DE102014116717A1 - Elektrolyt und Verfahren zur Herstellung von Chromschichten - Google Patents

Elektrolyt und Verfahren zur Herstellung von Chromschichten Download PDF

Info

Publication number
DE102014116717A1
DE102014116717A1 DE102014116717.1A DE102014116717A DE102014116717A1 DE 102014116717 A1 DE102014116717 A1 DE 102014116717A1 DE 102014116717 A DE102014116717 A DE 102014116717A DE 102014116717 A1 DE102014116717 A1 DE 102014116717A1
Authority
DE
Germany
Prior art keywords
chromium
electrolyte
iii
salt
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102014116717.1A
Other languages
English (en)
Inventor
Thilo von Vopelius
Christoph Gschossmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VOPELIUS CHEMIE AG
Maschinenfabrik Kaspar Walter GmbH and Co KG
Original Assignee
VOPELIUS CHEMIE AG
Maschinenfabrik Kaspar Walter GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VOPELIUS CHEMIE AG, Maschinenfabrik Kaspar Walter GmbH and Co KG filed Critical VOPELIUS CHEMIE AG
Priority to DE102014116717.1A priority Critical patent/DE102014116717A1/de
Priority to PL15794193T priority patent/PL3250733T3/pl
Priority to EP15794193.1A priority patent/EP3250733B1/de
Priority to PCT/EP2015/076551 priority patent/WO2016075287A1/de
Priority to ES15794193T priority patent/ES2893649T3/es
Publication of DE102014116717A1 publication Critical patent/DE102014116717A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/06Electroplating: Baths therefor from solutions of chromium from solutions of trivalent chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/002Cell separation, e.g. membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/08Electroplating with moving electrolyte e.g. jet electroplating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated

Abstract

Beschrieben wird ein Elektrolyt zur elektrolytischen Abscheidung von Chrom als Metall, umfassend (a) ein Chrom(III)-Salz, (b) eine Verbindung der Formel Iwobei R für NH2, OH oder SO3H steht und n eine ganze Zahl von 1 bis 3 ist, (c) Ameisensäure und (d) mindestens ein Additiv. Ferner wird ein Verfahren zur Abscheidung einer Chromschicht, einen nach diesem Verfahren erhältlichen mit Chrom beschichteten Gegenstand sowie eine Elektrolysezelle zur Beschichtung mit Chrom beschrieben.

Description

  • Die Erfindung betrifft einen Elektrolyten zur elektrolytischen Abscheidung von Chrom als Metall auf dekorativen oder technischen Gegenständen, insbesondere als Hartchromschicht, die Verwendung des Elektrolyten dazu, ein Verfahren zur Herstellung von Chromschichten, insbesondere Hartchromschichten, auf dekorativen und technischen Gegenständen, eine Chromschicht erhältlich nach diesem Verfahren sowie eine Elektrolysezelle, die zur Beschichtung dieser Gegenstände ausgebildet ist, die den Elektrolyt enthält.
  • Mit Tiefdruckzylindern wird die Druckform für den Tiefdruck bezeichnet. Der Grundzylinder ist im Allgemeinen ein Stahlrohrkern, der in einem elektrolytischen Bad zuerst mit Kupfer und nach dem Aufbringen der Bilddaten mit Chrom beschichtet wird. Dieser Vorgang erfolgt durch eine galvanische Beschichtung des Tiefdruckzylinders mit Chrom.
  • Galvanische Prozesse zur Oberflächenbeschichtung auf Gegenstände sind seit langem bekannt. Durch solche galvanische Prozesse können Gegenständen spezielle funktionelle und/oder dekorative Oberflächeneigenschaften verliehen werden, beispielsweise Härte, Korrosionsbeständigkeit, metallisches Aussehen, Glanz usw.
  • Dabei wird aus einem galvanischen Bad, welches das abzuscheidende Metall als Salz in Lösung enthält, dieses Metall mittels Gleichstrom auf dem als Kathode geschalteten Gegenstand abgeschieden. Der zu beschichtende Gegenstand ist meist ein metallisches Material. Sofern dieser Gegenstand nicht elektrisch leitend ist, wird vorher eine Metallisierung der Oberfläche durchgeführt.
  • Galvanische Bäder, die Chrom enthalten, dienen bei technischen Anwendungen zumeist zur Erzeugung besonders harter mechanisch widerstandsfähiger Schichten.
  • Die Aufbringung von Chrom auf Gegenständen ist hierbei von besonderer technischer Relevanz, wobei die erhaltene Chromschicht entweder für dekorative Anwendungen oder als Hartschicht auf Gegenstände für technische Anwendungen dient. Bei dekorativen Anwendungen wird insbesondere eine helle und hoch reflektierende Chromschicht gewünscht. Für solche technische Anwendungen sollen die aufgebrachten Chromschichten verschleißarm, abrasionstabil, hitzebeständig und korrosionsbeständig sein. Solche zu verchromende Gegenstände sind beispielsweise Kolben, Zylinder, Laufbuchsen oder Achslager.
  • Die galvanische Verchromung erfolgt üblicherweise in galvanischen Bädern, welche Chrom(VI)-Salze und Schwefelsäure enthalten, unter Verwendung unlöslicher Blei/Antimon- oder Blei/Zinn-Anoden. Als Chrom(VI)-Salz wird dabei insbesondere CrO3 eingesetzt. Ein wesentliches Problem bei galvanischen Anwendungen, wie etwa der Verchromung mittels Chrom(VI)-Lösungen ist eine aufgrund des geringen Wirkungsgrades von 15 % bis 25 % auftretende Gasentwicklung, insbesondere von Wasserstoff, und in geringem Maß auch durch die anodische Sauerstoffentwicklung, die zur Bildung saurer, korrodierender und zum Teil auch toxischer Sprühnebel führt. Durch diese Gasentwicklung wird beispielsweise ein Chromsäurenebel mitgerissen, der stark gesundheitsschädigend ist und eine intensive Absaugung der Oberfläche des galvanischen Bades erforderlich macht. Um diesen auftretenden Chromsäurenebel einzuschränken, werden oberflächenaktive Substanzen in Verchromungsbäder eingesetzt, die die Oberflächenspannung unter Bildung einer Schaumdecke herabsetzen. Solche oberflächenaktiven Substanzen werden auch als Netzmittel bezeichnet.
  • Die Chrom(VI)-Elektrolyte haben ferner den Nachteil, dass dabei hochgiftiges und karzinogenes CrO3 verwendet wird.
  • Um diese Nachteile der Verchromung zu vermeiden, wurden in der Vergangenheit zahlreiche Anstrengungen unternommen.
  • So sind beispielsweise Verfahren zur Abscheidung von Chromschichten aus Bädern, die ungiftige Chrom(III)-Salze enthalten, bekannt.
  • Doch alle diese Verfahren haben erhebliche Nachteile. Entweder lassen sich nur Chromschichten in zu geringer Schichtstärke abscheiden, oder der Anlagenaufbau ist so kompliziert, dass eine industrielle Verwendung nicht möglich ist.
  • Aus der WO 2008/014987 A2 ist ein Elektrolyt zur galvanischen Abscheidung von Chromschichten als Hartchromschichten zum Schutz gegen Verschleiß und Korrosion und/oder als dekorative Chromschichten bekannt, die einen Katholyt, der mindestens ein Chrom(III)-Salz und mindestens eine Chrom(II)-Ionen stabilisierende Verbindung enthält, und einen Anolyten, umfassend eine Brönstedsäure, aufweist, wobei der Katholyt und der Anolyt durch eine anionenselektive Membran voneinander getrennt sind. Hier werden also der Anolytkreislauf vom Katholytkreislauf durch diese Membran voneinander getrennt. Damit soll erreicht werden, dass die im Elektrolyten enthaltenen Chrom(III)-Salze nicht zu Chrom(VI) oxidiert werden. Der Nachteil an der technischen Lehre aus der WO 2008/014987 A2 ist, dass sich keine Chromschichten abscheiden lassen, die den industriell geforderten Ansprüchen genügen, da die Qualität der Chromschichten nicht ausreichend ist, d.h. sie weisen Poren, Pocken und Krater auf.
  • Demzufolge liegt der vorliegenden Erfindung die Aufgabe zugrunde, die Bereitstellung von Chromschichten zu ermöglichen, die nicht die aus vorstehendem Stand der Technik bekannten Nachteile aufweisen und insbesondere den Anforderungen genügen, die speziell an Chrombeschichtungen auf Tiefdruckzylindern gestellt wurden.
  • Erfindungsgemäß wird dies durch einen Elektrolyt zur elektrolytischen Abscheidung von Chrom als Metall erreicht, der umfasst:
    • (a) ein Chrom(III)-Salz,
    • (b) eine Verbindung der Formel (I)
      Figure DE102014116717A1_0003
      wobei R für NH2, OH oder SO3H steht und n eine ganze Zahl von 1 bis 3 ist,
    • (c) Ameisensäure und
    • (d) mindestens ein Additiv.
  • Die im erfindungsgemäßen Elektrolyten vorhandene Ameisensäure dient insbesondere dazu, den aus dem Chrom(III)-Salz entstehenden Sauerstoff zu entfernen, indem die Umsetzung zu CO2 und H2O erfolgt.
  • Die Menge der Ameisensäure im erfindungsgemäßen Elektrolyten beträgt günstigerweise 1,0 mol/l bis 3,0 mol/l, bezogen auf den Elektrolyt. Mit dieser Menge der Ameisensäure im erfindungsgemäßen Elektrolyten erfolgt eine besonders günstige Entfernung von Sauerstoff. Diese Mengenangabe bezieht sich auf den Elektrolyt vor der Chromabscheidung. Im Laufe der Chromabscheidung ist es möglich, dass sich der pH-Wert des Elektrolyten ändert. Zur Einstellung des pH-Wertes kann auch weitere Ameisensäure zugesetzt werden. Diese zugegebene Menge soll für die Menge der Ameisensäure im erfindungsgemäßen Elektrolyten, also vor Beginn der Abscheidung, nicht berücksichtigt werden.
  • Vorzugsweise ist die Verbindung der Formel (I) Glycin, Glycolsäure, Sulfoessigsäure oder eine Mischung dieser. Ferner ist es bevorzugt, dass im erfindungsgemäßen Elektrolyten die Menge der Verbindung der Formel (I) 0,5 mol/l bis 1,5 mol/l, bezogen auf den Elektrolyt, beträgt.
  • Die Verbindung der Formel (I) dient zur Einstellung des pH-Wertes des Elektrolyten, wobei mit den angegebenen Mengen der pH-Wert in besonders günstiger Weise eingestellt werden kann.
  • In einer Ausführungsform des erfindungsgemäßen Elektrolyten umfasst das Chrom(III)-Salz ein anorganisches und/oder ein organisches Chrom(III)-Salz. Unter dem Begriff "Chrom(III)-Salz" wie er vorliegend verwendet wird, wird jedes Chrom(III)-Salz verstanden, mit dem Chrom als Metallschicht auf Gegenständen abgeschieden werden kann. Vorzugsweise handelt es sich bei dem anorganischen Chrom(III)-Salz um Kaliumchromalaun, Ammoniumchromalaun, Chromsulfat, Chromnitrat, Chromchlorid und Mischungen von zwei oder mehreren davon. Bei dem organischen Chrom(III)-Salz kann es sich um vorzugsweise Chromcitrat, Chromformiat, Chromoxalat und Mischungen von zwei oder mehreren davon handeln.
  • Günstigerweise beträgt die Menge des Chrom(III)-Salzes 0,25 mol/l bis 2,0 mol/l, bezogen auf den Elektrolyt. Mit diesen Mengen können in besonders günstiger Weise Chromschichten auf metallischen Gegenständen durch elektrolytische Abscheidungen hergestellt werden.
  • Im erfindungsgemäßen Elektrolyten liegt als Komponente (d) ein Additiv vor. Vorzugsweise umfasst es einen Komplexbildner und/oder ein Netzmittel.
  • Als Netzmittel können üblicherweise bei der Herstellung von Chromschichten durch elektrolytische Abscheidung verwendete Netzmittel im erfindungsgemäßen Elektrolyten vorliegen. Diese Netzmittel bewirken die Herabsetzung der Oberflächenspannung, so dass es ermöglicht wird, dass sich H2-Bläschen von der Kathode ablösen. Dadurch kann in einfacher und günstiger Weise die Porenbildung vermieden und somit gleichmäßige Chromschichten hergestellt werden.
  • Bei den Komplexbildnern handelt es sich vorzugsweise um Verbindungen mit kurzkettigen Alkylketten (1-4 C-Atome) mit 1 oder 2 Carboxylgruppen oder deren Derivaten und mit 1 oder 2 Thio- und/oder Sulfon-Gruppen oder die folgende Verbindung
    Figure DE102014116717A1_0004
    wobei
    n eine ganze Zahl von 1 bis 5, insbesondere 3,
    R1 ein C1-C5-Alkylrest, insbesondere CH3CH2-, und
    X ein Metallion zum Ausgleich der negativen Ladung, insbesondere Na+, K+, Ca2+, Mg2+ ist.
  • In einer besonders bevorzugten Ausführungsform ist der Komplexbildner die Verbindung N, N-Dimethyl-dithiocarbamylpropylsulfonsäure-Natriumsalz (DPS). Bei Verwendung von DPS werden besonders gute Chromschichten erhalten.
  • Die Menge des im erfindungsgemäßen Elektrolyten vorliegenden Additivs kann 0,01 g/l bis 2,0 g/l, bezogen auf den Elektrolyt, betragen. Dabei kann die Menge des Komplexbildners 0,5 mol/l bis 4,0 mol/l betragen. Die Menge des Netzmittels kann 0 mol/l bis 0,5 mol/l betragen.
  • Der Elektrolyt kann in einem Verfahren zur Herstellung einer Chromschicht auf dekorativen und technischen Gegenständen durch elektrolytische Abscheidung von Chrom verwendet werden.
  • Beispiele der technischen Gegenstände sind rotationssymmetrische Gegenstände, wie Stangen, Kolben und Zylinder, insbesondere Tiefdruckzylinder. Dabei hat sich die Chromschicht als besonders günstig für diese Gegenstände, insbesondere Tiefdruckzylinder, erwiesen, da sie die hohen Anforderungen an Chromschichten erfüllt.
  • Die elektrolytische Abscheidung von Chromschichten kann in einer Elektrolysezelle durchgeführt werden, die mit einem Elektrolyten gefüllt ist. Dabei handelt es sich um den vorstehend beschriebenen erfindungsgemäßen Elektrolyt. In dem Elektrolyten sind Anode und Kathode eingetaucht. Bei Anlegen einer Gleichspannung an diese beiden Elektroden, d.h. Anode und Kathode, wird das Chrom auf den zu beschichtenden Gegenstand abgeschieden. Dabei ist dieser Gegenstand als Kathode geschaltet, d.h. bei dem zu beschichtenden Gegenstand handelt es sich um die Kathode. Ist der Gegenstand nicht metallisch leitend, kann er durch eine Vorbehandlung elektrisch leitend gemacht werden. In manchen Fällen wird dieser Aufbau dahingehend variiert, dass eine Elektrolysezelle bereitgestellt wird, in der der Elektrolyt durch eine semipermeable Membran in einen Katholyt (Elektrolyt im Kathodenraum) und einen Anolyt (Elektrolyt im Anodenraum) getrennt ist. Das Substrat, d.h. die Kathode als zu beschichtender Gegenstand, taucht in den Katholyt ein, der die abzuscheidenden Chrom-Ionen enthält. Bei Anlegen einer Spannung fließt ein Strom über den Anolyt durch die Membran in den Katholyten. Ein solches System aus Katholyt und Anolyt ist beispielsweise in der WO 2008/014987 A2 beschrieben, wobei hinsichtlich der weiteren Details dieser Art von Elektrolysezelle in vollem Umfang auf die WO 2008/014987 A2 ausdrücklich Bezug genommen wird.
  • In einer Ausführungsform des erfindungsgemäßen Verfahrens kann die Herstellung der Chromschicht bei einem pH-Wert von 2,0 bis 4,5 erfolgen. Wie bereits vorstehend in Zusammenhang mit der Zusammensetzung des erfindungsgemäßen Elektrolyten beschrieben wurde, kann die Einstellung des pH-Werts durch die vorstehende Verbindung der Formel (I) erfolgen.
  • In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens kann die Herstellung der Chromschicht bei einer Temperatur von 20°C bis 60°C erfolgen. Dies kann beispielsweise dadurch erreicht werden, dass die Temperatur des Elektrolyten mittels entsprechenden Heiz- und Kühlvorrichtungen auf einen Wert innerhalb dieses Bereichs eingestellt wird.
  • In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens kann die Chromschicht bei einer Stromdichte von 5 bis 60 A/dm2 hergestellt werden.
  • In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens kann der Elektrolyt bewegt werden, und zwar beispielsweise so, dass eine Umwälzung von fünf Badvolumen, d.h. Volumen des Elektrolyten, pro Stunde erfolgt. Da für das erfindungsgemäße Verfahren an sich bekannte Vorrichtungen zur Abscheidung von Chromschichten auf Gegenstände eingesetzt werden können, dienen die Volumina der Elektrolytbäder dieser an sich bekannten Vorrichtungen als Grundlage für die Ermittlung der Badvolumen im erfindungsgemäßen Verfahren.
  • In einer anderen Ausführungsform des erfindungsgemäßen Verfahrens kann der zu beschichtende Gegenstand mit einer Geschwindigkeit von 1 bis 20 cm/s bewegt werden.
  • Mit dem erfindungsgemäßen Elektrolyten bzw. der erfindungsgemäßen Verwendung sowie dem erfindungsgemäßen Verfahren werden Chrombeschichtungen von ganz besonders hervorragender Qualität erhalten, die überraschenderweise die an insbesondere Tiefdruckzylindern gestellten Anforderungen genügen. Insbesondere werden glatte, gleichmäßige Oberflächen erhalten, die im Wesentlichen keine Poren, Pocken oder Krater aufweisen. Die Schichtdicke der erhaltenen Chromschichten kann dicker als bei bisher erhältlichen Schichten sein. Insbesondere können Schichtdicken von 100 µm und mehr erhalten werden. Ferner können Chromschichten von hoher Härte hergestellt werden, insbesondere von über 900 HV. Die unter Verwendung des erfindungsgemäßen Elektrolyten bzw. unter Einsatz des erfindungsgemäßen Verfahrens erhältlichen Chromschichten sind korrosionsbeständig, verschleißfest, weisen günstige Reibungseigenschaften auf und sind thermisch und chemisch beständig. Ferner sind die erhältlichen Chromschichten hell und gut reflektierend, so dass sie sich auch für dekorative Zwecke eignen. Unter Verwendung des erfindungsgemäßen Elektrolyten bzw. des erfindungsgemäßen Verfahrens können Chromschichten auf beliebigen Gegenständen aufgebracht werden, vorzugsweise Kolben, Zylinder, wie Tiefdruckzylinder und Hydraulikzylinder, Tiefdruckwalzen, Laufbuchsen, Achslager und Stoßdämpfer. Ferner kann die Chrombeschichtung unter Verwendung des erfindungsgemäßen Elektrolyten oder mit dem erfindungsgemäßen Verfahren in einfacher, schneller und kostengünstiger Weise aufgebracht werden.
  • Wie bereits vorstehend ausgeführt wurde, weist eine Chromschicht, die unter Verwendung des erfindungsgemäßen Elektrolyten oder unter Einsatz des erfindungsgemäßen Verfahrens hergestellt wurde, eine größere Dicke als bisher erhältliche Schichten, eine glatte, gleichmäßige Oberfläche, die insbesondere frei von Poren, Pocken und Krater ist, sowie eine sehr große Härte auf. Mit einer üblichen Röntgendiffraktometrie-Untersuchung konnte gezeigt werden, dass die mit dem erfindungsgemäßen Elektrolyt bzw. dem erfindungsgemäßen Verfahren erhaltenen Chromschichten eine Gitterkonstante von 2,92 Angström oder mehr aufweisen und somit als amorphe Schichten bezeichnet werden können. Somit unterscheidet sich die mit dem erfindungsgemäßen Elektrolyten oder mit dem erfindungsgemäßen Verfahren erhältlichen Chromschichten von Chromschichten, die mit anderen Elektrolyten und/oder anderen Verfahren gemäß des Standes der Technik hergestellt werden können.
  • Zur Bestimmung der Gitterkonstante der Chrombeschichtung wurden Röntgendiffraktometrie-Untersuchungen an einer verchromten Messingprobe (18μm Schichtdicke) durchgeführt. Die Messung erfolgte im glatteren Bereich der Chromabscheidung in der Mitte der Probe.
  • Die 1 zeigt das Diffraktogramm der verchromten Messingprobe. Die Chrom-Schichtdicke (18 μm) ist so groß, dass vom Untergrund (Messing) keine Signale mehr erscheinen. Die obere Kurve ist die Messkurve ohne Abzug des Untergrundes, die untere mit. Es ist nur ein breiter Peak bei einem Winkel 2θ = 43,76° zu erkennen, entsprechend den Netzebenen (110), für die Netzebenen (200), (211) und (220) konnte kein Peaks beobachtet werden. Aus der Breite des Peaks (100) wurde die Kristallitgröße zu 2–3 nm berechnet, d.h., das Chrom ist röntgenamorph. Aus dem Netzebenenabstand wurde die Gitterkonstante berechnet: 292,32 pm (JCPDF-Datenbank: 288,39 pm). Die Gitterkonstante mit 292,32 pm entsprechen 2,9232 Å, wie sie oben angegeben wurde.
  • Gegenstand der Erfindung ist somit weiterhin eine Chromschicht, die nach dem erfindungsgemäßen Verfahren, wie es vorstehend detailliert beschrieben wurde, erhältlich ist.
  • Ferner ist eine Elektrolysezelle, die eine Anode, eine Kathode und einen Elektrolyten enthält, wie er vorstehend im Detail beschrieben wurde, Gegenstand der Erfindung.
  • Die erfindungsgemäße Elektrolysezelle ist so ausgebildet, dass rotationssymmetrische Bauteile, insbesondere Zylinder, wie Tiefdruck- und Hydraulikzylinder, Laufbuchsen, Achslager und Stoßdämpfer mit Chrom beschichtet werden können, insbesondere Tiefdruckzylinder bzw. Tiefdruckwalzen, wie sie beispielsweise bei Druckprozessen eingesetzt werden.
  • Ein Beispiel einer Elektrolysevorrichtung, die speziell zur Beschichtung von Tiefdruck ausgebildete ist, wird nachfolgend beschrieben. Dabei zeigt
  • 2 eine erfindungsgemäße Badvorrichtung in schematischer Darstellung während einer Zylinderwechselphase; und
  • 3 die Badvorrichtung gemäß 2 während einer Galvanisierungsphase.
  • Die 2 und 3 zeigen eine erfindungsgemäße Badvorrichtung in unterschiedlichen Verfahrenszuständen, nämlich zum einen zum Zeitpunkt eines Zylinderwechsels (2), wenn ein Tiefdruckzylinder 21 soeben mittels eines nicht dargestellten Krans in die Badvorrichtung eingesetzt und durch zu einer Lagereinrichtung gehörende Lagerbrücken 22 gehalten wird sowie in einer Galvanisierungsphase (3). Da die Bauelemente in den 2 und 3 im Wesentlichen identisch sind, sind sie mit gleichen Bezugszeichen gekennzeichnet.
  • Die Badvorrichtung weist eine Oberwanne 23 sowie eine darunter angeordnete Unterwanne 24 auf. In der Oberwanne 23 und in der Unterwanne 24 befindet sich ein flüssiger Elektrolyt 25, der mittels einer Pumpe 26 aus der Unterwanne 24 in die Oberwanne 23 gepumpt wird und über einen vertikal in wenigstens zwei Stellungen beweglichen Überlauf 27 wieder zurück in die Unterwanne 24 fließt. Alternativ ist es auch möglich, zwei wechselseitig öffenbare Überläufe auf unterschiedlichen Höhenniveaus anzuordnen.
  • In der Oberwanne 23 ist weiterhin eine vertikal bewegliche Anodeneinrichtung angeordnet, die im Wesentlichen aus einer Anodenschiene 28 und einem mit der Anodenschiene 28 elektrisch und mechanisch gekoppelten und als Metallhalteeinrichtung dienenden Anodenkorb 29 besteht. Der Anodenkorb 29 kann auch aus mehreren zusammengesetzten Anodenkörben bzw. -gittern bestehen. Üblicherweise wird der Anodenkorb 29 aus Titan hergestellt und mit Kupferdrahtabschnitten oder Kupfergranulat als Metallelementen 29a gefüllt. Bei Strombeaufschlagung zersetzt sich das Kupfer, so dass Kupferionen über den Elektrolyt 25 zur Oberfläche des als Kathode geschalteten Tiefdruckzylinders 21 wandern und sich dort in Form eines Kupferüberzugs absetzen.
  • Von den Lagerbrücken 22 ist in den 2 und 3 nur eine dargestellt. Die beiden Lagerbrücken 22 sind auf Schienen 30a, 30b in Achsrichtung des Tiefdruckzylinders 21 mittels Spindeln oder anderer geeigneter Verstellmechanismen bewegbar, so dass sie den Tiefdruckzylinder 21 zwischen sich einklemmen und drehbar halten.
  • Wie in den 2 und 3 erkennbar ist, bleibt durch die einseitig tragenden Lagerbrücken 22 etwa eine Hälfte der Oberwanne 23 oben frei zugänglich, so dass die dort sich parallel zur Achsrichtung des Tiefdruckzylinders 21 erstreckende Anodenschiene 28 frei vertikal bewegbar ist. Die Vertikalbewegung der Anodenschiene 28 mit dem Anodenkorb 29 ist im Übrigen bekannt, so dass eine weitere Beschreibung und Darstellung nicht erforderlich ist.
  • Der Füllungsgrad des Elektrolyts 25 in der Oberwanne 23, d. h., das Höhenniveau des Elektrolyts 25, lässt sich mit Hilfe des vertikal beweglichen Überlaufs 27 einstellen zwischen einem Höhenniveau 31 in der Zylinderwechselphase und einem Höhenniveau 32 in der Galvanisierungsphase.
  • 3 zeigt die Badvorrichtung in der Galvanisierungsphase, bei der der Tiefdruckzylinder 21 fast vollständig eingetaucht ist. Insbesondere lassen sich Tauchtiefen bei großen Zylindern (Umfang 1500 mm) von mehr als 65% und bei kleineren Zylindern (Umfang 800 mm) bis etwa 80% erreichen.
  • Der Anodenkorb 29 ist seitlich hochgezogen, so dass er gegenüber dem bekannten halbtauchenden Bad eine etwa um 50% größere Korboberfläche bildet.
  • Nach Beendigung der Galvanisierungsphase wird die Anodenschiene 28 mit dem Anodenkorb 29 nach unten in die Oberwanne 23 verfahren, wie in 2 gezeigt. Gleichzeitig oder zeitversetzt wird der Überlauf 27 abgesenkt, so dass der Elektrolyt 25 bis zum Höhenniveau 31 in die Unterwanne 24 abfließt.
  • Wie in 2 erkennbar ist, lässt sich dadurch ein Zustand erreichen, in dem der Anodenkorb 29 immer noch vollständig durch den Elektrolyt 25 abgedeckt ist, während der Tiefdruckzylinder 21 vollständig frei über dem Elektrolytniveau 31 steht und dort leicht mit dem nicht dargestellten Kran ausgehoben werden kann.
  • Zur Verringerung der Elektrolytmenge in der Oberwanne 23 ist die Oberwanne 23 im unteren Bereich verjüngt. Die Verjüngung kann z. B. mit Hilfe zusätzlich eingesetzter Bleche 33 oder durch entsprechende Anpassung der Wände der Oberwanne erfolgen. Weiterhin ist es möglich, Blöcke oder Kästen einzusetzen, um Volumen zu verdrängen. Die Begrenzung bzw. Verminderung des Volumens der Oberwanne 23 hat den Vorteil, dass aus der Unterwanne 24 nicht übermässig viel Elektrolyt 25 nach oben gepumpt werden muss. Dementsprechend besteht nicht die Gefahr, dass die Unterwanne 24 vollständig entleert und die Pumpe 26 trockenläuft.
  • In einer Ausführungsform der Elektrolysezelle weist diese einen Katholyt und einen Anolyt auf, wobei der erfindungsgemäße Elektrolyt im Katholyten vorliegt.
  • Die Elektrolysezelle im Sinne der vorliegenden Erfindung wird ausdrücklich eine Elektrolysezelle verstanden, die den erfindungsgemäßen Elektrolyt, wie er vorstehend im Detail beschrieben ist, enthält. Als Behältnis, das als Elektrolysezelle eingesetzt werden kann, kann jedes für den Fachmann in Frage kommende Gefäß verwendet werden, wie es insbesondere üblicherweise in der Galvanotechnik eingesetzt wird. Als Kathode dient üblicherweise der zu beschichtende Gegenstand, auf dem die Chromschicht abgeschieden werden soll. Als Anode können dem Fachmann an sich bekannte Anoden eingesetzt werden. Die Anode kann ein Flachmaterial, Plattenmaterial, Sintermaterial oder Streckmaterial sein. Als unlösliche Anoden werden z.B. solche aus einem Material ausgewählt aus der Gruppe bestehend aus platiniertem Titan, Graphit, Edelstahl, mit Iridium-Übergangsmetall-Mischoxid beschichtetes Titan, Tantal oder Niob oder speziellem Kohlenstoffmaterial und Kombinationen dieser Anoden eingesetzt. Es ist möglich, wenn als Anodenmaterial ein mit Mischmetalloxiden beschichtetes Titan-, Niob- oder Tantalblech verwendet wird. Weiterhin können Mischmetalloxid-Anoden insbesondere aus Iridium-Ruthenium-Mischoxid, Iridium-Ruthenium-Titanmischoxid oder Iridium-Tantal-Mischoxid verwendet werden. Ferner kann die Anode eine Mischoxidanode sein, bei der Titan als Anodengrundmaterial mit Platin-, Iridium- oder Palladium-Oxid beschichtet ist. Die Form der Anode kann vom Fachmann dem jeweiligen Zweck entsprechend angepasst werden.
  • Das Anodensystem kann beispielsweise eines sein, bei dem die Anode in direktem Kontakt mit einer Membran steht, d.h. die Anode mit einer Membran beschichtet ist. Es handelt sich dabei um eine sogenannte Direktkontakt-Membrananode, wie sie aus der DE 10 2010 055 143 A1 bekannt ist. Als Polymermembran können dabei folgende Polymere in günstiger Weise eingesetzt werden: Polypyrol-Membranen, Olefinpolymer-Membranen, sulfonierte Polystyrolmembranen, fluorierte/perfluorierte sulfonierte Polymer-Membranen (PFSA-Membranen), S-PEEK-S-PSU, PSU-CI, ICVT-Membranen, Arylpolymermembranen, Polyether-Keton-Membranen, Polybenzimidazol-Membranen, thermoplastische Polymermembranen, Perfluorsulfonsäure-Polymermembranen, Perfluorcarboxylat-Ionomere, Polyamide, Polyamine, Poly(vinylalkohol)-Membranen und Perfluorphosphonat-Membranen. Dabei können für Kationen durchlässige Membranen herangezogen werden. Hinsichtlich der weiteren Details dieser Membranen wird auf die DE 10 2010 055 143 A1 verwiesen, auf die in vollem Umfang Bezug genommen wird.
  • Mit der erfindungsgemäßen Vorrichtung lässt sich der erfindungsgemäße Elektrolyt in besonders günstiger Weise einsetzen bzw. das erfindungsgemäße Verfahren in besonders günstiger Weise durchführen, so dass Chromschichten mit vorstehenden Eigenschaften in besonders günstiger Weise erhalten werden können.
  • Die folgenden Beispiele sollen die Erfindung weiterhin veranschaulichen. Es wird darauf hingewiesen, dass diese Beispiele nur dazu dienen, um die vorliegende Erfindung zu illustrieren. Sie sollen in keinem Fall dazu verstanden werden, die Erfindung auf diese Beispiele einzuschränken.
  • Beispiele 1 bis 9
  • Ein Elektrolyt mit folgender Zusammensetzung wurde bereitgestellt:
    • – 0,77 mol/l Kaliumchromalaun-dodecahydrat
    • – 1,5 mol/l Ameisensäure und
    • – 1,0 mol/l Glycin.
  • Ferner wurden die in der Tabelle angegebenen Additive (Glanzzusatz und Netzmitteln) in den in der Tabelle angegebenen Mengen zum Elektrolyten zugegeben.
  • Die Verchromungsanlage wies einen Behälter auf, in dem die zu beschichtenden Tiefdruckzylinder vertikal so eingehängt werden konnten, dass sie mit unterschiedlicher Drehgeschwindigkeit bewegt werden können. Drei Anoden (Direktkontakt-Anoden) wurden ringförmig um den Zylinder so angebracht, dass der Abstand zwischen Anode und Zylinder variiert werden konnte.
  • Als Direktkontaktanoden werden Anoden bezeichnet, bei denen eine ionendurchlässige Membran direkt auf das Anodenblech aufgebracht sind. Als Polymermembran können dabei folgende Polymere in günstiger Weise eingesetzt werden: Polypyrol-Membranen, Olefinpolymer-Membranen, sulfonierte Polystyrolmembranen, fluorierte/perfluorierte sulfonierte Polymer-Membranen (PFSA-Membranen), S-PEEK-S-PSU, PSU-CI, ICVT-Membranen, Arylpolymermembranen, Polyether-Keton-Membranen, Polybenzimidazol-Membranen, thermoplastische Polymermembranen, Perfluorsulfonsäure-Polymermembranen, Perfluorcarboxylat-Ionomere, Polyamide, Polyamine, Poly(vinylalkohol)-Membranen und Perfluorphosphonat-Membranen. Dabei können für Kationen durchlässige Membranen herangezogen werden. Hinsichtlich der weiteren Details dieser Membranen wird auf die DE 10 2010 055 143 A1 verwiesen, auf die in vollem Umfang Bezug genommen wird.
  • Des Weiteren war in der Anlage eine Umwälzpumpe für den Elektrolyten installiert, deren Pumpleistung ebenfalls variiert werden konnte. Zur Sauberhaltung des Elektrolyten ist in dem Elektrolytkreislauf ein Filter eingebaut. Eine Heiz- und Kühlvorrichtung dient zur Konstanthaltung der Temperatur. Ein pH-Fühler misst permanent den pH-Wert, der durch Zugabe von Ameisensäure im gewünschten Bereich gehalten wird. Die im konkreten Fall eingestellte Temperatur und pH-Wert sind in der Tabelle angegeben.
  • Um die Qualität der Chromschicht zu verbessern und die Porenbildung zu vermeiden, wurden zum einen verschiedene Netzmittel als Zusatz zugegeben und zum anderen verschiedene Abscheideparameter, wie die Temperatur des Elektrolyts, oder die Drehgeschwindigkeit des Zylinders, variiert. Die nachstehende Tabelle gibt einen Überblick über die Versuche:
    Nr. Glanzzusatz Netzmittel Stromdichte Temperatur pH-Wert Drehgeschwin digkeit Zylinder
    1 DPS (1,5 g/l) Raschig Ralufon DL (0,015 g/l; 0,1 g/l; 0,2 g/l) 6,5 A/dm2 30°C 3,8 600 U/min
    2 DPS (1,5 g/l) BASF Lugalvan BNO 214 (0,1 g/l; 0,2 g/l; 0,4 g/l) 6,5 A/dm2 30°C 3,8 600 U/min
    3 DPS (1,5 g/l) BASF Lutensol TO 8 (0,1 g/l; 0,3 g/l) 6,5 A/dm2 30°C 3,8 600 U/min
    4 DPS (1,5 g/l) BASF Sulfopon 101 UP (0,05 g/l; 0,2 g/l; 0,4 g/l) 6,5 A/dm2 30°C 3,8 600 U/min
    5 DPS (1,5 g/l) Natriumlaurylsulfat (0,1 g/l; 0,3 g/l) 6,5 A/dm2 30°C 3,8 600 U/min
    6 DPS (1,5 g/l) Dicolloy NWAF DL (0,1 g/l; 0,3 g/l; 0,5 g/l) 6,5 A/dm2 30°C 3,8 600 U/min
    7 DPS (1,5 g/l) Raschig Ralufon DL (0,1 g/l) 6,5 A/dm2 30°C 3,8 850 U/min
    8 DPS (1,5 g/l) Raschig Ralufon DL (0,1 g/l) 10 A/dm2 30°C 3,2 600 U/min
    9 DPS (1,5 g/l) Raschig Ralufon DL (0,1 g/l) 10 A/dm2 40°C 3,8 600 U/min
    DPS = N,N-Dimethyl-dithiocarbamyl-propyl-sulfonsäure-natriumsalz
  • Für alle Versuche wurde der oben genannte Grundelektrolyt verwendet. Als Schichtdicke wurden immer ca. 10 µm abgeschieden.
  • Es ließen sich bei all diesen Versuchen glänzende Chromschichten abscheiden. Auch minderte jedes eingesetzte Netzmittel die Porenbildung deutlich, d.h. es wurden Chromschichten erhalten, die gleichmäßig waren und keine Poren aufwiesen. Dabei wurde die Zahl der Poren mit steigendem Netzmittelgehalt immer geringer.
  • Die verwendeten Anoden waren mit einer speziellen ionen-selektiven Membran (Navion®) beschichtet. Dadurch wurde die Oxidation von Cr(III) zu Cr(VI) verhindert, die die Chromabscheidung zum Stillstand bringt.
  • Die verwendeten Chrom(III)-Salze, die notwendigen Komplexbildner, Puffersubstanzen und Netzmittel zur Herabsetzung der Oberflächenspannung des Elektrolyten führen, insbesondere in ihrer Gesamtheit, zu Hartchromschichten, die sich durch hohen Glanz und Härte sowie hervorragender Abriebfestigkeit auszeichnen, sowie den qualitativen Anforderungen für den industriellen Einsatz genügen.
  • Die vorstehenden Beispiel zeigen, dass die erhaltenen Chromschichten besonders gut zur Beschichtung von Tiefdruckzylindern geeignet sind.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2008/014987 A2 [0012, 0012, 0028, 0028]
    • DE 102010055143 A1 [0057, 0057, 0063]

Claims (16)

  1. Elektrolyt zur elektrolytischen Abscheidung von Chrom als Metall, umfassend: (a) ein Chrom (III)-Salz, (b) eine Verbindung der Formel (I)
    Figure DE102014116717A1_0005
    wobei R für NH2, OH oder SO3H steht und n eine ganze Zahl von 1 bis 3 ist, (c) Ameisensäure und (d) mindestens ein Additiv,
  2. Elektrolyt nach Anspruch 1, wobei die Verbindung der Formel (I) Glycin, Glykolsäure oder eine Mischung dieser umfasst.
  3. Elektrolyt nach einem der vorhergehenden Ansprüche, wobei das Chrom(III)-Salz ein anorganisches und/oder organisches Chrom(III)-Salz umfasst, insbesondere wobei das anorganische Chrom(III)-Salz ausgewählt ist unter Kaliumchromalaun, Ammoniumchromalaun, Chromsulfat, Chromnitrat, Chromchlorid und Mischungen von zwei oder mehreren davon, oder wobei das organische Chrom(III)-Salz ausgewählt ist unter Chromcitrat, Chromformiat, Chromoxalat und Mischungen von zwei oder mehreren dieser.
  4. Elektrolyt nach einem der vorhergehenden Ansprüche, wobei das Additiv einen Komplexbildner und/oder ein Netzmittel umfasst, insbesondere wobei der Komplexbildner eine Verbindung ist mit kurzkettigen Alkylketten (1-4 C-Atome) mit 1 oder 2 Carboxylgruppen oder -derivaten und 1 oder 2 Thio- und/oder Sulfon-Gruppen oder die folgende Verbindung
    Figure DE102014116717A1_0006
    wobei n eine ganze Zahl von 1 bis 5, insbesondere 3, R1 ein C1-C5-Alkylrest, insbesondere CH3CH2- und X ein Metallion zum Ausgleich der negativen Ladung, insbesondere Na+, K+, Ca2+, Mg2+ ist.
  5. Verwendung des Elektrolyten nach einem der Ansprüche 1 bis 4 zur Herstellung von Chromschichten auf dekorativen und technischen Gegenständen, insbesonderer rotationssymmetrischen Bauteilen.
  6. Verfahren zur Herstellung einer Chromschicht auf dekorativen und technischen Gegenständen durch elektrolytische Abscheidung von Chrom, wobei die Chromschicht auf diesen Gegenständen unter Verwendung eines Elektrolyten, wie er in einem der Ansprüche 1 bis 4 definiert ist, abgeschieden wird.
  7. Verfahren nach Anspruch 6, wobei die Herstellung der Chromschicht bei einem pH-Wert von 2,0 bis 4,5 erfolgt.
  8. Verfahren nach einem der Ansprüche 6 oder 7, wobei die Herstellung der Chromschicht bei einer Temperatur von 20°C bis 60°C erfolgt.
  9. Verfahren nach einem der Ansprüche 6 bis 8, wobei die Herstellung der Chromschicht bei einer Stromdichte von 5 bis 60 A/dm2 erfolgt.
  10. Verfahren nach einem der Ansprüche 6 bis 9, wobei eine Elektrolytbewegung durch Umwälzung von 5 Badvolumen pro Stunde erfolgt.
  11. Verfahren nach einem der Ansprüche 6 bis 10, wobei der zu beschichtende Gegenstand 1 bis 20 cm/s bewegt wird.
  12. Dekorativer oder technischer Gegenstand, insbesondere rotationssymmetrisches Bauteil, mit einer Chromschicht, hergestellt nach dem Verfahren nach einem der Ansprüche 6 bis 11.
  13. Elektrolysezelle, umfassend eine Anode, eine Kathode und einen Elektrolyt, wie er in einem der Ansprüche 1 bis 4 definiert ist.
  14. Elektrolysezelle nach Anspruch 13, wobei die Elektrolysezelle für die Chrombeschichtung von rotationssymmetrischen Bauteilen, insbesondere Tiefdruckzylindern, ausgebildet ist.
  15. Elektrolysezelle nach einem der Ansprüche 13 bis 14, wobei die Elektrolysezelle einen Katholyt und einen Anolyt aufweist, wobei der Elektrolyt im Katholyt vorliegt.
  16. Elektrolysezelle nach einem der Ansprüche 13 bis 15, wobei die Anode eine Mischoxidanode ist.
DE102014116717.1A 2014-11-14 2014-11-14 Elektrolyt und Verfahren zur Herstellung von Chromschichten Withdrawn DE102014116717A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102014116717.1A DE102014116717A1 (de) 2014-11-14 2014-11-14 Elektrolyt und Verfahren zur Herstellung von Chromschichten
PL15794193T PL3250733T3 (pl) 2014-11-14 2015-11-13 Wytwarzanie powłok z chromu na cylindrach wklęsłodrukowych
EP15794193.1A EP3250733B1 (de) 2014-11-14 2015-11-13 Herstellung von chromschichten auf tiefdruckzylindern
PCT/EP2015/076551 WO2016075287A1 (de) 2014-11-14 2015-11-13 Herstellung von chromschichten auf tiefdruckzylindern
ES15794193T ES2893649T3 (es) 2014-11-14 2015-11-13 Producción de capas de cromo sobre cilindros de huecograbado

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014116717.1A DE102014116717A1 (de) 2014-11-14 2014-11-14 Elektrolyt und Verfahren zur Herstellung von Chromschichten

Publications (1)

Publication Number Publication Date
DE102014116717A1 true DE102014116717A1 (de) 2016-05-19

Family

ID=54541083

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102014116717.1A Withdrawn DE102014116717A1 (de) 2014-11-14 2014-11-14 Elektrolyt und Verfahren zur Herstellung von Chromschichten

Country Status (5)

Country Link
EP (1) EP3250733B1 (de)
DE (1) DE102014116717A1 (de)
ES (1) ES2893649T3 (de)
PL (1) PL3250733T3 (de)
WO (1) WO2016075287A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051806A1 (fr) * 2016-05-31 2017-12-01 Snecma Procede de chromage par voie electrolytique d'un substrat a partir d'un bain de chrome trivalent
DE102018133532A1 (de) 2018-12-21 2020-06-25 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Elektrolyt und Verfahren zur Herstellung von Chromschichten

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151779A1 (de) 2021-09-15 2023-03-22 Trivalent Oberflächentechnik GmbH Chrom-indium-, chrom-bismut- und chrom-antimon-beschichtung, verfahren zur herstellung und verwendung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804446A (en) * 1986-09-19 1989-02-14 The United States Of America As Represented By The Secretary Of Commerce Electrodeposition of chromium from a trivalent electrolyte
WO2008014987A2 (en) 2006-08-01 2008-02-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for deposition of chromium layers as hard- chrome plating, electroplating bath and hard- chrome surfaces
DE102010055143A1 (de) 2010-12-18 2012-06-21 Umicore Galvanotechnik Gmbh Direktkontakt-Membrananode für die Verwendung in Elektrolysezellen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1214426A (en) * 1981-11-18 1986-11-25 Donald J. Barclay Trivalent chromium electroplating solution and bath
US4461680A (en) * 1983-12-30 1984-07-24 The United States Of America As Represented By The Secretary Of Commerce Process and bath for electroplating nickel-chromium alloys
US7442286B2 (en) * 2004-02-26 2008-10-28 Atotech Deutschland Gmbh Articles with electroplated zinc-nickel ternary and higher alloys, electroplating baths, processes and systems for electroplating such alloys
DE102005059367B4 (de) * 2005-12-13 2014-04-03 Enthone Inc. Elektrolytzusammensetzung und Verfahren zur Abscheidung rissfreier, korrosionsbeständiger und harter Chrom- und Chromlegierungsschichten
WO2009046181A1 (en) * 2007-10-02 2009-04-09 Atotech Deutschland Gmbh Crystalline chromium alloy deposit
DE102008015162B3 (de) * 2008-03-20 2009-10-15 Hell Gravure Systems Gmbh & Co. Kg Verfahren und Vorrichtung zur Bearbeitung von Tiefdruckzylindern
US8512541B2 (en) * 2010-11-16 2013-08-20 Trevor Pearson Electrolytic dissolution of chromium from chromium electrodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804446A (en) * 1986-09-19 1989-02-14 The United States Of America As Represented By The Secretary Of Commerce Electrodeposition of chromium from a trivalent electrolyte
WO2008014987A2 (en) 2006-08-01 2008-02-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method for deposition of chromium layers as hard- chrome plating, electroplating bath and hard- chrome surfaces
DE102010055143A1 (de) 2010-12-18 2012-06-21 Umicore Galvanotechnik Gmbh Direktkontakt-Membrananode für die Verwendung in Elektrolysezellen

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3051806A1 (fr) * 2016-05-31 2017-12-01 Snecma Procede de chromage par voie electrolytique d'un substrat a partir d'un bain de chrome trivalent
DE102018133532A1 (de) 2018-12-21 2020-06-25 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Elektrolyt und Verfahren zur Herstellung von Chromschichten
WO2020126817A1 (de) 2018-12-21 2020-06-25 Maschinenfabrik Kaspar Walter Gmbh & Co. Kg Elektrolyt und verfahren zur herstellung von chromschichten
DE102018133532A8 (de) 2018-12-21 2022-02-17 Maschinenfabrik Kaspar Walter Gmbh & Co Kg Elektrolyt und Verfahren zur Herstellung von Chromschichten

Also Published As

Publication number Publication date
PL3250733T3 (pl) 2022-01-31
WO2016075287A1 (de) 2016-05-19
EP3250733B1 (de) 2021-07-14
EP3250733A1 (de) 2017-12-06
ES2893649T3 (es) 2022-02-09

Similar Documents

Publication Publication Date Title
EP2050841B1 (de) Alkalisches Galvanikbad mit einer Filtrationsmembran
DE102006035871B3 (de) Verfahren zur Abscheidung von Chromschichten als Hartverchromung, Galvanisierungsbad sowie hartverchromte Oberflächen und deren Verwendung
DE3428345A1 (de) Waessriges bad zur galvanischen abscheidung von zink und zinklegierungen
DE1496886A1 (de) Verfahren und Vorrichtung zum Aufbereiten von Metallbehandlungsloesungen
EP3666931A1 (de) Verfahren zur herstellung eines mit einer beschichtung aus chrom und chromoxid beschichteten metallbands auf basis einer elektrolytlösung mit einer dreiwertigen chromverbindung
EP3250733B1 (de) Herstellung von chromschichten auf tiefdruckzylindern
DE1094245B (de) Bleidioxyd-Elektrode zur Verwendung bei elektrochemischen Verfahren
DE3933896C1 (de)
DE2417952A1 (de) Verfahren zur galvanischen abscheidung von nickel und/oder kobalt
DE2134457C2 (de) Wäßriges galvanisches Bad für die Abscheidung von Nickel und/oder Kobalt
DE2545654C2 (de) Galvanisches Bad und Verfahren zum Abscheiden von Chrom oder einer Chromlegierung und Herstellung eines solchen Bades
DE2600654A1 (de) Verfahren zur herstellung von elektrolytisch verchromten stahlblechen
DE10255853A1 (de) Herstellung strukturierter Hartchromschichten
EP2184384B1 (de) Galvanisches Bad und Verfahren zur Abscheidung von zinkhaltigen Schichten
EP2635724B1 (de) Verfahren zur abscheidung von hartchrom aus cr(vi)-freien elektrolyten
DE1224111B (de) Saure galvanische Kupfer- und Nickelbaeder und Verfahren zum Abscheiden der UEberzuege
DE2352970A1 (de) Korrosionsbestaendige metallueberzuege, die galvanisch abgeschiedenes nickel und mikroporoeses chrom enthalten
DE3149043A1 (de) "bad zur galvanischen abscheidung duenner weisser palladiumueberzuege und verfahren zur herstellung solcher ueberzuege unter verwendung des bades"
CN111793809B (zh) 制造涂有涂层的金属带的方法和执行方法的电解系统
DE2147257A1 (de) Galvanisches Bad und Verfahren zur Abscheidung halbglanzender Nickeluber züge
EP3415665B1 (de) Verfahren zur galvanischen abscheidung von zink-nickel-legierungsüberzügen aus einem alkalischen zink-nickel-legierungsbad mit reduziertem abbau von additiven
DE19610361A1 (de) Bad und Verfahren für die galvanische Abscheidung von Halbglanznickel
DE2333096C3 (de) Galvanisch aufgebrachter mehrschichtiger Metallüberzug und Verfahren zu seiner Herstellung
WO2024041968A1 (de) Verfahren zur steuerung der chromzufuhr in einem elektrolyseverfahren zur herstellung von chromschichten sowie eine elektrolysezelle hierfür
DE2014122A1 (de) Verfahren zum Herstellen elektrolytischer Rutheniumüberzüge und wässrige Elektrolysebäder zur Durchführung dieses Verfahrens

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R120 Application withdrawn or ip right abandoned