DE10246459A1 - Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen - Google Patents

Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen Download PDF

Info

Publication number
DE10246459A1
DE10246459A1 DE10246459A DE10246459A DE10246459A1 DE 10246459 A1 DE10246459 A1 DE 10246459A1 DE 10246459 A DE10246459 A DE 10246459A DE 10246459 A DE10246459 A DE 10246459A DE 10246459 A1 DE10246459 A1 DE 10246459A1
Authority
DE
Germany
Prior art keywords
acid
group
aromatic
membrane
heteroaromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10246459A
Other languages
English (en)
Inventor
Gordon Dr. Calundann
Michael Dr. Sansone
Brian Prof. Benicewicz
Eui Won Dr. Choe
Oemer Dr. Uensal
Joachim Dr. Kiefer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Celanese Ventures GmbH
Original Assignee
Celanese Ventures GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Ventures GmbH filed Critical Celanese Ventures GmbH
Priority to DE10246459A priority Critical patent/DE10246459A1/de
Priority to PCT/EP2003/010906 priority patent/WO2004033079A2/de
Priority to US10/530,002 priority patent/US7736778B2/en
Priority to CNB2003801009183A priority patent/CN100556934C/zh
Priority to EP03775169A priority patent/EP1554032A2/de
Priority to CA002500514A priority patent/CA2500514A1/en
Priority to JP2004542403A priority patent/JP4450734B2/ja
Priority to KR1020057005878A priority patent/KR20050073477A/ko
Publication of DE10246459A1 publication Critical patent/DE10246459A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/103Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having nitrogen, e.g. sulfonated polybenzimidazoles [S-PBI], polybenzimidazoles with phosphoric acid, sulfonated polyamides [S-PA] or sulfonated polyphosphazenes [S-PPh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1046Mixtures of at least one polymer and at least one additive
    • H01M8/1048Ion-conducting additives, e.g. ion-conducting particles, heteropolyacids, metal phosphate or polybenzimidazole with phosphoric acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

Die vorliegende Erfindung betrifft protonenleitende Polymermembranen, umfassend Phosphonsäuregruppen enthaltende Polyazole, erhältlich durch ein Verfahren, umfassend die Schritte DOLLAR A A) Mischen von einem oder mehreren aromatischen und/oder heteroaromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen und/oder heteroaromatischen Carbonsäuren oder deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, wobei zumindest ein Teil der Tetra-Amino-Verbindungen und/oder der Carbonsäuren mindestens eine Phosphonsäuregruppe umfasst, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren, von denen zumindest ein Teil Phosphonsäuregruppen umfasst, in Polyphosphorsäure, unter Ausbildung einer Lösung und/oder Dispersion, DOLLAR A B) Erwärmen der Lösung und/oder Dispersion, erhältlich gemäß Schritt A), unter Inertgas auf Temperaturen von bis zu 350 DEG C unter Ausbildung von Polyazol-Polymeren, DOLLAR A C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) und/oder B) auf einen Träger, DOLLAR A D) Behandlung der in Schritt C) gebildeten Membran, bis diese selbsttragend ist.

Description

  • Die vorliegende Erfindung betrifft eine protonenleitende Polymerelektrolytmembran umfassend Phosphonsäuregruppen enthaltende Polyazole, die aufgrund ihrer hervorragenden chemischen und thermischen Eigenschaften vielfältig eingesetzt werden kann und sich insbesondere als Polymer-Elektrolyt-Membran (PEM) in sogenannten PEM-Brennstoffzellen eignet.
  • Eine Brennstoffzelle enthält üblicherweise einen Elektrolyten und zwei durch den Elektrolyten getrennte Elektroden. Im Fall einer Brennstoffzelle wird einer der beiden Elektroden ein Brennstoff, wie Wasserstoffgas oder ein Methanol-Wasser-Gemisch, und der anderen Elektrode ein Oxidationsmittel, wie Sauerstoffgas oder Luft, zugeführt und dadurch chemische Energie aus der Brennstoffoxidation direkt in elektrische Energie umgewandelt. Bei der Oxidationsreaktion werden Protonen und Elektronen gebildet.
  • Der Elektrolyt ist für Wasserstoffionen, d.h. Protonen, aber nicht für reaktive Brennstoffe wie das Wasserstoffgas oder Methanol und das Sauerstoffgas durchlässig.
  • Eine Brennstoffzelle weist in der Regel mehrere Einzelzellen sogenannte MEE's (Membran-Elektroden-Einheit) auf, die jeweils einen Elektrolyten und zwei durch den Elektrolyten getrennte Elektroden enthalten.
  • Als Elektrolyt für die Brennstoffzelle kommen Feststoffe wie Polymerelektrolytmembranen oder Flüssigkeiten wie Phosphorsäure zur Anwendung. In jüngster Zeit haben Polymerelektrolytmembranen als Elektrolyte für Brennstoffzellen Aufmerksamkeit erregt. Prinzipiell kann man zwischen 2 Kategorien von Polymermembranen unterscheiden.
  • Zu der ersten Kategorie gehören Kationenaustauschermembranen bestehend aus einem Polymergerüst welches kovalent gebunden Säuregruppen, bevorzugt Sulfonsäuregruppen enthält. Die Sulfonsäuregruppe geht unter Abgabe eines Wasserstoffions in ein Anion über und leitet daher Protonen. Die Beweglichkeit des Protons und damit die Protonenleitfähigkeit ist dabei direkt an den Wassergehalt verknüpft. Durch die sehr gute Mischbarkeit von Methanol und Wasser weisen solche Kationenaustauschermembranen eine hohe Methanolpermeabilität auf und sind deshalb für Anwendungen in einer Direkt-Methanol-Brennstoffzelle ungeeignet. Trocknet die Membran, z.B. in Folge hoher Temperatur, aus, so nimmt die Leitfähigkeit der Membran und folglich die Leistung der Brennstoffzelle drastisch ab. Die Betriebstemperaturen von Brennstoffzellen enthaltend solche Kationenaustauschermembranen ist somit auf die Siedetemperatur des Wassers beschränkt. Die Befeuchtung der Brennstoffe stellt eine grosse technische Herausforderung für den Einsatz von Polymerelektrolytmembranbrennstoftzellen (PEMBZ) dar, bei denen konventielle, sulfonierte Membranen wie z.B. Nafion verwendet werden.
  • So verwendet man als Materialien für Polymerelektrolytmembranen beispielsweise Perfluorsulfonsäurepolymere. Das Perfluorsulfonsäurepolymer (wie z.B. Nafion) weist im allgemeinen ein Perfluorkohlenwasserstoffgerüst auf, wie ein Copolymer aus Tetrafluorethylen und Trifluorvinyl, und eine daran gebundene Seitenkette mit einer Sulfonsäuregruppe, wie eine Seitenkette mit einer an eine Perfluoralkylengruppe gebundenen Sulfonsäuregruppe.
  • Bei den Kationenaustauschermembranen handelt es sich vorzugsweise um organische Polymere mit kovalent gebundenen Säuregruppen, insbesondere Sulfonsäure. Verfahren zur Sulfonierung von Polymeren sind in F. Kucera et. al. Polymer Engineering and Science 1988, Vol. 38, No 5, 783-792 beschrieben.
  • Im Folgenden sind die wichtigsten Typen von Kationenaustauschmembranen aufgeführt die zum Einsatz in Brennstoffzellen kommerzielle Bedeutung erlangt haben:
    Der wichtigste Vertreter ist das Perfluorosulfonsäurepolymer Nafion® ( US 3692569 ). Dieses Polymer kann wie in US 4453991 beschrieben in Lösung gebracht und dann als Ionomer eingesetzt werden. Kationenaustauschermembranen werden auch erhalten durch Füllen eines porösen Trägermaterials mit einem solchen Ionomer. Als Trägermaterial wird dabei expandiertes Teflon bevorzugt ( US 5635041 ).
  • Eine weitere perfluorinierte Kationenaustauschermembran kann wie in US5422411 beschrieben durch Copolymerisation aus Trifluorostyrol und sulfonylmodifiziertem Trifuorostyrol hergestellt werden. Kompositmembranen bestehend aus einem porösen Trägermaterial, insbesondere expandiertes Teflon, gefüllt mit Ionomeren bestehend aus solchen sulfonylmodifizierten Trifluorostyrol-Copolymeren sind in US5834523 beschrieben.
  • US6110616 beschreibt Copolymere aus Butadien und Styrol und deren anschliesende Sulfonierung zur Herstellung von Kationenaustauschermembranen für Brennstoffzellen.
  • Eine weitere Klasse von teilfluorierten Kationenaustauschermembranen kann durch Strahlenpfropfen und nachfolgende Sulfonierung hergestellt werden. Dabei wird wie in EP667983 oder DE19844645 beschrieben an einem zuvor bestrahlten Polymerfilm eine Pfropfungsreaktion vorzugsweise mit Styrol durchgeführt. In einer nachfolgenden Sulfonierungsreaktion erfolgt dann die Sulfonierung der Seitenketten. Gleichzeitig mit der Pfropfung kann auch eine Vernetzung durchgeführt und somit die mechanischen Eigenschaften verändert werden.
  • Neben obigen Membranen wurde eine weitere Klasse nichtfluorierter Membranen durch Sulfonierung von hochtemperaturstabilen Thermoplasten entwickelt. So sind Membranen aus sulfonierten Polyetherketonen ( DE4219077 , EP96/01177 ), sulfoniertem Polysulfon (J. Membr. Sci. 83 (1993) p.211) oder sulfoniertem Polyphenylensulfid ( DE19527435 ) bekannt.
  • Ionomere hergestellt aus sulfonierten Polyetherketonen sind in WO 00/15691 beschrieben.
  • Desweiteren sind Säure-Base-Blendmembranen bekannt, die wie in DE19817374 oder WO 01/18894 beschrieben durch Mischungen von sulfonierten Polymeren und basischen Polymeren hergestellt werden.
  • Zur weiteren Verbesserung der Membraneigenschaften kann eine aus dem Stand der Technik bekannte Kationenaustauschermembran mit einem hochtemperaturstabilen Polymer gemischt werden. Die Herstellung und Eigenschaften von Kationenaustauschermembranen bestehend aus Blends aus sulfoniertem PEK und a) Polysulfonen ( DE4422158 ), b) aromatischen Polyamiden (42445264) oder c) Polybenzimidazol ( DE19851498 ) sind beschrieben.
  • Problematisch an derartigen Membranen ist jedoch deren aufwendige und somit teure Herstellung, da üblich zunächst verschiedene Polymere gebildet werden, welche anschließend häufig mit Hilfe eines Lösungsmittels zu einer Folie gegossen werden. Zur Darstellung der sulfonierten Polymere wird üblicherweise das PEK in einem geeigneten Lösungsmittel gelöst und anschließend mit einem aggressiven Sulfonierungsreagenz, beispielsweise Oleum oder Chlorsulfonsäure, umgesetzt. Diese Reaktion ist relativ kritisch, da das Sulfonierungsreagenz ein starkes Oxidationsmittel darstellt, so dass ein Abbau des PEK nicht ausgeschlossen werden kann, wobei insbesondere die mechanischen Eigenschaften des Polymers nachteilig beeinflußt werden. Das sulfonierte Polymer wird in einem weiteren Prozeßschritt isoliert und in die neutrale Form überführt. Danach wird das Polymer wieder in Lösung gebracht. Aus dieser Lösung kann unter anderem ein Polymerfilm gegossen werden. Das hierzu verwendete Lösungsmittel, beispielsweise N-Dimethylacetamid muß anschließend entfernt werden. Dementsprechend ist das Verfahren zur Herstellung derartiger Membranen aufwendig und somit teuer.
  • Bei diesen Sulfonierungsverfahren unter dem Einsatz sehr starker Sulfonierungsagenzien findet eine unkontrollierte Sulfonierung an einer Vielzahl an Stellen des Polymers statt. Die Sulfonierung kann auch zu Kettenbruch und somit zu einer Verschlechterung der mechanischen Eigenschaften und schliesslich zum vorzeitigen Versagen der Brenstoffzelle führen.
  • Auch sulfonierte Polybenzimidazole sind bereits aus der Literatur bekannt. So beschreibt US-A-4634530 ) eine Sulfonierung einer undotierten Polybenzimidazol-Folie mit einem Sulfonierungsmittel wie Schwefelsäure oder Oleum im Temperaturbereich bis 100°C.
  • Des weiteren haben Staiti et al (P. Staiti in J. Membr. Sci. 188 (2001) 71) die Herstellung und Eigenschaften von sulfoniertem Polybenzimidazole beschrieben. Dazu war es nicht möglich die Sulfonierung an dem Polymer in der Lösung vorzunehmen. Bei Zugabe des Sulfonierungsmittels zu der PBI/DMAc Lösung fällt das Polymer aus. Zur Sulfonierung wurde zunächst ein PBI-Film hergestellt und dieser in eine verdünnte Schwefelsäure getaucht. Zur Sulfonierung wurden die Proben dann bei Temperaturen von ca. 475°C während 2 Minuten behandelt. Die sulfonierten PBI Membranen besitzen nur eine maximale Leitfähigkeit von 7,5·10–5 S/cm bei einer Temperatur von 160°C. Die maximale Ionenaustauschkapazität beträgt 0,12 meq/g. Es wurde ebenfalls gezeigt, dass solchermassen sulfonierte PBI Membranen nicht für den Einsatz in einer Brennstoffzelle geeignet sind.
  • Die Herstellung von sulfoalkylierten PBI Membranen durch die Umsetzung eines hydroxyethyl-modifizierten PBI mit einem Sulton ist in US-A-4997892 beschrieben. Basierend auf dieser Technologie können sulfopropylierte PBI Membranen hergestelltten werden (Sanui et al in Polym. Adv. Techn. 11 (2000) 544). Die Protonenleitfähigkeit solcher Membranen liegt bei 10–3 S/Cm und ist somit für Anwendungen in Brennstoffzellen, bei denen 0,1 S/cm angestrebt sind, zu niedrig.
  • Nachteil all dieser Kationenaustauschermembranen ist die Tatsache, dass die Membran befeuchtet werden muss, die Betriebstemperatur auf 100°C beschränkt ist, und die Membranen eine hohe Methanolpermeabilität aufweisen. Ursache für diese Nachteile ist der Leitfähigkeitsmechanismus der Membran, bei der der Transport der Protonen an den Transport des Wassermoleküls gekoppelt ist. Dies bezeichnet man als „Vehicle-Mechanismus" (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
  • Als zweite Kategorie sind Polymerelektrolytmembranen mit Komplexen aus basischen Polymeren und starken Säuren entwickelt worden. So beschreibt WO96/13872 und die korrespondierende US-PS 5,525,436 ein Verfahren zur Herstellung einer protonenleitenden Polymerelektrolytmembranen, bei dem ein basisches Polymer, wie Polybenzimidazol, mit einer starken Säure, wie Phosphorsäure, Schwefelsäure usw., behandelt wird.
  • In J. Electrochem. Soc., Band 142, Nr. 7, 1995, S. L121-L123 wird die Dotierung eines Polybenzimidazols in Phosphorsäure beschrieben.
  • Bei den im Stand der Technik bekannten basischen Polymermembranen wird die – zum Erzielen der erforderlichen Protonenleitfähigkeit – eingesetzte Mineralsäure (meist konzentrierte Phosphorsäure) üblicherweise nach der Formgebung der Polyazolfolie beigefügt. Das Polymer dient dabei als Träger für den Elektrolyten bestehend aus der hochkonzentrierten Phosphorsäure. Die Polymermembran erfüllt dabei weitere wesentliche Funktionen insbesondere muss sie eine hohe mechanische Stabilität aufweisen und als Separator für die beiden eingangs genannten Brennstoffe dienen.
  • Wesentliche Vorteile einer solchen Phosphorsäure dotierten Membran ist die Tatsache, dass eine Brennstoffzelle, bei der eine derartige Polymerelektrolytmembran eingesetzt wird, bei Temperaturen oberhalb 100°C ohne eine sonst notwendige Befeuchtung der Brennstoffe betrieben werden kann. Dies liegt in der Eigenschaft der Phosphorsäure begründet die Protonen ohne zusätzliches Wasser mittels des sog. Grotthus Mechanismus transportieren zu können (K.-D. Kreuer, Chem. Mater. 1996, 8, 610-641).
  • Durch die Möglichkeit des Betriebes bei Temperaturen oberhalb 100°C ergeben sich weitere Vorteile für das Brennstoffzellensystem. Zum Einen wird die Empfindlichkeit des Pt-Katalysators gegenüber Gasverunreinigungen, insbesondere CO, stark verringert. CO entsteht als Nebenprodukt bei der Reformierung des wasserstoffreichen Gases aus Kohlenstoffhaltigen Verbindungen, wie z.B. Erdgas, Methanol oder Benzin oder auch als Zwischenprodukt bei der direkten Oxidation von Methanol. Typischerweise muss der CO-Gehalt des Brennstoffes bei Temperaturen < 100°C kleiner als 100 ppm sein. Bei Temperaturen im Bereich 150-200° können jedoch auch 10000 ppm CO oder mehr toleriert werden (N. J. Bjerrum et. al. Journal of Applied Electrochemistry, 2001,31, 773-779). Dies führt zu wesentlichen Vereinfachungen des vorgeschalteten Reformierungsprozesses und somit zu Kostensenkungen des gesamten Brennstoffzellensystems.
  • Ein grosser Vorteil von Brennstoffzellen ist die Tatsache, dass bei der elektrochemischen Reaktion die Energie des Brennstoffes direkt in elektrische Energie und Wärme umgewandelt wird. Als Reakionsprodukt entsteht dabei an der Kathode Wasser. Als Nebenprodukt bei der elektrochemischen Reaktion entsteht also Wärme. Für Anwendungen bei denen nur der Strom zum Antrieb von Elektromotoren genutzt wird, wie z.B. für Automobilanwendungen, oder als vielfältiger Ersatz von Batteriesystemen muss die Wärme abgeführt werden, um ein Überhitzen des Systems zu vermeiden. Für die Kühlung werden dann zusätzliche, Energie verbrauchende Geräte notwendig, die den elektrischen Gesamt-Wirkungsgrad der Brennstoffzelle weiter verringern. Für stationäre Anwendungen wie zur zentralen oder dezentralen Erzeugung von Strom und Wärme lässt sich die Wärme effizient durch vorhandene Technologien wie z.B. Wärmetauscher nutzen. Zur Steigerung der Effizienz werden dabei hohe Temperaturen angestrebt. Liegt die Betriebstemperatur oberhalb 100°C und ist die Temperaturdifferenz zwischen der Umgebungstemperatur und der Betriebstemperatur groß, so wird es möglich das Brennstoffzellensystem effizienter zu kühlen beziehungsweise kleine Kühlflächen zu verwenden und auf zusätzliche Geräte zu verzichten im Vergleich zu Brennstoffzellen, die aufgrund der Membranbefeuchtung bei unter 100°C betrieben werden müssen.
  • Neben diesen Vorteilen weist ein solches Brennstoffzellensystem jedoch auch Nachteile auf. So ist die Haltbarkeit von Phosphorsäure dotierten Membranen noch zu verbessern. Hierbei wird die Lebensdauer insbesondere durch einen Betrieb der Brennstoffzelle unterhalb von 100°C, beispielsweise bei 80°C deutlich herabgesetzt. In diesem Zusammenhang ist jedoch festzuhalten, dass beim An- und Herunterfahren der Brennstoffzelle die Zelle bei diesen Temperaturen betrieben werden muss.
  • Die bislang bekannten mit Säure dotierten Polymermembrane auf Basis von Polyazolen zeigen bereits ein günstiges Eigenschaftsprofil. Aufgrund der für PEM-Brennstoffzellen angestrebten Anwendungen, insbesondere im Automobübereich- und der dezentralen Strom- und Wärmeerzeugung (Stationärbereich), sind diese insgesamt jedoch noch zu verbessern. So ist die Herstellung von Phosphorsäure dotierten Membranen relativ teuer, da üblich zunächst ein Polymer gebildet wird, welches anschließend mit Hilfe eines Lösungsmittels zu einer Folie gegossen wird. Nach der Trocknung der Folie wird diese in einem letzten Schritt mit einer Säure dotiert. So haben die bislang bekannten Polymermembranen einen hohen Gehalt an Dimethylacetamid (DMAc), der mittels bekannter Trocknungsmethoden nicht vollständig entfernt werden kann.
  • Des weiteren ist die Leistungsfähigkeit, beispielsweise die Leitfähigkeit von bekannten Membranen noch zu verbessern.
  • Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine neuartige Polymerelektrolytmembran bereitzustellen, die die zuvor dargelegten Aufgaben löst. Insbesondere soll eine erfindungsgemäße Membran kostengünstig und einfach hergestellt werden können. Darüber hinaus war es mithin Aufgabe der vorliegenden Erfindung Polymerelektrolytmembranen zu schaffen, die eine hohe Leistungsfähigkeit, insbesondere eine hohe Leitfähigkeit über einen weiten Temperaturbereich zeigen. Hierbei sollte die Leitfähigkeit, insbesondere bei hohen Temperaturen ohne eine zusätzliche Befeuchtung erzielt werden.
  • Des weiteren soll die Betriebstemperatur von < 80°C bis auf 200°C ausgeweitet werden können, ohne dass die Lebensdauer der Brennstoffzelle sehr stark herabgesetzt werden würde.
  • Gelöst werden diese Aufgaben durch eine protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole mit allen Merkmalen des Anspruchs 1.
  • Eine erfindungsgemäße Membran zeigt über einen großen Temperaturbereich eine hohe Leitfähigkeit, die auch ohne eine zusätzliche Befeuchtung erzielt wird. Des weiteren kann eine erfindungsgemäße Membran einfach und kostengünstig hergestellt werden. So kann insbesondere auf große Mengen an teuren Lösungsmitteln, wie Dimethylacetamid verzichtet werden.
  • Des weiteren zeigen diese Membranen eine überraschend lange Lebensdauer. Des weiteren kann eine Brennstoffzelle, die mit einer erfindungsgemäßen Membran ausgestattet ist, auch bei tiefen Temperaturen, beispielsweise bei 80°C betrieben werden, ohne dass hierdurch die Lebensdauer der Brennstoffzelle sehr stark herabgesetzt wird.
  • Gegenstand der vorliegenden Erfindung ist eine protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole erhältlich durch ein Verfahren umfassend die Schritte
    • A) Mischen von einem oder mehreren aromatischen und/oder heteroaromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen und/oder heteroaromatischen Carbonsäuren bzw. deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, wobei zumindest ein Teil der Tetra-Aminoverbindungen und/oder der Carbonsäuren mindestens eine Phosphonsäuregruppe umfasst, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren, von denen zumindest ein Teil Phosphonsäuregruppen umfasst, in Polyphosphorsäure, unter Ausbildung einer Lösung und/oder Dispersion,
    • B) Erwärmen der Lösung und/oder Dispersion erhältlich gemäß Schritt A) unter Inertgas auf Temperaturen von bis zu 350°C, vorzugsweise bis zu 280°C unter Ausbildung von Polyazol-Polymeren,
    • C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) und/oder B) auf einem Träger,
    • D) Behandlung der in Schritt C) gebildeten Membran bis diese selbsttragend ist.
  • Die in Schritt A) hergestellte Mischung umfasst phosphonsäuregruppenhaltige Monomere zur Herstellung von Polayzolen. Dementsprechend können entweder die zur Herstellung dieser Polymere notwendigen Tetra-Amino-Verbindungen oder die aromatischen Carbonsäure mit mindestens zwei Carboxygruppen Phosphonsäurereste aufweisen. Des weiteren können sowohl die Tetra-Amino-Verbindungen als auch die aromatischen Carbonsäuren Phosphonsäuregruppen aufweisen. Hierbei können die Mischungen auch Tetra-Aminoverbindungen und aromatische Carbonsäuren umfassen, die keine Phosphonsäuregruppen aufweisen.
  • Bevorzugte aromatische und/oder heteroaromatische Tetra-Amino-Verbindungen, die mindestens eine Phosphonsäuregruppe aufweisen, entsprechen im allgemeinen der Formel (A)
    Figure 00100001
    worin
    Ar eine aromatische oder heteroaromatische Gruppe darstellt,
    Y eine Bindung oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist,
    p eine ganze Zahl zwischen 1 und 4 ist, wobei p die Anzahl an Bindungen oder Gruppen Y darstellt, über die die Gruppe Z mit der Gruppe Ar verknüpft ist,
    r eine ganze Zahl zwischen 1 und 4 ist, wobei r die Anzahl der Gruppen Z darstellt, die an die Gruppe Y oder, falls Y eine Bindung ist, an die aromatische oder heteroaromatische Gruppe Ar geknüpft sind, und
    Z eine Gruppe der allgemeinen Formel (1) –PO3H2 (1) oder der allgemeinen Formel (2)
    Figure 00100002
    ist, worin R1 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist.
  • Neben den freien Phosphonsäureverbindungen können auch die entsprechenden Salze, beispielsweise die Alkalimetallsalze, oder die Ester der Phosphonsäuren der Mischung beigefügt werden. Zu den bevorzugten Estern gehören insbesondere die C1 bis C6-Alkylester dieser Verbindungen, beispielsweise die Methyl- und/oder Ethylester.
  • Gemäß einem bevorzugten Aspekt der vorliegenden Erfindung stellt Y eine Bindung dar, p und r sind jeweils 1 und Z entspricht der Formel (1). Falls Y eine Bindung darstellt, ist p gleich 1, wobei die Gruppe Z unmittelbar an die aromatische oder heteroaromatische Gruppe Ar gebunden ist. In diesem Fall stellt die Zahl r die Anzahl der Gruppen Z dar, die über eine Bindung an die aromatische oder heteroaromatische Gruppe Ar gebunden sind.
  • Erfindungsgemäß bezeichnen aromatische Gruppen Reste ein oder mehrkerniger aromatischer Verbindungen mit vorzugsweise 6 bis 20, insbesondere 6 bis 12 C-Atomen. Heteroaromatische Gruppen kennzeichnen Arylreste, worin mindestens eine CH-Gruppe durch N ersetzt ist und/oder mindestens zwei benachbarte CH-Gruppen durch S, NH oder O ersetzt sind, wobei heteroaromatische Gruppen 3 bis 19 Kohlenstoffatome aufweisen. Erfindungsgemäß bevorzugte aromatische oder heteroaromatische Gruppen leiten sich von Benzol, Naphthalin, Biphenyl, Diphenylether, Diphenylmethan, Diphenyldimethylmethan, Bisphenon, Diphenylsulfon, Thiophen, Furan, Pyrrol, Thiazol, Oxazol, Imidazol, Isothiazol, Isoxazol, Pyrazol, 1,3,4-Oxadiazol, 2,5-Diphenyl-1,3,4-oxadiazol, 1,3,4-Thiadiazol, 1,3,4-Triazol, 2,5-Diphenyl-1,3,4-triazol, 1,2,5-Triphenyl-1,3,4-triazol, 1,2,4-Oxadiazol, 1,2,4-Thiadiazol, 1,2,4-Triazol, 1,2,3-Triazol, 1,2,3,4-Tetrazol, Benzo[b]thiophen, Benzo[b]furan, Indol, Benzo[c]thiophen, Benzo[c]furan, Isoindol, Benzoxazol, Benzothiazol, Benzimidazol, Benzisoxazol, Benzisothiazol, Benzopyrazol, Benzothiadiazol, Benzotriazol, Dibenzofuran, Dibenzothiophen, Carbazol, Pyridin, Bipyridin, Pyrazin, Pyrazol, Pyrimidin, Pyridazin, 1,3,5-Triazin, 1,2,4-Triazin, 1,2,4,5-Triazin, Tetrazin, Chinolin, Isochinolin, Chinoxalin, Chinazolin, Cinnolin, 1,8-Naphthyridin, 1,5-Naphthyridin, 1,6-Naphthyridin, 1,7-Naphthyridin, Phthalazin, Pyridopyrimidin, Purin, Pteridin oder Chinolizin, 4H-Chinolizin, Diphenylether, Anthracen, Benzopyrrol, Benzooxathiadiazol, Benzooxadiazol, Benzopyridin, Benzopyrazin, Benzopyrazidin, Benzopyrimidin, Benzotriazin, Indolizin, Pyridopyridin, Imidazopyrimidin, Pyrazinopyrimidin, Carbazol, Aciridin, Phenazin, Benzochinolin, Phenoxazin, Phenothiazin, Acridizin, Benzopteridin, Phenanthrolin und Phenanthren ab, die gegebenenfalls auch substituiert sein können.
  • Der Ausdruck „1 bis 20 Kohlenstoff aufweisende Gruppe" kennzeichnet Reste organischer Verbindungen mit 1 bis 20 Kohlenstoffatomen. Er umfasst neben den vorstehend schon genannten aromatischen und heteroaromatischen Gruppen u. a.
  • Alkyl-, Cycloalkyl-, Alkoxy-, Cycloalkoxy-, Cycloalkylthio-, Alkenyl-, Alkanoyl-, Alkoxycarbonylgruppen sowie heteroalipatische Gruppen. Dabei können die genannten Gruppen verzweigt oder nicht verzweigt sein.
  • Zu den bevorzugten Alkylgruppen gehören die Methyl-, Ethyl-, Propyl-, Isopropyl-, 1-Butyl-, 2-Butyl-, 2-Methylpropyl-, tert.-Butylrest, Pentyl-, 2-Methylbutyl-, 1,1-Dimethylpropyl-, Hexyl-, Heptyl-, Octyl-, 1,1,3,3-Tetramethylbutyl, Nonyl-, 1-Decyl-, 2-Decyl-, Undecyl-, Dodecyl-, Pentadecyl- und die Eicosyl-Gruppe.
  • Zu den bevorzugten Cycloalkylgruppen gehören die Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl-, Cycloheptyl- und die Cyclooctyl-Gruppe, die gegebenenfalls mit verzweigten oder nicht verzweigten Alkylgruppen substituiert sind.
  • Zu den bevorzugten Alkenylgruppen gehören die Vinyl-, Allyl-, 2-Methyl-2-propen-, 2-Butenyl-, 2-Pentenyl-, 2-Decenyl- und die 2-Eicosenyl-Gruppe.
  • Zu den bevorzugten Alkinylgruppen gehören die Ethinyl-, Propargyl-, 2-Methyl-2-propin, 2-Butinyl-, 2-Pentinyl- und die 2-Decinyl-Gruppe.
  • Zu den bevorzugten Alkanoylgruppen gehören die Formyl-, Acetyl-, Propionyl-, 2-Methylpropionyl-, Butyryl-, Valeroyl-, Pivaloyl-, Hexanoyl-, Decanoyl- und die Dodecanoyl-Gruppe.
  • Zu den bevorzugten Alkoxycarbonylgruppen gehören die Methoxycarbonyl-, Ethoxycarbonyl-, Propoxycarbonyl-, Butoxycarbonyl-, tert.-Butoxycarbonyl- Gruppe, Hexyloxycarbonyl-, 2-Methylhexyloxycarbonyl-, Decyloxycarbonyl- oder Dodecyloxycarbonyl-Gruppe.
  • Zu den bevorzugten Alkoxygruppen gehören Alkoxygruppen, deren Kohlenwasserstoffrest eine der vorstehend genannten bevorzugten Alkylgruppen ist.
  • Zu den bevorzugten Cycloalkoxygruppen gehören Cycloalkoxygruppen, deren Kohlenwasserstoffrest eine der vorstehend genannten bevorzugten Cycloalkylgruppen ist.
  • Zu den bevorzugten heteroaliphatischen Gruppen gehören die vorstehend genannten bevorzugten Cycloalkylreste, in denen mindestens eine Kohlenstoff-Einheit durch O, S oder eine Gruppe NR2 ersetzt ist und R2 Wasserstoff, eine 1 bis 6 Kohlenstoffatome aufweisende Alkyl-, eine 1 bis 6 Kohlenstoffatome aufweisende Alkoxy- oder eine Arylgruppe bedeutet.
  • Erfindungsgemäss ganz besonders bevorzugt werden verzweigte oder nicht verzweigte Alkyl-, oder Alkoxygruppen mit 1 bis 20 Kohlenstoffatomen, vorzugsweise 1 bis 12, zweckmässigerweise 1 bis 6, insbesondere 1 bis 4 Kohlenstoffatomen und Cycloalkyl- bzw. Cycloalkyloxygruppen mit 3 bis 20 Kohlenstoffatomen, vorzugsweise 5 bis 6 Kohlenstoffatomen.
  • Obwohl bei den vorstehend genannten Resten ein oder mehrere Wasserstoffatome durch Halogenatome, bevorzugt Chlor oder Fluor, Thiol- oder Hydroxygruppen sowie Gruppen der allgemeinen Formel NR2R3 und N+R2R3R4 ersetzt sein können, wobei die Reste R2, R3 und R4 unabhängig voneinander Wasserstoff, eine 1 bis 6 Kohlenstoffatome aufweisende Alkyl-, eine 1 bis 6 Kohlenstoffatome aufweisende Alkoxy- oder eine Arylgruppe bedeuten, haben sich nicht substituierte Reste als besonders zweckmässigerwiesen.
  • Zu diesen Verbindungen gehören unter anderem 3,3',4,4'-Tetraaminobiphenyl-5-phosphonsäure, 3,3',4,4'-Tetraaminobiphenyl-5,5'-diphosphonsäure, 3,3',4,4'-Tetraaminodiphenylsulfon-5-phosphonsäure, 3,3',4,4'-Tetraaminodiphenylsulfon-5,5'-diphosphonsäure, 3,3',4,4'-Tetraaminodiphenylether-5-phosphonsäure und 3,3',4,4'-Tetraaminodiphenylether-5,5'-diphosphonsäure.
  • Des weiteren kann die Mischung aromatischen und heteroaromatischen Tetra-Amino-Verbindungen umfassen, die Sulfonsäuregruppen enthalten. Bevorzugte aromatische und/oder heteroaromatische Tetra-Amino-Verbindungen, die mindestens eine Sulfonsäuregruppe aufweisen, entsprechen im allgemeinen der Formel (C)
    Figure 00140001
    worin
    Ar eine aromatische oder heteroaromatische Gruppe darstellt,
    Y eine Bindung oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist,
    p eine ganze Zahl zwischen 1 und 4 ist, wobei p die Anzahl an Bindungen oder Gruppen Y darstellt, über die die Gruppe Z mit der Gruppe Ar verknüpft ist,
    r eine ganze Zahl zwischen 1 und 4 ist, wobei r die Anzahl der Gruppen Z darstellt, die an die Gruppe Y oder, falls Y eine Bindung ist, an die aromatische oder heteroaromatische Gruppe Ar geknüpft sind, und
    Z' eine Gruppe der allgemeinen Formel (3) – SO3H (3) oder der allgemeinen Formel (4)
    Figure 00140002
    ist, worin R1 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist.
  • Neben den freien Sulfonsäureverbindungen können auch die entsprechenden Salze, beispielsweise die Alkalimetallsalze, oder die Ester der Phosphonsäuren der Mischung beigefügt werden. Zu den bevorzugten Estern gehören insbesondere die C1 bis C6-Alkylester dieser Verbindungen, beispielsweise die Methyl- und/oder Ethylester.
  • Gemäß einem bevorzugten Aspekt der vorliegenden Erfindung stellt Y eine Bindung dar, p und r sind jeweils 1 und Z entspricht der Formel (1). Derartige Verbindungen lassen sich besonders einfach durch Sulfonierung von bekannten, im allgemeinen kommerziell erhältlichen Aromaten oder Heteroaromaten erhalten. Falls Y eine Bindung darstellt, ist p gleich 1, wobei die Gruppe Z unmittelbar an die aromatische oder heteroaromatische Gruppe Ar gebunden ist. In diesem Fall stellt die Zahl r die Anzahl der Gruppen Z dar, die über eine Bindung an die aromatische oder heteroaromatische Gruppe Ar gebunden sind.
  • Zu den aromatischen und heteroaromatischen Tetra-Amino-Verbindungen, die Sulfonsäuregruppen enthalten, gehören unter anderem 3,3',4,4'-Tetraaminobiphenyl-5-sulfonsäure, 3,3',4,4'-Tetraaminobiphenyl-5,5'-disulfonsäure, 3,3',4,4'-Tetraaminodiphenylsulfon-5-sulfonsäure, 3,3',4,4'-Tetraaminodiphenylsulfon-5,5'-disulfonsäure, 3,3',4,4'-Tetraaminodiphenylether-5-sulfonsäure und 3,3',4,4'-Tetraaminodiphenylether-5,5'-disulfonsäure.
  • Des weiteren kann die Mischung aromatischen und heteroaromatischen Tetra-Amino-Verbindungen umfassen, die keine Phosphonsäuregruppen enthalten. Zu diesen gehören unter anderem 3,3',4,4'-Tetraaminobiphenyl, 2,3,5,6-Tetraaminopyridin, 1,2,4,5-Tetraaminobenzol, 3,3',4,4'-Tetraaminodiphenylsulfon, 3,3',4,4'-Tetraaminodiphenylether, 3,3',4,4'-Tetraaminobenzophenon, 3,3',4,4'-Tetraaminodiphenylmethan und 3,3',4,4'-Tetraaminodiphenyldimethylmethan sowie deren Salze, insbesondere deren Mono-, Di-, Tri- und Tetrahydrochloridderivate. Hiervon sind 3,3',4,4'-Tetraaminobiphenyl, 2,3,5,6-Tetraaminopyridin und 1,2,4,5-Tetraaminobenzol besonders bevorzugt.
  • Die in Schritt A) hergestellte Mischung kann aromatische und/oder heteroaromatische Carbonsäuren sowie deren Derivate umfassen, die Phosphonsäuregruppen enthalten. Hierbei handelt es sich unter anderem um Dicarbonsäuren und Tricarbonsäuren und Tetracarbonsäuren bzw. deren Derivate. Zu den bevorzugten Derivaten gehören unter anderem die Ester, insbesondere C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, die Anhydride oder die Säurehalogenide, insbesondere die Säurechloride und/oder die Säurebromide.
  • Bevorzugte aromatische und/oder heteroaromatische Carbonsäuren bzw. deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, entsprechen im allgemeinen der Formel (B)
    Figure 00160001
    worin
    Ar eine aromatische oder heteroaromatische Gruppe darstellt, die gegebenenfalls weitere Substituenten, beispielsweise Carbonsäuregruppen oder deren Derivate, beispielsweise deren Ester oder deren Carbonsäurehalogenide, aufweisen kann,
    X ein Halogenatom, beispielsweise Chlor, Iod oder Brom, oder eine Gruppe der Formel OR2 darstellt, worin R2 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoff aufweisende Gruppe darstellt,
    Y eine Bindung oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist,
    p eine ganze Zahl zwischen 1 und 4 ist, wobei p die Anzahl an Bindungen oder Gruppen Y darstellt, über die die Gruppe Z mit der Gruppe Ar verknüpft ist,
    r eine ganze Zahl zwischen 1 und 4 ist, wobei r die Anzahl der Gruppen Z darstellt, die an die Gruppe Y oder, falls Y eine Bindung ist, an die aromatische oder heteroaromatische Gruppe Ar geknüpft sind, und
    Z eine Gruppe der allgemeinen Formel (1) –PO3H2 (1)oder der allgemeinen Formel (2)
    Figure 00160002
    ist, worin R1 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist.
  • Neben den freien Phosphonsäureverbindungen können auch die entsprechenden Salze, beispielsweise die Alkalimetallsalze, oder die Ester der Phosphonsäuren der Mischung beigefügt werden. Zu den bevorzugten Estern gehören insbesondere die C1 bis C6-Alkylester dieser Verbindungen, beispielsweise die Methyl- und/oder Ethylester.
  • Gemäß einem bevorzugten Aspekt der vorliegenden Erfindung stellt Y eine Bindung dar, p und r sind jeweils 1 und Z entspricht der Formel (1).
  • Zu den bevorzugten aromatischen Dicarbonsäuren bzw. deren Derivaten gehören unter anderem 2,5-Dicarboxyphenylphosphonsäure, 2,3-Dicarboxyphenylphosphonsäure 3,4-Dicarboxyphenylphosphonsäure und 3,5-Dicarboxyphenylphosphonsäure.
  • Die in Schritt A) hergestellte Mischung kann aromatische und/oder heteroaromatische Carbonsäuren sowie deren Derivate umfassen, die Sulfonsäuregruppen enthalten. Hierbei handelt es sich unter anderem um Dicarbonsäuren und Tricarbonsäuren und Tetracarbonsäuren bzw. deren Derivate. Zu den bevorzugten Derivaten gehören unter anderem die Ester, insbesondere C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, die Anhydride oder die Säurehalogenide, insbesondere die Säurechloride und/oder die Säurebromide.
  • Bevorzugte aromatische und/oder heteroaromatische Carbonsäuren bzw. deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, entsprechen im allgemeinen der Formel (D)
    Figure 00170001
    worin
    Ar eine aromatische oder heteroaromatische Gruppe darstellt, die gegebenenfalls weitere Substituenten, beispielsweise Carbonsäuregruppen oder deren Derivate, beispielsweise deren Ester oder deren Carbonsäurehalogenide, aufweisen kann,
    X ein Halogenatom, beispielsweise Chlor, Iod oder Brom, oder eine Gruppe der Formel OR2 darstellt, worin R2 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoff aufweisende Gruppe darstellt,
    Y eine Bindung oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist,
    p eine ganze Zahl zwischen 1 und 4 ist, wobei p die Anzahl an Bindungen oder Gruppen Y darstellt, über die die Gruppe Z mit der Gruppe Ar verknüpft ist,
    r eine ganze Zahl zwischen 1 und 4 ist, wobei r die Anzahl der Gruppen Z darstellt, die an die Gruppe Y oder, falls Y eine Bindung ist, an die aromatische oder heteroaromatische Gruppe Ar geknüpft sind, und
    Z' eine Gruppe der allgemeinen Formel (3) –SO3H (3) oder der allgemeinen Formel (4)
    Figure 00180001
    ist, worin R1 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist.
  • Neben den freien Sulfonsäureverbindungen können auch die entsprechenden Salze, beispielsweise die Alkalimetallsalze, oder die Ester der Phosphonsäuren der Mischung beigefügt werden. Zu den bevorzugten Estern gehören insbesondere die C1 bis C6-Alkylester dieser Verbindungen, beispielsweise die Methyl- und/oder Ethylester.
  • Gemäß einem bevorzugten Aspekt der vorliegenden Erfindung stellt Y eine Bindung dar, p und r sind jeweils 1 und Z entspricht der Formel (1). Derartige Verbindungen lassen sich besonders einfach durch Sulfonierung von bekannten, im allgemeinen kommerziell erhältlichen Aromaten oder Heteroaromaten erhalten.
  • Zu den bevorzugten aromatischen Dicarbonsäuren bzw. deren Derivaten gehören unter anderem 2,5-Dicarboxyphenylsulfonsäure, 2,3-Dicarboxyphenylsulfonsäure 3,4-Dicarboxyphenylsulfonsäure und 3,5-Dicarboxyphenylsulfonsäure.
  • Des weiteren kann die Mischung aromatische Carbonsäuren umfassen, die keine Phosphonsäuregruppen umfassen. Hierbei handelt es sich um Dicarbonsäuren und Tricarbonsäuren und Tetracarbonsäuren bzw. deren Estern oder deren Anhydride oder deren Säurehalogenide, insbesondere deren Säurehalogenide und/oder Säurebromide. Vorzugsweise handelt es sich bei den aromatischen Dicarbonsäuren um Isophthalsäure, Terephthalsäure, Phthalsäure, 5-Hydroxyisophthalsäure, 4-Hydroxyisophthalsäure, 2-Hydroxyterephthalsäure, 5-Aminoisophthalsäure, 5-N,N-Dimethylaminoisophthalsäure, 5-N,N-Diethylaminoisophthalsäure, 2,5-Dihydroxyterephthalsäure, 2,6-Dihydroxyisophthalsäure, 4,6-Dihydroxyisophthalsäure, 2,3-Dihydroxyphthalsäure, 2,4-Dihydroxyphthalsäure, 3,4-Dihydroxyphthalsäure, 3-Fluorophthalsäure, 5-Fluoroisophthalsäure, 2-Fluoroterphthalsäure, Tetrafluorophthalsäure, Tetrafluoroisophthalsäure, Tetrafluoroterephthalsäure,1,4-Naphthalindicarbonsäure, 1,5-Naphthalindicarbonsäure, 2,6-Alaphthalindicarbonsäure, 2,7-Naphthalindicarbonsäure, Diphensäure, 1,8-dihydroxynaphthalin-3,6-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon-4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, 2,2-Bis(4-carboxyphenyl)hexafluoropropan, 4,4'-Stilbendicarbonsäure, 4-Carboxyzimtsäure, bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride.
  • Bei den aromatischen Tricarbonsäuren bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester oder deren Säureanhydride oder deren Säurechloride handelt es sich bevorzugt um 1,3,5-Benzol-tricarbonsäure (Trimesic acid), 1,2,4-Benzoltricarbonsäure (Trimellitic acid), (2-Carboxyphenyl)iminodiessigsäure, 3,5,3'-Biphenyltricarbonsäure, 3,5,4'-Biphenyltricarbonsäure.
  • Bei den aromatischen Tetracarbonsäuren bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester oder deren Säureanhydride oder deren Säurechloride, die keine Phosphonsäuregruppen aufweisen, handelt es sich bevorzugt um 3,5,3',5'-biphenyltetracarbonsäure, 1,2,4,5-Benzoltetracarbonsäure, Benzophenontetracarbonsäure, 3,3',4,4'-Biphenyltetracarbonsäure, 2,2',3,3'-Biphenyltetracarbonsäure, 1,2,5,6-Naphthalintetracarbonsäure, 1,4,5,8-Naphthalintetracarbonsäure.
  • Bei den heteroaromatischen Carbonsäuren, die keine Phosphonsäuregruppen aufweisen, handelt es sich um heteroaromatischen Dicarbonsäuren und Tricarbonsäuren und Tetracarbonsäuren bzw. deren Estern oder deren Anhydride. Als heteroaromatische Carbonsäuren werden aromatische Systeme verstanden welche mindestens ein Stickstoff, Sauerstoff, Schwefel oder Phosphoratom im Aromaten enthalten. Vorzugsweise handelt es sich um Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6-Pyrimidindicarbonsäure, 2,5-Pyrazindicarbonsäure, 2,4,6-Pyridintricarbonsäure, Benzimidazol-5,6-dicarbonsäure. Sowie deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride.
  • Der Gehalt an Tricarbonsäure bzw. Tetracarbonsäuren (bezogen auf eingesetzte Dicarbonsäure) beträgt zwischen 0 und 30 Mol-%, vorzugsweise 0,1 und 20 Mol-%, insbesondere 0,5 und 10 Mol-%. Diese Angaben beziehen sich auf die Summe der Carbonsäuren, unabhängig vom Phosphonsäuregehalt.
  • Bei den erfindungsgemäß eingesetzten aromatischen und heteroaromatischen Diaminocarbonsäuren, die mindestens eine Phosphonsäuregruppe umfassen, handelt es sich bevorzugt um 2,3-Diamino-5-carboxyphenylphosphonsäure, 2,3-Diamino-6-carboxyphenylphosphonsäure und 3,4-Diamino-6-carboxyphenylphosphonsäure.
  • Neben den freien Phosphonsäureverbindungen können auch die entsprechenden Salze, beispielsweise die Alkalimetallsalze, oder die Ester der Phosphonsäuren der Mischung beigefügt werden. Zu den bevorzugten Estern gehören insbesondere die C1 bis C6-Alkylester dieser Verbindungen, beispielsweise die Methyl- und/oder Ethylester.
  • Des weiteren kann die gemäß Schritt A) herzustellende Mischung auch aromatischen und heteroaromatischen Diaminocarbonsäuren, die mindestens eine Sulfonsäuregruppe umfassen. Hierbei handelt es sich bevorzugt um 2,3-Diamino-5-carboxyphenylsulfonsäure, 2,3-Diamino-6-carboxyphenylsulfonsäure und 3,4-Diamino-6-carboxyphenylsulfonsäure.
  • Des weiteren kann die Mischung auch aromatische und heteroaromatische Diaminocarbonsäuren enthalten, die keine Phosphonsäuregruppen enthalten. Zu diesen gehört unter anderem Diaminobenzoesäure, 4-Phenoxycarbonyl-3,'4'-diaminodiphenylether und deren Mono- und Dihydrochloridderivate.
  • Bevorzugt werden in Schritt A) Mischungen von mindestens 2 verschiedenen aromatischen Carbonsäuren einzusetzen. Besonders bevorzugt werden Mischungen eingesetzt, die neben aromatischen Carbonsäuren auch heteroaromatische Carbonsäuren enthalten. Das Mischungsverhältnis von aromatischen Carbonsäuren zu heteroaromatischen Carbonsäuren beträgt zwischen 1:99 und 99:1, vorzugsweise 1:50 bis 50:1. Diese Angaben sind unabhängig vom Phosphonsäuregehalt der Carbonsäuren.
  • Bei diesen Mischungen handelt es sich insbesondere um Mischungen von N-heteroaromatischen Dicarbonsäuren und aromatischen Dicarbonsäuren. Nicht limitierende Beispiele für Dicarbonsäuren ohne Phosphonsäuregruppe sind Isophthalsäure, Terephthalsäure, Phthalsäure, 2,5-Dihydroxyterephthalsäure, 2,6-Dihydroxyisophthalsäure, 4,6-Dihydroxyisophthalsäure, 2,3-Dihydroxyphthalsäure, 2,4-Dihydroxyphthalsäure, 3,4-Dihydroxyphthalsäure,1,4-Naphthalindicarbonsäure, 1,5-Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 2,7-Naphthalindicarbonsäure, Diphensäure, 1,8-dihydroxynaphthalin-3,6-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon-4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6 -Pyrimidindicarbonsäure,2,5-Pyrazindicarbonsäure. Carbonsäuren mit Phosphonsäuregruppen lassen sich auf einfache Weise von den zuvor genannten Verbindungen ableiten.
  • Soll ein möglichst hohes Molekulargewicht erzielt werden, so liegt das Molverhältnis von Carbonsäuregruppen zu Aminogruppen bei der Umsetzung von Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen Carbonsäuren bzw. deren Estern, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, vorzugsweise in der Nähe von 1:2.
  • Die in Schritt A) hergestellte Mischung umfasst vorzugsweise mindestens 0,5 Gew.-%, insbesondere 1 bis 30 Gew.-% und besonders bevorzugt 2 bis 15 Gew.-% Monomere zur Herstellung von Polyazolen.
  • Der Gehalt an Phosphonsäuregruppen enthaltenden Monomeren, bezogen auf alle Monomere, die zur Herstellung von Polyazolen dienen, liegt im allgemeinen im Bereich von 0,5 bis 100 Gew.-%, vorzugsweise 2 bis 80 Gew.-%, besonders bevorzugt 5 bis 50 Gew.-%, ohne dass hierdurch eine Beschränkung erfolgen soll. Hierbei sind insbesondere Mischungen bevorzugt, die Phosphonsäuregruppen enthaltende Carbonsäuren mit mindestens zwei Carbonsäuregruppen sowie Tetra-Amino-Verbindungen ohne Phosphonsäuregruppen umfassen.
  • Der Gehalt an Sulfonsäure enthaltenden Monomeren, bezogen auf alle Monomeren, die zur Herstellung von Polyazolen dienen, liegt im allgemeinen im Bereich von 0 bis 99 Gew.-%, vorzugsweise 2 bis 50 Gew.-%, besonders bevorzugt 10 bis 40 Gew.-%, ohne dass hierdurch eine Beschränkung erfolgen soll.
  • Gemäß einem besonderen Aspekt der vorliegenden Erfindung liegt das molare Phosphor zu Stickstoff Verhältnis (P/N-Verhältnis), bezogen auf die gemäß Schritt B) erhältlichen Polyazole, zwischen 0,02 und 0,5, bevorzugt zwischen 0,05 und 0,35 und ganz besonders bevorzugt zwischen 0,07 und 0,25, ohne dass hierdurch eine Beschränkung erfolgen soll. Das P/N-Verhältnis kann mittels Elementaranalyse gemessen werden.
  • Gemäß einer besonderen Ausführungsform der vorliegenden Erfindung liegt das molare Schwefel zu Stickstoff Verhältnis (S/N-Verhältnis), bezogen auf die gemäß Schritt B) erhältlichen Polyazole, zwischen 0,02 und 2, bevorzugt zwischen 0,05 und 1 und ganz besonders bevorzugt zwischen 0,07 und 0,25, ohne dass hierdurch eine Beschränkung erfolgen soll. Das S/N-Verhältnis kann mittels Elementaranalyse gemessen werden.
  • Gemäß einem besonderen Aspekt der vorliegenden Erfindung liegt das molare Schwefel zu Phosphor Verhältnis (S/P-Verhältnis), bezogen auf die gemäß Schritt B) erhältlichen Polyazole, zwischen 0 und 10, bevorzugt zwischen 0,1 und 5 und ganz besonders bevorzugt zwischen 0,2 und 4, ohne dass hierdurch eine Beschränkung erfolgen soll. Das S/P-Verhältnis kann mittels Elementaranalyse gemessen werden.
  • Bei der in Schritt A) verwendeten Polyphosphorsäure handelt es sich um handelsübliche Polyphosphorsäuren wie diese beispielsweise von Riedel-de Haen erhältlich sind. Die Polyphosphorsäuren Hn+2PnO3n+1(n > 1) besitzen üblicherweise einen Gehalt berechnet als P2O5 (acidimetrisch) von mindestens 83%. Anstelle einer Lösung der Monomeren kann auch eine Dispersion/Suspension erzeugt werden.
  • Gemäß einem bevorzugten Aspekt der vorliegenden Erfindung wird in Schritt A) eine Mischung gebildet, die mindestens ein Phosphonsäuregruppen enthaltende, aromatische Carbonsäure und mindestens eine Aminoverbindung ohne Phosphonsäuregruppen umfasst. Wird eine solche Mischung eingesetzt, so wird in Schritt B) ein Phosphonsäuregruppen enthaltendes Polyazol gebildet umfassend wiederkehrende Azoleinheiten der allgemeinen Formel (I) und/oder (II) und/oder (III) und/oder (IV) und/oder (V) und/oder (VI) und/oder (VII) und/oder (VIII) und/oder (IX) und/oder (X) und/oder (XI) und/oder (XII) und/oder (XIII) und/oder (XIV) und/oder (XV) und/oder (XVI) und/oder (XVI) und/oder (XVII) und/oder (XVIII) und/oder (XIX) und/oder (XX) und/oder (XXI) und/oder (XXII)
    Figure 00240001
    Figure 00250001
    Figure 00260001
    worin
    Ar gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann, Ar1 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar2 gleich oder verschieden sind und für eine zwei oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar3 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar4 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar5 gleich oder verschieden sind und für eine vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar6 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar7 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar8 gleich oder verschieden sind und für eine dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar9 gleich oder verschieden sind und für eine zwei- oder drei- oder vierbindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar10 gleich oder verschieden sind und für eine zwei- oder dreibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    Ar11 gleich oder verschieden sind und für eine zweibindige aromatische oder heteroaromatische Gruppe, die ein- oder mehrkernig sein kann,
    X gleich oder verschieden ist und für Sauerstoff, Schwefel oder eine Aminogruppe, die ein Wasserstoffatom, eine 1- 20 Kohlenstoffatome aufweisende Gruppe, vorzugsweise eine verzweigte oder nicht verzweigte Alkyl- oder Alkoxygruppe, oder eine Arylgruppe als weiteren Rest trägt
    R gleich oder verschieden für Wasserstoff, eine Alkylgruppe und eine aromatische Gruppe steht und
    n, m eine ganze Zahl größer gleich 10, bevorzugt größer gleich 100 ist.
    Y eine Bindung oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist,
    p unabhängig voneinander eine ganze Zahl zwischen 1 und 4 ist, wobei p die Anzahl an der Bindungen oder Gruppen Y darstellt, über die die Gruppe Z mit der aromatischen oder heteroaromatischen Gruppe verknüpft ist,
    r unabhängig voneinander eine ganze Zahl zwischen 1 und 4 ist, wobei r die Anzahl der Gruppen Z darstellt, die an die Gruppe Y oder, falls Y eine Bindung ist, an die aromatische oder heteroaromatische Gruppe geknüpft sind, und
    Z eine Gruppe der allgemeinen Formel (1) –PO3H2 (1) oder der allgemeinen Formel (2)
    Figure 00280001
    ist, worin R1 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist.
  • Hierbei umfassen die Zahlen n und m, die die Anzahl der Wiederkehrenden Einheiten darstellt, auch die Wiederkehrenden Einheiten, die keine Phosphonsäuregruppen aufweisen.
  • Die Begriffe „aromatische oder heteroaromatische Gruppe" sowie „1 bis 20 Kohlenstoff aufweisende Gruppe" wurden zuvor dargelegt.
  • Dabei ist das Substitionsmuster von Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 beliebig, im Falle vom Phenylen beispielsweise kann Ar1, Ar4, Ar6, Ar7, Ar8, Ar9, Ar10, Ar11 ortho-, meta- und para-Phenylen sein. Besonders bevorzugte Gruppen leiten sich von Benzol und Biphenylen, die gegebenenfalls auch substituiert sein können, ab.
  • Bevorzugte Alkylgruppen sind kurzkettige Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, wie z. B. Methyl-, Ethyl-, n- oder i-Propyl- und t-Butyl-Gruppen.
  • Bevorzugte aromatische Gruppen sind Phenyl- oder Naphthyl-Gruppen. Die Alkylgruppen und die aromatischen Gruppen können substituiert sein.
  • Bevorzugte Substituenten sind Halogenatome wie z. B. Fluor, Aminogruppen, Hydroxygruppen oder kurzkettige Alkylgruppen wie z. B. Methyl- oder Ethylgruppen.
  • Bevorzugt sind Polyazole mit wiederkehrenden Einheiten der Formel (I) bei denen die Reste X innerhalb einer wiederkehrenden Einheit gleich sind.
  • Die Polyazole können grundsätzlich auch unterschiedliche wiederkehrende Einheiten aufweisen, die sich beispielsweise in ihrem Rest X unterscheiden. Vorzugsweise jedoch weist es nur gleiche Reste X in einer wiederkehrenden Einheit auf.
  • Weitere bevorzugte Polyazol-Polymere sind Polyimidazole, Polybenzthiazole, Polybenzoxazole, Polyoxadiazole, Polyquinoxalines, Polythiadiazole Poly(pyridine), Poly(pyrimidine), und Poly(tetrazapyrene).
  • In einer weiteren Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Copolymer oder ein Blend, das mindestens zwei Einheiten der Formel (I) bis (XXII) enthält, die sich voneinander unterscheiden. Die Polymere können als Blockcopolymere (Diblock, Triblock), statistische Copolymere, periodische Copolymere und/oder alternierende Polymere vorliegen.
  • In einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung ist das Polymer enthaltend wiederkehrende Azoleinheiten ein Polyazol, das nur Einheiten der Formel (I) und/oder (II) enthält.
  • Die Anzahl der wiederkehrende Azoleinheiten im Polymer ist vorzugsweise eine ganze Zahl größer gleich 10. Besonders bevorzugte Polymere enthalten mindestens 100 wiederkehrende Azoleinheiten.
  • Im Rahmen der vorliegenden Erfindung sind Polymere enthaltend wiederkehrenden Benzimidazoleinheiten bevorzugt. Einige Beispiele der äußerst zweckmäßigen Polymere enthaltend wiederkehrende Benzimidazoleinheiten werden durch die nachfolgende Formeln wiedergegeben:
    Figure 00300001
    Figure 00310001
    Figure 00320001
    Figure 00330001
    wobei n und m eine ganze Zahl größer gleich 10, vorzugsweise größer gleich 100 ist. Hierbei umfassen die Zahlen n und m, die die Anzahl der Wiederkehrenden Einheiten darstellt, auch die Wiederkehrenden Einheiten, die keine Phosphonsäuregruppen aufweisen. Diese Einheiten entstehen durch eine Polyreaktion von Monomeren, insbesondere von aromatischen Carbonsäuren mit mindestens zwei Säuregruppen, die keine Phosphonsäuregruppe umfassen.
  • Die mittel des beschriebenen Verfahrens erhältlichen Polyazole, insbesondere jedoch die Polybenzimidazole zeichnen sich durch ein hohes Molekulargewicht aus. Gemessen als Intrinsische Viskosität liegt diese im Bereich von 0,3 bis 10 dl/g, vorzugsweise 1 bis 5 dl/g.
  • Insofern die Mischung gemäß Schritt A) auch Tricarbonsäuren bzw. Tetracarbonsäre enthält wird hierdurch eine Verzweigung/Vernetzung des gebildeten Polymeren erzielt. Diese trägt zur Verbesserung der mechanischen Eigenschaft bei.
  • Die in Schritt A) erhaltene Mischung wird gemäß Schritt B) auf eine Temperatur von bis zu 350°C, vorzugsweise bis zu 280°C, insbesondere 100°C bis 250°C und besonders bevorzugt im Bereich von 200°C bis 250°C erhitzt. Hierbei wird ein Inertgas, beispielsweise Stickstoff oder ein Edelgas, wie Neon, Argon, eingesetzt.
  • Es hat sich weiterhin gezeigt, dass bei Verwendung von aromatischen Dicarbonsäuren (oder heteroaromatischen Dicarbonsäure) wie Isophthaisäure, Terephthalsäure, 2,5-Dihydroxyterephthalsäure, 4,6-Dihydroxyisophthalsäure, 2,6-Dihydroxyisophthalsäure, Diphensäure, 1,8-Dihydroxynaphthalin-3,6-Dicarbonsäure, Diphenylether-4,4'-Dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon-4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6 -Pyrimidindicarbonsäure,2,5-Pyrazindicarbonsäure, die Temperatur in Schritt B) im Bereich von bis zu 300°C, vorzugsweise zwischen 100°C und 250°C, günstig ist. Diese Temperaturbereiche gelten auch für die entsprechenden Phosphonsäuregruppen enthaltenden Carbonsäuren.
  • In einer Variante des Verfahrens kann die Erwärmung gemäß Schritt B) nach der Bildung eines flächigen Gebildes gemäß Schritt C) erfolgen.
  • Die in Schritt A) und/oder Schritt B) hergestellte Mischung kann zusätzlich noch organische Lösungsmittel enthalten. Diese können die Verarbeitbarkeit positiv beeinflussen. So kann beispielsweise die Rheologie der Lösung verbessert werden, so dass diese leichter extrudiert oder gerakelt werden kann.
  • Die in Schritt A) und/oder Schritt B) erzeugte Mischung kann auch noch gelöstes, dispergiertes oder suspendiertes Polymer enthalten. Derartige Polymere können auch nach Schritt B) der Mischung zugegeben werden.
  • Zu den bevorzugten Polymeren gehören unter anderem Polyolefine, wie Poly(cloropren), Polyacetylen, Polyphenylen, Poly(p-xylylen), Polyarylmethylen, Polyarmethylen, Polystyrol, Polymethylstyrol, Polyvinylalkohol, Polyvinylacetat, Polyvinylether, Polyvinylamin, Poly(N-vinylacetamid), Polyvinylimidazol, Polyvinylcarbazol, Polyvinylpyrrolidon, Polyvinylpyridin, Polyvinylchlorid, Polyvinylidenchlorid, Polytetrafluorethylen, Polyhexafluorpropylen, Copolymere von PTFE mit Hexafluoropropylen, mit Perfluorpropylvinylether, mit Trifluoronitrosomethan, mit Sulfonylfluoridvinylether, mit Carbalkoxyperfluoralkoxyvinylether, Polychlortrifluorethylen, Polyvinylfluorid, Polyvinylidenfluorid, Polyacrolein, Polyacrylamid, Polyacrylnitril, Polycyanacrylate, Polymethacrylimid, Cycloolefinische Copolymere, insbesondere aus Norbornen;
    Polymere mit C-O-Bindungen in der Hauptkette, beispielsweise Polyacetal, Polyoxymethylen, Polyether, Polypropylenoxid, Polyepichlorhydrin, Polytetrahydrofuran, Polyphenylenoxid, Polyetherketon, Polyester, insbesondere Polyhydroxyessigsäure, Polyethylenterephthalat, Polybutylenterephthalat, Polyhydroxybenzoat, Polyhydroxypropionsäure, Polypivalolacton, Polycaprolacton, Polymalonsäure, Polycarbonat;
    Polymere C-S-Bindungen in der Hauptkette, beispielsweise Polysulfidether, Polyphenylensulfid, Polyethersulfon;
    Polymere C-N-Bindungen in der Hauptkette, beispielsweise Polyimine, Polyisocyanide, Polyetherimin, Polyanilin, Polyamide, Polyhydrazide, Polyurethane, Polyimide, Polyazole, Polyazine;
    Flüssigkristalline Polymere, insbesondere Vectra sowie Anorganische Polymere, beispielsweise Polysilane, Polycarbosilane, Polysiloxane, Polykieselsäure, Polysilikate, Silicone, Polyphosphazene und Polythiazyl.
  • Des weiteren kann die in Schritt A) und/oder Schritt B) erzeugte Mischung auch Polymere mit kovalent gebundenen Säuregruppen umfassen. Diese Polymere können der Mischung auch nach Schritt B) zugesetzt werden. Diese Säuregruppen umfassen insbesondere Sulfonsäuregruppen. Die mit Sulfonsäuregruppen modifizierten Polymere besitzen vorzugsweise einen Gehalt an Sulfonsäuregruppen im Bereich von 0,5 bis 3 meq/g. Dieser Wert wird über die sog. Ionenaustauschkapazität (IEC) bestimmt.
  • Zur Messung der IEC werden die Sulfonsäuregruppen in die freie Säure überführt. Hierzu wird das Polymere auf bekannte Weise mit Säure behandelt, wobei überschüssige Säure durch Waschen entfernt wird. So wird das sulfonierte Polymer zunächst 2 Stunden in siedendem Wasser behandelt. Anschliessend wird überschüssiges Wasser abgetupt und die Probe während 15 Stunden bei 160°C im Vakkumtrockenschrank bei p < 1 mbar getrocknet. Dann wird das Trockengewicht der Membran bestimmt. Das so getrocknete Polymer wird dann in DMSO bei 80°C während 1 h gelöst. Die Lösung wird anschliessend mit 0,1 M NaOH titriert. Aus dem Verbrauch der Säure bis zum Equivalentpunkt und dem Trockengewicht wird dann die Ionenaustauschkapazität (IEC) berechnet.
  • Derartige Polymere sind in der Fachwelt bekannt. So können Sulfonsäuregruppen enthaltende Polymere beispielsweise durch Sulfonierung von Polymeren hergestellt werden. Verfahren zur Sulfonierung von Polymeren sind in F. Kucera et. al. Polymer Engineering and Science 1988, Vol. 38, No 5, 783-792 beschrieben. Hierbei können die Sulfonierungsbedingungen so gewählt werden, dass ein niedriger Sulfonierungsgrad entsteht ( DE-A-19959289 ).
  • So wurde eine weitere Klasse nichtfluorierter Polymere durch Sulfonierung von hochtemperaturstabilen Thermoplasten entwickelt. So sind sulfonierte Polyetherketone ( DE-A-4219077 , WO96/01177), sulfonierte Polysulfone (J. Membr. Sci. 83 (1993) p.211) oder sulfoniertes Polyphenylensulfid ( DE-A-19527435 ) bekannt.
  • US-A-6110616 beschreibt Copolymere aus Butadien und Styrol und deren anschliesende Sulfonierung zur Verwendung für Brennstoffzellen.
  • Des weiteren können derartige Polymere auch durch Polyreaktionen von Monomeren erhalten werden, die Säuregruppen umfassen. So können perfluorinierte Polymere wie in US-A-5422411 beschrieben durch Copolymerisation aus Trifluorostyrol und sulfonylmodifiziertem Trifuorostyrol hergestellt werden.
  • Zu diesen Perfluorosulfonsäurepolymeren gehört unter anderem Nafion® ( US-A-3692569 ). Dieses Polymer kann wie in US-A-4453991 beschrieben in Lösung gebracht und dann als Ionomer eingesetzt werden.
  • Zu den bevorzugten Polymeren mit Säuregruppen gehören unter anderem sulfonierte Polyetherketone, sulfonierte Polysulfone, sulfonierte Polyphenylensulfide, perfluorinierte sulfonsäuregruppenhaltige Polymere, wie in US-A-3692569 , US-A-5422411 und US-A-6110616 beschrieben.
  • Zur weiteren Verbesserung der anwendungstechnischen Eigenschaften können der Membran zusätzlich noch Füllstoffe, insbesondere protonenleitende Füllstoffe, sowie zusätzliche Säuren zugesetzt werden. Die Zugabe kann beispielsweise bei Schritt A), Schritt B) und/oder Schritt C) erfolgen. Des weiteren können diese Additive, falls diese in flüssiger Form vorliegen, auch nach der Polymerisation gemäß Schritt D) beigefügt werden.
  • Nicht limitierende Beispiele für Protonenleitende Füllstoffe sind
    Sulfate wie: CsHSO4, Fe(SO4)2, (NH4)3H(SO4)2, LiHSO4, NaHSO4, KHSO4, RbSO4, LiN2H5SO4, NH4HSO4,
    Phosphate wie Zr3(PO4)4, Zr(HPO4)2, HZr2(PO4)3, UO2PO4.3H2O, H8UO2PO4, Ce(HPO4)2, Ti(HPO4)2, KH2PO4, NaH2PO4, LiH2PO4, NH4H2PO4, CsH2PO4, CaHPO4, MgHPO4, HSbP2O8, HSb3P2O14, H5Sb5P2O20,
    Polysäure wie H3PW12O40.nH2O (n = 21-29), H3SiW12O40.nH2O (n = 21-29), HxWO3, HSbWO6, H3PMo12O40, H2Sb4O11, HTaWO6, HNbO3, HTiNbO5, HTiTaO5, HSbTeO6, H5Ti4O9, HSbO3, H2MoO4
    Selenite und Arsenide wie (NH4)3H(SeO4)2, UO2AsO4, (NH4)3H(SeO4)2, KH2AsO4, Cs3H(SeO4)2, Rb3H(SeO4)2,
    Oxide wie Al2O3, Sb2O5, ThO2, SnO2, ZrO2, MoO3
    Silikate wie Zeolithe, Zeolithe(NH4+), Schichtsilikate, Gerüstsilikate, N-Natrolite, H-Mordenite, NH4-Analcine, NH4-Sodalite, NH4-Gallate, H-Montmorillonite
    Säuren wie HClO4, SbF5
    Füllstoffe wie Carbide, insbesondere SiC, Si3N4, Fasern, insbesondere Glasfasern, Glaspulvern und/oder Polymerfasern, bevorzugt auf Basis von Polyazolen.
  • Diese Additive können in der protonenleitenden Polymermembran in üblichen Mengen enthalten sein, wobei jedoch die positiven Eigenschaften, wie hohe Leitfähigkeit, hohe Lebensdauer und hohe mechanische Stabilität der Membran durch Zugabe von zu großen Mengen an Additiven nicht allzu stark beeinträchtigt werden sollten. Im allgemeinen umfaßt die Membran nach der Behandlung gemäß Schritt D) höchstens 80 Gew.-%, vorzugsweise höchstens 50 Gew.-% und besonders bevorzugt höchstens 20 Gew.-% Additive.
  • Als weiteres kann diese Membran auch perfluorierte Sulfonsäure-Additive (vorzugsweise 0,1-20 Gew.-%, bevorzugt 0,2-15 Gew.-%, ganz bevorzugt 0,2-10 Gew.-%) enthalten. Diese Additive führen zur Leistungsverbesserung, in der Nähe der Kathode zur Erhöhung der Sauerstofflöslichkeit und Sauerstoffdiffusion und zur Verringerung der Adsorbtion von Phosphorsäure und Phosphat zu Platin. (Electrolyte additives for phosphoric acid fuel cells. Gang, Xiao; Hjuler, H. A.; Olsen, C.; Berg, R. W.; Bjerrum, N. J.. Chem. Dep. A, Tech. Univ. Denmark, Lyngby, Den. J. Electrochem. Soc. (1993), 140(4), 896-902 und Perfluorosulfonimide as an additive in phosphoric acid fuel cell. Razaq, M.; Razaq, A.; Yeager, E.; DesMarteau, Darryl D.; Singh, S. Case Cent. Electrochem. Sci., Case West. Reserve Univ, Cleveland, OH, USA. J. Electrochem. Soc. (1989), 136(2), 385-90.) Nicht limitierende Beispiele für persulfonierte Additive sind: Trifluomethansulfonsäure, Kaliumtrifluormethansulfonat, Natriumtrifluormethansulfonat, Lithiumtrifluormethansulfonat, Ammoniumtrifluormethansulfonat, Kaliumperfluorohexansulfonat, Natriumperfluorohexansulfonat, Lithiumperfluorohexansulfonat, Ammoniumperfluorohexansulfonat, Perfluorohexansulfonsäure, Kaliumnonafluorbutansulfonat, Natriumnonafluorbutansulfonat, Lithiumnonafluorbutansulfonat, Ammoniumnonafluorbutansulfonat, Cäsiumnonafluorbutansulfonat, Triethylammoniumperfluorohexasulfonat, Perflurosulfoimide und Nafion.
  • Die Bildung des flächigen Gebildes gemäß Schritt C) erfolgt mittels an sich bekannter Maßnahmen (Gießen, Sprühen, Rakeln, Extrusion) die aus dem Stand der Technik zur Polymerfilm-Herstellung bekannt sind. Als Träger sind alle unter den Bedingungen als inert zu bezeichnenden Träger geeignet. Zu diesen Trägern gehören insbesondere Folien aus Polyethylenterephthalat (PET), Polytetrafluorethylen (PTFE), Polyhexafluorpropylen, Copolymere von PTFE mit Hexafluoropropylen, Polyimiden, Polyphenylensulfiden (PPS) und Polypropylen (PP).
  • Zur Einstellung der Viskosität kann die Lösung gegebenenfalls mit einem leicht verdampfbaren organischen Lösungsmittel versetzt werden. Hierdurch kann die Viskosität auf den gewünschten Wert eingestellt und die Bildung der Membran erleichtert werden.
  • Die Dicke des flächigen Gebildes gemäß Schritt C) beträgt vorzugsweise zwischen 10 und 4000 μm, vorzugsweise zwischen 15 und 3500 μm, insbesondere zwischen 20 und 3000 μm, besonders bevorzugt zwischen 30 und 1500 μm und ganz besonders bevorzugt zwischen 50 und 1200 μm.
  • Die Behandlung der Membran in Schritt D) erfolgt insbesondere bei Temperaturen im Bereich von 0°C und 150°C, vorzugsweise bei Temperaturen zwischen 10°C und 120°C, insbesondere zwischen Raumtemperatur (20°C) und 90°C, in Gegenwart von Feuchtigkeit bzw. Wasser und/oder Wasserdampf: Die Behandlung erfolgt vorzugsweise unter Normaldruck, kann aber auch unter Einwirkung von Druck erfolgen. Wesentlich ist, daß die Behandlung in Gegenwart von ausreichender Feuchtigkeit geschieht, wodurch die anwesende Polyphosphorsäure durch partielle Hydrolyse unter Ausbildung niedermolekularer Polyphosphorsäure und/oder Phosphorsäure zur Verfestigung der Membran beiträgt.
  • Die partielle Hydrolyse der Polyphosphorsäure in Schritt D) führt zu einer Verfestigung der Membran und zu einer Abnahme der Schichtdicke und Ausbildung einer Membran. Die verfestigte Membran hat im allgemeinen eine Dicke zwischen 15 und 3000 μm, vorzugsweise 20 und 2000 μm, insbesondere zwischen 20 und 1500 μm, wobei die Membran selbsttragend ist.
  • Durch die Verfestigung der Membran gemäß Schritt D) erhöht sich auch deren Härte, die mittels Mikrohärtemessung gemäss DIN 50539 bestimmt werden kann. Dazu wird die Membran mit einem Vickersdiamant innerhalb von 20 s sukzessive bis zu einer Kraft von 3 mN belastet und die Eindringtiefe bestimmt. Demnach beträgt die Härte bei Raumtemperatur mindestens 5 mN/mm2 und bevorzugt mindestens 20 mN/mm2, ohne dass hierdurch eine Beschränkung erfolgen soll. Bei diesen Härtewerten sind die Membranen im allgemeinen selbsttragend. In der Folge wird die Kraft während 5 s konstant bei 3 mN gehalten und das Kriechen aus der Eindringtiefe berechnet. Bei bevorzugten Membranen beträgt das Kriechen CHU 0,003/20/5 unter diesen Bedingungen weniger als 30%, bevorzugt weniger als 15% und ganz besonders bevorzugt weniger als 5%. Der mittels Mikrohärtemessung bestimmte Modul beträgt YHU mindestens 0,1 MPa, insbesondere mindestens 2 MPa und ganz besonders bevorzugt mindestens 5 MPa, ohne dass hierdurch eine Beschränkung erfolgen soll.
  • Die obere Temperaturgrenze der Behandlung gemäß Schritt D) beträgt in der Regel 150°C. Bei extrem kurzer Einwirkung von Feuchtigkeit, beispielsweise von überhitztem Dampf kann dieser Dampf auch heißer als 150°C sein. Wesentlich für die Temperaturobergrenze ist die Dauer der Behandlung.
  • Die partielle Hydrolyse (Schritt D) kann auch in Klimakammern erfolgen bei der unter definierter Feuchtigkeitseinwirkung die Hydrolyse gezielt gesteuert werden kann. Hierbei kann die Feuchtigkeit durch die Temperatur bzw. Sättigung der kontaktierenden Umgebung beispielsweise Gase wie Luft, Stickstoff, Kohlendioxid oder andere geeignete Gase, oder Wasserdampf gezielt eingestellt werden. Die Behandlungsdauer ist abhängig von den vorstehend gewählten Parametern.
  • Weiterhin ist die Behandlungsdauer von der Dicke der Membran abhängig.
  • In der Regel beträgt die Behandlungsdauer zwischen wenigen Sekunden bis Minuten, beispielsweise unter Einwirkung von überhitztem Wasserdampf, oder bis hin zu ganzen Tagen, beispielsweise an der Luft bei Raumtemperatur und geringer relativer Luftfeuchtigkeit. Bevorzugt beträgt die Behandlungsdauer zwischen 10 Sekunden und 300 Stunden, insbesondere 1 Minute bis 200 Stunden.
  • Wird die partielle Hydrolyse bei Raumtemperatur (20°C) mit Umgebungsluft einer relativen Luftfeuchtigkeit von 40-80% durchgeführt beträgt die Behandlungsdauer zwischen 1 und 200 Stunden.
  • Die gemäß Schritt D) erhaltene Membran kann selbsttragend ausgebildet werden, d.h. sie kann vom Träger ohne Beschädigung gelöst und anschließend gegebenenfalls direkt weiterverarbeitet werden.
  • Über den Grad der Hydrolyse, d.h. die Dauer, Temperatur und Umgebungsfeuchtigkeit, ist die Konzentration an Phosphorsäure und damit die Leitfähigkeit der erfindungsgemäßen Polymermembran einstellbar. Erfindungsgemäß wird die Konzentration der Phosphorsäure als Mol Säure pro Mol Wiederholungseinheit des Polymers angegeben. Im Rahmen der vorliegenden Erfindung ist eine Konzentration (Mol Phosporsäure bezogen auf eine Wiederholeinheit der Formel (III), d.h. Polybenzimidazol) zwischen 10 und 80, insbesondere zwischen 12 und 60, bevorzugt. Derartig hohe Dotierungsgrade (Konzentrationen) sind durch Dotieren von Polyazolen mit kommerziell erhältlicher ortho-Phosphorsäure nur sehr schwierig bzw. gar nicht zugänglich.
  • Im Anschluss an die Behandlung gemäß Schritt D) kann die Membran durch Einwirken von Hitze in Gegenwart von Sauerstoff noch vernetzt werden. Diese Härtung der Membran verbessert die Eigenschaften der Membran zusätzlich. Hierzu kann die Membran auf eine Temperatur von mindestens 150°C, vorzugsweise mindestens 200°C und besonders bevorzugt mindestens 250°C erwärmt werden. Die Sauerstoffkonzentration liegt bei diesem Verfahrensschritt üblich im Bereich von 5 bis 50 Vol.-%, vorzugsweise 10 bis 40 Vol.-%, ohne dass hierdurch eine Beschränkung erfolgen soll.
  • Die Vernetzung kann auch durch Einwirken von IR bzw. NIR (IR = InfraRot, d. h. Licht mit einer Wellenlänge von mehr als 700 nm; NIR = Nahes IR, d. h. Licht mit einer Wellenlänge im Bereich von ca. 700 bis 2000 nm bzw. einer Energie im Bereich von ca. 0.6 bis 1.75 eV) erfolgen. Eine weitere Methode ist die Bestrahlung mit β-Strahlen. Die Strahlungsdosis beträgt hierbei zwischen 5 und 200 kGy.
  • Je nach gewünschtem Vernetzungsgrad kann die Dauer der Vernetzungsreaktion in einem weiten Bereich liegen. Im allgemeinen liegt diese Reaktionszeit im Bereich von 1 Sekunde bis 10 Stunden, vorzugsweise 1 Minute bis 1 Stunde, ohne dass hierdurch eine Beschränkung erfolgen soll.
  • Die erfindungsgemäße Polymermembran weist verbesserte Materialeigenschaften gegenüber den bisher bekannten dotierten Polymermembranen auf. Insbesondere zeigen sie im Vergleich mit bekannten dotierten Polymermembranen bessere Leistungen. Diese begründet sich insbesondere durch eine verbesserte Protonenleitfähigkeit. Diese beträgt bei Temperaturen von 120°C mindestens 0,1 S/cm, vorzugsweise mindestens 0,11 S/cm, insbesondere mindestens 0,12 S/cm. Falls die erfindungsgemäßen Membranen Polyazole mit Sulfonsäuregruppen umfassen, zeigen die Membranen auch bei einer Temperatur von 70°C eine hohe Leitfähigkeit. Die Leitfähigkeit ist unter anderem abhängig vom Sulfonsäuregruppengehalt der Polyazole. Je höher dieser Anteil, desto besser die Leitfähigkeit bei tiefen Temperaturen. Hierbei kann eine erfindungsgemäße Membran bei geringen Temperaturen befeuchtet werden. Hierzu kann beispielsweise die als Energiequelle eingesetzte Verbindung, beispielsweise Wasserstoff, mit einem Anteil an Wasser versehen werden. In vielen Fällen genügt jedoch auch das durch die Reaktion gebildete Wasser, um eine Befeuchtung zu erzielen.
  • Die spezifische Leitfähigkeit wird mittels Impedanzspektroskopie in einer 4-Pol-Anordnung im potentiostatischen Modus und unter Verwendung von Platinelektroden (Draht, 0,25 mm Durchmesser) gemessen. Der Abstand zwischen den stromabnehmenden Elektroden beträgt 2 cm. Das erhaltene Spektrum wird mit einem einfachen Modell bestehend aus einer parallelen Anordnung eines ohm'schen Widerstandes und eines Kapazitators ausgewertet. Der Probenquerschnitt der phosphorsäuredotierten Membran wird unmittelbar vor der Probenmontage gemessen. Zur Messung der Temperaturabhängigkeit wird die Messzelle in einem Ofen auf die gewünschte Temperatur gebracht und über eine in unmittelbarer Probennähe positioniertes Pt-100 Thermoelement geregelt. Nach Erreichen der Temperatur wird die Probe vor dem Start der Messung 10 Minuten auf dieser Temperatur gehalten.
  • Zu möglichen Einsatzgebieten der erfindungsgemäßen Polymermembranen gehören unter anderem die Verwendung in Brennstoffzellen, bei der Elektrolyse, in Kondensatoren und in Batteriesystemen.
  • Die vorliegende Erfindung betrifft auch eine Membran-Elektroden-Einheit, die mindestens eine erfindungsgemäße Polymermembran aufweist. Für weitere Informationen über Membran-Elektroden-Einheiten wird auf die Fachliteratur, insbesondere auf die Patente US-A-4,191,618 , US-A-4,212,714 und US-A-4,333,805 verwiesen. Die in den vorstehend genannten Literaturstellen [ US-A-4,191,618 , US-A-4,212,714 und US-A-4,333,805 ] enthaltene Offenbarung hinsichtlich des Aufbaues und der Herstellung von Membran-Elektroden-Einheiten, sowie der zu wählenden Elektroden, Gasdiffusionslagen und Katalysatoren ist auch Bestandteil der Beschreibung.
  • In einer Variante der vorliegenden Erfindung kann die Membranbildung anstelle auf einem Träger auch direkt auf der Elektrode erfolgen. Die Behandlung gemäß Schritt D) kann hierdurch entsprechend verkürzt werden, da die Membran nicht mehr selbsttragend sein muß. Auch eine solche Membran ist Gegenstand der vorliegenden Erfindung.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist eine Elektrode umfassend Phosphonsäuregruppen enthaltende Polyazole erhältlich durch ein Verfahren umfassend die Schritte
    • A) Mischen von einem oder mehreren aromatischen und/oder heteroaromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen und/oder heteroaromatischen Carbonsäuren oder deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, wobei zumindest ein Teil der Tetra-Aminoverbindungen und/oder der Carbonsäuren mindestens eine Phosphonsäuregruppe umfasst, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren, von denen zumindest ein Teil Phosphonsäuregruppen umfasst, in Polyphosphorsäure, unter Ausbildung einer Lösung und/oder Dispersion
    • B) Erwärmen der Mischung erhältlich gemäß Schritt A) unter Inertgas auf Temperaturen von bis zu 350°C, vorzugsweise bis zu 280°C unter Ausbildung des Polyazol-Polymeren
    • C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) und/oder Schritt B) auf einer Elektrode,
    • D) Behandlung der in Schritt C) gebildeten Membran.
  • Der Vollständigkeit halber sei festgehalten, dass sämtliche bevorzugten Ausführungsformen einer selbsttragenden Membran entsprechend auch für eine unmittelbar auf die Elektrode aufgebrachte Membran gelten.
  • Gemäß einem besonderen Aspekt der vorliegenden Erfindung hat die Beschichtung eine Dicke zwischen 2 und 3000 μm, vorzugsweise zwischen 2 und 2000 μm, insbesondere zwischen 3 und 1500 μm, besonders bevorzugt 5 bis 500 μm und ganz besonders bevorzugt zwischen 10 bis 200 μm, ohne dass hierdurch eine Beschränkung erfolgen soll.
  • Die Behandlung gemäß Schritt D) führt zu einer Härtung der Beschichtung. Hierbei erfolgt die Behandlung solange, bis die Beschichtung eine genügende Härte aufweist, um zu einer Membran-Elektroden-Einheit verpresst werden zu können. Eine genügende Härte ist gegeben, wenn eine entsprechend behandelte Membran selbsttragend ist. In vielen Fällen genügt jedoch eine geringere Härte. Die gemäß DIN 50539 (Mikrohärtemessung) bestimmte Härte beträgt im allgemeinen mindestens 1 mN/mm2, bevorzugt mindestens 5 mN/mm2 und ganz besonders bevorzugt mindestens 15 mN/mm2, ohne dass hierdurch eine Beschränkung erfolgen soll.
  • Eine derartig beschichtete Elektrode kann in einer Membran-Elektroden-Einheit, die gegebenenfalls mindestens eine erfindungsgemäße Polymermembran aufweist, eingebaut werden.
  • In einer weiteren Variante kann auf die erfindungsgemäße Membran eine katalytisch aktive Schicht aufgebracht werden und diese mit einer Gasdiffusionslage verbunden werden. Hierzu wird gemäß den Schritten A) bis D) eine Membran gebildet und der Katalysator aufgebracht. Auch diese Gebilde sind Gegenstand der vorliegenden Erfindung.
  • Darüber hinaus kann die Bildung der Membran gemäß den Schritten A) bis D) auch auf einem Träger oder einer Trägerfolie erfolgen, die bereits den Katalysator aufweist. Nach Entfernen des Trägers bzw. der Trägerfolie befindet sich der Katalysator auf der erfindungsgemäßen Membran. Auch diese Gebilde sind Gegenstand der vorliegenden Erfindung.
  • Ebenfalls Gegenstand der vorliegenden Erfindung ist eine Membran-Elektroden-Einheit, die mindestens eine beschichtete Elektrode und/oder mindestens eine erfindungsgemäße Polymermembran in Kombination mit einer weiteren Polymermembran auf Basis von Polyazolen oder einer Polymerblendmembran enthaltend mindestens ein Polymer auf Basis von Polyazolen aufweist.

Claims (28)

  1. Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole erhältlich durch ein Verfahren umfassend die Schritte A) Mischen von einem oder mehreren aromatischen und/oder heteroaromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen und/oder heteroaromatischen Carbonsäuren oder deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, wobei zumindest ein Teil der Tetra-Aminoverbindungen und/oder der Carbonsäuren mindestens eine Phosphonsäuregruppe umfasst, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren, von denen zumindest ein Teil Phosphonsäuregruppen umfasst, in Polyphosphorsäure, unter Ausbildung einer Lösung und/oder Dispersion, B) Erwärmen der Lösung und/oder Dispersion erhältlich gemäß Schritt A) unter Inertgas auf Temperaturen von bis zu 350°C unter Ausbildung von Polyazol-Polymeren, C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) und/oder B) auf einem Träger, D) Behandlung der in Schritt C) gebildeten Membran bis diese selbsttragend ist.
  2. Membran gemäß Anspruch 1, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung aromatische und/oder heteroaromatische Tetra-Amino-Verbindungen der Formel (A) umfasst
    Figure 00460001
    worin Ar eine aromatische oder heteroaromatische Gruppe darstellt, Y eine Bindung oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist, p eine ganze Zahl zwischen 1 und 4 ist, wobei p die Anzahl an Bindungen oder Gruppen Y darstellt, über die die Gruppe Z mit der Gruppe Ar verknüpft ist, r eine ganze Zahl zwischen 1 und 4 ist, wobei r die Anzahl der Gruppen Z darstellt, die an die Gruppe Y oder, falls Y eine Bindung ist, an die aromatische oder heteroaromatische Gruppe Ar geknüpft sind, und Z eine Gruppe der allgemeinen Formel (1) –PO3H2 (1) oder der allgemeinen Formel (2)
    Figure 00470001
    ist, worin R1 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist.
  3. Membran gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung aromatische und/oder heteroaromatische Carbonsäuren der Formel (B) umfasst
    Figure 00470002
    worin Ar eine aromatische oder heteroaromatische Gruppe darstellt, X ein Halogenatom oder eine Gruppe der Formel OR2 darstellt, worin R2 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoff aufweisende Gruppe darstellt, Y eine Bindung oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist, p eine ganze Zahl zwischen 1 und 4 ist, wobei p die Anzahl an Bindungen oder Gruppen Y darstellt, über die die Gruppe Z mit der Gruppe Ar verknüpft ist, r eine ganze Zahl zwischen 1 und 4 ist, wobei r die Anzahl der Gruppen Z darstellt, die an die Gruppe Y oder, falls Y eine Bindung ist, an die aromatische oder heteroaromatische Gruppe Ar geknüpft sind, und Z eine Gruppe der allgemeinen Formel (1) –PO3H2 (1)oder der allgemeinen Formel (2)
    Figure 00480001
    ist, worin R1 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist.
  4. Membran gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung aromatische und/oder heteroaromatische Tetra-Amino-Verbindungen der Formel (C) umfasst
    Figure 00480002
    worin Ar eine aromatische oder heteroaromatische Gruppe darstellt, Y eine Bindung oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist, p eine ganze Zahl zwischen 1 und 4 ist, wobei p die Anzahl an Bindungen oder Gruppen Y darstellt, über die die Gruppe Z mit der Gruppe Ar verknüpft ist, r eine ganze Zahl zwischen 1 und 4 ist, wobei r die Anzahl der Gruppen Z darstellt, die an die Gruppe Y oder, falls Y eine Bindung ist, an die aromatische oder heteroaromatische Gruppe Ar geknüpft sind, und Z' eine Gruppe der allgemeinen Formel (3) –SO3H (3)oder der allgemeinen Formel (4)
    Figure 00490001
    ist, worin R1 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist.
  5. Membran gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung aromatische und/oder heteroaromatische Carbonsäuren der Formel (D) umfasst
    Figure 00490002
    worin Ar eine aromatische oder heteroaromatische Gruppe darstellt, die gegebenenfalls weitere Substituenten, beispielsweise Carbonsäuregruppen oder deren Derivate, beispielsweise deren Ester oder deren Carbonsäurehalogenide, aufweisen kann, X ein Halogenatom, beispielsweise Chlor, Iod oder Brom, oder eine Gruppe der Formel OR2 darstellt, worin R2 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoff aufweisende Gruppe darstellt, Y eine Bindung oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist, p eine ganze Zahl zwischen 1 und 4 ist, wobei p die Anzahl an Bindungen oder Gruppen Y darstellt, über die die Gruppe Z mit der Gruppe Ar verknüpft ist, r eine ganze Zahl zwischen 1 und 4 ist, wobei r die Anzahl der Gruppen Z darstellt, die an die Gruppe Y oder, falls Y eine Bindung ist, an die aromatische oder heteroaromatische Gruppe Ar geknüpft sind, und Z' eine Gruppe der allgemeinen Formel (3) –SO3H (3)oder der allgemeinen Formel (4)
    Figure 00500001
    ist, worin R1 ein Wasserstoffatom oder eine 1 bis 20 Kohlenstoffatome aufweisende Gruppe ist.
  6. Membran gemäß Anspruch 1, 3 oder 5, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung aromatische und/oder heteroaromatische Tetra-Amino-Verbindungen, die keine Phosphonsäuregruppen enthalten, und aromatische und/oder heteroaromatische Carbonsäuren, die mindestens eine Phosphonsäuregruppen enthalten, umfasst.
  7. Membran gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung 3,3',4,4'- Tetraaminobiphenyl, 2,3,5,6-Tetraaminopyridin und/oder 1,2,4,5-Tetraaminobenzolumfasst.
  8. Membran gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung Isophthalsäure, Terephthalsäure, Phthalsäure, 5-Hydroxyisophthalsäure, 4-Hydroxyisophthalsäure, 2-Hydroxyterephthalsäure, 5-Aminoisophthalsäure, 5-N,N-Dimethylaminoisophthalsäure, 5-N,N-Diethylaminoisophthalsäure, 2,5-Dihydroxyterephthalsäure, 2,5-Dihydroxyisophthalsäure, 2,3-Dihydroxyisophthalsäure, 2,3-Dihydroxyphthalsäure, 2,4-Dihydroxyphthalsäure. 3,4-Dihydroxyphthalsäure, 3-Fluorophthalsäure, 5-Fluoroisophthalsäure, 2-Fluoroterphthalsäure, Tetrafluorophthalsäure, Tetrafluoroisophthalsäure, Tetrafluoroterephthalsäure, 1,4-Naphthalindicarbonsäure, 1,5-Naphthalindicarbonsäure, 2,6-Naphthalindicarbonsäure, 2,7-Naphthalindicarbonsäure, Diphensäure, 1,8-dihydroxynaphthalin-3,6-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Benzophenon-4,4'-dicarbonsäure, Diphenylsulfon-4,4'-dicarbonsäure, Biphenyl-4,4'-dicarbonsäure, 4-Trifluoromethylphthalsäure, 2,2-Bis(4-carboxyphenyl)hexafluoropropan, 4,4'-Stilbendicarbonsäure, 4-Carboxyzimtsäure, bzw. deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride umfasst.
  9. Membran gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung 2,3-Diamino-5-carboxyphenylphosphonsäure, 2,3-Diamino-6-carboxyphenylphosphonsäure und 3,4-Diamino-6-carboxyphenylphosphonsäure umfasst.
  10. Membran gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung 2,3-Diamino-5-carboxyphenylsulfonsäure, 2,3-Diamino-6-carboxyphenylsulfonsäure und 3,4-Diamino-6-carboxyphenylsulfonsäure umfasst.
  11. Membran gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung aromatische Tricarbonsäuren, deren C1-C20-Alkyl-Ester oder C5-C12-Ary-Ester oder deren Säureanhydride oder deren Säurehalogenide oder Tetracarbonsäuren, deren C1-C20-Alkyl-Ester oder C5-C12-Aryl-Ester oder deren Säureanhydride oder deren Säurehalogenide umfasst.
  12. Membran gemäß Anspruch 11, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung 1,3,5-Benzoltricarbonsäure (trimesic acid); 2,4,5-Benzoltricarbonsäure (trimellitic acid); (2-Carboxyphenyl)iminodiessigsäure, 3,5,3'-Biphenyltricarbonsäure; 3,5,4'-Biphenyltricarbonsäure 2,4,6-Pyridintricarbonsäure, Benzol-1,2,4,5-tetracarbonsäuren; Naphthalin-1,4,5,8-tetracarbonsäuren, 3,5,3',5'-Biphenyltetracarbonsäuren, Benzophenontetracarbonsäure, 3,3',4,4'-Biphenyltetracarbonsäure, 2,2',3,3'-Biphenyltetracarbonsäure, 1,2,5,6-Naphthalintetracarbonsäure und/oder 1,4,5,8-Naphthalintetracarbonsäure umfasst.
  13. Membran gemäß Anspruch 11 oder 12, dadurch gekennzeichnet, dass der Gehalt an Tricarbonsäure und/oder Tetracarbonsäuren zwischen 0 und 30 Mol-%,vorzugsweise 0,1 und 20 Mol-%, insbesondere 0,5 und 10 Mol-%, bezogen auf eingesetzte Dicarbonsäure, beträgt.
  14. Membran gemäß Anspruch 1, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung heteroaromatische Dicarbonsäuren, Tricarbonsäuren und/oder Tetracarbonsäuren umfasst, welche mindestens ein Stickstoff, Sauerstoff, Schwefel oder Phosphoratom im Aromaten enthalten.
  15. Membran gemäß Anspruch 14, dadurch gekennzeichnet, dass Pyridin-2,5-dicarbonsäure, Pyridin-3,5-dicarbonsäure, Pyridin-2,6-dicarbonsäure, Pyridin-2,4-dicarbonsäure, 4-Phenyl-2,5-pyridindicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2,6 -Pyrimidindicarbonsäure,2,5-Pyrazindicarbonsäure, 2,4,6-Pyridintricarbonsäure, Benzimidazol-5,6-dicarbonsäure, sowie deren C1- C20-Alkyl-Ester oder C5-C12-Aryl-Ester, oder deren Säureanhydride oder deren Säurechloride eingesetzt werden.
  16. Membran gemäß Anspruch 1, dadurch gekennzeichnet, dass die in Schritt A) hergestellte Mischung Diaminobenzoesäure und/oder deren Mono- und Dihydrochloridderivate umfasst.
  17. Membran gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Erwärmung gemäß Schritt B) nach der Bildung eines flächigen Gebildes gemäß Schritt C) erfolgt.
  18. Membran gemäß Anspruch 1, dadurch gekennzeichnet, dass die in Schritt A) und/oder Schritt B) erzeugte Lösung zusätzlich dispergiertes und/oder suspendiertes Polymer enthält.
  19. Membran gemäß Anspruch 1, dadurch gekennzeichnet, dass die Behandlung gemäß Schritt D) bei Temperaturen im Bereich von 0°C und 150°C in Gegenwart von Feuchtigkeit erfolgt.
  20. Membran gemäß Anspruch 1, dadurch gekennzeichnet, dass die Behandlung der Membran in Schritt D) zwischen 10 Sekunden und 300 Stunden beträgt.
  21. Membran gemäß Anspruch 1, dadurch gekennzeichnet, dass die nach Schritt D) gebildete Membran durch Einwirkung von Sauerstoff vernetzt wird.
  22. Membran gemäß Anspruch 1, dadurch gekennzeichnet, dass in Schritt C) eine Schicht mit einer Dicke von 20 und 4000 μm erzeugt wird.
  23. Membran gemäß Anspruch 1, dadurch gekennzeichnet, dass die nach Schritt D) gebildete Membran eine Dicke zwischen 15 und 3000 μm hat.
  24. Elektrode mit einer protonenleitenden Polymerbeschichtung auf Basis von Polyazolen erhältlich durch ein Verfahren umfassend die Schritte A) Mischen von einem oder mehreren aromatischen und/oder heteroaromatischen Tetra-Amino-Verbindungen mit einer oder mehreren aromatischen und/oder heteroaromatischen Carbonsäuren oder deren Derivate, die mindestens zwei Säuregruppen pro Carbonsäure-Monomer enthalten, wobei zumindest ein Teil der Tetra-Aminoverbindungen und/oder der Carbonsäuren mindestens eine Phosphonsäuregruppe umfasst, oder Mischen von einer oder mehreren aromatischen und/oder heteroaromatischen Diaminocarbonsäuren, von denen zumindest ein Teil Phosphonsäuregruppen umfasst, in Polyphosphorsäure, unter Ausbildung einer Lösung und/oder Dispersion B) Erwärmen der Mischung erhältlich gemäß Schritt A) unter Inertgas auf Temperaturen von bis zu 350°C unter Ausbildung des Polyazol-Polymeren, C) Aufbringen einer Schicht unter Verwendung der Mischung gemäß Schritt A) und/oder Schritt B) auf einer Elektrode, D) Behandlung der in Schritt C) gebildeten Membran bis diese eine Oberflächenhärte aufweist.
  25. Elektrode gemäß Anspruch 24, wobei die Beschichtung eine Dicke zwischen 2 und 3000 μm hat.
  26. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 23.
  27. Membran-Elektroden-Einheit enthaltend mindestens eine Elektrode gemäß Anspruch 24 oder 25 und mindestens eine Membran gemäß einem oder mehreren der Ansprüche 1 bis 23.
  28. Brennstoffzelle enthaltend eine oder mehrere Membran-Elektroden-Einheiten gemäß Anspruch 26 oder 27.
DE10246459A 2002-10-04 2002-10-04 Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen Withdrawn DE10246459A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE10246459A DE10246459A1 (de) 2002-10-04 2002-10-04 Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
PCT/EP2003/010906 WO2004033079A2 (de) 2002-10-04 2003-10-02 Protonenleitende polymermembran umfassend phosphonsäuregruppen enthaltende polyazole und deren anwendung in brennstoffzellen
US10/530,002 US7736778B2 (en) 2002-10-04 2003-10-02 Proton conducting polymer membrane comprising phosphonic acid groups containing polyazoles and the use thereof in fuel cells
CNB2003801009183A CN100556934C (zh) 2002-10-04 2003-10-02 含有带膦酸基的聚吡咯的质子传导聚合物膜及其在燃料电池中的用途
EP03775169A EP1554032A2 (de) 2002-10-04 2003-10-02 Protonenleitende polymermembran umfassend phosphonsäuregruppen enthaltende polyazole und deren anwendung in brennstoffzellen
CA002500514A CA2500514A1 (en) 2002-10-04 2003-10-02 Proton-conducting polymer membrane comprising polyazoles containing phosphonic acid groups and its use in fuel cells
JP2004542403A JP4450734B2 (ja) 2002-10-04 2003-10-02 ホスホン酸基含有ポリアゾールを含むプロトン伝導性高分子膜及び燃料電池におけるその使用。
KR1020057005878A KR20050073477A (ko) 2002-10-04 2003-10-02 포스폰산 그룹을 함유하는 폴리아졸을 포함하는 양성자전도성 고분자막과 연료 전지에서 이들의 사용방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10246459A DE10246459A1 (de) 2002-10-04 2002-10-04 Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen

Publications (1)

Publication Number Publication Date
DE10246459A1 true DE10246459A1 (de) 2004-04-15

Family

ID=32010260

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10246459A Withdrawn DE10246459A1 (de) 2002-10-04 2002-10-04 Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen

Country Status (8)

Country Link
US (1) US7736778B2 (de)
EP (1) EP1554032A2 (de)
JP (1) JP4450734B2 (de)
KR (1) KR20050073477A (de)
CN (1) CN100556934C (de)
CA (1) CA2500514A1 (de)
DE (1) DE10246459A1 (de)
WO (1) WO2004033079A2 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1624511A1 (de) * 2004-08-05 2006-02-08 Pemeas GmbH Membran-Elektroden-Einheiten und Brennstoffzellen mit erhöhter Lebensdauer
WO2006013108A2 (en) * 2004-08-05 2006-02-09 Pemeas Gmbh Long-life membrane electrode assemblies
WO2007101415A2 (de) 2006-02-03 2007-09-13 Universität Stuttgart - Institut für Chemische Verfahrenstechnik Phosphonsäure-haltige blends und phosphonsäure-haltige polymere
DE102006062251A1 (de) * 2006-12-22 2008-06-26 Volkswagen Ag Membran-Elektroden-Einheit für Brennstoffzellen und Brennstoffzelle
DE102007018280A1 (de) 2007-04-18 2008-10-23 Volkswagen Ag Verfahren zur Herstellung einer Polymerelektrolytmembran für eine Brennstoffzelle sowie nach dem Verfahren hergestellte Membran
DE102007031280A1 (de) 2007-07-05 2009-01-08 Volkswagen Ag Gasdiffusionselektrode und diese enthaltende Membran-Elektroden-Einheit für eine Brennstoffzelle
DE102007044246A1 (de) 2007-09-11 2009-03-12 Volkswagen Ag Membran-Elektroden-Einheit mit hydrierbarem Material für eine Brennstoffzelle
DE112005003202B4 (de) * 2004-12-24 2009-04-30 Asahi Kasei Kabushiki Kaisha Sehr haltbare Elektrodenkatalysatorschicht, Verfahren zu ihrer Herstellung, elektrolytische Polymerlösung, Membranelektrodenanordnung und Polymerelektrolytmembran-Brennstoffzelle
DE102009001141A1 (de) 2008-10-29 2010-05-06 Volkswagen Ag Verfahren zur Herstellung einer Polymerelektrolytmembran
DE102009001137A1 (de) 2008-10-29 2010-05-06 Volkswagen Ag Polymerelektrolytmembran für Brennstoffzellen und Verfahren zu ihrer Herstellung
WO2010063489A1 (de) * 2008-12-06 2010-06-10 Basf Se Verfahren zur herstellung einer protonenleitenden membran
WO2010145827A2 (de) 2009-06-20 2010-12-23 Basf Se Polyazol-haltige zusammensetzung
WO2010145828A2 (de) 2009-06-20 2010-12-23 Basf Se Verfahren zur herstellung eines hochmolekularen polyazols
DE102009028758A1 (de) 2009-08-20 2011-02-24 Volkswagen Ag Langzeitstabile Polymerelektrolytmembran für HT-Brennstoffzellen und Verfahren zu ihrer Herstellung
US8273277B2 (en) 2006-09-12 2012-09-25 Basf Fuel Cell Gmbh Process for producing a proton-conducting, polyazole-containing membrane

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10117686A1 (de) * 2001-04-09 2002-10-24 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
TW573053B (en) * 2001-09-10 2004-01-21 Anelva Corp Surface processing apparatus
DE10228657A1 (de) * 2002-06-27 2004-01-15 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10235358A1 (de) * 2002-08-02 2004-02-12 Celanese Ventures Gmbh Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10242708A1 (de) 2002-09-13 2004-05-19 Celanese Ventures Gmbh Protonenleitende Membranen und deren Verwendung
DE10246461A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran enthaltend Polyazolblends und deren Anwendung in Brennstoffzellen
DE10246372A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Mit einer Katalysatorschicht beschichtete protonenleitende Polymermembran enthaltend Polyazole und deren Anwendung in Brennstoffzellen
US7820314B2 (en) * 2003-07-27 2010-10-26 Basf Fuel Cell Research Gmbh Proton-conducting membrane and use thereof
DE10361932A1 (de) * 2003-12-30 2005-07-28 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10361832A1 (de) * 2003-12-30 2005-07-28 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE102004034139A1 (de) * 2004-07-15 2006-02-02 Pemeas Gmbh Verfahren zur Herstellung von Membran-Elektroden-Einheiten
JP4996823B2 (ja) * 2004-11-26 2012-08-08 三洋電機株式会社 燃料電池用電極、及びそれを用いた燃料電池
DE102005020604A1 (de) * 2005-05-03 2006-11-16 Pemeas Gmbh Brennstoffzellen mit geringerem Gewicht und Volumen
JP5220599B2 (ja) * 2005-07-01 2013-06-26 ビーエーエスエフ、フューエル、セル、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング ガス拡散電極、膜−電極アセンブリー及びこれらを製造する方法
US8945736B2 (en) 2005-09-10 2015-02-03 Basf Fuel Cell Gmbh Method for conditioning membrane-electrode-units for fuel cells
DE102005051887A1 (de) * 2005-10-29 2007-05-03 Pemeas Gmbh Membran für Brennstoffzellen, enthaltend Polymere, die Phosphonsäure-und/oder Sulfonsäuregruppen umfassen, Membran-Elektroden-Einheit und deren Anwendung in Brennstoffzellen
DE102005052378A1 (de) * 2005-10-31 2007-05-03 Pemeas Gmbh Verbesserte Membran-Elektrodeneinheiten und Brennstoffzellen mit hoher Lebensdauer
US9023557B2 (en) * 2006-01-23 2015-05-05 Between Lizenz Gmbh Method for preparing a solution of a sulfonated polymer and an amino-phosphonic acid in an aprotic solvent
WO2007093577A1 (de) * 2006-02-16 2007-08-23 Basf Se Oligo- und polymere aromatische phosphonsäuren, deren blends, verfahren zu deren herstellung und anwendungen als polyelektrolyte
US20080114149A1 (en) * 2006-11-14 2008-05-15 General Electric Company Polymers comprising superacidic groups, and uses thereof
US20080317946A1 (en) * 2007-06-21 2008-12-25 Clearedge Power, Inc. Fuel cell membranes, gels, and methods of fabrication
KR20110036878A (ko) * 2008-05-15 2011-04-12 바스프 에스이 양성자 전도성 막 및 이의 사용
US20100227250A1 (en) * 2009-03-03 2010-09-09 Clearedge Power, Inc. Rigidity & Inplane Electrolyte Mobility Enhancement for Fuel Cell Eletrolyte Membranes
KR20120102610A (ko) * 2009-09-25 2012-09-18 단마르크스 테크니스케 유니버시테트-디티유 직접 디메틸 에테르 연료 전지 시스템의 작동 방법
KR20140015141A (ko) * 2009-11-06 2014-02-06 바스프 에스이 막 전극 접합체 및 개선된 성능의 연료전지
US8815467B2 (en) 2010-12-02 2014-08-26 Basf Se Membrane electrode assembly and fuel cells with improved lifetime
KR20130020000A (ko) * 2011-08-18 2013-02-27 삼성전자주식회사 다공성막, 이를 포함하는 전해질막, 그 제조방법 및 이를 채용한 연료전지
US20130183603A1 (en) 2012-01-17 2013-07-18 Basf Se Proton-conducting membrane, method for their production and their use in electrochemical cells
US9812725B2 (en) 2012-01-17 2017-11-07 Basf Se Proton-conducting membrane and use thereof
TWI549937B (zh) * 2015-01-12 2016-09-21 國立臺灣科技大學 四胺基二苯醚、聚苯并咪唑、包括聚苯并咪唑的質子交換膜以及包括此質子交換膜的燃料電池
KR102022017B1 (ko) * 2017-08-18 2019-09-25 한국에너지기술연구원 전기분무방사를 이용한 고분자 연료전지 전극의 제조방법 및 그를 이용하여 제조한 고분자 연료전지 전극
US11180621B2 (en) 2018-09-14 2021-11-23 University Of South Carolina Method for producing PBI films without organic solvents
EP3850697A4 (de) 2018-09-14 2022-07-20 University of South Carolina Polybenzimidazole (pbi)-membrane für redox-flow-batterien
KR20210057114A (ko) 2018-09-14 2021-05-20 유니버시티 오브 싸우스 캐롤라이나 산화환원 유동 배터리용 저투과도 폴리벤즈이미다졸 (pbi) 멤브레인
US11777124B2 (en) 2020-03-06 2023-10-03 University Of South Carolina Proton-conducting PBI membrane processing with enhanced performance and durability

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL128296C (de) 1959-11-18
NL268724A (de) 1960-08-31
US3313783A (en) 1962-07-20 1967-04-11 Teijin Ltd Process for preparation of polybenzimidazoles
JPS501707B1 (de) 1969-12-20 1975-01-21
US3783137A (en) * 1971-06-09 1974-01-01 Horizons Inc Process for the preparation of heterocyclic polymers fromaromatic tetra-mines and derivatives of polycarboxylic acids
US3808305A (en) 1971-07-27 1974-04-30 H Gregor Crosslinked,interpolymer fixed-charge membranes
US4187333A (en) 1973-05-23 1980-02-05 California Institute Of Technology Ion-exchange hollow fibers
DE2450670A1 (de) 1974-10-25 1976-04-29 Benckiser Gmbh Joh A Verfahren zur abtrennung von citrat oder citronensaeure aus fermentationsloesungen
US4012303A (en) 1974-12-23 1977-03-15 Hooker Chemicals & Plastics Corporation Trifluorostyrene sulfonic acid membranes
JPS5397988A (en) 1977-02-08 1978-08-26 Toyo Soda Mfg Co Ltd Production of cation exchange membrane
FR2485395B1 (fr) 1980-06-24 1986-04-11 Commissariat Energie Atomique Membrane echangeuse de cations, son procede de fabrication et son application en tant qu'electrolyte solide
US4634530A (en) 1980-09-29 1987-01-06 Celanese Corporation Chemical modification of preformed polybenzimidazole semipermeable membrane
US4622276A (en) 1983-12-16 1986-11-11 Stauffer Chemical Company Fuel cell electrolyte
US5098985A (en) 1988-10-11 1992-03-24 The Dow Chemical Company Copolymers containing polybenzoxazole, polybenzothiazole and polybenzimidazole moieties
US5218076A (en) 1989-08-31 1993-06-08 The Dow Chemical Company Branch polybenzazole polymer and method of preparation
US5091500A (en) 1990-09-21 1992-02-25 The Dow Chemical Company Polybenzazole polymer containing perfluorocyclobutane rings
US5211984A (en) 1991-02-19 1993-05-18 The Regents Of The University Of California Membrane catalyst layer for fuel cells
EP0679167A1 (de) 1993-01-15 1995-11-02 The Graver Company Ionenaustauschmebranen und verfahren zu iherer herstellung
US5312895A (en) 1993-03-12 1994-05-17 The United States Of America As Represented By The Secretary Of The Air Force Benzobisazole copolymer system soluble in aprotic solvents
CA2161663C (en) 1993-04-28 2005-02-15 Doetze Jakob Sikkema Rigid rod polymer based on pyridobisimidazole
CH691209A5 (de) 1993-09-06 2001-05-15 Scherrer Inst Paul Herstellungsverfahren für einen Polmerelektrolyten und elektrochemische Zelle mit diesem Polymerelektrolyten.
US5633337A (en) 1995-01-26 1997-05-27 The United States Of America As Represented By The Secretary Of The Air Force Aromatic benzobisazole polymers and copolymers incorporating diphenylamino moieties
US5492996A (en) 1995-02-21 1996-02-20 The United States Of America As Represented By The Secretary Of The Air Force Alcohol soluble benzazole polymers
US5599639A (en) * 1995-08-31 1997-02-04 Hoechst Celanese Corporation Acid-modified polybenzimidazole fuel cell elements
DE19548421B4 (de) 1995-12-22 2004-06-03 Celanese Ventures Gmbh Verfahren zur kontinuierlichen Herstellung von Membranelektrodeneinheiten
DE19650478A1 (de) 1996-12-05 1998-06-10 Daimler Benz Ag Lackiertes metallisches Substrat mit einer korrosionsschützenden Haftschicht auf Basis von Polysäuren und Verfahren zum Aufbringen der Haftschicht
DE19653484A1 (de) 1996-12-20 1998-06-25 Fraunhofer Ges Forschung Verfahren zur Herstellung von Membran-Elektroden-Einheiten und eine so hergestellte Membran-Elektroden-Einheit
DE19727554A1 (de) 1997-06-28 1999-01-07 Huels Chemische Werke Ag Verfahren zur Hydrophilierung der Oberfläche polymerer Substrate mit einem Makroinitiator als Primer
EP0893165A3 (de) 1997-06-28 2000-09-20 Degussa-Hüls Aktiengesellschaft Bioaktive Beschichtung von Oberflächen unter Verwendung von Makroinitiatoren
US6248469B1 (en) 1997-08-29 2001-06-19 Foster-Miller, Inc. Composite solid polymer electrolyte membranes
EP1021296A4 (de) 1997-08-29 2001-05-23 Foster Miller Inc Elektrolytverbundstoffmembranen aus festen polymeren
US6030718A (en) 1997-11-20 2000-02-29 Avista Corporation Proton exchange membrane fuel cell power system
US6110616A (en) 1998-01-30 2000-08-29 Dais-Analytic Corporation Ion-conducting membrane for fuel cell
US6124060A (en) * 1998-05-20 2000-09-26 Honda Giken Kogyo Kabushiki Kaisha Solid polymer electrolytes
US6087032A (en) 1998-08-13 2000-07-11 Asahi Glass Company Ltd. Solid polymer electrolyte type fuel cell
FI107932B (fi) 1999-02-16 2001-10-31 Mikael Paronen Polymeerikalvo ja menetelmä sen valmistamiseksi
AU2831000A (en) 1999-03-08 2000-09-28 Center For Advanced Science And Technology Incubation, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
DE60029731T8 (de) 1999-11-29 2007-11-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Fester Polymerelektrolyt mit hoher Dauerhaftigkeit
JP3656244B2 (ja) 1999-11-29 2005-06-08 株式会社豊田中央研究所 高耐久性固体高分子電解質及びその高耐久性固体高分子電解質を用いた電極−電解質接合体並びにその電極−電解質接合体を用いた電気化学デバイス
DE60018533T2 (de) * 1999-12-06 2006-04-13 Toyo Boseki K.K. Polybenzazol und Fasern daraus
CA2394499A1 (en) 1999-12-16 2001-06-21 Proton Energy Systems, Inc. Low gravity electrochemical cell
DE10024576A1 (de) * 2000-05-19 2001-11-22 Univ Stuttgart Kovalent und ionisch vernetzte Polymere und Polymermembranen
EP1290068B1 (de) 2000-06-02 2010-08-25 SRI International Polymermembranzusammensetzung
DE10052242A1 (de) 2000-10-21 2002-05-02 Celanese Ventures Gmbh Mit Säure dotierte, ein- oder mehrschichtige Kunststoffmembran mit Schichten aufweisend Polymerblends umfassend Polymere mit wiederkehrenden Azoleinheiten, Verfahren zur Herstellung solche Kunststoffmembranen sowie deren Verwendung
US7288603B2 (en) * 2000-11-13 2007-10-30 Toyo Boseki Kabushiki Kaisha Polybenzazole compound having sulfonic acid group and/or phosphonic acid group, resin composition containing the same, resin molding, solid polymer electrolyte membrane, solid polymer electrolyte membrane/electrode assembly and method of preparing assembly
JP2002146014A (ja) * 2000-11-15 2002-05-22 Toyobo Co Ltd イオン伝導性ホスホン酸含有ポリアゾール
JP2002146016A (ja) * 2000-11-15 2002-05-22 Toyobo Co Ltd イオン伝導性ホスホン酸含有ポリアゾール
DE10109829A1 (de) 2001-03-01 2002-09-05 Celanese Ventures Gmbh Polymermembran, Verfahren zu deren Herstellung sowie deren Verwendung
DE10117687A1 (de) 2001-04-09 2002-10-17 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10117686A1 (de) 2001-04-09 2002-10-24 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10129458A1 (de) 2001-06-19 2003-01-02 Celanese Ventures Gmbh Verbesserte Polymerfolien auf Basis von Polyazolen
JP2003022709A (ja) 2001-07-09 2003-01-24 Toyobo Co Ltd ブレンドポリマー電解質、該電解質を主成分とする電解質膜、及び該電解質を用いた膜/電極接合体
DE10133738A1 (de) 2001-07-11 2003-02-06 Joerg Mueller Verfahren zur Herstellung einer plasmapolymerisierten Polymer-Elektrolytmembran
DE10144815A1 (de) 2001-09-12 2003-03-27 Celanese Ventures Gmbh Protonenleitende Membran und deren Verwendung
DE10148131B4 (de) 2001-09-28 2010-07-01 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren zur Herstellung eines Polymers, Polymer und protonenleitfähige Membran für elektrochemische Anwendungen
DE10239701A1 (de) * 2002-08-29 2004-03-11 Celanese Ventures Gmbh Polymerfolie auf Basis von Polyazolen und deren Verwendung

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8012647B2 (en) * 2004-08-05 2011-09-06 Basf Fuel Cell Gmbh Membrane-electrode unit and fuel elements with increased service life
WO2006013108A2 (en) * 2004-08-05 2006-02-09 Pemeas Gmbh Long-life membrane electrode assemblies
WO2006015806A2 (de) * 2004-08-05 2006-02-16 Pemeas Gmbh Membran-elektroden-einheiten und brennstoffzellen mit erhöhter lebensdauer
WO2006015806A3 (de) * 2004-08-05 2006-08-17 Pemeas Gmbh Membran-elektroden-einheiten und brennstoffzellen mit erhöhter lebensdauer
WO2006013108A3 (en) * 2004-08-05 2006-12-07 Pemeas Gmbh Long-life membrane electrode assemblies
EP1624511A1 (de) * 2004-08-05 2006-02-08 Pemeas GmbH Membran-Elektroden-Einheiten und Brennstoffzellen mit erhöhter Lebensdauer
US8206870B2 (en) 2004-08-05 2012-06-26 Basf Fuel Cell Gmbh Long-life membrane electrode assemblies with gasket and frame
US8795927B2 (en) 2004-12-24 2014-08-05 Asahi Kasei Kabushiki Kaisha Highly durable electrode catalyst layer
DE112005003202B4 (de) * 2004-12-24 2009-04-30 Asahi Kasei Kabushiki Kaisha Sehr haltbare Elektrodenkatalysatorschicht, Verfahren zu ihrer Herstellung, elektrolytische Polymerlösung, Membranelektrodenanordnung und Polymerelektrolytmembran-Brennstoffzelle
WO2007101415A2 (de) 2006-02-03 2007-09-13 Universität Stuttgart - Institut für Chemische Verfahrenstechnik Phosphonsäure-haltige blends und phosphonsäure-haltige polymere
US8273277B2 (en) 2006-09-12 2012-09-25 Basf Fuel Cell Gmbh Process for producing a proton-conducting, polyazole-containing membrane
DE102006062251A1 (de) * 2006-12-22 2008-06-26 Volkswagen Ag Membran-Elektroden-Einheit für Brennstoffzellen und Brennstoffzelle
DE102007018280A1 (de) 2007-04-18 2008-10-23 Volkswagen Ag Verfahren zur Herstellung einer Polymerelektrolytmembran für eine Brennstoffzelle sowie nach dem Verfahren hergestellte Membran
DE102007031280A1 (de) 2007-07-05 2009-01-08 Volkswagen Ag Gasdiffusionselektrode und diese enthaltende Membran-Elektroden-Einheit für eine Brennstoffzelle
DE102007044246A1 (de) 2007-09-11 2009-03-12 Volkswagen Ag Membran-Elektroden-Einheit mit hydrierbarem Material für eine Brennstoffzelle
DE102009001137A1 (de) 2008-10-29 2010-05-06 Volkswagen Ag Polymerelektrolytmembran für Brennstoffzellen und Verfahren zu ihrer Herstellung
DE102009001141A1 (de) 2008-10-29 2010-05-06 Volkswagen Ag Verfahren zur Herstellung einer Polymerelektrolytmembran
WO2010063489A1 (de) * 2008-12-06 2010-06-10 Basf Se Verfahren zur herstellung einer protonenleitenden membran
US8846133B2 (en) 2008-12-06 2014-09-30 Basf Se Method for producing a proton-conducting membrane
WO2010145828A2 (de) 2009-06-20 2010-12-23 Basf Se Verfahren zur herstellung eines hochmolekularen polyazols
US8669296B2 (en) 2009-06-20 2014-03-11 Basf Se Method for the production of a high-molecular polyazol
US8722279B2 (en) 2009-06-20 2014-05-13 Basf Se Polyazole-containing composition
WO2010145827A2 (de) 2009-06-20 2010-12-23 Basf Se Polyazol-haltige zusammensetzung
WO2011020872A1 (de) 2009-08-20 2011-02-24 Volkswagen Ag Langzeitstabile polymerelektrolytmembran für ht-brennstoffzellen und verfahren zu ihrer herstellung
DE102009028758A1 (de) 2009-08-20 2011-02-24 Volkswagen Ag Langzeitstabile Polymerelektrolytmembran für HT-Brennstoffzellen und Verfahren zu ihrer Herstellung

Also Published As

Publication number Publication date
WO2004033079A2 (de) 2004-04-22
US7736778B2 (en) 2010-06-15
US20060008690A1 (en) 2006-01-12
EP1554032A2 (de) 2005-07-20
KR20050073477A (ko) 2005-07-13
WO2004033079A3 (de) 2004-09-23
CN1726071A (zh) 2006-01-25
JP4450734B2 (ja) 2010-04-14
JP2006501991A (ja) 2006-01-19
CN100556934C (zh) 2009-11-04
CA2500514A1 (en) 2004-04-22

Similar Documents

Publication Publication Date Title
EP1552574B1 (de) Protonenleitende polymermembran umfassend sulfonsäuregruppen enthaltende polyazole und deren anwendung in brennstoffzellen
EP1559164B1 (de) Protonenleitende polymermembran enthaltend polyazolblends und deren anwendung in brennstoffzellen
DE10246459A1 (de) Protonenleitende Polymermembran umfassend Phosphonsäuregruppen enthaltende Polyazole und deren Anwendung in Brennstoffzellen
EP1518282B1 (de) Mehrschichtige elektrolytmembran
EP1379572B1 (de) Protonenleitende membran und deren verwendung
EP1527494B1 (de) Protonenleitende polymembran, welche sulfonsäuregruppen enthaltende polymere umfasst, und deren anwendung in brennstoffzellen
EP1527493B1 (de) Protonenleitende polymermembran, welche phosphonsäuregruppen enthaltende polymere aufweist, und deren anwendung in brennstoffzellen
EP1706442B1 (de) Protonenleitende membran und deren verwendung
EP1519981B1 (de) Protonenleitende membran und deren verwendung
EP1559162B1 (de) Mit einer katalysatorschicht beschichtete protonenleitende polymermembran enthaltend polyazole und deren anwendung in brennstoffzellen
EP1719200B1 (de) Membran-elektroden-einheit mit hoher leistung und deren anwendung in brennstoffzellen
EP2267059A1 (de) Protonenleitende Membran und deren Verwendung
EP1701995B1 (de) Protonenleitende membran und deren verwendung
EP1537164A1 (de) Verfahren zur herstellung von protonenleitenden polymermembranen, verbesserte polymermembranen und deren anwendung in brennstoffzellen
WO2005063851A1 (de) Protonenleitende membran und deren verwendung
DE10235357A1 (de) Protonenleitende Polymermembran umfassend Phosphonsäure- und Sulfonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10340929A1 (de) Protonenleitende Polymermembran umfassend mindestens ein poröses Trägermaterial und deren Anwendung in Brennstoffzellen
DE10235356A1 (de) Protonenleitende Polymermembran umfassend Sulfonsäuregruppen enthaltende Polymere und deren Anwendung in Brennstoffzellen
DE10330461A1 (de) Verfahren zur Herstellung von protonenleitenden Polymermembranen, verbesserte Polymermembranen und deren Anwendung in Brennstoffzellen

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee