-
HINTERGRUND
-
Insassendetektions- und -klassifizierungssysteme verwenden verschiedene Metriken, um Fahrzeuginsassen zu detektieren und zu klassifizieren. Die Metriken können gemessen werden oder auf einer Benutzereingabe basieren. Mitunter beziehen sich die Metriken auf die Größe des Insassen. Beispielsweise kann ein Insassendetektionssystem, basierend auf einem Gewicht auf dem Sitz, bestimmen, ob ein Insasse in einem Fahrzeug anwesend ist. Derartige Systeme können manchmal erwachsene Insassen von Kindern, Haustieren oder unbelebten Objekten unterscheiden.
-
KURZE BESCHREIBUNG DER ZEICHNUNGEN
-
1 veranschaulicht ein Beispielfahrzeug mit einem Klassifizierungssystem, das einem Insassen eine Klassifikation zuweisen kann, basierend auf dem Sitzgewicht und der Sitzhöhe des Insassen.
-
2 ist ein Blockdiagramm von Beispielkomponenten des Klassifizierungssystems von 1.
-
3 ist ein Flussdiagramm eines beispielhaften Prozesses, der von dem Klassifizierungssystem von 1 ausgeführt werden kann.
-
4A–4C sind Graphiken, die beispielhafte Beziehungen zwischen verschiedenen Metriken zeigen, die verwendet werden können, um Insassen zu klassifizieren.
-
AUSFÜHRLICHE BESCHREIBUNG
-
Medizinisches Fachpersonal verwendet den Body-Mass-Index (BMI), um grob die Größe einer Person relativ zu seiner oder ihrer Körperhöhe und seinem oder ihrem Körpergewicht zu bewerten. Der BMI einer Person kann anzeigen, ob diese Person untergewichtig, normalgewichtig, übergewichtig oder fettleibig ist. Dieselben Klassifikationen können verwendet werden, um gewisse Fahrzeugsubsysteme einzustellen, wie etwa ein Rückhaltesystem. Der BMI kann aus dem Gewicht im Stand und der Höhe im Stand einer Person berechnet werden. Diese Informationen sind für das Fahrzeug allerdings häufig nicht verfügbar, es sei denn, dass sie von dem Insassen freiwillig bereitgestellt werden. Selbst wenn es freiwillig bereitgestellt wird, so kann sich das Gewicht einer Person von Zeit zu Zeit ändern. Somit ist das einfache Anfordern, dass Fahrzeuginsassen ihre Körpergrößen und -gewichte bereitstellen, nicht notwendigerweise ein verlässlicher Weg, um Größe und Gewicht eines Insassen zu bestimmen.
-
Eine mögliche Lösung kann den BMI eines Insassen mittels eines Fahrzeugklassifizierungssystems anhand seiner oder ihrer Sitzhöhe und seinem oder ihrem Sitzgewicht bestimmen. Ein beispielhaftes Klassifizierungssystem kann einen Prozessor beinhalten, der dafür programmiert ist, die mit dem Insassen assoziierte Sitzhöhe und das Sitzgewicht zu bestimmen und dem Insassen eine Klassifikation zuzuweisen, zumindest teilweise basierend auf einem Verhältnis des Sitzgewichts zur Sitzhöhe. Die Sitzhöhe kann eine Funktion der durch einen Sitzwinkel eingestellten vertikalen Höhe sein. Das Sitzgewicht kann ein Gewicht beinhalten, das auf den Sitz einwirkt, wodurch der Großteil der Beine des Insassen vernachlässigt wird. Das Verhältnis des Sitzgewichts zur Sitzhöhe kann als Sitz-Body-Mass-Index oder Sitz-BMI bezeichnet werden. In manchen Fällen kann der Sitz-BMI eine Funktion des Verhältnisses des Sitzgewichts zum Quadrat der Sitzhöhe sein.
-
Der Sitz-BMI kann in Beziehung zu dem traditionelleren BMI, der von medizinischem Fachpersonal verwendet wird, stehen. Somit kann der Sitz-BMI dazu verwendet werden, zu bestimmen, ob ein bestimmter Insasse untergewichtig, normalgewichtig, übergewichtig oder fettleibig ist. Verschiedene Fahrzeugsubsysteme können entsprechend eingestellt werden.
-
Die gezeigten Elemente können viele verschiedene Formen annehmen und mehrere und/oder alternative Komponenten und Ausstattungen beinhalten. Die veranschaulichten Beispielkomponenten sind nicht dafür gedacht, beschränkend zu sein. Tatsächlich können zusätzliche oder alternative Komponenten und/oder Umsetzungen genutzt werden.
-
Wie in 1 und 2 veranschaulicht, beinhaltet das Passagierfahrzeug (engl. host vehicle), im Folgenden als Hostfahrzeug bezeichnet, 100 ein Insassenklassifizierungssystem 105, das Insassen gemäß der Größe des Insassen klassifizieren kann, ohne dass das Erfordernis besteht, dass der Insasse sein(e) oder ihr(e) Körperhöhe und Körpergewicht bereitstellen muss. Das Insassenklassifizierungssystem 105 kann die Sitzhöhe des Insassen messen, das Sitzgewicht des Insassen messen, ein Verhältnis des Sitzgewichts zur Sitzhöhe des Insassen bestimmen und eine Klassifikation zuweisen, die zumindest teilweise auf dem Verhältnis basiert. Obwohl als eine Limousine veranschaulicht, kann das Hostfahrzeug 100 jedwedes Personen- oder Nutzfahrzeug umfassen, wie etwa ein Auto, einen Laster, einen SUV, ein Crossover-Fahrzeug, einen Transporter, einen Kleintransporter, ein Taxi, einen Bus usw. Bei einigen möglichen Ansätzen ist das Fahrzeug, wie unten erörtert, ein autonomes Fahrzeug, das dafür ausgelegt ist, in einem autonomen (z.B. fahrerlosen) Modus, einem teil-autonomen Modus und/oder einem nicht-autonomen Modus zu arbeiten.
-
Das Insassenklassifizierungssystem 105 kann einen Gewichtssensor 110, einen Höhensensor 115, einen Gurtauszugssensor 120 und einen Prozessor 125 beinhalten.
-
Der Gewichtssensor 110 kann eine elektronische Rechenvorrichtung beinhalten, die dafür programmiert ist, ein Sitzgewicht des Insassen zu messen. Der Gewichtssensor 110 kann in einem Fahrzeugsitz eingebettet sein, wie etwa dem Fahrersitz. In manchen möglichen Ansätzen kann der Gewichtssensor 110 dafür programmiert sein, die auf dem Sitz eingebrachte Gewichtsgröße zu messen. Dieses Gewicht kann als das „Sitzgewicht“ bezeichnet werden, da es das Gewicht des Insassen repräsentiert, während dieser sitzt. Das Sitzgewicht des Insassen kann sich von dem Standgewicht des Insassen unterscheiden, da das Sitzgewicht das Gewicht des Großteils der Beine des Insassen vernachlässigen kann. Der Gewichtssensor 110 kann ferner dafür programmiert sein, ein Sitzgewichtssignal auszugeben, das das vom Gewichtssensor 110 gemessene Sitzgewicht repräsentiert.
-
Der Höhensensor 115 kann eine elektronische Rechenvorrichtung beinhalten, die dafür programmiert ist, eine Sitzhöhe des Insassen zu messen. Die Sitzhöhe kann vertikale Höhe beinhalten, was einen Abstand von z.B. der Sitzoberkante zu einer Oberseite des Kopfes des Insassen beinhaltet. Die Sitzhöhe kann demnach auf einer Differenz zwischen der Höhe der Oberseite des Kopfes des Insassen und der Höhe der Sitzoberkante basieren. Die Höhe der Sitzoberkante kann basierend auf der Höhe des Sitzes vom Fahrzeugboden, einer Dicke des Sitzes oder beiden bestimmt werden. Die elektronische Rechenvorrichtung des Höhensensors 115 kann den Sitzwinkel anhand der Eingabe eines in der Sitzrücklehne eingebauten Sitzrücklehnenwinkelsensors (nicht gezeigt) bestimmen. Die Höhe der Oberseite des Kopfes des Insassen kann z.B. durch einen in den Höhensensor 115 eingebauten Sichtsensor, wie etwa eine Kamera, bestimmt werden. Der Höhensensor 115 kann dafür programmiert sein, die Höhe der Oberseite des Kopfes des Insassen durch Detektieren von z.B. der Höhe des Augenniveaus des Insassen zu messen oder zu schätzen. Da der Sitzwinkel die Höhe der Oberseite des Kopfes des Insassen beeinflussen kann, kann der Höhensensor 115 dafür programmiert sein, den Sitzwinkel zu berücksichtigen und die Höhe der Oberseite des Kopfes des Insassen entsprechend dem Sitzwinkel anzupassen. Der Höhensensor 115 kann dafür programmiert sein, ein Sitzhöhensignal auszugeben, das die von dem Höhensensor 115 gemessene Sitzhöhe repräsentiert.
-
Der Gurtauszugssensor 120 kann eine elektronische Rechenvorrichtung beinhalten, die dafür programmiert ist, eine Sitzgurtauszugslänge zu bestimmen. Die Sitzgurtauszugslänge kann die Länge des Sitzgurtes beinhalten, die abgewickelt ist, wenn sich der Insasse mit dem Sitzgurt angegurtet auf dem Sitz befindet. Der Gurtauszugssensor 120 kann dafür programmiert sein, ein Gurtauszugssignal auszugeben, das die Länge des Sitzgurtauszugs repräsentiert.
-
Der Prozessor
125 kann eine elektronische Rechenvorrichtung beinhalten, die dafür programmiert ist, eine Klassifikation für den Insassen zu bestimmen. Die Klassifikation kann z.B. auf dem von dem Gewichtssensor
110 bestimmten Sitzgewicht, der von dem Höhensensor
115 bestimmten Sitzhöhe und der von dem Gurtauszugssensor
120 bestimmten Länge des Sitzgurtauszugs basieren. Der Prozessor
125 kann beispielsweise dafür programmiert sein, das Sitzgewichtssignal, das Sitzhöhensignal und das Gurtauszugssignal zu empfangen. In manchen möglichen Implementationen kann der Prozessor
125 dafür programmiert sein, einen Sitz-Body-Mass-Index zu bestimmen, der eine Funktion des Sitzgewichts und der Sitzhöhe sein kann. Der Sitz-Body-Mass-Index kann beispielsweise das Verhältnis des Sitzgewichts zum Quadrat der Sitzhöhe sein, wie in Gleichung (1) gezeigt ist, wobei das Sitzgewicht in Kilogramm gemessen wird und die Sitzhöhe in Metern gemessen wird.
-
Der Prozessor 125 kann dafür programmiert sein, basierend auf dem Sitz-BMI, dem Insassen eine Klassifikation zuzuweisen. Beispielklassifikationen können untergewichtig, normalgewichtig, übergewichtig oder fettleibig beinhalten.
-
In manchen Fällen kann der Prozessor 125 dafür programmiert sein, die Länge des Sitzgurtauszugs zu berücksichtigen, wie durch das Gurtauszugssignal angezeigt, wenn dem Insassen eine Klassifikation zugewiesen wird. Das bedeutet, dass die Länge des Sitzgurtauszugs die zugewiesene Klassifikation bestätigen kann (d.h., dass eine größere Gurtauszugslänge einen größeren Insassen anzeigen kann). Alternativ kann der Prozessor 125 dafür programmiert sein, die Klassifikation gemäß der Gurtauszugslänge anzupassen. Beispielsweise können athletisch gebaute Insassen einen relativ hohen Sitz-BMI aufweisen, sind aber möglicherweise nicht so groß wie andere Leute mit demselben Körpergewicht und derselben Körperhöhe. Folglich kann der Prozessor 125 dafür programmiert sein, den Insassen als mit Normalgewicht zu klassifizieren, wenn der Sitz-BMI einen größeren Insassen anzeigt aber die Gurtauszugslänge einen kleineren Insassen nahelegt.
-
Der Prozessor 125 kann dafür programmiert sein, ein oder mehrere Fahrzeugsubsysteme gemäß der zugewiesenen Klassifikation abzustimmen. Der Prozessor 125 kann beispielsweise dafür programmiert sein, Befehlssignale zu erzeugen und auszugeben, die den Fahrzeugsubsystemen befehlen, eine oder mehrere Einstellungen gemäß der zugewiesenen Klassifikation einzustellen. Ein Beispiel für ein solches Fahrzeugsubsystem kann z.B. ein Steuerungsmodul beinhalten, wie etwa das Rückhaltesteuerungsmodul, das Karosseriesteuerungsmodul usw. Die Befehlssignale können anzeigen, ob ein oder mehrere Airbags entfaltet werden sollten, wie die Stellung der Außen- und Innenrückspiegel, die Sitzposition, die Lenkradhöhe usw. einzustellen sind.
-
3 ist ein Flussdiagramm eines Beispielprozesses 300, der von dem Insassenklassifizierungssystem 105 zum Klassifizieren von Insassen gemäß der Größe des Insassen ausgeführt werden kann, ohne dass die Erfordernis besteht, dass der Insasse sein(e) oder ihr(e) Körperhöhe und Körpergewicht bereitstellen muss.
-
Bei Block 305 kann das Insassenklassifizierungssystem 105 die Sitzhöhe des Insassen bestimmen. Die Sitzhöhe kann z.B. anhand des Sitzhöhensignals, das von dem Höhensensor 115 erzeugt wird, bestimmt werden. Messen der Sitzhöhe kann beinhalten, dass der Höhensensor 115 eine vertikale Höhe des Insassen bestimmt, während der Insasse sitzt, einen Sitzwinkel bestimmt (z.B. den Winkel der Sitzrücklehne relativ zum Boden) und die vertikale Höhe gemäß dem Sitzwinkel anpasst. Der Höhensensor 115 kann das Sitzhöhensignal, das die angepasste Sitzhöhe repräsentiert, erzeugen und ausgeben. Der Prozessor 125 kann das Sitzhöhensignal empfangen und die Sitzhöhe des Insassen, die auf dem Sitzhöhensignal basiert, bestimmen.
-
Bei Block 310 kann das Insassenklassifizierungssystem 105 das Sitzgewicht des Insassen bestimmen. Das Sitzgewicht kann z.B. anhand des Sitzgewichtssignals, das von dem Gewichtssensor 110 erzeugt wird, bestimmt werden. Der Gewichtssensor 110 kann das Sitzgewicht des Insassen messen und dementsprechend das Sitzgewichtssignal erzeugen. Der Prozessor 125 kann das Sitzgewichtssignal empfangen und das Sitzgewicht des Insassen, das auf dem Sitzgewichtssignal basiert, bestimmen.
-
Bei Block 315 kann das Insassenklassifizierungssystem 105 den Sitz-BMI bestimmen, z.B. basierend auf einem Verhältnis des Sitzgewichts zur Sitzhöhe. Beispielsweise kann der Sitz-BMI eine Funktion des Verhältnisses des Sitzgewichts zum Quadrat der Sitzhöhe sein, wie oben unter Bezug auf Gleichung (1) erörtert wurde. Der Prozessor 125 kann das Verhältnis bestimmen.
-
Bei Block 320 kann das Insassenklassifizierungssystem 105, basierend auf dem bei Block 315 bestimmten Sitz-BMI, dem Insassen eine Klassifikation zuweisen. Die Klassifikation kann anzeigen, dass der Insasse untergewichtig, normalgewichtig, übergewichtig oder fettleibig ist. Der Prozessor 125 kann die Klassifikation basierend darauf, welche Klassifikation mit dem bei Block 315 bestimmten Sitz-BMI des Insassen assoziiert ist, zuweisen. Die Klassifikation kann aus einer Tabelle, einer Datenbank usw. ausgewählt werden, die verschiedene Sitz-BMI-Werte mit verschiedenen Klassifikationen in Beziehung stellt.
-
Bei Entscheidungsblock 325 kann das Insassenklassifizierungssystem 105 die bei Block 320 zugewiesene Klassifikation bestätigen. Bestätigen der Klassifikation kann z.B. beinhalten, dass der Prozessor 125 das Gurtauszugssignal empfängt, das die Menge an Sitzgurtauszug repräsentiert. Der Prozessor 125 kann bestimmen, dass die Insassenklassifikation angepasst werden muss, falls z.B. die Menge des Sitzgurtauszugs nicht mit der Größe anderer Insassen mit demselben Sitz-BMI wie der aktuelle Insasse übereinstimmt. Für athletisch gebaute Insassen kann der Sitzgurtauszug z.B. gering sein, obwohl der Insasse einen relativ hohen Sitz-BMI aufweist. In diesem Beispiel sind der Sitzgurtauszug und der Sitz-BMI inkonsistent. Der Prozessor 125 kann die Klassifikation bestätigen, falls z.B. die Menge des Sitzgurtauszugs mit der Größe anderer Insassen mit demselben Sitz-BMI wie der aktuelle Insasse konsistent ist. Falls die Klassifikation nicht bestätigt wird, kann der Prozess 300 zu dem Block 330 weitergehen. Falls die Klassifikation bestätigt wird, kann der Prozess 300 zu dem Block 335 weitergehen.
-
Bei Block 330 kann das Insassenklassifizierungssystem 105 die Klassifikation aktualisieren. Der Prozessor 125 kann beispielsweise die aktualisierte Klassifikation auf der Größe des Sitzgurtauszugs sowie dem Verhältnis der Sitzhöhe zum Sitzgewicht basieren. Die aktualisierte Klassifikation kann aus einer Tabelle, einer Datenbank usw. ausgewählt werden, die verschiedene Sitz-BMI-Werte, verschiedene Sitzgurtauszugsmengen und verschiedene Klassifikationen miteinander in Beziehung setzt. Der Prozess 300 kann zu dem Block 335 weitergehen.
-
Bei Block 335 kann das Insassenklassifizierungssystem 105 ein Befehlssignal erzeugen und an ein oder mehrere Fahrzeugsubsysteme ausgeben. Das Befehlssignal, das von dem Prozessor 125 erzeugt und ausgegeben werden kann, kann dem Subsystem befehlen, eine oder mehrere Einstellungen gemäß der zugewiesenen Klassifikation anzupassen. Beispielhafte Fahrzeugsubsysteme können z.B. ein Steuerungsmodul, wie etwa das Rückhaltesteuerungsmodul, das Karosseriesteuerungsmodul usw. beinhalten. Die Befehlssignale können anzeigen, ob ein oder mehrere Airbags entfaltet werden sollten, wie die Stellung der Außen- oder Innenrückspiegel, die Sitzposition, die Lenkradhöhe oder dergleichen einzustellen sind.
-
Der Prozess 300 kann nach Block 335 enden. In manchen Fällen kann der Prozess 300 allerdings periodisch wieder beginnen oder zu einem vorherigen Block zurückkehren, wie etwa dem Block 305, so dass die Klassifikationen kontinuierlich neu bewertet und aktualisiert werden, während das Hostfahrzeug 100 in Betrieb ist.
-
4A–4C sind Graphiken, die beispielhafte Beziehungen zwischen verschiedenen Metriken zeigen, die verwendet werden können, um Insassen zu klassifizieren. 4A zeigt eine Graphik 400, die Standhöhe (in Millimetern) mit Sitzhöhe (in Millimetern) in Beziehung setzt. Die Y-Achse repräsentiert die Standhöhe und die X-Achse repräsentiert die Sitzhöhe. Die Trendlinie 405 veranschaulicht eine beispielhafte parametrische Beziehung zwischen der Standhöhe und der Sitzhöhe. Unter Bezugnahme auf 4B setzt die Graphik 410 Standgewicht (in Kilogramm) mit Sitzgewicht (in Kilogramm) in Beziehung. Die Y-Achse repräsentiert das Standgewicht und die X-Achse repräsentiert das Sitzgewicht. Die Trendlinie 415 veranschaulicht eine beispielhafte parametrische Beziehung zwischen dem Standgewicht und dem Sitzgewicht. 4C ist eine Graphik 420, die den Sitz-BMI mit dem Stand-BMI in Beziehung setzt. Die Y-Achse repräsentiert den Stand-BMI und die X-Achse repräsentiert den, z.B. gemäß Gleichung (1), berechneten Sitz-BMI. Die Trendlinie 425 veranschaulicht eine beispielhafte parametrische Beziehung zwischen dem Stand-BMI und dem Sitz-BMI. Diese Beziehung kann verwendet werden, um eine Datenbank, eine Tabelle oder eine andere Beziehung aufzubauen, die Insassenklassifikationen, wie etwa untergewichtig, normalgewichtig, übergewichtig und fettleibig, mit verschiedenen Sitz-BMI-Werten in Beziehung setzt, die auf bewährten BMI-Klassifikationen basieren.
-
Das Insassenklassifizierungssystem 105 kann demnach die traditionellen BMI-Klassifikationen verwenden, um einen Fahrzeuginsassen gemäß seinem oder ihrem Sitzgewicht und seiner oder ihrer Sitzhöhe zu klassifizieren. Durch Messen des Sitzgewichts und der Sitzhöhe kann das Insassenklassifizierungssystem 105 die Klassifikation zuweisen, ohne dass ein Benutzer derartige Informationen bereitstellt. Alternativ kann das Insassenklassifizierungssystem 105, falls derartige Informationen bereitgestellt sind, den Sitz-BMI dazu verwenden, die Klassifikation zu bestätigen oder umgekehrt. Einstellungen, die mit verschiedenen Fahrzeugsubsystemen assoziiert sind, wie etwa die Airbags, Spiegel usw. können gemäß der zugewiesenen Klassifikation abgestimmt werden.
-
Im Allgemeinen können die beschriebenen Rechensysteme und/oder -vorrichtungen ein beliebiges einer Reihe von Computerbetriebssystemen einsetzen, einschließlich, jedoch auf keinen Fall eingeschränkt auf, Versionen und/oder Varianten des Ford Sync®-Betriebssystems, des Microsoft Windows®-Betriebssystems, des Unix-Betriebssystems (z. B. das Solaris®-Betriebssystem, das von der Oracle Corporation in Redwood Shores, Kalifornien, USA, vertrieben wird), des AIX-UNIX-Betriebssystems, das von International Business Machines in Armonk, New York, USA, vertrieben wird, des Linux-Betriebssystems, der Mac OSX- und -iOS-Betriebssysteme, die von der Apple Inc. in Cupertino, Kalifornien, USA, vertrieben werden, des BlackBerry OS, das von der Blackberry, Ltd. in Waterloo, Canada, vertrieben wird, und des Android-Betriebssystems, das von der Google, Inc. und der Open Handset Alliance entwickelt wird. Beispiele für Rechenvorrichtungen beinhalten unter anderem einen Fahrzeug-Bordcomputer, eine Computer-Workstation, einen Server, einen Tisch-, Notebook-, Laptop- oder Hand-Computer oder ein(e) sonstige(s) andere(s) Rechensystem und/oder -vorrichtung.
-
Rechenvorrichtungen beinhalten allgemein computerausführbare Anweisungen, wobei die Anweisungen von einer oder mehreren wie den oben aufgelisteten Rechenvorrichtungen ausgeführt werden können. Computerausführbare Anweisungen können von Computerprogrammen kompiliert oder interpretiert werden, die unter Verwendung einer Vielzahl von Programmiersprachen und/oder -technologien, einschließlich unter anderem JavaTM, C, C++, Visual Basic, Java Script, Perl, etc., erstellt wurden, wobei diese entweder allein oder in Kombination verwendet werden können. Im Allgemeinen empfängt ein Prozessor (z. B. ein Mikroprozessor) Anweisungen, z. B. von einem Speicher, einem computerlesbaren Medium etc., und führt diese Anweisungen aus, wobei er einen oder mehrere Prozesse, einschließlich eines oder mehrerer der hier beschriebenen Prozesse, ausführt. Derartige Anweisungen und andere Daten können unter Verwendung einer Vielzahl von computerlesbaren Medien gespeichert und übertragen werden.
-
Ein computerlesbares Medium (auch als prozessorlesbares Medium bezeichnet) schließt jedes nichtflüchtige (z. B. berührbare) Medium ein, das an dem Bereitstellen von Daten (z. B. Anweisungen), die von einem Computer (z. B. von einem Prozessor eines Computers) gelesen werden können, beteiligt ist. Ein derartiges Medium kann in vielen Formen vorliegen, einschließlich unter anderem nichtflüchtiger Medien und flüchtiger Medien. Nichtflüchtige Medien können beispielsweise optische oder magnetische Platten und andere persistente Speicher umfassen. Flüchtige Medien können beispielsweise Dynamic Random Access Memory (DRAM), welches normalerweise einen Hauptspeicher darstellt, umfassen. Derartige Anweisungen können von einem oder mehreren Übertragungsmedien, einschließlich Koaxialkabeln, Kupferdraht und Glasfasern, einschließlich der Drähte, die einen Systembus umfassen, der mit einem Prozessor eines Computers gekoppelt ist, übertragen werden. Übliche Formen von computerlesbaren Medien beinhalten zum Beispiel eine Floppy-Disk, eine Diskette, eine Festplatte, ein Magnetband, ein beliebiges anderes magnetisches Medium, eine CD-ROM, eine DVD, ein beliebiges anderes optisches Medium, Lochkarten, Papierband, ein beliebiges anderes physisches Medium mit Lochmustern, einen RAM, einen PROM, einen EPROM, einen Flash-EEPROM, einen beliebigen anderen Speicherchip oder eine Speicherkassette oder ein beliebiges anderes Medium, woraus ein Computer lesen kann.
-
Zu Datenbanken, Datensammlungen oder anderen Datenspeichern, die hierin beschrieben sind, können verschiedene Arten von Mechanismen zum Speichern und Abrufen verschiedener Arten von Daten sowie Zugreifen auf diese zählen, einschließlich einer hierarchischen Datenbank, eines Dateisatzes in einem Dateisystem, einer Anwendungsdatenbank in einem proprietären Format, eines relationalen Datenbankverwaltungssystems (Relational Database Management System, RDBMS) usw. Jeder derartige Datenspeicher ist allgemein in einer Rechenvorrichtung enthalten, die ein Computerbetriebssystem einsetzt, wie eines der oben erwähnten, und auf ihn wird mittels eines Netzes auf eine beliebige oder beliebige mehrere einer Vielfalt von Methoden zugegriffen. Ein Dateisystem kann von einem Computerbetriebssystem zugreifbar sein und kann Dateien beinhalten, die in vielfältigen Formaten gespeichert sein können. Ein RDBMS wendet allgemein die Structured Query Language (SQL) an, zusätzlich zu einer Sprache zum Schaffen, Speichern, Bearbeiten und Ausführen gespeicherter Prozeduren, wie etwa die oben erwähnte PL/SQL-Sprache.
-
In einigen Beispielen sind Systemelemente möglicherweise als computerlesbare Anweisungen (z.B. Software) auf einer oder mehreren Rechenvorrichtungen (z. B. Server, PCs usw.) implementiert, auf damit assoziierten computerlesbaren Medien (z.B. Platten, Speicher usw.) gespeichert. Ein Computerprogrammprodukt kann derartige auf einem computerlesbaren Medium gespeicherte Anweisungen für das Ausführen der hier beschriebenen Funktionen umfassen.
-
Mit Bezug auf die hier beschriebenen Prozesse, Systeme, Verfahren, Heuristiken usw. versteht sich, dass, obwohl die Schritte solcher Prozesse usw. als gemäß einer bestimmten geordneten Abfolge auftretend beschrieben wurden, solche Prozesse mit in einer anderen als der hier beschriebenen Reihenfolge ausgeführten beschriebenen Schritten ausgeübt werden könnten. Ferner versteht sich, dass bestimmte Schritte gleichzeitig ausgeführt werden könnten, dass andere Schritte hinzugefügt werden könnten oder dass bestimmte hier beschriebene Schritte weggelassen werden könnten. Mit anderen Worten werden die Beschreibungen von Prozessen hierin zum Zwecke der Veranschaulichung bestimmter Ausführungsformen bereitgestellt und sollten in keiner Weise als Beschränkung der Ansprüche aufgefasst werden.
-
Dementsprechend versteht sich, dass die obige Beschreibung nicht einschränkend, sondern veranschaulichend sein soll. Bei Durchsicht der obigen Beschreibung würden viele andere Ausführungsformen und Anwendungen als die gegebenen Beispiele offensichtlich werden. Der Schutzumfang soll nicht unter Bezugnahme auf die obige Beschreibung bestimmt werden, sondern stattdessen unter Bezugnahme auf die beiliegenden Ansprüche zusammen mit dem vollen Umfang von Äquivalenten, zu denen diese Ansprüche berechtigt sind. Es wird erwartet und beabsichtigt, dass zukünftige Entwicklungen in den hier besprochenen Technologien auftreten werden und dass die offenbarten Systeme und Verfahren in solche zukünftigen Ausführungsformen integriert werden. Zusammengefasst versteht sich, dass die Anmeldung modifiziert und abgewandelt werden kann.
-
Alle in den Ansprüchen verwendeten Begriffe sind dafür beabsichtigt, ihre gewöhnliche Bedeutung zu erhalten, wie sie von in den hier beschriebenen Technologien bewanderten Fachleuten verstanden wird, es sei denn, dass hier ein expliziter Hinweis auf das Gegenteil gemacht wird. Insbesondere ist die Verwendung der Artikel im Singular wie „ein“, „einer“, „eine“, „der“, „die“, „das“ usw. als Angabe eines oder mehrerer der aufgezeigten Elemente zu verstehen, sofern ein Anspruch nicht ausdrücklich eine gegensätzliche Einschränkung angibt.
-
Die Zusammenfassung wird bereitgestellt, um dem Leser zu ermöglichen, schnell die Natur der technischen Offenbarung festzustellen. Sie wird mit dem Verständnis eingereicht, dass sie nicht dazu verwendet werden soll, den Schutzumfang oder die Bedeutung der Ansprüche zu interpretieren oder zu beschränken. Zusätzlich kann in der vorangehenden Ausführlichen Beschreibung gesehen werden, dass verschiedene Merkmale in verschiedenen Ausführungsformen für den Zweck der Übersichtlichkeit der Offenbarung gruppiert werden. Diese Vorgehensweise der Offenbarung ist nicht als eine Absicht wiedergebend zu interpretieren, dass die beanspruchten Ausführungsformen mehr Merkmale erfordern als ausdrücklich in jedem Anspruch dargelegt ist. Vielmehr liegt der Erfindungsgegenstand in weniger als allen Merkmalen einer einzelnen offenbarten Ausführungsform, wie es die folgenden Ansprüche wiedergeben. Somit werden die folgenden Ansprüche hiermit in die Ausführliche Beschreibung aufgenommen, wobei jeder Anspruch für sich als ein eigenständig beanspruchter Gegenstand steht.