DE102007028600B4 - Elektromagnetische Stellvorrichtung - Google Patents

Elektromagnetische Stellvorrichtung Download PDF

Info

Publication number
DE102007028600B4
DE102007028600B4 DE102007028600A DE102007028600A DE102007028600B4 DE 102007028600 B4 DE102007028600 B4 DE 102007028600B4 DE 102007028600 A DE102007028600 A DE 102007028600A DE 102007028600 A DE102007028600 A DE 102007028600A DE 102007028600 B4 DE102007028600 B4 DE 102007028600B4
Authority
DE
Germany
Prior art keywords
units
actuator
unit
engagement
ram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102007028600A
Other languages
English (en)
Other versions
DE102007028600A1 (de
Inventor
Thomas 88605 Golz
Thomas 78606 Schiepp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETO Magnetic GmbH
Original Assignee
ETO Magnetic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102007028600A priority Critical patent/DE102007028600B4/de
Application filed by ETO Magnetic GmbH filed Critical ETO Magnetic GmbH
Priority to EP08773520A priority patent/EP2158596B1/de
Priority to JP2010512599A priority patent/JP5307803B2/ja
Priority to CN201410197792.6A priority patent/CN103971877B/zh
Priority to DE202008008142U priority patent/DE202008008142U1/de
Priority to US12/665,262 priority patent/US8176887B2/en
Priority to PCT/EP2008/004935 priority patent/WO2008155119A1/de
Priority to CN200880021134.4A priority patent/CN101689419B/zh
Publication of DE102007028600A1 publication Critical patent/DE102007028600A1/de
Application granted granted Critical
Publication of DE102007028600B4 publication Critical patent/DE102007028600B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/126Supporting or mounting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0036Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction
    • F01L2013/0052Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque the valves being driven by two or more cams with different shape, size or timing or a single cam profiled in axial and radial direction with cams provided on an axially slidable sleeve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2301/00Using particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/01Absolute values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2820/00Details on specific features characterising valve gear arrangements
    • F01L2820/03Auxiliary actuators
    • F01L2820/031Electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • H01F7/1646Armatures or stationary parts of magnetic circuit having permanent magnet

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnets (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

Elektromagnetische Stellvorrichtung mit einer Mehrzahl von elektromagnetischen Aktoreneinheiten (10, 12, 14), die zum Ausüben einer Stellkraft auf eine entsprechende Mehrzahl von lang gestreckten, achsparallel zueinander gelagerten Stößeleinheiten (22, 24, 26) selektiv ansteuerbar sind, dadurch gekennzeichnet, dass die Aktoreneinheiten (10, 12, 14) entlang ihrer Stellrichtung zueinander achsparallel in einem gemeinsamen Gehäuse (18, 20; 78, 82) vorgesehen sind, jeweils an einem einer jeweils zugeordneten der Stößeleinheiten (22, 24, 26) zugewandten Eingriffende eine zumindest abschnittsweise plane, axial in der Stellrichtung bewegbare Eingriffsfläche ausbilden und eine eingriffsseitige Stirnfläche (34, 36, 38) einer jeweiligen der Stößeleinheiten (22, 24, 26) mit der Eingriffsfläche (28, 30, 32) zusammenwirkt, dass mindestens eine der Mehrzahl der Stößeleinheiten (22, 24, 26) mit ihrer eingriffsseitigen Stirnfläche (34, 36, 38) exzentrisch und/oder mit lediglich einer Teilfläche auf der Eingriffsfläche (28, 30, 32) der zugehörigen Aktoreneinheit (10, 12, 14) aufsitzt, insbesondere darauf magnetisch haftet, und wobei zumindest eine der Aktoreneinheiten (10, 12,...

Description

  • Die vorliegende Erfindung betrifft eine elektromagnetische Stellvorrichtung nach dem Oberbegriff des Patentanspruchs 1. Derartige Vorrichtungen sind aus dem Stand der Technik allgemein bekannt und werden für vielfältige Stellaufgaben, etwa im Zusammenhang mit Verbrennungsmotoren, eingesetzt.
  • Aufgrund begrenzten Einbauraums an einem Einsatzort besteht häufig die Notwendigkeit, mit einer Mehrzahl von (typischerweise selektiv, d. h. unabhängig voneinander ansteuerbaren) Stößeleinheiten für eine jeweilige Stellaufgabe eine gattungsgemäße Stellvorrichtung hinreichend kompakt zu realisieren, so dass einerseits eine hinreichende elektromagnetische Funktionalität gewährleistet ist (etwa im Hinblick auf notwendigen Stellhub der Stößeleinheiten sowie Reaktions- bzw. Schaltzeit), andererseits keine unerwünschte gegenseitige Beeinflussung – mechanisch oder elektromagnetisch – vorliegt.
  • Aus dem Stand der Technik ist es daher bekannt, Stellaufgaben, welche eine Mehrzahl von Aktoreinheiten benötigen, mit Hilfe einzelner, unabhängig voneinander befestigter bzw. vorgesehener Aktoreneinheiten zu realisieren, wobei dies zu erhöhtem Konfigurations- bzw. Montageaufwand führt und üblicherweise die Kompaktheit der Gesamtanordnung nur begrenzt ist.
  • Dieses Problem wird dadurch verschärft, das häufig die vorgesehene, Eingriff einer Mehrzahl von Stößeleinheiten erfordernde Einsatzumgebung vorgibt, dass die Stößeleinheiten einander eng benachbart und häufig lediglich einen vorbestimmten Maximalabstand voneinander beabstandet sein dürfen; dies ist häufig mit einzelnen, individuell befestigten Aktoreneinheiten nicht oder nur mit Einschränkungen lösbar.
  • Ein Beispiel für eine bekannte Aktoreneinheit zeigt etwa DE 102 40 774 A1 der Anmelderin.
  • Aus der DE 196 11 547 A1 ist eine elektromagnetische Stellvorrichtung nach dem Oberbegriff des Hauptanspruchs bekannt. Ferner ist aus der DE 198 19 401 C1 eine mit Hilfe von elektromagnetischen Stellvorrichtungen realisierte Vorrichtung zum Betätigen von Gaswechselventilen bekannt, bei welcher Auslassventile von elektromagnetischen Aktuatoren über Hebel betätigt werden.
  • Aufgabe der vorliegenden Erfindung ist es daher, eine elektromagnetische Stellvorrichtung mit einer Mehrzahl von elektromagnetischen Aktoreneinheiten nach dem Oberbegriff des Hauptanspruchs zu schaffen, welche insbesondere auch an Einsatzorten mit beschränktem Einbauraum sowie insbesondere unter Einsatzbedingungen günstig verwendbar ist, welche einen begrenzten maximalen Abstand der Stößeleinheiten voneinander vorgeben.
  • Die Aufgabe wird durch die elektromagnetische Stellvorrichtung mit den Merkmalen des Hauptanspruchs sowie durch die Verwendung mit den Merkmalen des unabhängigen Verwendungsanspruchs 11 gelöst; vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen beschrieben.
  • In erfindungsgemäß vorteilhafter Weise ist zunächst die Mehrzahl von Aktoreneinheiten (wobei eine besonders bevorzugte Realisierungsform der Erfindung mindestens drei Aktoreneinheiten mit entsprechend drei Stößeleinheiten vorsieht) in einem gemeinsamen, bevorzugt zylindrischen und/oder hohlzylindrischen Gehäuse vorgesehen. Erfindungsgemäß erfolgt der Antrieb der langgestreckten (selbst bevorzugt zylindrischen, weiter bevorzugt aus einem Metallmaterial realisierten) Stößeleinheiten dadurch, dass die Stößeleinheiten auf einer Eingriffsfläche einer jeweiligen zugeordneten Aktoreneinheit aufsitzen (bevorzugt dort mittels Magnetwirkung haften), wobei die Eingriffsfläche typischerweise das distale Ende einer Ankereinheit der betreffenden Aktoreneinheit bildet.
  • Erfindungsgemäß lässt sich nunmehr die Aufgabe einer möglichst kompakten Anordnung der Stößeleinheiten nebeneinander dadurch lösen, dass – bei parallel zueinander angetriebenen Eingriffsflächen benachbarter Aktoreneinheiten – jeweilige darauf aufsitzende Stößeleinheiten so exzentrisch und/oder mit ihren eingriffsseitigen Stirnflächen mit den Eingriffsflächen zusammenwirken, dass eine möglichst kompakte Anordnung der achsparallel zueinander geführten Stößeleinheiten erfolgt, mithin – entsprechend vorgegebenen Stell- bzw. Einsatzbedingungen – minimale Achsenabstände der Stößeleinheiten zueinander realisiert werden können.
  • Im Rahmen einer bevorzugten Ausführungsform der Erfindung ist dabei günstig vorgesehen, dass das die Aktoreneinheiten aufnehmende, gemeinsame Gehäuse stirnseitig mit einem Gehäuse-Führungsabschnitt (Führungsrohr) zusammenwirkt, welcher – typischerweise in Form parallel zueinander verlaufender Durchgangsbohrungen – Führungen für die Mehrzahl der Stößeleinheiten anbietet.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung ist mindestens eine der Aktoreneinheiten platzsparend, gleichzeitig elektromagnetisch optimiert mittels einer flussleitenden Aktormanteleinheit realisiert, welche bügelförmig ausgebildet ist. Auf diese Weise lässt sich die Packungsdichte der Mehrzahl von Aktoreneinheiten im gemeinsamen Gehäuse weiter erhöhen, insbesondere dadurch, dass die Aktoreneinheiten so angeordnet sind, dass jeweilige Aktorenmanteleinheiten benachbarter Aktoren einander nicht berühren.
  • Im Rahmen bevorzugter Weiterbildungen der Erfindung ist es zudem günstig, die Ankereinheit aus einem verbreiterten Ankerabschnitt zu realisieren, welcher einen Permanentmagneten und mindestens eine darauf vorgesehene Ankerscheibe (bevorzugt zum Ausbilden der Eingriffsfläche) aufweist, wobei dieser verbreiterter Ankerabschnitt dann axial in einen langgestreckten Ankerstößelabschnitt übergeht, welcher in einem (eine entsprechende Führungsbohrung aufweisenden) Kern geführt ist. Der Kern (Kerneinheit) kann dann selbst bevorzugt eine weiterbildungsgemäß vorgesehene Druckfeder, welche gegen den Anker wirkt, aufnehmen und/oder eine Durchgangsbohrung für Fluide (insbesondere Luft) zur weiteren Bewegungsoptimierung mittels Druckausgleich aufweisen. Insbesondere im Hinblick auf eine Schaltzeitoptimierung bei tiefen Temperaturen hat sich die weiterbildungsgemäße Druckfeder als vorteilhaft erwiesen; im eingefahrenen Zustand der Ankereinheit wird diese mittels des Ankerstößelabschnitts vorgespannt. Sobald dann die Spuleneinheit bestromt wird, wird zunächst die Haltekraft des Permanentmagneten am Kern geschwächt. Zusätzlich wirkt die abstoßende Kraft zwischen Spuleneinheit und Permanentmagnet, wodurch sich dann durch die Federkraft und die Abstoßung zwischen Permanentmagnet und Spuleneinheit der Anker verschiebt, sobald das Magnetfeld vollständig aufgebaut ist.
  • Gemäß einer weiteren bevorzugten Ausführungsform ist mindestens eine der (metallischen) Stößeleinheiten mit mehreren Abschnitten in axialer Richtung versehen: ein erster, magnetisch optimierter Abschnitt der Stößeleinheit bildet die eingriffsseitige Stirnfläche aus, d. h. wirkt mit der Eingriffsfläche der Ankereinheit zusammen, während ein gegenüberliegender zweiter Stößelabschnitt, etwa zum Zwecke des Zusammenwirkens mit einem nachgeschalteten Stellaggregat, im Hinblick auf Härte- bzw. Verschleißeigenschaften optimiert ist. Eine derartige Realisierung mehrerer Abschnitte der Stößeleinheit kann dabei entweder durch geeignete Materialbeeinflussung einer einstückigen Einheit erfolgen, alternativ kann im Rahmen bevorzugter Weiterbildungen die Stößeleinheit mittels mehrerer Einzelabschnitte geeignet zusammengefügt werden, wobei diesbezüglich der Offenbarungsgehalt der Deutschen Gebrauchsmusteranmeldung 20 2006 011 905 der Anmelderin als zur vorliegenden Erfindung gehörig in die vorliegende Offenbarung einbezogen gelten soll.
  • Während die vorliegende Erfindung sich insbesondere für eine Realisierung von Stellaufgaben mittels drei zueinander achsparallel und in einer Ebene verlaufenden Stößeleinheiten eignet, vorteilhaft etwa zur Nockenwellenverstellung eines Verbrennungsmotors, ist die vorliegende Erfindung hierauf nicht beschränkt. Vorteilhaft lässt sich insbesondere auch der Abstand zweier achsparallel zueinander geführter Stößeleinheiten im Rahmen der Erfindung optimieren, ebenso wie Realisierungsformen denkbar sind, bei welchen mehr als drei Stößeleinheiten durch jeweils eine zugehörige Aktoreneinheit kompakt und platzoptimiert angetrieben werden.
  • Im Ergebnis entsteht durch die vorliegende Erfindung in überraschend einfacher und eleganter Weise eine Anordnung, welche kompakte Bauform mit Montagefreundlichkeit, hoher Betriebssicherheit und optimalen Schaltzeit- und magnetischen Eigenschaften kombiniert.
  • Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele sowie anhand der Zeichnungen; diese zeigen in:
  • 1: eine Perspektivansicht der elektromagnetischen Stellvorrichtung gemäß einer ersten bevorzugten Ausführungsform der Erfindung (mit abgenommenem Gehäuse);
  • 2: eine Rückansicht/Draufsicht auf die Anordnung gemäß 1;
  • 3: eine Seitenansicht der Anordnung gemäß 1;
  • 4: eine Schnittansicht durch das Ausführungsbeispiel gemäß 1 bis 3 (mit Gehäuse) entlang der Schnittlinie B-B in 5;
  • 5: einen Längsschnitt durch die Vorrichtung gemäß 4 entlang der Schnittlinie A-A;
  • 6: einen Längsschnitt durch eine Aktuatoreinheit gemäß dem Ausführungsbeispiel der 1 bis 5;
  • 7 u. 8: um 90° gedrehte Detailansichten des bügelförmigen Flussleitelements (Aktormanteleinheit) zur Verwendung in der Aktoreneinheit gemäß 6;
  • 9 u. 10: eine Perspektiv- sowie Seitenansicht zum verdeutlichen des Zusammenwirkens zwischen einer Aktoreneinheit (6 bis 8) mit einer exzentrisch sowie teilflächig zusammenwirkenden Stößeleinheit;
  • 11: eine Perspektivansicht der elektromagnetischen Stellvorrichtung gemäß einer zweiten Ausführungsform der vorliegenden Erfindung mit zwei Stößeleinheiten;
  • 12: ein Längsschnitt durch die Vorrichtung gemäß 11;
  • 13 u. 14: Detailansichten zum Verdeutlichen des Zusammenwirkens einer Aktoreneinheit des Ausführungsbeispiels der 11 und 12 mit einer Stößeleinheit;
  • 15 u. 16: Schemadiagramme zum Verdeutlichen des magnetischen Zusammenwirkens der Permanentmagneten zweier benachbarter Aktoreneinheiten im eingefahrenen Zustand (15) bzw. ausgefahrenen Zustand einer Aktoreneinheit (16); und
  • 17: ein Längsschnitt analog 5 zum Verdeutlichen einer weiteren Ausführungsform mit Stößeleinheiten, welche aus mehreren funktionalen Abschnitten bestehen.
  • Die 1 bis 3 zum ersten Ausführungsbeispiel zeigen, wie drei Aktoreneinheiten 10, 12, 14 in einem Gehäuse (gezeigt ist lediglich ein kreisförmiger Gehäusedeckel 16 als Joch) so verteilt angeordnet sind, dass die Aktoreneinheiten 10 bis 14 an einer hohlzylindrischen Innenwand eines Gehäusemantels 18 (in den 1 und 3 nicht gezeigt) anliegen. Auf dem Gehäusedeckel (Joch) 16 sitzt ein eingriffseitiger, flacher Gehäuseabschnitt 20, welcher drei nebeneinander in einer Erstreckungsebene liegende Durchbrüche zum Führen dreier Stößeleinheiten 22, 24, 26 aufweist, welche in der gezeigten Weise achsparallel gelagert und in nachfolgend zu beschreibender Weise durch eine zugeordnete der Aktoreneinheiten 10, 12, 14 selektiv antreibbar sind.
  • Bei einem typischen äußeren Gehäusedurchmesser von 40 mm beträgt dabei ein maximaler Durchmesser d (2) einer der Aktoreneinheiten 10 bis 14 ca. 17 mm; die gezeigte Anordnung kann damit bei angenommenem Durchmesser der langgestreckt-zylindrischen Stößeleinheiten 22, 24, 26 von 5 mm in der in 3 gezeigten Weise einen mittleren Achsenabstand a der Stößeleinheiten von 7 mm realisieren, entsprechend den Einbau- und Stellbedingungen an ein nachgeschaltetes Aggregat, im vorliegenden Ausführungsbeispiel eine Nockenwellensteuerung für einen Verbrennungsmotor, welche durch die drei Stößel 22, 24, 26 betätigbar ist (nicht gezeigt).
  • Die Bildansichten der 4 und 5 (abweichend zu den 1 bzw. 3 ist hier auch der zylindrische Gehäusemantel 18 gezeigt) verdeutlichen insbesondere die geometrischen Verhältnisse im Übergang zwischen den Aktoreneinheiten 10 bis 14 (genauer gesagt den eingriffseitigen Eingriffsflächen 28, 30, 32 der Aktoreneinheiten) und den jeweils darauf gerichteten Stirnflächen 34, 36 bzw. 38: es ergibt sich, vgl. insbesondere die Schnittansicht der 4, dass die Stößeleinheiten 22, 24, 26 jeweils exzentrisch auf den scheibenförmigen Eingriffsflächen 28 bis 32 aufsitzen, wobei die ebenfalls kreisförmigen Stirnflächen 34 bis 38 in der in 4 gezeigten Weise teilweise über einen jeweiligen Außenrand der Eingriffsflächen 28 bis 32 der Aktoreneinheiten hinausragen. Auf diese Weise ist dann die gezeigte Geometrie erreichbar, nämlich eng nebeneinander, gleichwohl unabhängig voneinander bewegbar geführte Stößeleinheiten 22 bis 26 mit minimiertem Abstand zueinander (im Ausführungsbeispiel a = 7 mm, vergleiche 3).
  • Die 6 bis 8 verdeutlichen konstruktive Details der drei Aktoreneinheiten 10 bis 12: ein aus einem langgestreckten, zylindrischen Ankerstößelabschnitt 40 sowie einem selbst aus einer Ankerscheibe 42, einer Permanentmagnetscheibe 44 sowie einer Polscheibe 46 geschichtet gebildetem verbreitertem Ankerabschnitt 47 realisierter Anker bildet auf der Außenfläche der Polscheibe 46 eine der Eingriffsflächen 28 bis 32 aus und ist in einem langgestreckt-hohlzylindrischen Kernelement 48 geführt, welches, der Ankerscheibe 42 gegenüberliegend, einen ringförmigen Kragenabschnitt 50 ausbildet und entlang ihrer axialen Erstreckungsrichtung eine Durchgangsbohrung 52 aufweist, welche, zur Optimierung des Fluidflusses, etwa eine freie Luftströmung in der Anordnung ermöglicht und darüber hinaus zum Aufnehmen einer Druckfeder 54 ausgebildet ist, welche im in 6 gezeigten Anschlagzustand des Ankers diesen in seiner nach rechts gerichteten Bewegungsrichtung vorspannt.
  • Das Jochelement 48 ist zunächst von einer einen Spulenträger 56 sowie eine Wicklung 58 aufweisenden Spuleneinheit umgeben, welche selbst wiederum in abschnittsweise in Umfangsrichtung von einem bügelförmigen Flussleitelement 60 umgeben ist, welches einends einen Durchbruch für ein schmales Ende des Jochelements 48 anbietet, andernends in zwei freie Schenkeln 62, 64 mündet, welche den Stellweg des Ankers (und damit auch der Polscheibe 46 mit Eingriffsfläche) begrenzt.
  • Die 7 und 8 zeigen das bügelförmige Flussleitelement 60 im Detail; die Schenkel 62 bzw. 64 sind langgestreckt-zylinderabschnittsförmig geformt und sitzen einstückig an einem Bodenabschnitt 66.
  • Die 9 und 10 verdeutlichen als isolierte Darstellung einer Aktoreneinheit mit einer Stößeleinheit, wie – bei praktisch unbeeinträchtigter elektromagnetischer Funktionalität – die bügelförmige Flussleiteinheit 60 in Umfangsrichtung lediglich abschnittsweise gegenüberliegend die Anordnung aus Spuleneinheit, Jochelement und Ankereinheit umgibt, gleichzeitig die Möglichkeit für die gezeigte Stößeleinheit 22 eröffnet, randseitig mit einem Teil der Stirnfläche über die Eingriffsfläche 28 hinaus zu ragen.
  • Die 2 verdeutlicht in diesem Zusammenhang, wie die langgestreckt-scheibenförmigen Bodenabschnitte 66 bzw. die Schenkel 62, 64 der jeweiligen Flussleitelemente so platziert sind, dass – zur Minimierung der Packungsdichte im hohlzylindrischen Gehäuse – keine gegenseitige Beeinflussung der Flussleitelemente 60 stattfindet, vielmehr der (geringere) Außendurchmesser der Spuleneinheiten wirksam zur Platzminimierung genutzt werden kann.
  • Die 11 bis 14 zeigen eine alternative Realisierungsform der vorliegenden Erfindung gemäß einem zweiten Ausführungsbeispiel. Dieses Ausführungsbeispiel sieht lediglich zwei Stößeleinheiten 70, 72 vor, welche von jeweils zugehörigen Aktoreneinheiten 74 bzw. 76 bewegt werden. Die Aktoreneinheiten 74 bzw. 76 entsprechen konstruktiv der anhand der 6 bis 8 erläuterten Realisierung und sitzen im dargestellten Ausführungsbeispiel in einem gemeinsamen Gehäuse 78, welches eine Flachkontur besitzt (das Bezugszeichen 80 zeigt schematisch einen Befestigungsflansch für die Gehäuseanordnung 78).
  • Wie insbesondere die Schnittansicht der 12 verdeutlicht, sind wiederum die langgestreckt-zylindrischen Stößeleinheiten 70, 72 in einem vorderen Gehäuseabschnitt 82 so geführt, dass diese unter Minimierung ihres Achsenabstandes (wiederum ca. 7 mm) zueinander parallel bewegbar sind, wobei wie die 12 erkennen lässt, in der erfindungsgemäßen Weise die Stößeleinheiten 70, 72 jeweils exzentrisch auf den durch eine jeweilige Polscheibe 46 gebildeten äußeren Eingriffsflächen aufsitzen (bzw. dort magnetisch haften).
  • Im gezeigten Ausführungsbeispiel wird zudem deutlich, dass hier die Stößeleinheiten 70 bzw. 72 jeweils aus zwei Abschnitten bestehen, einem ersten, magnetisch optimierten Abschnitt 84 sowie einem daran in Längsrichtung ansitzenden zweiten Abschnitt 86, welcher insbesondere zum optimierten Zusammenwirken mit einem endseitigen Eingriffspartner angepasst ist, etwa durch geeignetes Härten (oder andere Behandlungsformen zur Verschleissfestigkeit oder dgl.). Im gezeigten Ausführungsbeispiel ist eine jeweilige der Stößeleinheiten 70, 72 aus zwei geeigneten Metallmaterialen für die Abschnitte 84 bzw. 86 zusammengefügt; andere Alternativen zur Realisierung der mehreren Abschnitte sind denkbar, ebenso wie auch eine Verwendung der zweiteiligen Stößeleinheiten im Rahmen des ersten Ausführungsbeispiels der 1 bis 10 (insoweit zeigt die 17 als weiteres Ausführungsbeispiel diese Variante, wobei identische Funktionskomponenten mit denselben Bezugszeichen versehen und die Stößeleinheiten 22', 24' sowie 26' entsprechend zweiteilige Varianten sind).
  • Zum Ausführungsbeispiel der 11 und 12 verdeutlichen die Detailansichten der 13 und 14 wiederum das exzentrische bzw. auch seitlich überragende Aufsitzen der Stößeleinheiten an bzw. auf einer jeweiligen Eingriffsfläche.
  • Die 15 und 16 verdeutlichen eine magnetische Wechselwirkung zwischen zwei benachbarten Aktoreneinheiten, wobei dies sowohl für das erste Ausführungsbeispiel mit drei Stößeleinheiten, als auch für das zweite Ausführungsbeispiel mit zwei Stößeleinheiten gilt: die 15 zeigt schematisch, wie bei eingeschobenem Zustand zweier benachbarter Aktoreneinheiten die jeweilige Permanentmagnetscheibe 44 (magnetisiert in axialer Richtung) sich jeweils auf der selben Höhe befindet, mit anderen Worten und wie durch die Doppelpfeile in 15 gezeigt, es kommt zu einem Abstoßungseffekt der jeweiligen gleichen Magnetpole voneinander, so dass eine Abstoßungskraft zwischen den jeweiligen Ankereinheiten in diesem Betriebszustand besteht. Sobald eine der Aktoreneinheiten aus ihrer Ruhelage (also etwa entsprechend 6) bewegt wird, kommt es zwischen dem Südpol des links gelegenen Permanentmagneten und dem Nordpol des rechts gezeigten Permanentmagneten zu einer Anziehung (verdeutlicht durch den langen Doppelpfeil), während nach wie vor die gleichpoligen Permanentmagnetabschnitte einander abstoßen (kurze Doppelpfeile). Im Ergebnis wird durch diese Konfiguration dann das Dynamikverhalten der beschriebenen Ausführungsbeispiele verbessert.
  • Die vorliegende Erfindung wurde anhand der Ausführungsbeispiele lediglich exemplarisch beschrieben; im gezeigten Ausführungsbeispiel wurde bei einem Durchmesser des Gehäusemantels von ca. 40 mm ein Achsabstand von lediglich 7 mm von drei benachbarten zylindrischen Stößeleinheiten realisiert (die jeweils 5 mm Durchmesser aufweisen). Mit einem effektiven Hub der Aktorenbewegung von 4 mm lässt sich eine Schaltzeit zwischen ca. 20 und 22 msec (12 bis 22, bis 100 ms bei –35°C) realisieren.
  • Die vorliegende Erfindung ist nicht auf die gezeigten Konfigurationen mit zwei bzw. drei Stößeleinheiten beschränkt, sondern eignet sich prinzipiell auch für eine größere Anzahl von Aktoren- und zugehörigen Stößeleinheiten. Auch wenn ein bevorzugtes Einsatzgebiet der vorliegenden Erfindung in der Realisierung von Stellaufgaben bei Verbrennungsmotoren, etwa in der Nockenwellenverstellung, liegt, ist prinzipiell die Anwendungsbereiche der vorliegenden Erfindung unbegrenzt und wirkt sich insbesondere dort vorteilhaft aus, wo lediglich geringer Einbauraum für eine Mehrzahl von Aktoreneinheiten zur Verfügung steht, gleichzeitig jedoch jeweilige Stößel mit nur sehr geringem Abstand voneinander ihren Stellzweck erfüllen müssen.

Claims (10)

  1. Elektromagnetische Stellvorrichtung mit einer Mehrzahl von elektromagnetischen Aktoreneinheiten (10, 12, 14), die zum Ausüben einer Stellkraft auf eine entsprechende Mehrzahl von lang gestreckten, achsparallel zueinander gelagerten Stößeleinheiten (22, 24, 26) selektiv ansteuerbar sind, dadurch gekennzeichnet, dass die Aktoreneinheiten (10, 12, 14) entlang ihrer Stellrichtung zueinander achsparallel in einem gemeinsamen Gehäuse (18, 20; 78, 82) vorgesehen sind, jeweils an einem einer jeweils zugeordneten der Stößeleinheiten (22, 24, 26) zugewandten Eingriffende eine zumindest abschnittsweise plane, axial in der Stellrichtung bewegbare Eingriffsfläche ausbilden und eine eingriffsseitige Stirnfläche (34, 36, 38) einer jeweiligen der Stößeleinheiten (22, 24, 26) mit der Eingriffsfläche (28, 30, 32) zusammenwirkt, dass mindestens eine der Mehrzahl der Stößeleinheiten (22, 24, 26) mit ihrer eingriffsseitigen Stirnfläche (34, 36, 38) exzentrisch und/oder mit lediglich einer Teilfläche auf der Eingriffsfläche (28, 30, 32) der zugehörigen Aktoreneinheit (10, 12, 14) aufsitzt, insbesondere darauf magnetisch haftet, und wobei zumindest eine der Aktoreneinheiten (10, 12, 14) eine Permanentmagnetenmittel (44) aufweisende, endseitig die Eingriffsfläche (28, 30, 32) ausbildende Ankereinheit aufweist, die durch Bestromung einer stationären Spuleneinheit (56, 58) bewegbar ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Mehrzahl der Aktoreneinheiten (10, 12, 14) einander unmittelbar benachbart so in dem zumindest abschnittsweise hohlzylindrischen Innenraum des Gehäuses vorgesehen sind, dass die Aktoreneinheiten (10, 12, 14) an der Gehäuseinnenwand anliegen.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Spuleneinheit von einer zumindest abschnittsweise zylindrischen oder hohlzylindrischen, magnetisch flussleitenden Aktormanteleinheit (60) so umgeben ist, dass die Eingriffsfläche (28, 30, 32) in einem offenen Ende der Aktorenmanteleinheit bewegbar ist.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Aktorenmanteleinheit bügelförmig so ausgebildet ist, dass ein freier Schenkel (62, 64) der Aktorenmanteleinheit eine hohlzylinderabschnittsförmige Umfangsbegrenzung der Ankereinheit sowie der Spuleneinheit bildet.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Ankereinheit einen die Permanentmagnetmittel aufweisenden verbreiterten Ankerabschnitt (46) axial außerhalb der Spuleneinheit sowie einen daran ansitzenden langgestreckten Ankerstößelabschnitt (40) aufweist, der zumindest abschnittsweise in einer langgestreckten, von der Spuleneinheit umschlossenen Kerneinheit (48) der Aktoreneinheit (10, 12, 14) geführt ist.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass die Kerneinheit (48) aus magnetischem Material realisiert ist und/oder eine einen Fluid-Druckausgleich ermöglichenden Durchgang (52), insbesondere Durchgangsbohrung (52), aufweist.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Ankereinheit gegen die Kraft einer bevorzugt axial vorgesehenen Feder, insbesondere einer gegen den Ankerstößelabschnitt (40) wirkenden und/oder in dem Durchgang (52) vorgesehenen Druckfeder (54), geführt ist.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Mehrzahl der elektromagnetischen Aktoreneinheiten (10, 12, 14) sowie die entsprechende Mehrzahl von Stößeleinheiten (22, 24, 26) mindestens 3 beträgt und die Stößeleinheiten (22, 24, 26) so relativ zu den Aktoreneinheiten (10, 12, 14) geführt sind, dass jeweilige Längsachsen der Stößeleinheiten (22, 24, 26) in einer gemeinsamen Ebene liegen.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mindestens eine der Stößeleinheiten (22, 24, 26) im Bereich der eingriffsseitigen Stirnfläche (34, 36, 38) einen ersten, materialmäßig zum magnetischen Zusammenwirken mit der zugehörigen Aktoreneinheit (10, 12, 14) optimierten Abschnitt (84) sowie, diesem entlang der Erstreckungsrichtung entgegengesetzt, endseitig einen zweiten materialmäßig gehärteten und/oder verschleissoptimierten Abschnitt (86) ausbildet.
  10. Verwendung der Vorrichtung nach einem der Ansprüche 1 bis 9 für Stellaufgaben an einem Verbrennungsmotor, insbesondere zur Nockenwellenverstellung.
DE102007028600A 2007-06-19 2007-06-19 Elektromagnetische Stellvorrichtung Active DE102007028600B4 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE102007028600A DE102007028600B4 (de) 2007-06-19 2007-06-19 Elektromagnetische Stellvorrichtung
JP2010512599A JP5307803B2 (ja) 2007-06-19 2008-06-19 電磁駆動装置
CN201410197792.6A CN103971877B (zh) 2007-06-19 2008-06-19 电磁调整设备
DE202008008142U DE202008008142U1 (de) 2007-06-19 2008-06-19 Elektromagnetische Stellvorrichtung
EP08773520A EP2158596B1 (de) 2007-06-19 2008-06-19 Elektromagnetische stellvorrichtung
US12/665,262 US8176887B2 (en) 2007-06-19 2008-06-19 Electromagnetic actuating device
PCT/EP2008/004935 WO2008155119A1 (de) 2007-06-19 2008-06-19 Elektromagnetische stellvorrichtung
CN200880021134.4A CN101689419B (zh) 2007-06-19 2008-06-19 电磁调整设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007028600A DE102007028600B4 (de) 2007-06-19 2007-06-19 Elektromagnetische Stellvorrichtung

Publications (2)

Publication Number Publication Date
DE102007028600A1 DE102007028600A1 (de) 2008-12-24
DE102007028600B4 true DE102007028600B4 (de) 2011-06-22

Family

ID=39743317

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102007028600A Active DE102007028600B4 (de) 2007-06-19 2007-06-19 Elektromagnetische Stellvorrichtung
DE202008008142U Expired - Lifetime DE202008008142U1 (de) 2007-06-19 2008-06-19 Elektromagnetische Stellvorrichtung

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE202008008142U Expired - Lifetime DE202008008142U1 (de) 2007-06-19 2008-06-19 Elektromagnetische Stellvorrichtung

Country Status (6)

Country Link
US (1) US8176887B2 (de)
EP (1) EP2158596B1 (de)
JP (1) JP5307803B2 (de)
CN (2) CN103971877B (de)
DE (2) DE102007028600B4 (de)
WO (1) WO2008155119A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037876A1 (de) 2014-09-11 2016-03-17 Hilite Germany Gmbh Elektromagnetische stellvorrichtung
DE102016101263A1 (de) * 2016-01-25 2017-07-27 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung und Verwendung einer solchen
WO2020154749A1 (de) 2019-01-28 2020-08-06 Msg Mechatronic Systems Gmbh Elektromagnetische stellvorrichtung

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102112709B (zh) * 2008-08-01 2016-05-11 Eto电磁有限责任公司 电磁调整装置
DE202008015980U1 (de) 2008-12-03 2010-04-29 Eto Magnetic Gmbh Elektromagnetische Aktuatorvorrichtung
DE202009015466U1 (de) 2009-02-27 2010-03-18 Schaeffler Kg Elektromagnetische Stellvorrichtung
DE102009015486A1 (de) 2009-03-28 2010-09-30 Schaeffler Technologies Gmbh & Co. Kg Elektromagnetischer Aktuator
DE202009006940U1 (de) * 2009-04-16 2010-09-02 Eto Magnetic Gmbh Elektromagnetische Nockenwellen-Verstellvorrichtung
DE102009030375A1 (de) 2009-06-25 2010-12-30 Schaeffler Technologies Gmbh & Co. Kg Elektromagnetische Stellvorrichtung
DE102009039562B4 (de) * 2009-09-01 2020-03-19 Eto Magnetic Gmbh Bistabile elektromagnetische Stellvorrichtung
DE102009043722A1 (de) 2009-10-01 2011-04-07 Pierburg Gmbh Aktuator für eine Verbrennungskraftmaschine
DE102009049009B4 (de) 2009-10-09 2012-10-04 Pierburg Gmbh Aktuator für eine Verbrennungskraftmaschine
DE102009056609A1 (de) 2009-12-02 2011-06-09 Schaeffler Technologies Gmbh & Co. Kg Elektromagnetische Stellvorrichtung
DE102010005071A1 (de) 2010-01-14 2011-07-21 Hydac Electronic GmbH, 66128 Elektromagnetische Stellvorrichtung
DE102010024030A1 (de) * 2010-06-16 2011-12-22 Schaeffler Technologies Gmbh & Co. Kg Aktorvorrichtung zur Verstellung eines Schiebenockensystems
DE202010010371U1 (de) * 2010-07-16 2011-10-17 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
DE202011004021U1 (de) * 2011-03-16 2012-07-09 Eto Magnetic Gmbh Elektromagnetische Aktuatorvorrichtung
DE102011050730A1 (de) 2011-05-30 2012-12-06 Eto Magnetic Gmbh Nockenwellenverstellvorrichtung
FR2980518B1 (fr) * 2011-09-26 2015-06-19 Valeo Sys Controle Moteur Sas Systeme de transmission du mouvement de cames a une soupape
DE102011089999A1 (de) * 2011-12-27 2013-06-27 Robert Bosch Gmbh Magnetventil, insbesondere Mengensteuerventil einer Kraftstoff-Hochdruckpumpe
FR2990482B1 (fr) * 2012-05-14 2015-01-09 Valeo Sys Controle Moteur Sas Dispositif de verrouillage pour un systeme de transmission du mouvement d'au moins une came a au moins une soupape
DE102012111851B4 (de) 2012-12-05 2023-03-16 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
DE102012222370A1 (de) 2012-12-06 2014-06-12 Schaeffler Technologies Gmbh & Co. Kg Schiebenockensystem und Schiebenockenaktor mit an einer Permanentmagneteinheit angebundenem Laufpin
DE102013202068A1 (de) 2013-02-08 2014-08-14 Schaeffler Technologies Gmbh & Co. Kg Rückhubaktor mit Dämpfungselement
DE102013202132A1 (de) 2013-02-08 2014-08-14 Schaeffler Technologies Gmbh & Co. Kg Schiebenockenaktor mit Abdichtung
DE102013202130A1 (de) 2013-02-08 2014-08-14 Schaeffler Technologies Gmbh & Co. Kg Schiebenockenaktor mit abgestimmten beweglichen Massen und spielbehafteter Verbindung dieser beweglichen Bauteile
DE102013101437A1 (de) 2013-02-13 2014-08-14 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
DE102013203133A1 (de) 2013-02-26 2014-08-28 Schaeffler Technologies Gmbh & Co. Kg Aktoreinheit mit Rotationsstelleinrichtung
DE102013203138A1 (de) 2013-02-26 2014-08-28 Schaeffler Technologies Gmbh & Co. Kg Aktoreinheit mit translatorischer Stelleinrichtung
DE102013203954A1 (de) 2013-03-08 2014-09-11 Schaeffler Technologies Gmbh & Co. Kg Aktoreinheit mit Einzelansteuerung
DE102013206976A1 (de) 2013-04-18 2014-10-23 Schaeffler Technologies Gmbh & Co. Kg Rückhubaktor mit Ankeranschlag
DE202013102019U1 (de) 2013-05-08 2014-08-11 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
FR3008542B1 (fr) * 2013-07-09 2015-10-02 Schneider Electric Ind Sas Dispositif de detection du rearmement d'un disjoncteur, actionneur d'un mecanisme de separation des contacts du disjoncteur, disjoncteur electrique et utilisation d'un courant induit pour generer un signal d'indication du rearmement
DE102013108029B4 (de) 2013-07-26 2023-01-19 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
DE102013108027A1 (de) 2013-07-26 2015-01-29 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung und System zur Verstellung einer Funktionalität eines Kraftfahrzeugaggregats
DE102014205101A1 (de) * 2014-03-19 2015-09-24 Schaeffler Technologies AG & Co. KG Aktuator für Doppel-Schiebenockensystem
DE102014008156B4 (de) * 2014-05-30 2022-04-14 Daimler Ag Ventiltrieb für eine Brennkraftmaschine
DE102014108927A1 (de) 2014-06-25 2015-12-31 Eto Magnetic Gmbh Vorrichtung zur Nockenwellenverstellung einer Brennkraftmaschine
DE102014213249A1 (de) 2014-07-08 2016-01-14 Schaeffler Technologies AG & Co. KG Aktoreinheit mit Heizelement
DE102014109634A1 (de) 2014-07-09 2016-01-14 Kendrion (Villingen) Gmbh Stellvorrichtung
DE102014109619A1 (de) 2014-07-09 2016-01-14 Kendrion (Villingen) Gmbh Stellvorrichtung
DE102014214954B3 (de) * 2014-07-30 2015-12-03 Schaeffler Technologies AG & Co. KG Schiebenockensystem mit XS-Nut mit Federblech
EP3016117B1 (de) 2014-10-31 2017-12-06 Husco Automotive Holdings LLC Druckstiftaktuatorvorrichtung
DE102014222671B3 (de) * 2014-11-06 2016-03-31 Schaeffler Technologies AG & Co. KG Schiebenockensystem mit XS-Nut und Brücke zur Absicherung der Betätigungsfunktion bei einer minimalen Schaltdrehzahl
DE102015200539A1 (de) 2015-01-15 2016-07-21 Schaeffler Technologies AG & Co. KG Aktoreinheit mit Heizelement
JP6311618B2 (ja) * 2015-01-19 2018-04-18 株式会社デンソー 電磁アクチュエータ
JP6311617B2 (ja) * 2015-01-19 2018-04-18 株式会社デンソー 電磁アクチュエータ
DE102015103169A1 (de) 2015-03-04 2016-09-08 Kendrion (Villingen) Gmbh Stellvorrichtung mit eingehängten Stößeln
DE102015103761A1 (de) 2015-03-13 2016-09-29 Kendrion (Villingen) Gmbh Stellelement zum axialen Verschieben einer entlang einer Nockenwellenachse verschiebbar gelagerten Nockenwelle
JP2017005123A (ja) * 2015-06-11 2017-01-05 いすゞ自動車株式会社 電磁アクチュエータ
EP3166116B1 (de) 2015-11-09 2020-10-28 HUSCO Automotive Holdings LLC Systeme und verfahren für elektromagnetischen aktuator
CN105537927B (zh) * 2016-02-03 2017-10-20 中山市工业技术研究中心 一种利用磁场排斥力实现轴孔装配的柔顺缓冲机构和方法
JP2017169433A (ja) 2016-03-17 2017-09-21 フスコ オートモーティブ ホールディングス エル・エル・シーHUSCO Automotive Holdings LLC 電磁アクチュエータのためのシステムおよび方法
JP6586918B2 (ja) * 2016-04-14 2019-10-09 株式会社デンソー 電磁アクチュエータ
DE102016107661A1 (de) * 2016-04-25 2017-10-26 Kendrion (Villingen) Gmbh Elektromagnetische Stellvorrichtung mit D-förmiger Spule für 2-Pin-Aktor
DE112016006658B4 (de) 2016-05-16 2022-03-03 Mitsubishi Electric Corporation Elektromagnetischer Aktor und Verfahren zur Herstellung desselben
DE102016116777A1 (de) 2016-09-07 2018-03-08 Kendrion (Villingen) Gmbh Elektromagnetische Stellvorrichtung insbesondere zum Verstellen von Nockenwellen eines Verbrennungsmotors
DE102016116776A1 (de) 2016-09-07 2018-03-08 Kendrion (Villingen) Gmbh Elektromagnetische Stellvorrichtung insbesondere zum Verstellen von Nockenwellen eines Verbrennungsmotors
CN106762005B (zh) * 2017-01-24 2023-04-18 绵阳富临精工机械股份有限公司 一种用于电磁执行器的电路结构
DE102017107403A1 (de) 2017-04-06 2018-10-11 Kendrion (Villingen) Gmbh Elektromagnetische Stellvorrichtung insbesondere zum Verstellen von Nockenwellen eines Verbrennungsmotors
DE102017114246A1 (de) 2017-07-03 2019-01-03 Kolektor Group D.O.O. Stellvorrichtung
DE102017119001A1 (de) 2017-08-21 2019-02-21 Kendrion (Villingen) Gmbh Elektromagnetische Stellvorrichtung
DE102017120145A1 (de) * 2017-09-01 2019-03-07 Man Truck & Bus Ag Schiebenockensystem
DE102017121723B4 (de) 2017-09-19 2021-07-01 Kendrion (Villingen) Gmbh Elektromagnetische Stellvorrichtung insbesondere zum Verstellen von Nockenwellen eines Verbrennungsmotors
US11448103B2 (en) * 2018-06-28 2022-09-20 Board Of Regents, The University Of Texas System Electromagnetic soft actuators
AT522749A1 (de) * 2019-06-26 2021-01-15 STIWA Advanced Products GmbH Stößelbaugruppe
DE102019135364A1 (de) * 2019-12-20 2021-06-24 Kolektor Group D.O.O. Stellvorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611547A1 (de) * 1996-03-23 1997-09-25 Bayerische Motoren Werke Ag Elektromagnetische Betätigungsvorrichtung für Brennkraftmaschinen-Hubventile
DE19819401C1 (de) * 1998-04-30 1999-09-16 Daimler Chrysler Ag Vorrichtung zum Betätigen von Gaswechselventilen
DE10240774A1 (de) * 2001-09-01 2003-04-10 Eto Magnetic Kg Elektromagnetische Stellvorrichtung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2527186C3 (de) * 1975-06-18 1980-10-09 Philips Patentverwaltung Gmbh, 2000 Hamburg Mosaikdrucker mit einem zylindrischen Gehäuse
JPS5140754Y1 (de) * 1975-12-24 1976-10-05
DE2746601C2 (de) * 1977-10-15 1982-09-30 Philips Patentverwaltung Gmbh, 2000 Hamburg Klemmvorrichtung zum Verbinden einer Drucknadel mit einem hülsenförmigen Magnetanker
US4300845A (en) * 1979-05-14 1981-11-17 Qwint Systems, Inc. Dot matrix print head
JPS59138213U (ja) * 1983-03-03 1984-09-14 村上 英穂 チユ−ブラ型ソレノイドコイル
JPS60175639U (ja) * 1984-04-30 1985-11-21 オリンパス光学工業株式会社 ドツトプリンタ
DE4405657A1 (de) * 1994-02-22 1995-08-24 Buerkert Werke Gmbh & Co Magnetventil
US5757093A (en) * 1997-03-13 1998-05-26 Susliaev; Konstantin Electromagnetically powered engine
JP3831104B2 (ja) * 1997-05-13 2006-10-11 株式会社日立製作所 吸排気弁の電磁駆動装置
US6354253B1 (en) * 1998-11-20 2002-03-12 Toyota Jidosha Kabushiki Kaisha Solenoid valve device
DE10146899A1 (de) * 2001-09-24 2003-04-10 Abb Patent Gmbh Elektromagnetischer Aktuator, insbesondere elektromagnetischer Antrieb für ein Schaltgerät
DE10360287A1 (de) * 2003-02-05 2004-10-14 Ina-Schaeffler Kg Stößel in einem Ventiltrieb einer Brennkraftmaschine
CN2720584Y (zh) * 2004-07-30 2005-08-24 成都国光电气股份有限公司 电磁致动器
DE202006011905U1 (de) 2006-08-03 2007-12-06 Eto Magnetic Kg Elektromagnetische Stellvorrichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19611547A1 (de) * 1996-03-23 1997-09-25 Bayerische Motoren Werke Ag Elektromagnetische Betätigungsvorrichtung für Brennkraftmaschinen-Hubventile
DE19819401C1 (de) * 1998-04-30 1999-09-16 Daimler Chrysler Ag Vorrichtung zum Betätigen von Gaswechselventilen
DE10240774A1 (de) * 2001-09-01 2003-04-10 Eto Magnetic Kg Elektromagnetische Stellvorrichtung

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016037876A1 (de) 2014-09-11 2016-03-17 Hilite Germany Gmbh Elektromagnetische stellvorrichtung
DE102015113970A1 (de) 2014-09-11 2016-03-17 Hilite Germany Gmbh Elektromagnetische Stellvorrichtung
US10714250B2 (en) 2014-09-11 2020-07-14 ECO Holding 1 GmbH Electromagnetic actuator
DE102016101263A1 (de) * 2016-01-25 2017-07-27 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung und Verwendung einer solchen
WO2020154749A1 (de) 2019-01-28 2020-08-06 Msg Mechatronic Systems Gmbh Elektromagnetische stellvorrichtung

Also Published As

Publication number Publication date
CN103971877A (zh) 2014-08-06
WO2008155119A1 (de) 2008-12-24
US8176887B2 (en) 2012-05-15
DE102007028600A1 (de) 2008-12-24
CN103971877B (zh) 2016-10-19
CN101689419A (zh) 2010-03-31
US20100192885A1 (en) 2010-08-05
CN101689419B (zh) 2014-05-21
EP2158596B1 (de) 2013-03-27
JP2010530621A (ja) 2010-09-09
DE202008008142U1 (de) 2008-10-30
JP5307803B2 (ja) 2013-10-02
EP2158596A1 (de) 2010-03-03

Similar Documents

Publication Publication Date Title
DE102007028600B4 (de) Elektromagnetische Stellvorrichtung
EP2191107B1 (de) Elektromagnetische stellvorrichtung
EP1313110B1 (de) Elektromagnet, insbesondere Proportionalmagnet zur Betätigung eines hydraulischen Ventils
EP3652030B1 (de) Bistabiles magnetventil für ein hydraulisches bremssystem und verfahren zur ansteuerung eines solchen ventils
EP3025358B1 (de) Elektromagnetische stellvorrichtung und system zur verstellung einer funktionalität eines kraftfahrzeugaggregats
EP1959178B1 (de) Elektromagnetisch zu betätigendes Ventil
EP2929550B1 (de) Elektromagnetische stellvorrichtung
EP2474009B1 (de) Bistabile elektromagnetische stellvorrichtung
DE102009058165A1 (de) Magnetantrieb
DE102013011855B3 (de) Magnetventil
DE102011012020B4 (de) Nockenwelle mit Nockenwellenversteller
DE102004059342A1 (de) Greif- und Spannvorrichtung
DE102013108029B4 (de) Elektromagnetische Stellvorrichtung
DE102017205538A1 (de) Ventiltrieb für eine Brennkraftmaschine
DE102017201453A1 (de) Spulenbaugruppe, Verfahren zu ihrer Herstellung und damit ausgestattete Ventileinheit
EP1729308A1 (de) Elektromagnetischer Aktuator
DE19928622A1 (de) Längsgeblechter Jochkörper für einen Elektromagneten
WO2019020260A1 (de) Bistabiles magnetventil für ein hydraulisches bremssystem, ansteuerungsverfahren und montageverfahren dafür, sowie bremssystem mit einem derartigen magnetventil
DE102016210975A1 (de) Ventiltrieb für eine Brennkraftmaschine
DE102015103169A1 (de) Stellvorrichtung mit eingehängten Stößeln
DE202016102130U1 (de) Elektromagnetisch betätigbare Ventilvorrichtung
DE102019118862A1 (de) Elektromagnetische Stellvorrichtung mit optimierter Federelementanordnung
DE102012103796A1 (de) Elektromagnetische Stellvorrichtung
DE102019105938A1 (de) Elektromagnetische Stellvorrichtung mit adaptierbarer Stößelanordnung
DE102009018043A1 (de) Hydraulikventil

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R018 Grant decision by examination section/examining division
R020 Patent grant now final

Effective date: 20110923

R082 Change of representative

Representative=s name: PATENT- UND RECHTSANWALTSKANZLEI DAUB, DE