsbestandteile, die bei der allgemeinen Kautschukindustrie verwendet werden, wie zum Beispiel ein Prozessöl, ein Zinkoxid, eine Stearinsäure, ein Weichmacher, ein Plastifiziermittel, ein Wachs und ein Alterungsschutzmittel, der Kautschukzusammensetzung nach diesem Ausführungsbeispiel in einem allgemeinen Bereich geeignet hinzugefügt werden.
  • Die Kautschukzusammensetzung nach diesem Ausführungsbeispiel kann durch ein Kneten der erforderlichen Komponenten nach dem herkömmlichen Verfahren mit einer Mischmaschine hergestellt werden, die im Allgemeinen verwendet wird, wie zum Beispiel einem Banbury-Mischer, einem Kneter oder Walzen. Insbesondere werden die Additive außer dem Vulkanisationsmittel und außer dem Vulkanisationsbeschleuniger dem hydrierten Copolymer (A) und dem flüssigen Kautschuk (B) hinzugefügt, die der Kautschukkomponente hinzugefügt werden, gefolgt von einem Mischen in einem ersten Mischschritt und das Vulkanisationsmittel und der Vulkanisationsbeschleuniger werden der erhaltenen Mischung hinzugefügt, gefolgt von einem Mischen in einem abschließenden Mischschritt. Somit kann eine Kautschukzusammensetzung hergestellt werden.
  • Die auf diese Weise erhaltene Kautschukzusammensetzung kann für einen Reifen verwendet werden und sie kann für jede Stelle eines Reifens verwendet werden, wie zum Beispiel ein Laufflächenteil oder ein Seitenwandteil von pneumatischen Reifen mit verschiedenen Verwendungen und Größen, wie zum Beispiel die Reifen für Personenkraftwagen oder große Reifen für Lastwagen oder Busse. Die Kautschukzusammensetzung wird zum Beispiel durch eine Extrusionsverarbeitung nach dem herkömmlichen Verfahren in eine vorbestimmte Form geformt, mit anderen Teilen kombiniert und dann bei zum Beispiel 140 bis 180 °C vulkanisiert. Somit kann ein pneumatischer Reifen hergestellt werden.
  • Die Art des pneumatischen Reifens nach diesem Ausführungsbeispiel ist nicht besonders beschränkt, und die Beispiele des pneumatischen Reifens umfassen verschiedene Reifen wie zum Beispiel Reifen für Personenkraftwagen und Schwerlastreifen für Lastwagen, Busse und dergleichen.
  • Beispiele
  • Die Beispiele der vorliegenden Erfindung werden nachstehend beschrieben, aber die vorliegende Erfindung soll nicht als auf diese Beispiele beschränkt aufgefasst werden.
  • Synthesebeispiel 1 eines hydrierten Copolymers
  • 2,5 1 an Cyclohexan, 50 g an Tetrahydrofuran, 0,12 g an n-Butyllithium, 100 g an Styrol und 400 g an 1,3-Butadien wurden in einen mit Stickstoff substituierten hitzebeständigen Reaktor gegeben und die Polymerisation wurde bei einer Reaktionstemperatur von 50 °C durchgeführt. Nach Beendigung der Polymerisation wurden 1,7 g an N,N-Bis(Trimethylsilyl)Aminopropylmethyl-diethoxysilan hinzugefügt, die Reaktion wurde 1 Stunde lang durchgeführt und dann wurde Wasserstoffgas unter einem Druck von 0,4 MPa Überdruck hinzugefügt. Die Reaktion wurde bei einer Reaktionstemperatur von 90 °C unter einem Wasserstoffgaszufuhrdruck von 0,7 MPa Überdruck unter Verwendung eines Katalysators durchgeführt, der hauptsächlich ein Titanocendichlorid enthielt, bis ein Ziel-Hydrierungsverhältnis erreicht wurde. Das Lösungsmittel wurde entfernt, um das hydrierte Copolymer 1 zu erhalten.
  • Das erhaltene hydrierte Copolymer hatte ein im Gewicht gemitteltes Molekulargewicht nach GPC von 350.000 hinsichtlich einem Polystyrol als dem Standardpolystyrol. Die Messung wurde mit einem „LC-10A“, das von der Shimadzu Corporation hergestellt worden ist, als dem Messinstrument mit einem „PLgel-MIXED-C“, das von den Polymer Laboratories hergestellt worden ist, als die Säule, mit einem Differential-Brechungsindex-Detektor (RI) als dem Detektor und unter Verwendung von THF als dem Lösungsmittel unter den Bedingungen durchgeführt, dass die Messtemperatur 40 °C betrug, die Flussrate 1,0 ml/min betrug, die Konzentration 1,0 g/l betrug und die Injektionsmenge 40 µl betrug. Die Menge an gebundenem Styrol betrug 20 Massenprozent und das Hydrierungsverhältnis der Butadieneinheit betrug 90 Molprozent. Die Menge des gebundenen Styrols wurde aus einem Spektrum-Intensitätsverhältnis von dem Proton basierend auf der Styroleinheit und von dem Proton basierend auf der Butadieneinheit (welche die hydrierte Einheit enthält) mittels H1-NMR erhalten.
  • Synthesebeispiel 2 eines hydrierten Copolymers
  • Das hydrierte Copolymer 2 wurde nach dem gleichen Verfahren wie bei dem Synthesebeispiel 1 mit der Ausnahme erhalten, dass die Reaktionszeit für die Hydrierung und das Ziel-Hydrierungsverhältnis geändert worden sind. Das erhaltene hydrierte Copolymer 2 wies ein im Gewicht gemitteltes Molekulargewicht von 350.000 in Bezug auf das Polystyrol als dem Standardpolystyrol auf. Die Menge an gebundenem Styrol betrug 20 Massenprozent und das Hydrierungsverhältnis der Butadieneinheit betrug 80 Molprozent.
  • Beispiele und Vergleichsbeispiele
  • Mittels eines Banbury-Mischers wurden die Komponenten außer dem Vulkanisationsbeschleuniger und außer dem Schwefel nach den in der nachstehenden Tabelle 1 gezeigten Rezepturen (Massenteilen) hinzugefügt, gefolgt von einem Mischen in einem ersten Mischschritt (nicht verarbeitender Knetschritt) (Auslasstemperatur: 160 °C). Der Vulkanisationsbeschleuniger und der Schwefel wurden der erhaltenen Mischung hinzugefügt, gefolgt von einem Mischen in einem abschließenden Mischschritt (verarbeitender Knetschritt) (Auslasstemperatur: 90 °C). So wurde eine Kautschukzusammensetzung hergestellt.
  • Die Details jeder Komponente in der Tabelle 1 sind wie folgt.
    • Hydrierter SBR 1: hydriertes Copolymer 1, das nach dem Synthesebeispiel 1 hergestellt worden ist
    • Hydrierter SBR 2: hydriertes Copolymer 2, das nach dem Synthesebeispiel 2 hergestellt worden ist
    • IR: „IR2200“, der von der JSR Corporation hergestellt worden ist
    • Flüssiger Kautschuk 1: „LIR30“, der von der Kuraray Co., Ltd. hergestellt worden ist, flüssiger Isopren-Kautschuk, im Gewicht gemitteltes Molekulargewicht: 28000
    • Flüssiger Kautschuk 2: „LBR307“, der von der Kuraray Co., Ltd. hergestellt worden ist, flüssiger Butadien-Kautschuk, im Gewicht gemitteltes Molekulargewicht: 8000
    • Siliziumdioxid: „Ultrasil VN3“, das von der Evonik hergestellt worden ist
    • Ruß: „SEAST 3“, der von der Tokai Carbon Co., Ltd. hergestellt worden ist
    • Öl: „PROCESS NC140“, das von der JX Nippon Oil & Sun Energy Corporation hergestellt worden ist
    • Zinkoxid: „Zinc Flower #3“, das von der Mitsui Mining & Smelting Co., Ltd. hergestellt worden ist
    • Stearinsäure: „LUNAC S-20“, die von der Kao Corporation hergestellt worden ist
    • Alterungsschutzmittel: „NOCRAC 6C“, das von der Ouchi Shinko Chemical Industrial Co., Ltd. hergestellt worden ist
    • Wachs: „OZOACE 0355“, das von der Nippon Seiro Co., Ltd. hergestellt worden ist Silanhaftvermittler: „Si69“, der von der Evonik hergestellt worden ist
    • Schwefel: „Pulverisierter Schwefel“, der von der Tsurumi Chemical Industry Co., Ltd. hergestellt worden ist
    • Vulkanisationsbeschleuniger 1: Beschleuniger vom Typ Guanidin, „NOCCELER D“, der von der Ouchi Shinko Chemical Industrial Co., Ltd. hergestellt worden ist
    • Vulkanisationsbeschleuniger 2: Beschleuniger vom Typ Sulfenamid, „SOXINOL CZ“, der von der Sumitomo Chemical Co., Ltd. hergestellt worden ist
  • Die Verarbeitbarkeit, die Bruchfestigkeit und die Abriebfestigkeit jeder erhaltenen Zusammensetzung wurden bewertet. Die Bewertungsverfahren waren wie folgt.
  • Verarbeitbarkeit: Ein nicht vulkanisierter Kautschuk wurde 1 Minute bei 100 °C vorerhitzt, und dann wurde ein Drehmoment nach 4 Minuten in einer Mooney-Einheit mit einem rotorlosen Mooney-Messgerät, das von der Toyo Seiki Seisaku-Sho hergestellt worden ist, gemäß JIS K6300 gemessen. Die Verarbeitbarkeit wurde durch einen Index angegeben, wobei der Wert des Vergleichsbeispiels 1 100 betrug. Ein kleinerer Index zeigt eine niedrige Viskosität und eine ausgezeichnete Verarbeitbarkeit an.
  • Bruchfestigkeit: Mit einem Prüfstück mit einer Hantelform 3, das durch ein Vulkanisieren der erhaltenen Kautschukzusammensetzung bei 150 °C für 30 Minuten erhalten worden ist, wurde ein Zugversuch gemäß JIS K6251 durchgeführt und die Bruchspannung wurde gemessen. Die Bruchfestigkeit wurde durch einen Index angegeben, wobei der Wert des Vergleichsbeispiels 1 100 betrug. Ein größerer Wert zeigt eine hohe Bruchfestigkeit an.
  • Abriebfestigkeit: Sie wurde mit einem Prüfstücks mit einer vorbestimmten Form, das durch ein Vulkanisieren der erhaltenen Kautschukzusammensetzung bei 150 °C für 30 Minuten erhalten worden ist, gemäß JIS K6264 gemessen. Insbesondere wurde die Abriebmenge unter den Bedingungen gemessen Last: 3 kg, Schlupfverhältnis: 20 %, Temperatur: 23 °C und Menge des abfallenden Sands: 20 g/min unter Verwendung eines Lambourn-Abriebprüfgeräts. Die umgekehrte Zahl der Abriebmenge wird durch einen Index angegeben, wobei der Wert des Vergleichsbeispiels 1 100 betrug. Ein größerer Wert zeigt eine hervorragende Abriebfestigkeit. Tabelle 1
    Vgl-Bsp. 1 Vgl-Bsp. 2 Vgl-Bsp. 3 Bsp. 1 Bsp. 2 Bsp. 3 Bsp. 4 Bsp. 5
    Hydrierter SBR 1 90 90 90 90 90 90 - 80
    Hydrierter SBR 2 - - - - - - 90 -
    IR - - 10 - - - - -
    Flüssiger Kautschuk 1 10 10 - 10 10 - 10 20
    Flüssiger Kautschuk 2 - - - - - 10 - -
    Siliziumdioxid 60 60 60 60 60 60 60 60
    Ruß 5 5 5 5 5 5 5 5
    Ӧl 10 10 10 10 10 10 10 10
    Zinkoxid 3 3 3 3 3 3 3 3
    Stearinsäure 2 2 2 2 2 2 2 2
    Alterungsschutzmittel 2 2 2 2 2 2 2 2
    Wachs 2 2 2 2 2 2 2 2
    Silanhaftvermittler 5 5 5 5 5 5 5 5
    Schwefel 1 3.5 2 2 3 2 2 3
    Vulkanisationsbeschleuniger 1 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5
    Vulkanisationsbeschleuniger 2 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5
    Verarbeitbarkeit 100 99 118 99 99 94 89 76
    Bruchfestigkeit 100 120 117 153 152 158 152 138
    Abriebfestigkeit 100 85 105 119 115 115 111 111
  • Die Ergebnisse sind in der Tabelle 1 gezeigt. Aus dem Vergleich zwischen den Vergleichsbeispielen 1 und 2 und den Beispielen 1 bis 5 geht hervor, dass, wenn ein spezifisches hydriertes SBR und ein flüssiger Kautschuk in den vorbestimmten Mengen enthalten sind und der Schwefel in der vorbestimmten Menge enthalten ist, die Bruchfestigkeit und die Abriebfestigkeit verbessert werden, während die Verarbeitbarkeit aufrechterhalten oder verbessert wird.
  • Aus dem Vergleich zwischen dem Vergleichsbeispiel 1 und dem Vergleichsbeispiel 3 geht hervor, dass selbst dann, wenn der Schwefel in der vorbestimmten Menge enthalten ist, wenn ein nicht-flüssiger IR anstelle des flüssigen Kautschuks verwendet wird, die Verarbeitbarkeit verschlechtert wird.
  • Gewerbliche Anwendbarkeit
  • Die Kautschukzusammensetzung für einen Reifen der vorliegenden Erfindung kann bei verschiedenen Reifen von Personenkraftwagen, leichten Lastkraftwagen, Bussen und dergleichen verwendet werden.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • JP 2016056349 A [0003]
    • JP 2016056350 A [0003]
    • JP 2009132907 A [0003]
    • JP 2003253051 A [0003]

Claims (3)

  1. Kautschukzusammensetzung für einen Reifen, welche aufweist: eine Kautschukkomponente, die enthält (A) ein hydriertes Copolymer, das durch ein Hydrieren eines aromatischen mit Vinyl konjugierten Diencopolymers erhalten worden ist, wobei das hydrierte Copolymer ein im Gewicht gemitteltes Molekulargewicht, das durch eine Gelpermeationschromatographie gemessen wird, von 300.000 oder mehr und ein Hydrierungsverhältnis einer konjugierten Dieneinheit von 80 Molprozent oder mehr aufweist, (B) einen flüssigen Kautschuk, und einen Schwefel, wobei der Anteil des hydrierten Copolymers (A) 80 bis 95 Massenteile beträgt und der Anteil des flüssigen Kautschuks (B) 5 bis 20 Massenteile pro 100 Massenteile der Kautschukkomponente beträgt, und der Anteil des Schwefels 15 bis 30 Massenteile pro 100 Massenteile des flüssigen Kautschuks (B) beträgt.
  2. Kautschukzusammensetzung für einen Reifen nach Anspruch 1, wobei der flüssige Kautschuk (B) mindestens einer ist, der aus der Gruppe ausgewählt worden ist, die einen Isopren-Kautschuk, einen Butadien-Kautschuk, einen Styrol-Butadien-Kautschuk, einen Isopren-Butadien-Kautschuk, einen Isopren-Styrol-Kautschuk und einen Isopren-Butadien-Styrol-Kautschuk umfasst.
  3. Pneumatischer Reifen, welcher mit der Kautschukzusammensetzung für einen Reifen nach Anspruch 1 oder 2 hergestellt worden ist.
DE112017006341.8T 2016-12-15 2017-12-07 Kautschukzusammensetzung für Reifen, deren Verwendung sowie daraus hergestelltes vulkanisiertes Produkt, insbesondere pneumatischer Reifen Active DE112017006341B4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-243408 2016-12-15
JP2016243408 2016-12-15
PCT/JP2017/043969 WO2018110414A1 (ja) 2016-12-15 2017-12-07 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ

Publications (2)

Publication Number Publication Date
DE112017006341T5 true DE112017006341T5 (de) 2019-08-22
DE112017006341B4 DE112017006341B4 (de) 2022-11-10

Family

ID=62558449

Family Applications (2)

Application Number Title Priority Date Filing Date
DE112017006341.8T Active DE112017006341B4 (de) 2016-12-15 2017-12-07 Kautschukzusammensetzung für Reifen, deren Verwendung sowie daraus hergestelltes vulkanisiertes Produkt, insbesondere pneumatischer Reifen
DE112017006339.6T Active DE112017006339B4 (de) 2016-12-15 2017-12-07 Kautschukzusammensetzung für Reifen sowie vulkanisiertes Produkt, insbesondere pneumatischer Reifen, die diese verwenden

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE112017006339.6T Active DE112017006339B4 (de) 2016-12-15 2017-12-07 Kautschukzusammensetzung für Reifen sowie vulkanisiertes Produkt, insbesondere pneumatischer Reifen, die diese verwenden

Country Status (6)

Country Link
US (2) US20190264013A1 (de)
JP (2) JP7011603B2 (de)
CN (2) CN110088191A (de)
DE (2) DE112017006341B4 (de)
MY (2) MY191032A (de)
WO (2) WO2018110414A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6837823B2 (ja) * 2016-12-15 2021-03-03 Toyo Tire株式会社 タイヤ用ゴム組成物、及びそれを用いた空気入りタイヤ
JP7371631B2 (ja) 2018-08-06 2023-10-31 住友ゴム工業株式会社 空気入りタイヤ
JP7224150B2 (ja) * 2018-11-12 2023-02-17 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP2020079336A (ja) * 2018-11-12 2020-05-28 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP7224149B2 (ja) * 2018-11-12 2023-02-17 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP6927363B2 (ja) * 2018-11-12 2021-08-25 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP7253897B2 (ja) * 2018-11-12 2023-04-07 住友ゴム工業株式会社 ゴム組成物及び空気入りタイヤ
JP2020105379A (ja) * 2018-12-27 2020-07-09 Toyo Tire株式会社 タイヤ用ゴム組成物の製造方法、及び空気入りタイヤの製造方法
JP7444166B2 (ja) * 2019-06-26 2024-03-06 住友ゴム工業株式会社 空気入りタイヤ
TW202110916A (zh) * 2019-08-30 2021-03-16 日商Jsr股份有限公司 聚合物組成物、交聯體以及輪胎
JP7359693B2 (ja) * 2019-12-27 2023-10-11 Toyo Tire株式会社 タイヤ用ゴム組成物及びタイヤ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253051A (ja) 2001-12-28 2003-09-10 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
JP2009132907A (ja) 2007-11-07 2009-06-18 Jsr Corp 水添共役ジエン系重合ゴムの製造方法、水添共役ジエン系重合ゴム、及びその組成物、並びにゴム成形品
JP2016056350A (ja) 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016056349A (ja) 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2657607B2 (ja) * 1992-03-25 1997-09-24 昭和電工株式会社 熱可塑性樹脂組成物およびその塗装体
US6204320B1 (en) * 1999-02-12 2001-03-20 The Goodyear Tire & Rubber Company Liquid isoprene-butadiene rubber
JP2002119615A (ja) * 2000-10-13 2002-04-23 Riken Technos Corp ゴルフボールカバー材用熱可塑性樹脂組成物
WO2004000931A1 (ja) 2002-06-19 2003-12-31 Bridgestone Corporation タイヤ用ゴム組成物及びこれを用いたタイヤ
US7367369B2 (en) * 2004-09-23 2008-05-06 The Goodyear Tire & Rubber Company Aircraft tire
KR100792983B1 (ko) 2005-10-11 2008-01-08 엘지전자 주식회사 디지털 방송 처리방법
JP4895576B2 (ja) 2005-11-15 2012-03-14 住友ゴム工業株式会社 ゴム組成物およびそれを用いた高性能タイヤ
US20100036057A1 (en) * 2006-01-16 2010-02-11 Bridgestone Corporation Rubber composition and pneumatic tire using the same
JP2010126597A (ja) 2008-11-26 2010-06-10 Tokai Rubber Ind Ltd 制振ダンパー用高減衰エラストマー組成物およびそれによって得られた制震ダンパー
JP5616073B2 (ja) 2010-01-27 2014-10-29 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
DE102010061469A1 (de) * 2010-12-22 2012-06-28 Continental Reifen Deutschland Gmbh Kautschukmischung mit verbessertem Rollwiderstandsverhalten
CN102634077B (zh) * 2012-05-02 2014-07-16 三角轮胎股份有限公司 轮胎胎面橡胶组合物
CN103540143B (zh) * 2012-07-04 2015-11-18 江苏泰尔新材料股份有限公司 一种自愈式金属化电容器用蜡
CN103788423B (zh) * 2012-10-30 2016-05-25 中国石油化工股份有限公司 一种橡胶组合物和轮胎胎肩胶及其制备方法
JP2015110704A (ja) * 2013-12-06 2015-06-18 住友ゴム工業株式会社 高性能ウェットタイヤ用トレッドゴム組成物及び高性能ウェットタイヤ
CN105348596A (zh) * 2014-08-19 2016-02-24 建大橡胶(中国)有限公司 一种超高性能轮胎胎面及其合成方法
JP6631254B2 (ja) * 2014-09-08 2020-01-15 住友ゴム工業株式会社 空気入りタイヤ
CN106574079A (zh) * 2014-09-08 2017-04-19 住友橡胶工业株式会社 充气轮胎
CN106167559A (zh) * 2016-06-24 2016-11-30 贵州轮胎股份有限公司 轻型单轨列车水平轮胎胎面胶料及其制备方法
CN106189045A (zh) * 2016-07-15 2016-12-07 山东永泰集团有限公司 一种港口工程机械轮胎胎面胶及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253051A (ja) 2001-12-28 2003-09-10 Bridgestone Corp ゴム組成物及びそれを用いたタイヤ
JP2009132907A (ja) 2007-11-07 2009-06-18 Jsr Corp 水添共役ジエン系重合ゴムの製造方法、水添共役ジエン系重合ゴム、及びその組成物、並びにゴム成形品
JP2016056350A (ja) 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ
JP2016056349A (ja) 2014-09-08 2016-04-21 住友ゴム工業株式会社 空気入りタイヤ

Also Published As

Publication number Publication date
CN110050025A (zh) 2019-07-23
DE112017006339B4 (de) 2023-07-06
US20200055963A1 (en) 2020-02-20
DE112017006341B4 (de) 2022-11-10
MY191216A (en) 2022-06-09
JPWO2018110414A1 (ja) 2019-10-24
DE112017006339T5 (de) 2019-08-22
MY191032A (en) 2022-05-30
CN110088191A (zh) 2019-08-02
CN110050025B (zh) 2022-01-25
US20190264013A1 (en) 2019-08-29
WO2018110414A1 (ja) 2018-06-21
JP7011603B2 (ja) 2022-01-26
JPWO2018110409A1 (ja) 2019-10-24
WO2018110409A1 (ja) 2018-06-21
JP7011604B2 (ja) 2022-01-26

Similar Documents

Publication Publication Date Title
DE112017006341B4 (de) Kautschukzusammensetzung für Reifen, deren Verwendung sowie daraus hergestelltes vulkanisiertes Produkt, insbesondere pneumatischer Reifen
DE112017006324B4 (de) Kautschukzusammensetzung für Reifen sowie vulkanisiertes Produkt, insbesondere pneumatischer Reifen, die diese verwenden
DE112017006322B4 (de) Kautschukzusammensetzung für Reifen, vulkanisiertes Produkt und pneumatischer Reifen, die diese verwenden
DE112011101778B4 (de) Kautschukzusammensetzung für einen Luftreifen, Verwendung der Kautschukzusammensetzung zur Herstellung eines vulkanisierten Produkts, und durch Vulkanisieren der Kautschukzusammensetzung hergestelltes vulkanisiertes Produkt
DE102013210165B4 (de) Luftreifen
DE112013003160B4 (de) Luftreifen und dessen Verwendung
DE112011104012B9 (de) Kautschukzusammensetzung zur Verwendung in Reifenlaufflächen, vulkanisiertes Produkt davon und dessen Verwendung in einer Reifenlauffläche eines Luftreifens
DE102006031566B4 (de) Kautschukzusammensetzung für Luftreifen und Verwendung der Kautschukzusammensetzung für Lauffläche im Luftreifen
DE102008003175B4 (de) Luftreifen
DE112008002808T5 (de) Reifen
DE102009031656B4 (de) Wulstband aus einer Kautschukzusammensetzung
DE112017006313T5 (de) Kautschukzusammensetzung für Reifen und pneumatischer Reifen, der diese verwendet
DE112008003328T5 (de) Kautschukzusammensetzung für einen Reifen
DE102008058991A1 (de) Luftreifen
DE102008058996A1 (de) Luftreifen
DE102014102492A1 (de) Kautschukzusammensetzung für Grundlauffläche und Luftreifen
DE112017005198B4 (de) Basislaufflächenkautschukelement und pneumatischer Reifen, der dieses verwendet
DE112017005212B4 (de) Verfahren zur Herstellung eines Laufflächenkautschukelements und Verfahren zur Herstellung eines Reifens
DE102016219980A1 (de) Kautschukzusammensetzung und pneumatischer Reifen
DE112008003343T5 (de) Kautschukzusammensetzung für eine Breakerdeckschicht
DE102016208727A1 (de) Verfahren zur Herstellung einer Kautschukzusammensetzung
DE102013207122A1 (de) Gummizusammensetzung für eine Lauffläche und Luftreifen, der dieselbe für eine Lauffläche verwendet
DE102019127669A1 (de) Laufflächen-Kautschukzusammensetzung und Reifen
DE102008050965A1 (de) Luftreifen
DE102017127811B4 (de) Kautschukzusammensetzung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final