DE112006003705T5 - Selbstjustierende Graben-MOSFET-Struktur und Herstellungsverfahren - Google Patents
Selbstjustierende Graben-MOSFET-Struktur und Herstellungsverfahren Download PDFInfo
- Publication number
- DE112006003705T5 DE112006003705T5 DE112006003705T DE112006003705T DE112006003705T5 DE 112006003705 T5 DE112006003705 T5 DE 112006003705T5 DE 112006003705 T DE112006003705 T DE 112006003705T DE 112006003705 T DE112006003705 T DE 112006003705T DE 112006003705 T5 DE112006003705 T5 DE 112006003705T5
- Authority
- DE
- Germany
- Prior art keywords
- active
- area
- trench
- gate
- termination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 claims abstract description 63
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 33
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 33
- 239000010703 silicon Substances 0.000 claims abstract description 33
- 239000004065 semiconductor Substances 0.000 claims abstract description 12
- 239000002019 doping agent Substances 0.000 claims abstract description 11
- 210000000746 body region Anatomy 0.000 claims abstract description 10
- 239000007943 implant Substances 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims description 25
- 238000005530 etching Methods 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 5
- 230000005669 field effect Effects 0.000 claims description 4
- 239000003989 dielectric material Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 description 15
- 230000000873 masking effect Effects 0.000 description 9
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- 238000002513 implantation Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 3
- 239000005380 borophosphosilicate glass Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011982 device technology Methods 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- BUHVIAUBTBOHAG-FOYDDCNASA-N (2r,3r,4s,5r)-2-[6-[[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)ethyl]amino]purin-9-yl]-5-(hydroxymethyl)oxolane-3,4-diol Chemical compound COC1=CC(OC)=CC(C(CNC=2C=3N=CN(C=3N=CN=2)[C@H]2[C@@H]([C@H](O)[C@@H](CO)O2)O)C=2C(=CC=CC=2)C)=C1 BUHVIAUBTBOHAG-FOYDDCNASA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7811—Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0657—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
- H01L29/0661—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body specially adapted for altering the breakdown voltage by removing semiconductor material at, or in the neighbourhood of, a reverse biased junction, e.g. by bevelling, moat etching, depletion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
- H01L29/407—Recessed field plates, e.g. trench field plates, buried field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66712—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/66727—Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66674—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/66712—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/66734—Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7802—Vertical DMOS transistors, i.e. VDMOS transistors
- H01L29/7813—Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/417—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
- H01L29/41725—Source or drain electrodes for field effect devices
- H01L29/41766—Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42364—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
- H01L29/42368—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Verfahren
zum Ausbilden eines Trench-Gate-Feldeffekttransistors (Trench-Gate-FET)
in einem Halbleiterchip, der ein aktives Gebiet zum Aufnehmen aktiver
Transistorzellen und ein Abschlussgebiet, das das aktive Gebiet
umgibt, umfasst, wobei das Verfahren umfasst:
Ausbilden eines Wannengebiets in dem aktiven Gebiet und in dem Abschlussgebiet gleichzeitig, wobei das Wannengebiet in einem Siliciumgebiet mit einem Leitfähigkeitstyp ausgebildet wird, der zu dem des Wannengebiets entgegengesetzt ist;
gleichzeitiges Ausbilden mehrerer aktiver Gate-Gräben in dem aktiven Gebiet und eines nicht aktiven Abschlussgrabens in dem Abschlussgebiet, wobei die mehreren aktiven Gate-Gräben und der nicht aktive Abschlussgraben in das Wannengebiet verlaufen und es durchdringen, um dadurch das Wannengebiet in dem aktiven Gebiet in mehrere aktive Body-Gebiete und in dem Abschlussgebiet in ein Abschluss-Body-Gebiet zu teilen;
Ausbilden einer Öffnung über dem Abschluss-Body-Gebiet und einer Öffnung über dem aktiven Gebiet unter Verwendung einer Maske;
Implantieren von Dotierungsstoffen in die aktiven Body-Gebiete durch die Öffnung über dem aktiven Gebiet...
Ausbilden eines Wannengebiets in dem aktiven Gebiet und in dem Abschlussgebiet gleichzeitig, wobei das Wannengebiet in einem Siliciumgebiet mit einem Leitfähigkeitstyp ausgebildet wird, der zu dem des Wannengebiets entgegengesetzt ist;
gleichzeitiges Ausbilden mehrerer aktiver Gate-Gräben in dem aktiven Gebiet und eines nicht aktiven Abschlussgrabens in dem Abschlussgebiet, wobei die mehreren aktiven Gate-Gräben und der nicht aktive Abschlussgraben in das Wannengebiet verlaufen und es durchdringen, um dadurch das Wannengebiet in dem aktiven Gebiet in mehrere aktive Body-Gebiete und in dem Abschlussgebiet in ein Abschluss-Body-Gebiet zu teilen;
Ausbilden einer Öffnung über dem Abschluss-Body-Gebiet und einer Öffnung über dem aktiven Gebiet unter Verwendung einer Maske;
Implantieren von Dotierungsstoffen in die aktiven Body-Gebiete durch die Öffnung über dem aktiven Gebiet...
Description
- QUERVERWEISE AUF VERWANDTE ANMELDUNGEN
- Diese Anmeldung ist verwandt mit der Patentanmeldung Nummer 11/317,653 mit dem Titel "Trench Field Plate Termination For Power Devices", eingereicht am 22. Dezember 2005, deren Offenbarungsgehalt hierin durch Bezugnahme vollständig mit aufgenommen ist.
- HINTERGRUND DER ERFINDUNG
- Es besteht weiter ein wachsender Bedarf an Halbleiterleistungsbauelementen (d. h. Bauelemente, die bei hohen Spannungen große Ströme leiten können). Solche Bauelemente enthalten Bipolartransistoren, Bipolartransistoren mit isoliertem Gate (IGBT), Metalloxidhalbleiter-Feldeffekttransistoren (MOSFET) und andere Typen von Feldeffekttransistoren. Trotz wesentlicher Fortschritte bei der Leistungsbauelementtechnologie bleibt ein Bedarf an noch leistungsfähigeren und kostengünstigeren Bauelementen. Während die Komplexität und die Subtilität von Leistungsbauelementen zunehmen, nimmt die Anzahl der Prozessschritte und -masken in dem Herstellungsprozess ebenfalls zu, was die Herstellungskosten wesentlich erhöht. Somit sind Verarbeitungstechniken erwünscht, die die Anzahl der Prozessschritte und/oder -masken verringern helfen, während sie die Bauelementleistung erhalten oder sogar erhöhen.
- Darüber hinaus ist es erwünscht, die Stromdichte relativ zu der Gesamtchipfläche einer Vorrichtung zu erhöhen. Einer der begrenzenden Fakto ren zu höheren Nennströmen ist die Durchschlagsspannung, insbesondere in dem Randabschlussgebiet, wo Anordnungsübergänge enden. Da die Halbleiterübergänge Krümmungen enthalten, werden zahlreiche Techniken genutzt, um die andernfalls hohe Konzentration elektrischer Feldlinien zu vermeiden. Herkömmlich werden im Leistungsbauelemententwurf entlang der Außenperipherie der Vorrichtung Randabschlussstrukturen mit Planaren Feldplatten aufgenommen, um sicherzustellen, dass die Durchschlagspannung in diesem Gebiet der Vorrichtung keinesfalls kleiner als in dem aktiven Gebiet der Vorrichtung ist. Allerdings belegen Abschlussstrukturen (insbesondere von der Art planarer Feldplatten) verhältnismäßig große Bereiche des Chips und erfordern zusätzliche Maskierungs- und Verarbeitungsschritte, was somit zu erhöhten Kosten führt.
- Somit besteht ein Bedarf an verbesserten Leistungsbauelementen mit verbesserten Grabenabschlussstrukturen und an kostengünstigen Verfahren zu deren Herstellung.
- KURZE ZUSAMMENFASSUNG DER ERFINDUNG
- Gemäß einer Ausführungsform der Erfindung wird ein Trench-Gate-FET (Graben-Gate-FET) wie folgt ausgebildet. Der FET wird in einem Halbleiterchip ausgebildet, der ein aktives Gebiet zum Aufnehmen aktiver Transistorzellen und ein Abschlussgebiet, das das aktive Gebiet umgibt, umfasst. In dem aktiven Gebiet und in dem Abschlussgebiet wird gleichzeitig ein Wannengebiet ausgebildet. Das Wannengebiet wird in einem Siliciumgebiet mit einem Leitfähigkeitstyp ausgebildet, der zu dem des Wannengebiets entgegengesetzt ist. In dem aktiven Gebiet werden gleichzeitig mit einem in dem Abschlussgebiet ausgebildeten nicht aktiven Abschlussgraben mehrere aktive Gate-Gräben ausgebildet. Die mehreren aktiven Gate-Gräben und der nicht aktive Abschlussgraben verlaufen in das Wannen gebiet und durchdringen es, um das Wannengebiet dadurch in dem aktiven Gebiet in mehrere aktive Body-Gebiete und in dem Abschlussgebiet in ein Abschluss-Body-Gebiet zu teilen. Unter Verwendung einer Maske wird über dem Abschluss-Body-Gebiet eine Öffnung ausgebildet und wird über dem aktiven Gebiet eine Öffnung ausgebildet. Durch die Öffnung über dem aktiven Gebiet werden in die aktiven Body-Gebiete und durch die Öffnung über dem Abschluss-Body-Gebiet werden in das Abschluss-Body-Gebiet Dotierungsstoffe implantiert, wodurch sowohl in dem aktiven Body-Gebiet als auch in dem Abschluss-Body-Gebiet ein erstes Gebiet ausgebildet wird. Die ersten Gebiete weisen einen Leitfähigkeitstyp auf, der zu dem des Wannengebiets entgegengesetzt ist. Die freiliegenden Oberflächen aller ersten Gebiete werden unter Verwendung eines Siliciumätzens vertieft, dass sie eine napfförmige Siliciumvertiefung mit geneigten Wänden und einem Boden, der durch jedes erste Gebiet so vorsteht, bilden, sodass Abschnitte jedes ersten Gebiets in einem entsprechenden aktiven Body-Gebiet verbleiben. Die verbleibenden Abschnitte der ersten Gebiete in den aktiven Body-Gebieten bilden Source-Gebiete, die auf die aktiven Gate-Gräben selbstjustierend sind.
- In einer Ausführungsform werden in die napfförmigen Siliciumvertiefungen Dotierungsstoffe implantiert, um in jedem aktiven Body-Gebiet und in dem Abschluss-Body-Gebiet ein Heavy-Body-Gebiet auszubilden. Die Heavy-Body-Gebiete weisen dieselbe Leitfähigkeit wie das Wannengebiet auf.
- In einer weiteren Ausführungsform wird über dem Halbleiterchip eine Metallschicht ausgebildet. Die Metallschicht wird daraufhin strukturiert, um Folgendes auszubilden: (i) eine Source-Metallschicht, die in dem aktiven Gebiet in jede napfförmige Siliciumvertiefung verläuft, um in dem aktiven Gebiet einen elektrischen Kontakt mit den Source-Gebieten und mit den Heavy-Body-Gebieten herzustellen, und (ii) eine Feldplatte, die in den nicht aktiven Abschlussgraben und in die in dem Abschluss-Body-Gebiet ausgebildete napfförmige Siliciumvertiefung verläuft, um einen elektrischen Kontakt mit dem in dem Abschluss-Body-Gebiet ausgebildeten Heavy-Body-Gebiet herzustellen, wobei die Source-Metallschicht und die Feldplatte voneinander isoliert sind.
- In einer weiteren Ausführungsform wird in dem nicht aktiven Abschlussgraben eine Abschlussdielektrikumschicht ausgebildet. In dem Graben wird über der Abschlussdielektrikumschicht eine Feldplatte ausgebildet, die leitendes Material umfasst. Die Abschlussdielektrikumschicht isoliert alle Abschnitte der Feldplatte innerhalb des nicht aktiven Abschlussgrabens von allen Siliciumgebieten, die den nicht aktiven Abschlussgraben umgeben. Die Feldplatte wird in der Weise ausgebildet, dass sie aus dem nicht aktiven Abschlussgraben heraus und in die in dem Abschluss-Body-Gebiet ausgebildete napfförmige Siliciumvertiefung hinein verläuft, um dadurch einen elektrischen Kontakt mit dem in dem Abschluss-Body-Gebiet ausgebildeten Heavy-Body-Gebiet herzustellen.
- In einer abermals weiteren Ausführungsform verläuft der nicht aktive Abschlussgraben in der Weise bis zu einem Rand des Halbleiterchips, dass der nicht aktive Abschlussgraben eine vertikale Wand bildet, bei der das Wannengebiet endet.
- In einer abermals weiteren Ausführungsform werden zur gleichen Zeit, zu der die aktiven Gate-Gräben und die nicht aktiven Abschlussgräben ausgebildet werden, nicht aktive Gate-Runner-Gräben in der Weise ausgebildet, dass der nicht aktive Gate-Runner-Graben, die aktiven Gate-Gräben und der nicht aktive Abschlussgraben bis in dieselbe Tiefe verlaufen. In jedem aktiven Gate-Graben wird eine vertiefte Gate-Elektrode ausgebildet und gleichzeitig wird in dem nicht aktiven Gate-Runner-Graben eine vertiefte Gate-Runner-Elektrode ausgebildet. Die vertiefte Gate-Elektrode in jedem aktiven Gate-Graben wird mit der vertieften Gate-Runner-Elektrode in dem nicht aktiven Gate-Runner-Graben elektrisch verbunden.
- In einer abermals weiteren Ausführungsform sind die nicht aktiven Gate-Gräben streifenförmig und verlaufen entlang einer ersten Richtung, während der nicht aktive Gate-Runner-Graben wenigstens teilweise entlang einer Richtung verläuft, die zu den aktiven Gate-Gräben senkrecht ist, und mit ihnen zusammenhängend ist.
- Ein besseres Verständnis des Wesens und der Vorteile der vorliegenden Erfindung kann aus der folgenden ausführlichen Beschreibung und aus den beigefügten Zeichnungen gewonnen werden.
- KURZBESCHREIBUNG DER ZEICHNUNGEN
-
1A –1K sind vereinfachte Querschnittsansichten in verschiedenen Schritten eines Herstellungsprozesses zum Ausbilden eines selbstjustierenden MOSFET mit verbesserter Grabenabschlussstruktur in Übereinstimmung mit einer beispielhaften Ausführungsform der Erfindung; und -
2 ist eine vereinfachte Querschnittsansicht, die eine Trench-Gate-Runner-Struktur zeigt, die in Übereinstimmung mit einer beispielhaften Ausführungsform der Erfindung ausgebildet wird, ohne zusätzliche Prozessschritte zu erfordern. - AUSFÜHRLICHE BESCHREIBUNG DER ERFINDUNG
- Die vorliegende Erfindung bezieht sich allgemein auf die Halbleiterleistungsbauelement-Technologie und insbesondere auf verbesserte Leistungsbauelemente mit verbesserten Abschlussstrukturen und auf Verfahren, um diese auszubilden.
-
1A –1K sind vereinfachte Querschnittsansichten in verschiedenen Schritten eines Herstellungsprozesses zum Ausbilden eines selbstjustierenden MOSFET mit einer Grabenfeldplatten-Abschlussstruktur in Übereinstimmung mit einer beispielhaften Ausführungsform der Erfindung.2 ist eine vereinfachte Querschnittsansicht, die eine Trench-Gate-Runner-Struktur zeigt, die ausgebildet wird, ohne zusätzliche Prozessschritte gegenüber den in1A –1K gezeigten zu erfordern. Alle hier beschriebenen Zeichnungen sind lediglich veranschaulichend und sollen den Umfang der vorliegenden Ansprüche somit nicht unangemessen einschränken. Der Durchschnittsfachmann auf dem Gebiet erkennt angesichts der Offenbarung viele mögliche Änderungen, Abwandlungen und Alternativen. - In
1A wird über einem stark dotierten N-Substrat unter Verwendung herkömmlicher Techniken eine schwach dotierte N-Epitaxieschicht104 ausgebildet. In einem oberen Abschnitt der Epitaxieschicht104 wird unter Verwendung einer herkömmlichen Deckimplantation von p-Dotierungsstoffen in die Epitaxieschicht104 ein schwach dotiertes P-Wannengebiet106 ausgebildet. Um die Grenze zwischen dem aktiven Gebiet und dem Abschlussgebiet des Chips, in dem der FET ausgebildet wird, zu zeigen, ist eine vertikale Linie verwendet. Wie in herkömmlichen FETs enthält das aktive Gebiet des Chips die aktiven Zellentransistoren und umgibt das Abschlussgebiet das aktive Gebiet und enthält die Abschlussstruktur. In herkömmlichen Prozessen ist üblicherweise eine Maske erforderlich, um das Abschlussgebiet vom Empfang der P-Implantation zu sperren. Wie zu sehen ist, ermöglichen jedoch die Struktur und das Herstellungsverfahren der vorliegenden Erfindung die Verwendung einer Deckimplantation in dieser Phase des Prozesses und beseitigen somit den Maskierungsschritt, der üblicherweise erforderlich ist. - Über dem Wannengebiet
106 wird unter Verwendung herkömmlicher Techniken eine harte Maske108 (die z. B. Oxid umfasst) ausgebildet und daraufhin strukturiert, um Öffnungen110 auszubilden. In1B wird durch die Öffnungen110 Silicium entfernt, um dadurch in dem aktiven Gebiet aktive Gate-Gräben116 auszubilden und in dem Abschlussgebiet einen Abschlussgraben120 auszubilden. Die Gräben116 und120 durchdringen das Wannengebiet106 in der Weise, dass das Wannengebiet106 in eine Anzahl aktiver Body-Gebiete106B und in ein Abschluss-Body-Gebiet106A geteilt wird. Wie gezeigt ist, verläuft der Abschlussgraben120 in der Weise bis zu einem Rand des Chips, dass das Abschluss-Body-Gebiet106A bei einer vertikalen Wand des Abschlussgrabens120 endet. Somit wird die in dem Abschlussgebiet von Strukturen des Standes der Technik vorhandene Krümmung des P-Gebiets vorteilhaft beseitigt. Obgleich der Abschlussgraben120 in der Weise gezeigt ist, dass er bis in die Straße (d. h. bis in die Gebiete, die angrenzende Chips auf einem Wafer trennen) verläuft, kann der Abschlussgraben120 auch so ausgebildet werden, dass er vor Erreichen der Straße endet. Obgleich die aktiven Gräben116 und der Abschlussgraben120 in der Weise gezeigt sind, dass sie in einer Tiefe unmittelbar unter der des Wannengebiets106 enden, könnten die Gräben116 und120 außerdem je nach Entwurfszielen und Zielleistungscharakteristiken stattdessen tiefer in die Epitaxieschicht104 oder sogar bis in das Substrat102 verlaufen. - In
1C wird die harte Maske108 unter Verwendung bekannter Techniken entfernt und daraufhin eine verhältnismäßig dicke Abschirmdielektrikumschicht122 (die z. B. Oxid umfasst) ausgebildet, die in die aktiven Gräben116 und in den Abschlussgraben120 und über die Mesagebiete verläuft. Die Dicke der Abschirmdielektrikumschicht122 ist im Allgemeinen größer als die des Gate-Dielektrikums und hauptsächlich durch die Nennspannung der Vorrichtung vorgeschrieben. In1D wird die Abschirmdielektrikumschicht122 in einem Photolithographieschritt maskiert und strukturiert und nachfolgend von dem aktiven Gebiet entfernt, um in dem Abschlussgebiet die Abschirmdielektrikumschicht124 zu liefern. Auf diese Weise wird im Abschlussgraben120 vorteilhaft eine dicke hochwertige dielektrische Schicht ausgebildet. In einer alternativen Ausführungsform wird kein Abschirmdielektrikum ausgebildet, sodass der Maskierungs- und der Prozessschritt aus1C und1D beseitigt sind. In dieser alternativen Ausführungsform würde das Dielektrikum im Abschlussgraben120 eine später ausgebildete Gate-Dielektrikumschicht (d. h. die Schicht126 in1E ) und eine über der Gate-Dielektrikumschicht liegende dickere dielektrische Schicht (d. h. die Schicht127 in1H ) wie etwa Borphosphorsilikatglas (BPSG) umfassen. - In
1E wird unter Verwendung herkömmlicher Techniken wie etwa Oxidation des Siliciums eine Gate-Dielektrikumschicht126 ausgebildet. Wie gezeigt ist, wird die Gate-Dielektrikumschicht126 entlang aller freiliegenden Siliciumoberflächen einschließlich der Seitenwände und des Bodens der aktiven Gate-Gräben ausgebildet. In1F wird über der Gate-Dielektrikumschicht126 und über dem Abschirmdielektrikum124 eine Polysiliciumschicht128 ausgebildet, die die aktiven Gräben116 füllt und in den Abschlussgraben120 verläuft. In1G wird die Polysiliciumschicht128 in den aktiven Gräben116 unter Verwendung bekannter Techniken bis in eine vorgegebene Tiefe vertieft. Somit werden Gate-Elekt roden130 ausgebildet. Die Polysiliciumvertiefung führt zur vollständigen Entfernung des Polysiliciums im Abschlussgraben120 . Während herkömmliche Techniken einen Maskierungsschritt erfordern, um das Polysilicium in dem Abschlussgebiet und in den aktiven Gebieten getrennt zu definieren, beseitigen der Herstellungsprozess und die Struktur der vorliegenden Erfindung diesen Maskierungsschritt. In einer alternativen Ausführungsform werden die aktiven Body-Gebiete106B und das Abschluss-Body-Gebiet106A eher nach dem Vertiefen des Polysiliciums als früh in dem Prozessablauf durch Implantieren von P-Dotierungsstoffen ausgebildet (1A ). - In
1H wird (z. B. unter Verwendung einer Oxidablagerung) eine dielektrische Schicht127 ausgebildet und daraufhin unter Verwendung einer Kontaktmaske strukturiert, worauf ein dielektrisches Ätzen unter Verwendung von Silicium als Ätzsperre folgt. Somit werden die aktiven Gräben116 mit dielektrischem Material127 gefüllt und werden Öffnungen132 ausgebildet, um einen Oberflächenabschnitt des Abschluss-Body-Gebiets106A sowie die Mesaoberflächen in dem aktiven Gebiet freizulegen. Außerdem bildet das Dielektrikum127 zusammen mit dem Abschirmdielektrikum124 im Abschlussgraben120 ein dickeres Dielektrikum125 . In1I werden durch die freiliegenden Siliciumoberflächen eine Deck-Source-Implantation und ein Treiben ausgeführt, um in den aktiven Body-Gebieten106B und im Abschluss-Body-Gebiet106A N-Gebiete136 auszubilden. Die Dielektrika125 und127 dienen als Sperrschichten, die verhindern, dass ihre darunter liegenden Gebiete die Source-Implantation empfangen. Da das Abschluss-Body-Gebiet106A in herkömmlichen Abschlussstrukturen elektrisch an das Source-Gebiet gebunden ist, ist ein zusätzlicher Maskierungsschritt erforderlich, um zu verhindern, dass das Abschluss-Body-Gebiet106A die Source-Implantation empfangt, um Latch-Up-Bedenken zu beseitigen. Dagegen kann in der hier beschriebenen Ausführungsform eine Source-Implantation in das Abschluss-Body-Gebiet106A stattfinden, da das Abschluss-Body-Gebiet106A schweben kann. Somit wird ein von Prozessen des Standes der Technik geforderter Maskierungsschritt beseitigt. - In
1J wird ein Deckvertiefungsätzen von Silicium (z. B. ein angewinkeltes In-Situ-Siliciumätzen) ausgeführt, um alle frei liegenden Siliciumoberflächen bis unter die Bodenfläche der N-Gebiete136 zu vertiefen und somit die Kontaktöffnungen144 auszubilden. Wegen des verwendeten angewinkelten Ätzprozesses besitzen die Kontaktöffnungen144 ein geneigtes Seitenwandprofil. Die in dem Anordnungsgebiet verbleibenden dreieckförmigen Abschnitte der N-Gebiete139 bilden Source-Gebiete137 , die vorteilhaft auf die Anordnungsgräben116 selbstjustierend sind. Außerdem verbleiben von dem N-Gebiet136 in dem Abschlussgebiet die Abschnitte139 . Nachfolgend wird durch die Kontaktöffnungen144 eine Deckimplantation von P-Dotierungsstoffen, gefolgt von einem Eintreibschritt, ausgeführt, um in den aktiven Body-Gebieten106B und in dem Abschluss-Body-Gebiet106A Heavy-Body-Gebiete140 auszubilden. Es wird angemerkt, dass das Heavy-Body-Gebiet140 im Abschluss-Body-Gebiet106A zwischen der Feldplatte148 und dem Abschluss-Body-Gebiet106A einen Kontakt mit niedrigem Widerstand sicherstellt. Dies wird erreicht, ohne dass zusätzliche Verarbeitungsschritte erforderlich sind. - In
1K werden herkömmliche Metallablagerungs-, Photolithographie- und Ätzschritte ausgeführt, um das Source-Metall146 , das Gate-Runner-Metall (die Schicht149 in2 ) und das Abschlussfeldplattenmetall148 auszubilden. Das abgelagerte Metall füllt die Kontaktöffnungen144 aus. Das Source-Metall146 steht in dem aktiven Bereich der Vorrichtung mit den Source-Gebieten137 und mit den Heavy-Body-Gebieten140 in Kontakt und das Feldplattenmetall148 steht in dem Abschlussgebiet mit den N-Gebieten139 und mit dem Heavy-Body-Gebiet140 in Kontakt. Das Source-Metall146 , das Feldplattenmetall148 und das Gate-Runner-Metall149 sind durch Zwischenräume getrennt, die durch den Metallätzprozess erzeugt werden. Unter Verwendung herkömmlicher Techniken wird eine Rückseiten-Drain-Metallschicht150 ausgebildet. - In einer Ausführungsform wird das Abschluss-Body-Gebiet
106A ohne Vorspannung gelassen und schwebt somit elektrisch. Dies ermöglicht, dass sich das Abschluss-Body-Gebiet106A und die Feldplatte148 selbst auf eine Spannung größer als 0 V vorspannen. Dies verhindert wiederum eine Stossionisation und hohe Felder um den letzten Mesagraben116 (d. h. um den aktiven Graben, der die linke Wand des Abschluss-Body-Gebiets106A definiert). Da das letzte Mesagebiet auf dem Chip (d. h. das Abschluss-Body-Gebiet106A ) schwebend ist und somit während des Betriebs kein Stromfluss vorhanden ist, wird das Potential für das Latch-Up, das üblicherweise dadurch verursacht wird, dass durch die N-Epitaxieschicht104 , durch das P-Abschluss-Body-Gebiet106A und durch das N-Source-Gebiet137 ein Bipolartransistor ausgebildet wird, beseitigt. In einer alternativen Ausführungsform wird das Abschluss-Body-Gebiet106A auf dasselbe Potential wie die Source-Gebiete elektrisch vorgespannt. - Während
1A –1K eine Prozessfolge zum Ausbilden einer bestimmten Grabenabschlussstruktur zusammen mit einer selbstjustierenden MOSFET-Zellenanordnung zeigen, ist für den Fachmann auf dem Gebiet angesichts dieser Offenbarung festzustellen, dass diese Prozessfolge geändert werden kann, um andere Grabenabschlussstrukturen auszubilden. Zum Beispiel könnte die Prozessfolge aus1A –1K geändert werden, um irgendeine der Grabenabschlussstrukturen auszubilden, die in der oben erwähnten Patentanmeldung Nummer 11/317,653 mit dem Titel "Trench Field Plate Termination For Power Devices", eingereicht am 22. Dezember 2005, offenbart sind. -
2 ist eine vereinfachte Querschnittsansicht, die eine unter Verwendung der Prozessfolge aus1A –1K ausgebildete Trench-Gate-Runner-Struktur veranschaulicht. Der Gate-Runner-Graben117 wird gleichzeitig mit den aktiven Gate-Gräben116 und mit dem Abschlussgraben120 (d. h. unter Verwendung der1B entsprechenden Prozessschritte) ausgebildet. In einer Ausführungsform ist die Breite des Gate-Runner-Grabens117 , wie durch Photolithographiebeschränkungen und durch die erforderliche Größe der Kontaktöffnung152 über dem Gate-Runner131 vorgeschrieben ist, größer als die der aktiven Gate-Gräben116 . Der Gate-Runner-Graben117 wird während derselben Prozessschritte, die ausgeführt werden, um die aktiven Gräben116 mit der Gate-Dielektrikumschicht126 zu überziehen (d. h. während der1E entsprechenden Prozessschritte), mit der Gate-Dielektrikumschicht126 überzogen. In einer alternativen Ausführungsform wird der Gate-Runner-Graben117 während der derselben Prozesse, die ausgeführt werden, um den Abschlussgraben120 mit der dielektrischen Schicht124 zu überziehen (d. h. während der1C und1D entsprechenden Prozessschritte), mit der dickeren dielektrischen Schicht124 überzogen. Das dickere Dielektrikum in dem Gate-Runner-Graben minimiert vorteilhaft die Gate-Drain-Kapazität. Ähnlich wird die vertiefte Gate-Runner-Elektrode131 während derselben Prozessschritte, die zum Ausbilden der Gate-Elektroden130 in den aktiven Gräben ausgeführt werden (d. h. während der1F und1G entsprechenden Prozessschritte), ausgebildet. - Die dielektrische Schicht
150 und die Kontaktöffnungen152 werden während derselben Prozessschritte, die zum Ausbilden der dielektrischen Schicht127 und der Kontaktöffnungen132 ausgeführt werden (d. h. wäh rend der1H entsprechenden Prozessschritte), ausgebildet. Während derselben Metallablagerungs-, Photolithographie- und Metallätzprozessfolge, die zum Ausbilden des Source-Metalls146 und des Feldplattenmetalls148 ausgeführt werden (d. h. während der1K entsprechenden Prozessschritte), wird ein Gate-Metall149 ausgebildet, das durch die Öffnung152 mit der Gate-Runner-Elektrode131 elektrisch in Kontakt steht. Die verbleibenden Schichten der Trench-Gate-Runner-Struktur in2 werden ähnlich während entsprechender Prozessschritte in1H –1J ausgebildet. Der Gate-Runner-Graben117 kann nach Bedarf entlang der Peripherie, entlang eines Mittelbereichs des Chips und/oder in anderen Bereichen des Chips verlaufen. In einer spezifischen Ausführungsform verbinden Gate-Runner-Gräben, die entlang einer Mitte des Chips verlaufen, und zusätzliche Gate-Runner-Gräben, die entlang der Seiten des Chips verlaufen, die Gate-Elektroden, die sich innerhalb des aktiven Bereichs der Vorrichtung befinden. In einer weiteren Ausführungsform sind die Zellen in dem aktiven Gebiet streifenförmig und verlaufen entlang einer ersten Richtung, während ein Gate-Runner-Graben entlang einer Richtung verläuft, die zu den aktiven Gate-Gräben senkrecht ist, und mit ihnen zusammenhängend ist. - In Übereinstimmung mit der Erfindung werden Abschlussstrukturen, die üblicherweise getrennt von dem aktiven Gebiet strukturiert werden, zur gleichen Zeit ausgebildet, zu der entsprechende Strukturen in dem Anordnungsgebiet ausgebildet werden, was die Maskenanzahl und die Anzahl der Prozessschritte verringert. Zum Beispiel werden in herkömmlichen Implementierungen zum Ausbilden des P-Wannengebiets in dem Abschlussbereich und des P-Wannengebiets in dem aktiven Bereich des Chips getrennte Ionenimplantations- und Maskierungsschritte ausgeführt. Das P-Wannengebiet in dem Abschlussbereich und das P-Wannengebiet in dem aktiven Bereich des Chips werden unter Verwendung einer Deck implantation (d. h. unter Verwendung keiner Maske) gleichzeitig ausgebildet. Somit werden sowohl die Anzahl der Prozessschritte als auch die Anzahl der Masken verringert. Gleichzeitig wird unter Nutzung eines in den Graben eingebetteten Gate-Runners die Anzahl der erforderlichen Masken verringert. Es können dieselben Schritte verwendet werden, um gleichzeitig Folgendes auszubilden: (i) den Abschlussgraben, (ii) die Gate-Runner-Gräben und (iii) die aktiven Gate-Gräben, sodass die Anzahl der Herstellungsschritte und der Maskierungsschritte verringert wird. Außerdem minimiert das Einbetten des Gate-Runners in einen Graben (im Gegensatz zu den herkömmlichen planaren Gate-Runnern) den Siliciumverbrauch. Diese Vorteile werden zusammen mit einer Trench-Gate-FET-Struktur mit selbstjustierenden Source- und Heavy-Body-Gebieten erreicht. Insgesamt wird ein hochkompakter, preiswerter Trench-Gate-FET mit verbesserter Leistung erzielt.
- Obgleich die vorliegende Ausführungsform besonders in Bezug auf beispielhafte Ausführungsformen davon gezeigt und beschrieben worden ist, ist für den Durchschnittsfachmann auf dem Gebiet selbstverständlich, dass daran verschiedene Änderungen in Bezug auf die Form und die Einzelheiten vorgenommen werden können, ohne von dem wie durch die Ansprüche definierten Erfindungsgedanken und Umfang der vorliegenden Erfindung abzuweichen.
- Zusammenfassung
- Ein Trench-Gate-FET wird wie folgt ausgebildet. In einem Siliciumgebiet wird ein Wannengebiet ausgebildet. In einem aktiven Gebiet bzw. in einem Abschlussgebiet des FET werden gleichzeitig mehrere aktive Gate-Gräben und ein Abschlussgraben in der Weise ausgebildet, dass das Wannengebiet in mehrere aktive Body-Gebiete und in ein Abschluss-Body-Gebiet geteilt wird. Unter Verwendung einer Maske werden über dem Abschluss-Body-Gebiet und über dem aktiven Body-Gebiet Öffnungen ausgebildet. In die aktiven Body-Gebiete und in das Abschluss-Body-Gebiet werden durch die Öffnungen Dotierungsstoffe implantiert, um dadurch in jedem aktiven Gebiet und in dem Abschluss-Body-Gebiet ein erstes Gebiet auszubilden. Die freiliegenden Oberflächen aller ersten Gebiete werden in der Weise vertieft, dass sie eine napfförmige Vertiefung mit geneigten Wänden und einem Boden, der durch das erste Gebiet vorsteht, bilden, sodass die verbleibenden Abschnitte des ersten Gebiets in jedem aktiven Body-Gebiet Source-Gebiete bilden, die auf die aktiven Gate-Gräben selbstjustierend sind.
- ZITATE ENTHALTEN IN DER BESCHREIBUNG
- Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
- Zitierte Nicht-Patentliteratur
-
- - "Trench Field Plate Termination For Power Devices", eingereicht am 22. Dezember 2005 [0001]
- - "Trench Field Plate Termination For Power Devices", eingereicht am 22. Dezember 2005 [0025]
Claims (22)
- Verfahren zum Ausbilden eines Trench-Gate-Feldeffekttransistors (Trench-Gate-FET) in einem Halbleiterchip, der ein aktives Gebiet zum Aufnehmen aktiver Transistorzellen und ein Abschlussgebiet, das das aktive Gebiet umgibt, umfasst, wobei das Verfahren umfasst: Ausbilden eines Wannengebiets in dem aktiven Gebiet und in dem Abschlussgebiet gleichzeitig, wobei das Wannengebiet in einem Siliciumgebiet mit einem Leitfähigkeitstyp ausgebildet wird, der zu dem des Wannengebiets entgegengesetzt ist; gleichzeitiges Ausbilden mehrerer aktiver Gate-Gräben in dem aktiven Gebiet und eines nicht aktiven Abschlussgrabens in dem Abschlussgebiet, wobei die mehreren aktiven Gate-Gräben und der nicht aktive Abschlussgraben in das Wannengebiet verlaufen und es durchdringen, um dadurch das Wannengebiet in dem aktiven Gebiet in mehrere aktive Body-Gebiete und in dem Abschlussgebiet in ein Abschluss-Body-Gebiet zu teilen; Ausbilden einer Öffnung über dem Abschluss-Body-Gebiet und einer Öffnung über dem aktiven Gebiet unter Verwendung einer Maske; Implantieren von Dotierungsstoffen in die aktiven Body-Gebiete durch die Öffnung über dem aktiven Gebiet und in das Abschluss-Body-Gebiet durch die Öffnung über dem Abschluss-Body-Gebiet, um dadurch in jedem aktiven Body-Gebiet und in dem Abschluss-Body-Gebiet ein erstes Gebiet auszubilden, wobei die ersten Gebiete einen Leitfähigkeitstyp aufweisen, der zu dem des Wannengebiets entgegengesetzt ist; und Vertiefen freiliegender Oberflächen aller ersten Gebiete unter Verwendung eines Siliciumätzens zum Ausbilden einer napfförmigen Siliciumvertiefung mit geneigten Wänden und einem Boden, der durch jedes erste Gebiet vorsteht, sodass Abschnitte jedes ersten Gebiets in einem entsprechenden aktiven Body-Gebiet verbleiben, wobei die verbleibenden Abschnitte der ersten Gebiete in den aktiven Body-Gebieten Source-Gebiete bilden, die auf die aktiven Gate-Gräben selbstjustierend sind.
- Verfahren nach Anspruch 1, das ferner umfasst: Implantieren von Dotierungsstoffen in die napfförmigen Siliciumvertiefungen zum Ausbilden eines Heavy-Body-Gebiets in jedem aktiven Body-Gebiet und in dem Abschluss-Body-Gebiet, wobei die Heavy-Body-Gebiete denselben Leitfähigkeitstyp wie das Wannengebiet aufweisen.
- Verfahren nach Anspruch 2, das ferner umfasst: Ausbilden einer Metallschicht über dem Halbleiterchip; Strukturieren der Metallschicht zum Ausbilden: (i) einer Source-Metallschicht, die in jede napfförmige Siliciumvertiefung in dem aktiven Gebiet verläuft, um in dem aktiven Gebiet einen elektrischen Kontakt mit den Source-Gebieten und mit den Heavy-Body-Gebieten herzustellen, und (ii) einer Feldplatte, die in den nicht aktiven Abschlussgraben und in die in dem Abschluss-Body-Gebiet ausgebildete napfförmige Siliciumvertiefung verläuft, um einen elektrischen Kontakt mit dem in dem Abschluss-Body-Gebiet ausgebildeten Heavy-Body-Gebiet herzustellen, wobei die Source-Metallschicht und die Feldplatte voneinander isoliert sind.
- Verfahren nach Anspruch 1, das ferner umfasst: Ausbilden einer Abschlussdielektrikumschicht in dem nicht aktiven Abschlussgraben; Ausbilden einer Feldplatte, die leitendes Material umfasst, in dem Graben über der Abschlussdielektrikumschicht, wobei die Abschlussdielektrikumschicht alle Abschnitte der Feldplatte innerhalb des nicht aktiven Abschlussgrabens von allen Siliciumgebieten, die den nicht aktiven Abschlussgraben umgeben, isoliert, wobei die Feldplatte aus dem nicht aktiven Abschlussgraben heraus und in die in dem Abschluss-Body-Gebiet ausgebildete napfförmige Siliciumvertiefung hinein verläuft, um dadurch einen elektrischen Kontakt mit dem in dem Abschluss-Body-Gebiet ausgebildeten Heavy-Body-Gebiet herzustellen.
- Verfahren nach Anspruch 4, bei dem das leitende Material ein Metall ist.
- Verfahren nach Anspruch 1, das ferner umfasst: Ausbilden einer Gate-Dielektrikumschicht, mit der die Seitenwände jedes aktiven Gate-Grabens überzogen sind; Ausbilden eines vertieften Gates in jedem aktiven Gate-Graben, wobei die Abschlussdielektrikumschicht dicker als die Gate-Dielektrikumschicht ist; und Ausbilden eines dielektrischen Materials über jedem vertieften Gate.
- Verfahren nach Anspruch 1, bei dem der nicht aktive Abschlussgraben in der Weise bis zu einem Rand des Halbleiterchips verläuft, dass der nicht aktive Abschlussgraben eine vertikale Wand bildet, bei der das Wannengebiet endet.
- Verfahren nach Anspruch 1, bei dem die aktiven Gate-Gräben und der nicht aktive Abschlussgraben in derselben Tiefe enden.
- Verfahren nach Anspruch 1, bei dem das Abschluss-Body-Gebiet während des Betriebs nicht elektrisch vorgespannt wird, sodass es schwebt.
- Verfahren nach Anspruch 1, bei dem der Schritt des gleichzeitigen Ausbildens umfasst: Ausbilden nicht aktiver Gate-Runner-Gräben zur gleichen Zeit, zu der die aktiven Gate-Gräben und der nicht aktive Abschlussgraben ausgebildet werden, wobei der nicht aktive Gate-Runner-Graben, die aktiven Gate-Gräben und der nicht aktive Abschlussgraben bis in dieselbe Tiefe verlaufen; und Ausbilden einer vertieften Gate-Elektrode in jedem aktiven Gate-Graben und einer vertieften Gate-Runner-Elektrode in dem nicht aktiven Gate-Runner-Graben zur gleichen Zeit, wobei die vertiefte Gate-Elektrode in jedem aktiven Gate-Graben mit der vertieften Gate-Runner-Elektrode in dem nicht aktiven Gate-Runner-Graben elektrisch verbunden ist.
- Verfahren nach Anspruch 10, bei dem der nicht aktive Gate-Runner-Graben breiter als die aktiven Gate-Gräben ist.
- Verfahren nach Anspruch 10, bei dem die aktiven Gate-Gräben streifenförmig sind und entlang einer ersten Richtung verlaufen, wobei der nicht aktive Gate-Runner-Graben wenigstens teilweise entlang einer Richtung verläuft, die zu den aktiven Gate-Gräben senkrecht ist, und mit ihnen zusammenhängend ist.
- Verfahren zum Ausbilden eines Trench-Gate-Feldeffekttransistors (Trench-Gate-FET) in einem Halbleiterchip, der ein aktives Gebiet, in dem aktive Transistorzellen ausgebildet sind, und ein Abschlussgebiet, das das aktive Gebiet umgibt, umfasst, wobei das Verfahren umfasst: Ausbilden eines Wannengebiets in dem aktiven Gebiet und in dem Abschlussgebiet gleichzeitig, wobei das Wannengebiet in einem Siliciumgebiet mit einem Leitfähigkeitstyp ausgebildet wird, der zu dem des Wannengebiets entgegengesetzt ist; gleichzeitiges Ausbilden mehrerer aktiver Gate-Gräben in dem aktiven Gebiet, eines nicht aktiven Gate-Runner-Grabens und eines nicht aktiven Abschlussgrabens in dem Abschlussgebiet, wobei die mehreren aktiven Gate-Gräben, der nicht aktive Gate-Runner-Graben und der nicht aktive Abschlussgraben in das Wannengebiet verlaufen und es durchdringen, um dadurch das Wannengebiet in dem aktiven Gebiet in mehrere aktive Body-Gebiete und in dem Abschlussgebiet in ein Abschluss-Body-Gebiet zu teilen; Ausbilden einer vertieften aktiven Gate-Elektrode in jedem aktiven Gate-Graben und einer vertieften Gate-Runner-Elektrode in dem nicht aktiven Gate-Runner-Graben gleichzeitig, wobei die vertieften aktiven Gate-Elektroden mit der vertieften Gate-Runner-Elektrode elektrisch verbunden sind; Definieren einer Öffnung über dem Abschluss-Body-Gebiet und einer Öffnung über dem aktiven Gebiet unter Verwendung einer Maske; Implantieren von Dotierungsstoffen in die aktiven Body-Gebiete durch die Öffnung in dem aktiven Gebiet und in das Abschluss-Body-Gebiet durch die Öffnung über dem Abschluss-Body-Gebiet und dadurch Ausbilden eines ersten Gebiets in jedem aktiven Body-Gebiet und in dem Abschluss-Body-Gebiet, wobei die ersten Gebiete einen Leitfähigkeitstyp aufweisen, der zu dem des Wannengebiets entgegengesetzt ist; und Vertiefen der freiliegenden Oberflächen aller ersten Gebiete unter Verwendung eines Siliciumätzens zum Ausbilden einer napfförmigen Siliciumvertiefung mit geneigten Wänden und einem durch das erste Gebiet vorstehenden Boden, sodass Abschnitte jedes ersten Gebiets in einem entsprechenden aktiven Body-Gebiet verbleiben, wobei die verbleibenden Abschnitte des ersten Gebiets in den aktiven Body-Gebieten Source-Gebiete bilden, die auf die aktiven Gate-Gräben selbstjustierend sind.
- Verfahren nach Anspruch 13, das ferner umfasst: Implantieren von Dotierungsstoffen in die napfförmigen Siliciumvertiefungen zum Ausbilden eines Heavy-Body-Gebiets in jedem aktiven Body-Gebiet und in dem Abschluss-Body-Gebiet, wobei die Heavy-Body-Gebiete denselben Leitfähigkeitstyp wie das Wannengebiet aufweisen.
- Verfahren nach Anspruch 13, das ferner umfasst: Ausbilden einer Abschlussdielektrikumschicht in dem nicht aktiven Abschlussgraben; Ausbilden einer Feldplatte, die leitendes Material umfasst, in dem nicht aktiven Abschlussgraben, wobei die Abschlussdielektrikumschicht alle Abschnitte der Feldplatte innerhalb des nicht aktiven Abschlussgrabens von allen Siliciumgebieten, die den nicht aktiven Grabenabschluss umgeben, isoliert, wobei die Feldplatte aus dem nicht aktiven Abschlussgraben heraus und in die in dem Abschluss-Body-Gebiet ausgebildete napfförmige Siliciumvertiefung hinein verläuft, um dadurch einen elektrischen Kontakt mit dem in dem Abschluss-Body-Gebiet ausgebildeten Heavy-Body-Gebiet herzustellen.
- Verfahren nach Anspruch 15, bei dem das leitende Material ein Metall ist.
- Verfahren nach Anspruch 15, das ferner umfasst: Ausbilden einer Gate-Dielektrikumschicht, mit der die Seitenwände jedes aktiven Gate-Grabens überzogen sind, vor dem Ausbilden der vertieften aktiven Gate-Elektrode und der vertieften Gate-Runner-Elektrode.
- Verfahren nach Anspruch 15, bei dem der nicht aktive Abschlussgraben in der Weise bis zu einem Rand des Chips verläuft, dass der nicht aktive Abschlussgraben eine vertikale Wand bildet, bei der das Wannengebiet endet.
- Verfahren nach Anspruch 13, bei dem die aktiven Gate-Gräben, der nicht aktive Gate-Runner-Graben und der nicht aktive Abschlussgraben in derselben Tiefe enden.
- Verfahren nach Anspruch 13, bei dem das Abschluss-Body-Gebiet während des Betriebs elektrisch nicht vorgespannt wird, sodass es schwebt.
- Verfahren nach Anspruch 13, bei dem der nicht aktive Gate-Runner-Graben breiter als die aktiven Gate-Gräben ist.
- Verfahren nach Anspruch 13, bei dem die aktiven Gate-Gräben streifenförmig sind und entlang einer ersten Richtung verlaufen und der nicht aktive Gate-Runner-Graben wenigstens teilweise entlang einer Richtung verläuft, die zu den aktiven Gate-Gräben senkrecht ist, und mit ihnen zusammenhängend ist.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/339,998 | 2006-01-25 | ||
US11/339,998 US7452777B2 (en) | 2006-01-25 | 2006-01-25 | Self-aligned trench MOSFET structure and method of manufacture |
PCT/US2006/061687 WO2007114863A2 (en) | 2006-01-25 | 2006-12-06 | Self-aligned trench mosfet structure and method of manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
DE112006003705T5 true DE112006003705T5 (de) | 2008-11-27 |
Family
ID=38286069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE112006003705T Withdrawn DE112006003705T5 (de) | 2006-01-25 | 2006-12-06 | Selbstjustierende Graben-MOSFET-Struktur und Herstellungsverfahren |
Country Status (9)
Country | Link |
---|---|
US (1) | US7452777B2 (de) |
JP (1) | JP2009524931A (de) |
KR (1) | KR101399707B1 (de) |
CN (1) | CN101371343B (de) |
AT (1) | AT505498A2 (de) |
DE (1) | DE112006003705T5 (de) |
MY (1) | MY146754A (de) |
TW (1) | TWI411046B (de) |
WO (1) | WO2007114863A2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011006220B4 (de) * | 2010-03-29 | 2021-03-25 | Mitsubishi Electric Corp. | Leistungshalbleitervorrichtung |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7659588B2 (en) * | 2006-01-26 | 2010-02-09 | Siliconix Technology C. V. | Termination for a superjunction device |
US7632733B2 (en) * | 2006-04-29 | 2009-12-15 | Alpha & Omega Semiconductor, Inc. | Polysilicon control etch-back indicator |
US7948033B2 (en) * | 2007-02-06 | 2011-05-24 | Semiconductor Components Industries, Llc | Semiconductor device having trench edge termination structure |
US7951688B2 (en) * | 2007-10-01 | 2011-05-31 | Fairchild Semiconductor Corporation | Method and structure for dividing a substrate into individual devices |
US20090096027A1 (en) * | 2007-10-10 | 2009-04-16 | Franz Hirler | Power Semiconductor Device |
KR100988776B1 (ko) * | 2007-12-27 | 2010-10-20 | 주식회사 동부하이텍 | 리세스드 게이트 트랜지스터의 제조 방법 |
US20120273916A1 (en) | 2011-04-27 | 2012-11-01 | Yedinak Joseph A | Superjunction Structures for Power Devices and Methods of Manufacture |
JP5407390B2 (ja) * | 2009-02-09 | 2014-02-05 | トヨタ自動車株式会社 | 半導体装置 |
US8072027B2 (en) * | 2009-06-08 | 2011-12-06 | Fairchild Semiconductor Corporation | 3D channel architecture for semiconductor devices |
JP2011124464A (ja) * | 2009-12-14 | 2011-06-23 | Toshiba Corp | 半導体装置及びその製造方法 |
US20110198689A1 (en) * | 2010-02-17 | 2011-08-18 | Suku Kim | Semiconductor devices containing trench mosfets with superjunctions |
WO2011117920A1 (ja) * | 2010-03-24 | 2011-09-29 | パナソニック株式会社 | 半導体装置およびその製造方法 |
US20120018800A1 (en) * | 2010-07-22 | 2012-01-26 | Suku Kim | Trench Superjunction MOSFET with Thin EPI Process |
US8673700B2 (en) * | 2011-04-27 | 2014-03-18 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8836028B2 (en) | 2011-04-27 | 2014-09-16 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8772868B2 (en) | 2011-04-27 | 2014-07-08 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8786010B2 (en) | 2011-04-27 | 2014-07-22 | Fairchild Semiconductor Corporation | Superjunction structures for power devices and methods of manufacture |
US8466513B2 (en) | 2011-06-13 | 2013-06-18 | Semiconductor Components Industries, Llc | Semiconductor device with enhanced mobility and method |
CN103426738B (zh) | 2012-05-17 | 2018-05-18 | 恩智浦美国有限公司 | 具有边缘端部结构的沟槽半导体器件及其制造方法 |
TWI497719B (zh) * | 2012-06-08 | 2015-08-21 | Super Group Semiconductor Co Ltd | 溝槽式功率半導體結構之製造方法 |
US8778764B2 (en) | 2012-07-16 | 2014-07-15 | Semiconductor Components Industries, Llc | Method of making an insulated gate semiconductor device having a shield electrode structure and structure therefor |
JP2014063852A (ja) * | 2012-09-20 | 2014-04-10 | Toshiba Corp | 半導体装置及びその製造方法 |
JP6164604B2 (ja) | 2013-03-05 | 2017-07-19 | ローム株式会社 | 半導体装置 |
JP6164636B2 (ja) * | 2013-03-05 | 2017-07-19 | ローム株式会社 | 半導体装置 |
CN103956382A (zh) * | 2014-04-16 | 2014-07-30 | 常州旺童半导体科技有限公司 | 一种沟槽功率器件结构及其制造方法 |
US9269779B2 (en) | 2014-07-21 | 2016-02-23 | Semiconductor Components Industries, Llc | Insulated gate semiconductor device having a shield electrode structure |
CN105489649B (zh) * | 2014-09-18 | 2018-06-15 | 万国半导体股份有限公司 | 在沟槽式功率器件中改善终端区低击穿电压的方法 |
DE102014220056B4 (de) * | 2014-10-02 | 2019-02-14 | Infineon Technologies Ag | Halbleiterbauelement mit Sensorpotential im aktiven Gebiet |
CN105576044B (zh) * | 2014-10-16 | 2019-03-29 | 北大方正集团有限公司 | 一种肖特基二极管及其制作方法 |
KR101654848B1 (ko) * | 2015-01-27 | 2016-09-22 | 주식회사 화진 | 전력 모스 소자의 과열을 방지할 수 있는 온도 가변 저항 소자를 포함하는 전자 소자 |
JP2016164906A (ja) * | 2015-03-06 | 2016-09-08 | 豊田合成株式会社 | 半導体装置およびその製造方法ならびに電力変換装置 |
CN105428396B (zh) * | 2015-11-16 | 2019-06-11 | 上海华虹宏力半导体制造有限公司 | 功率器件的终端结构及其制造方法 |
CN108231900A (zh) * | 2017-12-28 | 2018-06-29 | 中山汉臣电子科技有限公司 | 一种功率半导体器件及其制备方法 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6429481B1 (en) * | 1997-11-14 | 2002-08-06 | Fairchild Semiconductor Corporation | Field effect transistor and method of its manufacture |
JP2002043566A (ja) * | 2000-07-27 | 2002-02-08 | Matsushita Electric Ind Co Ltd | 半導体装置及びその製造方法 |
US7345342B2 (en) * | 2001-01-30 | 2008-03-18 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US6518106B2 (en) * | 2001-05-26 | 2003-02-11 | Motorola, Inc. | Semiconductor device and a method therefor |
KR100446302B1 (ko) * | 2002-06-05 | 2004-08-30 | 삼성전자주식회사 | 음의 기울기를 가지는 게이트를 포함하는 반도체 소자 및그 제조방법 |
US8080459B2 (en) * | 2002-09-24 | 2011-12-20 | Vishay-Siliconix | Self aligned contact in a semiconductor device and method of fabricating the same |
KR100481871B1 (ko) * | 2002-12-20 | 2005-04-11 | 삼성전자주식회사 | 플로팅 게이트를 갖는 비휘발성 기억 셀 및 그 형성방법 |
TW583748B (en) * | 2003-03-28 | 2004-04-11 | Mosel Vitelic Inc | The termination structure of DMOS device |
JP3742906B2 (ja) * | 2003-05-08 | 2006-02-08 | シャープ株式会社 | 半導体装置の製造方法 |
US20060060920A1 (en) * | 2004-09-17 | 2006-03-23 | Applied Materials, Inc. | Poly-silicon-germanium gate stack and method for forming the same |
-
2006
- 2006-01-25 US US11/339,998 patent/US7452777B2/en active Active
- 2006-12-06 CN CN2006800516964A patent/CN101371343B/zh not_active Expired - Fee Related
- 2006-12-06 DE DE112006003705T patent/DE112006003705T5/de not_active Withdrawn
- 2006-12-06 MY MYPI20082714A patent/MY146754A/en unknown
- 2006-12-06 KR KR1020087018606A patent/KR101399707B1/ko active IP Right Grant
- 2006-12-06 WO PCT/US2006/061687 patent/WO2007114863A2/en active Application Filing
- 2006-12-06 JP JP2008552304A patent/JP2009524931A/ja active Pending
- 2006-12-06 AT AT0953906A patent/AT505498A2/de not_active Application Discontinuation
- 2006-12-15 TW TW095147163A patent/TWI411046B/zh not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
"Trench Field Plate Termination For Power Devices", eingereicht am 22. Dezember 2005 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011006220B4 (de) * | 2010-03-29 | 2021-03-25 | Mitsubishi Electric Corp. | Leistungshalbleitervorrichtung |
Also Published As
Publication number | Publication date |
---|---|
US20070173021A1 (en) | 2007-07-26 |
WO2007114863A2 (en) | 2007-10-11 |
TW200731421A (en) | 2007-08-16 |
WO2007114863A3 (en) | 2008-10-30 |
US7452777B2 (en) | 2008-11-18 |
CN101371343A (zh) | 2009-02-18 |
KR20080096528A (ko) | 2008-10-30 |
MY146754A (en) | 2012-09-14 |
KR101399707B1 (ko) | 2014-05-26 |
JP2009524931A (ja) | 2009-07-02 |
AT505498A2 (de) | 2009-01-15 |
CN101371343B (zh) | 2010-09-01 |
TWI411046B (zh) | 2013-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE112006003705T5 (de) | Selbstjustierende Graben-MOSFET-Struktur und Herstellungsverfahren | |
DE112006000832B4 (de) | Trenched-Gate-Feldeffekttransistoren und Verfahren zum Bilden derselben | |
DE112006003451B4 (de) | Halbleiterleistungsvorrichtungen mit Grabenfeldplattenabschluss und Verfahren zu deren Ausbildung | |
DE19611045C1 (de) | Durch Feldeffekt steuerbares Halbleiterbauelement | |
DE19539541B4 (de) | Lateraler Trench-MISFET und Verfahren zu seiner Herstellung | |
DE69525592T2 (de) | Graben-dmos-transistor mit kanalblockierer in den zellgrabenecken | |
DE102013224134B4 (de) | Halbleiterbauelement und Verfahren zu seiner Herstellung | |
DE10196441B4 (de) | Verfahren zur Herstellung eines MOSFET | |
DE112004000872B4 (de) | Anordnung eines Trench-MOSFETs mit Selbstausrichtungsmerkmalen | |
DE10297177B4 (de) | Verfahren zur Herstellung eines Graben-FETs mit selbstausgerichteter Source und selbstausgerichtetem Kontakt | |
DE102009030510B4 (de) | Aufbau und Verfahren zum Ausbilden eines Trench-FET mit abgeschirmtem Gate mit einem Zwischenelektroden-Dielektrikum mit einer Nitridschicht darin | |
DE112006001516T5 (de) | Feldeffekttransistor mit Ladungsgleichgewicht | |
DE10216633B4 (de) | Halbleiteranordnung und Verfahren zur Herstellung der Halbleiteranordnung | |
DE10220810B4 (de) | Halbleiterbauteil | |
DE10350684B4 (de) | Verfahren zur Herstellung einer Leistungstransistoranordnung und mit diesem Verfahren hergestellte Leistungstransistoranordnung | |
DE102009025601A1 (de) | Structure and method for forming a thick bottom dielectric (TBD) for trench-gate devices | |
AT505888A2 (de) | Aufbau und verfahren zum ausbilden eines trench-fet mit abgeschirmtem gate, wobei die abschirm- und die gate-elektrode miteinander verbunden sind | |
AT504289A2 (de) | Trench-gate-feldeffekttransistoren und verfahren zum bilden derselben | |
DE102013214196A1 (de) | Halbleiterbauelement | |
DE102009031657A1 (de) | Aufbau und Verfahren zum Ausbilden eines Trench-Fet mit abgeschirmtem Gate mit einem Zwischenelektroden-Dielektrikum mit einem Low-K-Dielektrikum darin | |
DE10296457T5 (de) | Leistungshalbleitervorrichtung mit einer Grabengateelektrode und Verfahren zum Herstellen derselben | |
AT504736A2 (de) | Struktur und verfahren zum bilden eines inter-poly-dielektrikums in einem feldeffekttransistor mit abgeschirmten gate | |
EP1204992B1 (de) | Verfahren zum herstellen eines trench-mos-leistungstransistors | |
DE10203164A1 (de) | Leistungshalbleiterbauelement und Verfahren zu dessen Herstellung | |
DE112010003051T5 (de) | Abgeschirmte Kontakte in einem MOSFET mit abgeschirmtem Gate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee | ||
R119 | Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee |
Effective date: 20140701 |