DE102011014958B4 - Gelblicht emittierende Fluorosulfidleuchtstoffe und deren Herstellungsverfahren, sowie eine diesen Leuchtstoff umfassende Weißlicht emittierende Diode - Google Patents

Gelblicht emittierende Fluorosulfidleuchtstoffe und deren Herstellungsverfahren, sowie eine diesen Leuchtstoff umfassende Weißlicht emittierende Diode Download PDF

Info

Publication number
DE102011014958B4
DE102011014958B4 DE102011014958.9A DE102011014958A DE102011014958B4 DE 102011014958 B4 DE102011014958 B4 DE 102011014958B4 DE 102011014958 A DE102011014958 A DE 102011014958A DE 102011014958 B4 DE102011014958 B4 DE 102011014958B4
Authority
DE
Germany
Prior art keywords
fluorosulfide
caf
chemical formula
phosphor
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102011014958.9A
Other languages
English (en)
Other versions
DE102011014958A1 (de
Inventor
Teng-Ming Chen
Yun-Chen Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Chiao Tung University NCTU
Original Assignee
National Chiao Tung University NCTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Chiao Tung University NCTU filed Critical National Chiao Tung University NCTU
Publication of DE102011014958A1 publication Critical patent/DE102011014958A1/de
Application granted granted Critical
Publication of DE102011014958B4 publication Critical patent/DE102011014958B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • C09K11/7789Oxysulfides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Abstract

Gelblicht emittierender Leuchtstoff eines Fluorosulfids mit der chemischen Formel (ACeB)CaSrFSund einer tetragonal-kristallinen Phase, wobei A und B verschiedene Metalle der Seltenen Erden sind, und das Metall der Seltenen Erden Sc, Y, oder ein Lanthanoid aus La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, oder Lu ist, und die Werte x, y, z jeweils 0<x<1, 0≦y<1, und 0≦z≦1 sind.

Description

  • Hintergrund
  • Technisches Gebiet
  • Die Erfindung bezieht sich auf einen Gelblicht emittierenden Leuchtstoff. Insbesondere bezieht sich die Erfindung auf einen neuen Fluorosulfidleuchtstoff zur Festkörper-Beleuchtungsanwendung. Weiterhin bezieht sich die Erfindung auf ein Herstellungsverfahren eines Gelblicht emittierenden Leuchtstoffs für eine Weißlicht emittierende Diode.
  • Beschreibung des Standes der Technik
  • Seit der Erfindung des Blaulicht emittierenden InGaN-basierenden Chips im frühen 20sten Jahrhundert wurde ein bemerkenswerter Fortschritt in der Entwicklung von kommerziellrealisierten effizienten Weißlicht emittierenden Dioden (WLEDs) gemacht. Durch die Kombination von blauer Emission aus den InGaN-basierenden Chips und gelber Emission, basierend auf der Abwärtsumformung von Y3AL5O12:Ce3+(YAG:Ce)-basierenden Leuchtstoffen, hat das erzeugte weiße Licht bereits das von Glühlampen übertroffen und konkurriert mit herkömmlichen Leuchtstoffröhren. WLEDs sind energieeffizient, haben eine lange Lebensdauer und sind umweltfreundlich im Vergleich zu herkömmlichen Lichtquellen. Allerdings benötigt die Farbqualität von WLEDs immer noch Verbesserungen bezüglich der Weißfarbtonabstimmbarkeit, Farbtemperatur und des Farbrenderings. Insbesondere sind diese Eigenschaften eng verbunden mit der generellen Illumination.
  • Für die am häufigsten angewandten Leuchtstoffe in WLED-Systemen erreichen sie nicht die optimalen Anforderungen für weißes Licht und zeigen eine schlechte Farbwiedergabe im roten Spektralbereich. Daher ist es wichtig, ein geeignetes Lumineszenzmaterial für Leuchtstoff-konvertiertes WLEDs (pc-WLEDS) zu finden, um die optimalen Anforderungen für weißes Licht zu erzielen.
  • In „Rare earth fluorosulfides LnSF and Ln2AF4S2 as new colour pigments“ von A. Demourgues, A. Tressaud, H. Laronze, P. Macaudiere, erschienen im Journal of Alloys and Compounds in 2001, wird ein Verfahren zur Synthese eines LnSF und Ln2AF4S2 Seltenerdfluorids, das durch Röntgenanalysen charakterisiert, strukturell beschrieben und als Farbpigment dienen kann, offenbart.
  • Zusammenfassung
  • In einem Aspekt ist die vorliegende Erfindung auf einen Gelblicht emittierenden Leuchtstoff eines Fluorosulfids mit der chemischen Formel (A1-x-yCexBy)2Ca1-zSrzF4S2 und einer tetragonal-kristallinen Phase gerichtet, wobei A und B verschiedene Metalle der Seltenen Erden sind, und das Metall der Seltenen Erden Sc, Y, oder ein Lanthanoid aus La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, oder Lu ist, und die Werte x, y, z jeweils0<x<1, 0≦y<1, und 0≦z≦1 sind.
  • Gemäß einer anderen Ausführungsform ist die chemische Formel (A1-xCex)2Ca1-zSrzF4S2 wenn y gleich Null ist.
  • Gemäß einer anderen Ausführungsform ist die chemische Formel (A1-xCex)2CaF4S2 wenn sowohl y als auchz gleich Null ist.
  • Gemäß einer anderen Ausführungsform ist die chemische Formel (A1-xCex)2SrF4S2 wenn y gleich Null und z gleich 1 ist.
  • Gemäß einer anderen Ausführungsform ist die chemische Formel (A1-x-yCexBy)2CaF4S2 wenn z gleich Null ist.
  • Gemäß einer anderen Ausführungsform ist die chemische Formel (A1-x-yCexBy)2SrF4S2 wenn z gleich 1 ist.
  • In einem anderen Aspekt der Erfindung ist diese Erfindung ebenfalls auf eine Weißlicht emittierende Diode gerichtet, die einen Blaulicht emittierenden Leuchtstoff und einen Gelblicht emittierenden Leuchtstoff der zuvor beschriebenen Fluorosulfide umfasst.
  • Hinsichtlich der vorhergehenden Ausführungen kann der neue Leuchtstoff auf Basis von Cedotierten Fluorosulfiden als potentieller Kandidat für eine Weißlicht-LED dienen, insbesondere zur Erzeugung von warmem Weißlicht.
  • Figurenliste
    • Die 1A-1D sind jeweils XRD-Spektren der Beispiele 1, 9, 2 und 10.
    • Die 2A-2C sind jeweils Anregungs- und Emissionsspektren derBeispiele 12, 18 und 23.
    • 4 zeigt die temperaturabhängige Fotolumineszenzintensität von CaS:Ce3+, (Y0,99Ce0,01)2CaF4S2 und (Y0,99Ce0,01)2SrF4S2.
    • 5(a) ist ein sichtbares Fotolumineszenzspektrum von WLED unter Verwendung des Gelblicht emittierenden Leuchtstoffs von und (Y0,99Ce0,01)2Ca0,65Sr0,55F4S2 mit 0,1mm Dicke und einem InGaN LED Chip, der Blaulicht von 460nm emittiert.
    • 5(b) zeigt die Veränderung der CIE-Chromatizitätskoordinaten als eine Bruchfunktion des verwendeten Leuchtstoffs.
  • Detaillierte Beschreibung
  • Für die meisten Leuchtstoffe, die mit Ce3+ dotiert sind, zeigen sie eine paritätszulässige 4f-5d-Emission, die von ultravioletter bis roter Farbe reicht, abhängig vom Wirtsgitter und der Basis der Größe des Einbauorts, der Symmetrie des Einbauorts und der Koordinationszahl. Tatsächlich kann die Emissionsfarbe von Ce3+ in dem gewünschten Bereich des Spektrums durch Verändern der Kristallfeldlänge gesteuert werden. Zum Beispiel wurden die optischen Eigenschaften von Ce3+-Dotierungen in Ca(Si,Al)N2:Ce3+ (rot) Leuchtstoffen, (La,Gd)Sr2AlO5:Ce3+ (gelb) Leuchtstoffen, (Ca, Sr)Sc2O4:Ce3+ (grün) Leuchtstoffen untersucht.
  • In den letzten Jahren wurde große Aufmerksamkeit darauf gelegt, um die mit Ce3+ dotierten Mischanionen-Fluoroxidkristalle zu studieren und ihre potentielle Anwendbarkeit auf WLED-Anordnungen zu zeigen, aber es wurden keine Studien über Fotolumineszenzeigenschaften (PL) der Fluorosulfid/Mischanionensysteme vor der vorliegenden Arbeit veröffentlicht. Das quarternäre Fluorosulfid Y2CaF4S2 weist die gleiche Struktur auf wie Sm2CaF4S2, das als erstes neues Farbpigment bekanntgemacht wurde. In diesem Verbund wird von den chromatischen und chemischen Eigenschaften von Seltenen Erden, die durch Fluor- und Schwefelliganden umgeben sind, erwartet, die Vorteile von Schwefel und Fluorid zu kombinieren.
  • Gelblicht emittierendes Leuchtstoffmaterial aus (A1-x-yCexBy)2Ca1-zSrzF4S2
  • Demzufolge ist ein Aspekt dieser Erfindung auf einen neuen Fluorosulfid-Leuchststoff gerichtet, der eine allgemeine chemische Formel (A1-x-yCexBy)2Ca1-zSrzF4S2 aufweist, um gelbes Licht zu emittieren, das einen CIE-Wert von (0,30-0,60, 0,30-0,60) hat. Die Gitterstruktur von (A1-x-yCexBy)2Ca1-zSrzF4S2, die ähnlich zu Y2CaF4S2 ist, ist eine tetragonale Raumgruppe (I4/mmm, Nr. 139), wobei A3+, Ce3+ und/oder B3+ gleichwertige Substituenten für Y3+ in Y2CaF4S2 sind, und Sr2+ ein gleichwertiger Substituent für Ca2+ in Y2CaF4S2 ist. Da Ce3+ verantwortlich für das Emittieren von gelbem Licht ist, ist der Wert für x 0<x<1, der Wert für y 0≦y<1 und der Wert für z ist 0 - 1. In (A1-x-yCexBy)2Ca1-zSrzF4S2 repräsentieren sowohl A als auch B verschiedene trivalente Elemente der Seltenen Erden außer Ce, . wobei das Metall der Seltenen Erden Sc, Y oder ein Lanthanoide aus La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, oder Lu ist.
  • Wenn y und/oder z gleich 0 und/oder z gleich 1 sind, kann man vereinfachte chemische Formeln der Formel (A1-x-yCexBy)2Ca1-7SrzF4S2 erhalten. Wenn zum Beispiel y gleich Null ist, erhält man vereinfacht (A1-x-Cex)2Ca1-zSrzF4S2. Wenn z gleich Null ist, erhält man (A1-x-yCexBy)2CaF4S2. Wenn z gleich 1 ist, erhält man (A1-x-yCexBy)2SrF4S2. Wenn y und z gleich Null sind (A1-xCex)2CaF4S2. Wenn y gleich Null ist und z gleich 1 ist, erhält man (A1-xCex)2SrF4S2.
  • Herstellungsverfahren von (A1-x-yCexBy)2Ca1-zSrzF4S2
  • In einem anderen Aspekt ist diese Erfindung auf ein Herstellungsverfahren für den neuen Fluorosulfid-Leuchtstoff (A1-x-yCexBy)2Ca1-zSrzF4S2 gerichtet. Zunächst werden gemäß der chemischen Formel des gewünschten Ce3+-dotierten Fluorosulfids, stöchiometrische Mengen von mindestens einem Sulfid und mindestens einem Fluorid von Ce, mindestens einem Metall der Seltenen Erden Sc, Y, oder einem Lanthanoid aus La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Ca und/oder Sr abgewogen. Zum Beispiel kann eine trivalente Y-Quelle YF3 oder Y2S3 sein, und eine divalente Ca-Quelle kann CaS oder CaF2 sein. Gemäß einer Ausführungsform dieser Erfindung, wenn (Y0,99Ce0,01)2CaF4S2 synthetisiert wird, können z.B. YF3, Y2S3, CaF3 und CeF3 als Reaktanten verwendet werden.
  • Als nächstes werden die abgewogenen Sulfide und Fluoride gerieben, bis sie gleichmäßig gemischt sind. Dann wird die Mischung unter Vakuumumgebung oder unter einem Inertgas oder Stickstoff bei einem Druck von ca. 1atm und bei einer Temperatur von 900°C - 1100°C kalziniert, bis eine reine kristalline Phase erzielt ist. Die kristalline Phase des gewonnenen Produkts kann durch ein Röntgenstrahlungs-Staubdiffraktionsspektrum (XRD) untersucht werden.
  • Ausführungsform 1:(A1-xCex)2CaSrzF4S2 (y=z=0)
  • Wenn y=z=0, vereinfach sich (A1-x-yCexBy)2Ca1-zSrzF4S2 zu (A1-xCex)2Ca1F4S2. Beispiele umfassen, dass A aus Y, La, Sm, Eu, Gd oder Tb war, und x war 0,01, wobei es gemäß dem Herstellungsverfahren hergestellt wurde, das zuvor beschrieben wurde.
  • Die XRD-Profile der Beispiele 1 und 2 sind in den 1A und 1C gezeigt. Das Anregungs- und Emissionsspektrum von Beispiel 1 ist in 2A gezeigt. Die erstellten Fluorosulfide und deren Fotolumineszenzeigenschaften sind in der Tabelle aufgelistet.
  • Im Vergleich der 1A und 1C waren nur die trivalenten Kationen unterschiedlich, d.h. Y3+ in 1A und La3+ in 1C. Die isovalente bzw. gleichwertige Kationensubstitution mit verschiedenen Größen wurde verwendet, um die strukturelle Umgebung für Ce3+ zu verändern und dadurch wurde die Kristallfeldaufspaltung des Ce3+5d-Niveaus verändert. Da Y3+ und La3+ kompatibel zum Fluorosulfid-Wirtsgitter sind, kann die Substitution zu verschiedener Emissionseffizienz und Farbrendering führen.
  • Zunächst kann man aus Tabelle 1 erkennen, dass die 1-Mol%-Substitution von Ce3+ weitläufige Anregungs- und Emissionsbereiche erzeugen kann. Daher kann dieses Ce3+-dotierte Fluorosulfidsystem UV-bis-Blaulicht als Anregungsquelle verwenden, um die Anforderung für die pc-WLED-Anwendungen zu erfüllen.
  • Als zweites tritt nur eine kleine Blauverschiebung oder Rotverschiebung, relativ zu den Anregungs- und Emissionsspektralbereichen und dem CIE-Wert von (Y0,99Ce0,01)2CaF4S2 auf. Grob gesagt, wird von der Substitution, die zu der Elongation der Ce-S-Bindungen führt, wie z.B. der La3+-Substitution, erwartet, die Emissionswellenlänge zu verringern, d.h. Blauverschiebung. Im Gegensatz dazu, wird von der Substitution, die zu einer Kontraktion der Ce-S-Bindungen führt, erwartet, die Emissionswellenlänge zu vergrößern, d.h. Rotverschiebung. Dadurch werden die Kristallfeldstärken, die durch die Ce3+-Ionen gemessen werden, durch die verschiedenen trivalenten Metallionen der Seltenen Erden verändert, und die Emissionswellenlängen werden daher blauverschoben oder rotverschoben.
  • Allerdings waren die Anregungs- und Emissionsbereiche und die CIE-Werte durch die verschiedenen Elemente der Seltenen Erden von A relativ unverändert. Es kann so verstanden werden, dass die Größen dieser trivalenten Metallionen der Seltenen Erden lediglich eine subtile Änderung für das Fluorosulfidgitter sind. Daher werden das tetragonale Aspektverhältnis und die Gittergröße der Fluorosulfiden schwach beeinflusst. Tabelle 1: Spektroskopische Parameter von (A0,99Ce0,01)2CaF4S2, wobei A Y, La, Sm, Eu, Gd oder Tb ist.
    Beispiele 9-fach Koordination Atomradius (Å) Hauptanregungsbereich (Peak) (nm) Hauptemissionsbereich (Peak) (nm) CIE (x, y)
    1 (Y0.99Ce0.01)2CaF4S2 1,075 250-547 500-800 (0,53; 0,46)
    (300; 337; 470) (590)
    2 (La0.99Ce0.01)2CaF4S2 1,216 250-542 500-800 (0,50; 0,48)
    (338; 468) (588)
    3 (Sm0.99Ce0.01)2CaF4S 2 1,132 250-542 500-800 (0,53; 0,45)
    (341; 470) (589)
    4 (Eu0.99Ce0.01)2CaF4S2 1,12 250-545 503-800 (0,53; 0,45)
    (335; 471) (591, 623)
    5 (Gd0.99Ce0.01)2CaF4S2) 1,107 250-545 512-800 (0,54; 0,47)
    (335; 472) (595)
    6 (Tb0.99Ce0.01)2CaF4S2 1,095 250-545 503-800 (0,53; 0,45)
    (335; 471) (548, 591)
  • Ausführungsform 2: Substitution von Ca2+ durch Sr2+ in (A1-xCex)2CaSrF4S2
  • Als nächstes wurde Ca2+ in (A1-xCex)2CaSrF4S2 (y=0 und z=0) allmählich durch Sr2+ ersetzt bzw. substituiert bis (A1-xCex)2CaSrF4S2 (y=0 und z=0) erzielt wurde. Beispiele wurden gemäß des zuvor beschriebenen Herstellungsverfahrens, inklusive, dass A Y oder La war, x war 0,01 und z=0, 0,1, 0,5, 1 hergestellt.
  • Die XRD-Spektren der Beispiele 1, 9, 2 und 10 sind in den 2A-2C gezeigt. Die hergestellten Fluorosulfide und deren Fotolumineszenzeigenschaften sind in Tabelle 2 aufgelistet.
  • Aus den 1A-1D kann man erkennen, dass die Kristallphase von (A1-xCex)2CaSrF4S2 durch die Substitution von Ca2+ durch Sr2+ für sowohl die Y-Reihe (Beispiele 1 und 9) als auch für La-Reihe (Beispiele 2 und 10) unverändert war. Die Kristallphasen dieser Beispiele bleiben gleich wie bei Y2CaF4S2 mit tetragonaler Struktur. Allerdings bewegen sich die XRD-Peaks an Stellen mit geringerem Winkel, nachdem Ca2+ durch Sr2+ substituiert wurde. Die Ergebnisse in den 1A-1D stimmen mit der Ionengrößenveränderung überein, wobei die Atomradien für 8-fach Koordination von Ca2+ und Sr2+ entsprechend 1,12 Å und 1,26 Å sind. Das heißt, das Gittervolumen wurde durch die Sr2+-Substitution erweitert.
  • Aus den 2A-2C kann man erkennen, dass sowohl Anregungs- als auch Emissionsspektrum blauverschoben wurden. Das Blauverschiebungsphänomen kann man auch ferner in Tabelle 2 für sowohl die Y-Reihe (Beispiele 1 und 7-9), als auch die La-Reihe (Beispiele 2 und 10) sehen. Sie zeigt an, dass die zuvor genannte Substitution zu einer Größenerweiterung bzw. Größenzunahme des Gittervolumens führt, welche durch die größere Sr2+-Ionengröße induziert bzw. verursacht wird. In derartigen Fällen, erfahren die Ce3+-Ionen eine weichere Kristallfeldaufteilung aufgrund der Expansion der Gittergröße und das unterst-liegende 5d Niveau wird angehoben. Daher ist es verständlich, dass die blauverschobenen Anregungs- und Emissionsspektren beobachtet wurden.
  • Aus der Tabelle 2 sieht man, dass der x-Wert von CIE abnimmt, wenn der z-Wert in (A1-xCex)2Ca1-zSrzF4S2 steigt, und der y-Wert steigt, wenn der z-Wert steigt, da sich die Farbe des emittierten Lichts von Orange nach Gelb-Grün bewegt. Tabelle 2: Spektroskopische Parameter von (A0,99Ce0,01)2Ca1-zSRzF4S2, wobei z=0; 0,1; 0,5; 1 für die Y-Reihe ist und z=0 für die La-Reihe ist.
    Beispiele HauptanregungsBereich (Peak) (nm) Haupt-Emissionsbereich (Peak) (nm) CIE(x; y)
    1 (Y0,99Ce0,01)2CaF4S2 250-547 500-800 (0,53; 0,46)
    (300; 337; 470) (590)
    7 (Y0,99Ce0,01)2Ca0,9Sr0,1F4S2) 250-545 503-800 (0,52; 0,46)
    (300; 335; 467) (585)
    8 (Y0,99Ce0,01)2Ca0,5Sr0,5F4S2 250-540 500-800 (0,45 ; 0,47)
    (331; 461) (576)
    9 (Y0,99Ce0,01)SrF4S2 250-543 480-800 (0,42; 0,53)
    (299; 335; 441) (553)
    2 (La0,99Ce0,01)2CaF4S2 250-542 500-800 (0,50; 0,48)
    (338; 468) (588)
    10 (La0,99Ce0,01)2SrF4S2 250-539 475-800 (0,40; 0,49)
    (289; 330; 439) (550)
  • Ausführungsform 3: Substitution des ersten trivalenten Metallions der Seltenen Erden durch ein zweites trivalentes Metallion der Seltenen Erden in (A1-xCex)2CaF4S2
  • 10 Mol% des ersten trivalenten Metallions der Seltenen Erden, A, in (A1-xCex)2CaF4S2 (y=0 und z=0), wurde durch ein zweites Metallion der Seltenen Erden, B, substituiert, um (A0,9-xCexB0,1)2CaF4S2 zu erzielen (y=0,1 und z=0). Das erste trivalente Metall der Seltenen Erden A in (A0,9-xCexB0,1)2CaF4S2 (y=0,1 und z=0) war Y, und das zweite trivalente Metall der Seltenen Erden B war Sc, La, Sm, Eu, Gd oder Tb, wenn x gleich 0,01 war, und wurden durch das zuvor beschriebene Herstellungsverfahren hergestellt. Die erstellten Beispiele und Fotolumineszenzeigenschaften sind in Tabelle 3 aufgelistet.
  • Ähnlich wie die Ergebnisse von Ausführungsform 1 (Tabelle 1 oben), waren der Trend der Anregungsspektren, der Emissionsspektren und der CIE-Werte, die gleichen wie die partielle Substitution des ersten Metallions der Seltenen Erden A, durch das zweite trivalente Metallion der Seltenen Erden B. Tabelle 3: Fotolumineszenzeigenschaften von (Y0,89Ce0,01B0,1)2CaF4S2, wobei B gleich Sc, La, Sm, Eu, Gd oder Tb war.
    Beispiele Hauptanregungsbereich (Peak) (nm) HauptEmissionsbereich (Peak) (nm) CIE(x; y)
    11 (Y0,89Ce0,01Sc0,1)2CaF4S2 250-537 520-800 (0,50; 0,48)
    (333; 466) (588)
    12 (Y0,89Ce0,01La0,1)2CaF4S2 250-538 520-800 (0,51; 0,48)
    (335; 467) (588)
    13 (Y0,89Ce0,01Sm0,1)2CaF4S2 250-540 510-800 (0,52; 0,48)
    (349; 467) (589)
    14 (Y0,89Ce0,01Eu0,1)2CaF4S2 250-539 514-800 (0,52; 0,45)
    (357; 468) (589; 624)
    15 (Y0,89Ce0,01Gd0,1)2CaF4S2 250-545 511-800 (0,53; 0,47)
    (358; 468) (594)
    16 (Y0,89Ce0,01Tb0,1)2CaF4S2 250-539 520-800 (0,52; 0,46)
    (356; 468) (548; 589)
  • Ausführungsform 4: Substitution des Ca2+-Ions durch das Sr2+-Ion in (A1-x-yCexBy)2CaF4S2
  • Das Ca2+ in (Y0,89Ce0,01B0,1)2CaF4S2 von Ausführungsform 3 (Beispiele 11-16) wurde weiter durch Sr2+ substituiert, um den Gittergrößenausdehnungseffekt zu verifizieren. Die Ergebnisse sind in Tabelle 4 gezeigt und die Anregungs- und Emissionsspektren der Beispiele 12, 18 und 23 sind in den 3A-3C gezeigt.
  • Aus Tabelle 4 und den 3A-3C kann man sehen, dass die Blauverschiebung von sowohl Anregungs- als auch Emissionsspektrum nicht offensichtlich war und die CIE-Werte auch ungefähr die gleichen waren. Dieses Ergebnis unterscheidet sich von Ausführungsform 2 oben. Im Vergleich der Ausführungsformen 1 und 2 kann man erkennen, dass die divalenten Kationen größeren Einfluss, als die trivalenten Kationen auf die Gittergröße der Fluorosulfide und damit auf die Emissionsenergie haben. Daher bedeutet das Ergebnis dieser Ausführungsform 4, dass die Emissionsenergie nicht einfach durch das Kristallfeld bestimmt wird, sondern ebenso durch einige andere Faktoren, wie z.B. den kovalent-ionischen Prozentsatz der Ce-S Koordinationsbindungen. Tabelle 4: Fotolumineszenzeigenschaften von (Y0,89Ce0,01B0,1)2Ca1-zSrzF4S2 wobei B gleich Sc, La, Sm, Eu, Gd oder Tb war, z gleich 0 und 0,1 für die Sc, Sm, Eu, Gd, und Tb-Reihen ist, und z 0, 0,1 und 1 für die La-Reihen ist.
    Beispiele Hauptanregungsbereich (Peak) (nm) HauptEmissionsbereich (Peak) (nm) CIE(x; y)
    11 (Y0,89Ce0.01Sc0.1)2CaF4S2 250-537 520-800 (0,50; 0,48)
    (333; 466) (588)
    17 (Y0,89Ce0.01Sc0.1)2Ca0.9Sr0.1F4S2 250-545 503-800 (0,52; 0,46)
    (300; 334;465) (585)
    12 (Y0.89Ce0.01La0,1)2CaF4S2 250-538 520-800 (0,51; 0,48)
    (335; 467) (588)
    18 (Y0.89Ce0.01La0.1)2Ca0.9Sr0.1F4S2 250-546 505-800 (0,52; 0,45)
    (298; 331; 467) (585)
    23 (Y0.89Ce0.01La0.1)2SrF4S2 250-538 520-800 (0,52; 0,48)
    (365; 473) (594)
    13 (Y0.89Ce0.01Sm0.1)2CaF4S2 250-540 510-800 (0,52; 0,48)
    (349; 467) (589)
    19 (Y0.89Ce0.01Sm0.1)2Ca0.9Sr0.1F4S2 250-546 501-800 (0,53; 0,45)
    (300; 335; 468) (587)
    14 (Y0.89Ce0.01Eu0.1)2CaF4S2 250-539 514-800 (0,52; 0,45)
    (357; 468) (589; 624)
    20 (Y0.89Ce0.01Eu0,1)2Ca0.9Sr0.1F4S2 250-546 509-800 (0,51; 0,44)
    (299; 332; 466) (586; 623)
    15 (Y0.89Ce0.01Gd0.1)2CaF4S2 250-545 511-800 (0,53; 0,47)
    (358; 468) (594)
    21 (Y0.89Ce0.01Gd0.1)2Ca0.9Sr0.1F4S2 250-527 506-800 (0,50; 0,49)
    (275; 327; 467) (587)
    16 (Y0,89Ce0.01Tb0,1)2CaF4S2 250-539 520-800 (0,52; 0,46)
    (356; 468) (548; 589)
    22 (Y0.89Ce0.01Tb0.1)2Ca0.9Sr0.1F4S2 250-527 507-800 (0,51; 0,48)
    (283; 331; 463) (547; 588)
  • Ausführungsform 5: Temperaturabhängige Fotolumineszenzintensität für (Y0,99Ce0,01)2CaF4S2 und (Y0,99Ce0,01)2SrF4S2
  • In dieser Ausführungsform 5 wurde das temperaturabhängige Verhalten der Fotolumineszenz-(PL)-Intensität von sowohl (Y0,99Ce0,01)2CaF4S2 als auch (Y0,99Ce0,01)2SrF4S2 untersucht. 4 zeigt die temperaturabhängige Fotolumineszenzintensität für herkömmliches CaS:Ce3+, (Y0,99Ce0,01)2CaF4S2 und (Y0,99Ce0,01)2SrF4S2 im Bereich von 25°C - 225°C.
  • In 4 wurde in allen Proben gefunden, dass die PL-Intensitäten vermindert waren im Vergleich zu dem der gleichen Probe, die bei Raumtemperatur beobachtet wurden, was man auf der Grundlage von steigender thermischer Energie erklären könnte, die verwendet wird, um die Elektronen im niedrigsten Zustand des Leitungsbandes anzuregen und dann zu ionisieren. Überraschenderweise, war die thermische Stabilität der Fluorosulfide vergleichbar mit oder sogar stabiler als, diejenige der binären Sulfide, CaS:Ce3+. Die Einführung von F-Atomen in das Sulfid-Wirtsgitter kann das Ausmaß des thermischen Lumineszenz-Quenching als ein Ergebnis des weicheren Phononen-Modus verringern.
  • In 4 werden die Werte von ΔE für (Y0,99Ce0,01)2CaF4S2 und (Y0,99Ce0,01)2SrF4S2 auf 0,3741 bzw. 0,3829 V geschätzt. Die ΔE repräsentieren die thermische Energie, welche die Elektronen auf die 5d-Zustände der Ce3+-Ionen anregt. Man sieht, dass (Y0,99Ce0,01)2CaF4S2 das Merkmal höherer Aktivierungsenergie zeigt, als (Y0,99Ce0,01)2SrF4S2, da eine weichere Kristallfeldstärke durch Ce3+-Ionen in (Y0,99Ce0,01)2SrF4S2 wahrgenommen wird.
  • Ausführungsform 6: pc-WLED-Anwendung von (Y0,99Ce0,01)2Ca1-zSrzF4S2
  • Um das Potential von (Y0,99Ce0,01)2Ca1-zSrzF4S2 für pc-WLED-Anwendung zu demonstrieren, wurden zwei Leuchtstoffe mit z-Werten von 0,55 und 0,65 verwendet, um pc-WLEDs mit einem InGaN-LED-Chip herzustellen, der blaues Licht von 460nm emittiert. Das typische sichtbare Fotolumineszenzspektrum dieses WLEDs wurde in 5(a) gezeigt und die Veränderung in der CIE-Chromatizität-Koordinaten als Funktion der Brechung des verwendeten Leuchtstoffs wurde in 5(b) als eine Einfügung bzw. ein Inset gezeigt. In 5 wurde der Leuchtstoff (Y0,99Ce0,01)2Ca0,65Sr0,55F4S2 als YCSFS-0,55 notiert und der andere Leuchtstoff (Y0,99Ce0,01)2Ca0,55Sr0,65F4S2 wurde als YCSFS-0,65 notiert. Der gesamte sichtbare Spektralbereich in 5 kann erhalten werden, wenn durch den blauen Chip angeregt wird und der Farbrenderingindex (CRI) Ra dieser dichromatischen px-WLEDs auf ca. 74 bis 85 bestimmt wurde.
  • Die Commission International de l'Eclairage (CIE)- Chromatizität-Koordinaten, die korrelierende Farbtemperatur (CCT) der pc-WLEDs und die entsprechende Leuchtdichte-Effizienz sind in Tabelle 5 gezeigt. In Tabelle 5 hat der Leuchtstoff im Vergleich mit den pc-WLEDs, die herkömmlichen YAG:Ce3+verwenden, Ra-Werte im Bereich von 70 bis 75 und einer Farbtemperatur von 6900K. Dadurch besitzt das dichromatische weiße Licht in dieser Arbeit zwei bessere Eigenschaften: höheres Ra und geringere Farbtemperatur. Tabelle 5: Optische und Chromatizitäsparameter für pc-WLEDs mit YCSFS-0,55 und YCSFS-0,65 als die Übertragungsleuchtstoffschicht.
    Probe Dicke (nm) CIE(x; y) CCT (k) CRI (Ra) Leuchtdichte (Im/W)
    YCSFS -0,55 1 (0,31; 0,21) 6;962 83,5 19,8
    2 (0,33; 0,33) 5;320 84,9 16,7
    3 (0,37; 0,37) 4;201 81,6 14,2
    YCSFS -0,65 1 (0,30; 0,26) 8;772 83,9 29,18
    2 (0,32; 0,31) 5;812 85 27
    3 (0,41; 0,41) 3;511 74 17,43
  • Gemäß der obigen Offenbarung, kann der neue Gelblicht emittierende Leuchtstoff, der auf Ce-dotiertem Fluorosulfid basiert, als ein potentieller Kandidat für eine Weißlicht-LED dienen, insbesondere für die Erzeugung von warmem Weißlicht. Außerdem kann nur 1 Mol% Substitution von Ce3+ breite Anregungs- und Emissionsspektren erzeugen. Daher kann dieses Ce3+-dotierte Fluorosulfidsystem UV-zu-Blaulicht als die Anregungsquelle verwenden, um die Anforderung für pc-WLED-Anwendungen zu erfüllen.

Claims (8)

  1. Gelblicht emittierender Leuchtstoff eines Fluorosulfids mit der chemischen Formel (A1-x-yCexBy)2Ca1-zSrzF4S2 und einer tetragonal-kristallinen Phase, wobei A und B verschiedene Metalle der Seltenen Erden sind, und das Metall der Seltenen Erden Sc, Y, oder ein Lanthanoid aus La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, oder Lu ist, und die Werte x, y, z jeweils 0<x<1, 0≦y<1, und 0≦z≦1 sind.
  2. Fluorosulfid gemäß Anspruch 1, wobei die chemische Formel (A1-xCex)2Ca1-zSrzF4S2 ist, wenn y gleich Null ist.
  3. Fluorosulfid gemäß Anspruch 2, wobei die chemische Formel (A1-xCex)2CaF4S2 ist, wenn z gleich Null ist.
  4. Fluorosulfid gemäß Anspruch 2, wobei die chemische Formel (A1-xCex)2SrF4S2 ist, wenn z gleich 1 ist.
  5. Fluorosulfid gemäß Anspruch 1, wobei die chemische Formel (A1-x-yCexBy)2CaF4S2 ist, wenn z gleich Null ist.
  6. Fluorosulfid gemäß Anspruch 1, wobei die chemische Formel (A1-x-yCexBy)2SrF4S2 ist, wenn z gleich 1 ist.
  7. Weißlicht emittierende Diode, umfassend: einen Blaulicht emittierenden Leuchtstoff; und der Gelblicht emittierenden Leuchtstoff gemäß einem der Ansprüche 1 bis 6.
  8. Verfahren zur Herstellung des Fluorosulfids gemäß Anspruch 1, umfassend: Einwaage von stöchiometrischen Mengen mindestens eines Sulfids und mindestens eines Fluorids von Ce, mindestens eines Sulfids und/oder Fluorids eines Metalls der seltenen Erden Sc, Y oder eines Lanthanoids aus La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, oder Lu, Ca und/oder Sr gemäß der erwünschten chemischen Formel in einem der Ansprüche 1 bis 6; gleichmäßiges Mischen des mindestens einen Sulfids und des mindestens einen Fluorids durch Vermahlen, um eine Mischung zu bilden; und Kalzinieren der Mischung unter einer Vakuumumgebung bei einer Temperatur von 900 - 1100 °C bis eine reine kristalline Phase erzielt wird.
DE102011014958.9A 2010-12-27 2011-03-24 Gelblicht emittierende Fluorosulfidleuchtstoffe und deren Herstellungsverfahren, sowie eine diesen Leuchtstoff umfassende Weißlicht emittierende Diode Expired - Fee Related DE102011014958B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/978,761 US8703015B2 (en) 2010-12-27 2010-12-27 Yellow fluorosulfide phosphors for light-emitting diode and preparation method thereof
US12/978,761 2010-12-27

Publications (2)

Publication Number Publication Date
DE102011014958A1 DE102011014958A1 (de) 2012-06-28
DE102011014958B4 true DE102011014958B4 (de) 2020-04-30

Family

ID=46315520

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102011014958.9A Expired - Fee Related DE102011014958B4 (de) 2010-12-27 2011-03-24 Gelblicht emittierende Fluorosulfidleuchtstoffe und deren Herstellungsverfahren, sowie eine diesen Leuchtstoff umfassende Weißlicht emittierende Diode

Country Status (6)

Country Link
US (1) US8703015B2 (de)
JP (1) JP5360122B2 (de)
KR (1) KR101251609B1 (de)
CN (1) CN102559187B (de)
DE (1) DE102011014958B4 (de)
TW (1) TWI424048B (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974695B2 (en) * 2010-11-11 2015-03-10 Auterra, Inc. Phosphors of rare earth and transition metal doped Ca1+xSr1-xGayIn2-ySzSe3-zF2; manufacturing and applications
US10450516B2 (en) 2016-03-08 2019-10-22 Auterra, Inc. Catalytic caustic desulfonylation
CN106544026B (zh) * 2016-10-18 2019-01-01 西北工业大学 一种碱金属-稀土氟硫化物NaLaF2S及其合成方法
CN109424940B (zh) * 2017-07-04 2021-05-04 中强光电股份有限公司 光波长转换模块以及照明模块

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4855603A (en) 1985-10-10 1989-08-08 Quantex Corporation Photoluminescent materials for radiography
JPH0824069B2 (ja) 1987-05-27 1996-03-06 富士通株式会社 薄膜el素子の製造方法
FR2706476B1 (fr) 1993-06-09 1995-09-15 Rhone Poulenc Chimie Procédé de traitement de pigments à base de sulfures de terres, rares, nouveaux pigments ainsi obtenus et leurs utilisations.
JPH1088128A (ja) 1996-07-24 1998-04-07 Kasei Optonix Co Ltd 希土類酸硫化物蛍光体及びこれを用いたx線検出器
DE69720448T2 (de) 1996-06-21 2003-12-24 Kasei Optonix Seltenerdesulfatephosphor und röntgendetektor damit
FR2794450B1 (fr) 1999-06-01 2002-08-16 Rhodia Chimie Sa Nouveaux fluorosulfures ou oxyfluorosulfures de terres rares, leurs procedes de preparation et leur utilisation comme pigment colorant
JP2004339475A (ja) 2003-02-03 2004-12-02 Merck Patent Gmbh フッ化物、オキシフッ化物、フルオロ硫化物および/またはオキシフルオロ硫化物に基づく真珠光沢顔料
KR100887379B1 (ko) 2006-12-14 2009-03-05 한국에너지기술연구원 적색 발광성 형광체, 이의 제조 방법과 온상 및 온실용다층 광-변환 농업용 필름
CN101126025B (zh) 2007-09-26 2010-10-13 罗维鸿 红光荧光粉及多层光转换膜
KR100818601B1 (ko) 2007-11-23 2008-04-02 (주)율진이엔지 적색형광체, 이의 제조방법 및 이를 포함하는 백색발광소자
TWI390014B (zh) 2009-01-21 2013-03-21 Warm white light emitting diodes and their lithium luminescent powder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Rare earth fluorosulfides.... In: J. Alloys comp., 2001, 223 -230. *

Also Published As

Publication number Publication date
CN102559187B (zh) 2013-10-16
KR20120074176A (ko) 2012-07-05
JP2012136683A (ja) 2012-07-19
JP5360122B2 (ja) 2013-12-04
US20120161075A1 (en) 2012-06-28
TW201226531A (en) 2012-07-01
US8703015B2 (en) 2014-04-22
TWI424048B (zh) 2014-01-21
CN102559187A (zh) 2012-07-11
DE102011014958A1 (de) 2012-06-28
KR101251609B1 (ko) 2013-04-08

Similar Documents

Publication Publication Date Title
DE102007035592B4 (de) Temperaturstabiler Leuchtstoff, Verwendung eines Leuchtstoffs und Verfahren zur Herstellung eines Leuchtstoffs
EP2467446B1 (de) Konversions-led mit hoher farbwiedergabe
DE60312733T2 (de) Beleuchtungsvorrichtung mit strahlungsquelle und fluoreszenzmaterial
DE112007001638B9 (de) Leuchtstoff aus der Klasse der Nitridosilikate, Verfahren zur Herstellung eines Leuchtstoff aus der Klasse der Nitridosilikate und Verwendung eines derartigen Leuchtstoffs in einer Lichtquelle
DE102006016548B9 (de) Blau bis Gelb-Orange emittierender Leuchtstoff und Lichtquelle mit derartigem Leuchtstoff
DE102009020569B4 (de) Leuchtstoffe auf Basis Eu2+-(co-) dotierter Yttrium-Aluminium-Granat-Kristalle und deren Verwendung
DE112007001645T5 (de) Phosphor, Verfahren zu dessen Herstellung und Licht emittierender Apparat
WO2010020495A1 (de) Alpha-sialon-leuchtstoff
DE102005005263A1 (de) Gelb emittierender Leuchtstoff und Lichtquelle mit derartigem Leuchtstoff
DE112017002922B4 (de) Fluoreszierendes pulver, herstellungsverfahren dafür und leuchtende vorrichtung mit diesem fluoreszierenden pulver
EP1670876B1 (de) Hocheffizienter leuchtstoff
DE102011115341A1 (de) Gelber Phosphor mit Oxyapatitstruktur, Herstellungsverfahren und weißes Licht-emittierende Diode davon
DE112007001712T5 (de) Siliciumhaltiger Leuchtstoff für LED, seine Herstellung und lichtemittierende Vorrichtungen unter Verwendung desselben
DE102009059798A1 (de) Mittel zur Verbesserung der Stabilität gegenüber der auftretenden Strahlenbelastung sowie Resistenz gegenüber dem Einfluß von Luftfeuchtigkeit bei Strontiumoxyorthosilikat-Leuchtstoffen
DE102011014958B4 (de) Gelblicht emittierende Fluorosulfidleuchtstoffe und deren Herstellungsverfahren, sowie eine diesen Leuchtstoff umfassende Weißlicht emittierende Diode
DE102008017039A1 (de) Leuchtstoff
DE102004060707A1 (de) Rotes Fluoreszenz-Material, Weißlicht emittierende Diode, die rotes Fluoreszenz-Material verwendet und Beleuchtungssystem, das eine Weißlicht emittierende Diode verwendet
DE10300622B4 (de) Fluoreszenzpulver zum Herstellen von Weiß-Licht-Emittierenden-Dioden großer Helligkeit und Weiß-Licht-Emittierende Vorrichtung
DE102004060708B4 (de) Rotes Fluoreszenzmaterial und Weißlicht emittierende Dioden, die rotes Fluoreszenzmaterial verwenden
DE112014006040B4 (de) Leuchtstoff und lichtemittierende Vorrichtung
DE102011113498A1 (de) Leuchtstoffmischung, optoelektronisches Bauelement mit einer Leuchtstoffmischung und Straßenlaterne mit einer Leuchtstoffmischung
DE102007060199A1 (de) Leuchtstoff und Beleuchtungssystem mit derartigem Leuchtstoff
WO2019238496A1 (de) Gelber leuchtstoff und beleuchtungsvorrichtung
DE102011016811B4 (de) Roter und grüner Fluorsulfidleuchtstoff, Herstellungsverfahren davon sowie Verwendung des Leuchtstoffes in einer Weißlicht emittierenden Diode
DE102017121339B4 (de) Leuchtstoff und Konversions-LED

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee