DE102004042944B4 - Kolbenkompressor mit einem internen Kühlluftstrom im Kurbelgehäuse - Google Patents

Kolbenkompressor mit einem internen Kühlluftstrom im Kurbelgehäuse Download PDF

Info

Publication number
DE102004042944B4
DE102004042944B4 DE102004042944A DE102004042944A DE102004042944B4 DE 102004042944 B4 DE102004042944 B4 DE 102004042944B4 DE 102004042944 A DE102004042944 A DE 102004042944A DE 102004042944 A DE102004042944 A DE 102004042944A DE 102004042944 B4 DE102004042944 B4 DE 102004042944B4
Authority
DE
Germany
Prior art keywords
crankcase
cooling air
cylinder head
cylinder
piston compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102004042944A
Other languages
English (en)
Other versions
DE102004042944A1 (de
Inventor
Michael Hartl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH
Original Assignee
Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to DE102004042944A priority Critical patent/DE102004042944B4/de
Application filed by Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH, Knorr Bremse Systeme fuer Schienenfahrzeuge GmbH filed Critical Knorr Bremse Systeme fuer Nutzfahrzeuge GmbH
Priority to BRPI0514877-4A priority patent/BRPI0514877B1/pt
Priority to DE502005007800T priority patent/DE502005007800D1/de
Priority to PCT/EP2005/009367 priority patent/WO2006024510A1/de
Priority to CA002578843A priority patent/CA2578843A1/en
Priority to RU2007111955/06A priority patent/RU2362051C2/ru
Priority to MX2007002495A priority patent/MX2007002495A/es
Priority to CNB2005800295806A priority patent/CN100501160C/zh
Priority to EP05778871A priority patent/EP1789681B1/de
Priority to AT05778871T priority patent/ATE438036T1/de
Priority to US11/574,529 priority patent/US8308447B2/en
Publication of DE102004042944A1 publication Critical patent/DE102004042944A1/de
Priority to HK08100737.0A priority patent/HK1110374A1/xx
Application granted granted Critical
Publication of DE102004042944B4 publication Critical patent/DE102004042944B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/10Adaptations or arrangements of distribution members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/121Casings

Abstract

Kolbenkompressor (1), insbesondere ein Hubkolbenkompressor zur Erzeugung von Druckluft, welcher mindestens einen über eine zugeordnete mit einer Wälzlagerung (10, 10') gelagerte Pleuel (9) mit einer Kurbelwelle (8) verbundenen Kolben (7) umfasst, der in einem zugeordneten Zylinder (3) eine Hubbewegung ausführt und über eine im Zylinderkopf (4) integrierte Anschlusseinheit (6) die Verdichtung von Ansaugluft bewirkt, wobei über ein Einlassventil (13) aufgrund eines durch die Kolbenbewegung erzeugten Unterdruckes im Kurbelgehäuse (2) Kühlluft aus der Ansaugleitung (11) in das Kurbelgehäuse gelangt, so dass ein interner Kühlluftstrom im Kurbelgehäuse (2) aufgrund des über die Kolbenrückbewegung erzeugten Überdruckes erzeugbar ist, wobei die Abzweigung der Kühlluft aus der Ansaugleitung (11) selbst oder im Zylinderkopf (4) angeordnet ist und die Kühlluft über mindestens eine außen am Zylinder (3) vorbeiführende Rohrverbindung (15) zwischen Zylinderkopf (4) und dem Kurbelgehäuse (2) am Zylinder (3) vorbeileitbar ist, dadurch gekennzeichnet, dass die Kühlluft über ein im Kurbelgehäuse (2) angeordnetes Auslassventil (14) aus...

Description

  • Die Erfindung betrifft einen Kolbenkompressor, insbesondere einen Hubkolbenkompressor zur Erzeugung von Druckluft, welcher mindestens einen über eine zugeordnete mit einer Wälzlagerung gelagerte Pleuel mit einer Kurbelwelle verbundenen Kolben umfasst, der in einem zugeordneten Zylinder eine Hubbewegung ausführt und über eine im Zylinderkopf integrierte Anschlusseinheit die Verdichtung von Ansaugluft bewirkt, wobei über ein Einlassventil aufgrund eines durch die Kolbenbewegung erzeugten Unterdruckes im Kurbelgehäuse Kühlluft aus der Ansaugleitung in das Kurbelgehäuse gelangt und aufgrund des über die Kolbenrückbewegung erzeugten Überdruckes im Kurbelgehäuse über ein Auslassventil aus dem Kurbelgehäuse entweicht und somit ein interner Kühlluftstrom im Kurbelgehäuse erzeugbar ist.
  • Derartige Kolbenkompressoren kommen üblicherweise überall dort zum Einsatz, wo Druckluft benötigt wird, jedoch die drucklufterzeugende Einheit platzsparend und damit kleinbauend sein muss und dabei hohe Leistungsdichten aufweist, womit derartige Kolbenkompressoren hauptsächlich in Nutzfahrzeugen oder Schienenfahrzeugen genutzt werden. Im Falle des Einsatzes im Nutzfahrzeug wird in zunehmendem Maße die durch den Kolbenkompressor erzeugte Druckluft neben dem Betrieb der Bremsanlage auch zum Betrieb der Luftfederungsanlage genutzt. Wegen des damit einhergehenden großen Druckluftbedarfs mit hohen Systemdrücken eignen sich hier meist mehrstufige Kolbenkompressoren. Die durch die innerhalb kurzer Zeitintervalle für die Luftfederung erforderlichen hohen Drücke sind mit derartigen Kolbenkompressoren erzeugbar. Dabei kamen insbesondere in der Vergangenheit in Nutzfahrzeugen ölgeschmierte Kolbenkompressoren zum Einsatz, ölfreie Verdichterkonzepte konnten sich nicht durchsetzen, da aufgrund der hohen Bauteiltemperaturen, die aus der hohen Leistungsdichte auf kleinstem Bauraum resultieren, die nötigen Bauteilstandzeiten nicht erreicht werden konnten.
  • Neuartige Verdichterkonzepte auf Basis von Kolbenkompressoren lassen einen ölfreien Betrieb zu, wenn diese mit einem Kühlluftdurchsatz versehen werden. Die ölfreie Betriebsart wurde insbesondere aus wartungs- und umwelttechnischen Gründen entwickelt. Hier zeigt der Stand der Technik verschiedene Konzepte, wobei aktive Kühlkomponenten wie beispielsweise Lüftermittel für eine Wärmeabfuhr eingesetzt werden.
  • Die DD 238 645 A1 offenbart eine Lösung, bei der die durch ein Lüfterrad bewegte Luft sowohl die Verdichtereinheit als auch den Antriebsmotor durchströmt. Nachteilig bei dieser Variante ist neben der Geräuschentwicklung die mit Verunreinigungen behaftete Außenluft, die durch das Kurbelgehäuse geleitet wird, womit sich Verunreinigungen ablagern können und sich aufgrund der Druckänderungen ebenfalls Wasseransammlungen im Kurbelgehäuse bilden können. Um dieser Problematik entgegenzuwirken, ist wiederum ein externes Filtersystem und evtl. ein Wasserabscheidesystem erforderlich, welches jedoch den Wartungsaufwand erhöht und Serviceintervalle verkürzt.
  • Die DE 101 38 070 C2 zeigt einen Kolbenkompressor, bei dem die im Kurbelgehäuse durch die Hubbewegung des Arbeitskolbens erzeugte periodische Druckschwankung über eine Ventilpaarung nutzbar gemacht wird, um einen Kühlluftstrom im Kurbelgehäuse zu erzeugen. Dabei öffnet sich ein Einlassventil, wenn der Kolben die Hubbewegung in Richtung des Zylinderkopfes ausführt und das Volumen des Kurbelgehäuses vergrößert, denn durch den entstehenden Unterdruck strömt Luft durch das Einlassventil in das Kurbelgehäuse nach. Bei der Abwärtsbewegung entsteht hingegen ein Überdruck im Kurbelgehäuse und ein entfernt vom Einlassventil angeordnetes Auslassventil öffnet sich. Durch dieses wechselseitige Öffnen und Schließen des aus Ein- und Auslassventil bestehenden Ventilpaares kann ohne zusätzliches Fördermittel ein Kühlluftdurchsatz im Kurbelgehäuse erzeugt werden.
  • Um das Einlassen von verunreinigter Umgebungsluft zu vermeiden, wird weiterführend die Möglichkeit genutzt, die Kühlluft der Ansaugleitung zu entnehmen, um auch für den Kühlluftstrom des Kurbelgehäuses bereits gereinigte Luft zur Verfügung zu stellen. Die Ansaugluft ist durch vorgelagerte Reinigungsmittel von Verunreinigungen befreit, was insbesondere im Nutzfahrzeugbau eine wesentliche Stellung einnimmt, da die Betriebsumgebung meist stark staubbelastet ist. Weiterhin kann bei Vorrichtungen, die zur Druckluftaufbereitung starke Druckänderungen in der Arbeitsluft hervorrufen, der Taupunkt des in der Luft enthaltenen Wasserdampfes erreicht werden, was eine Kondensierung des Wasserdampfes und damit Wasserbildung im System verursacht. Um die Wasserbildung im System zu vermeiden, können vereinzelt Wasserabscheider den Verdichtermitteln vorgeschaltet sein. Bei einem Abgriff der Kühlluft von der Ansaugleitung mit einem zusätzlich zum Filtersystem vorgeschalteten Wasserabscheider ist zudem sichergestellt, dass sich bei einem Durchströmen der gefilterten und getrockneten Kühlluft durch das Kurbelgehäuse dort keine Wassermengen bilden können, die erhebliche Schäden insbesondere an den Lagerungen hervorrufen würden.
  • Auch bei mehrstufigen Kolbenkompressoren, wie aus der EP 1 028 254 A2 zu entnehmen, kann das Prinzip der inneren Pumpe zur Kühlluftforderung, beruhend auf der Kolbenbewegung, genutzt werden, da die Niederdruckstufe über eine große Kolbenfläche verfügt und die Hochdruckstufe über eine kleine Kolbenfläche, womit über dem Kurbelhub aufgrund der Kolbenflächendifferenz ebenfalls ein sich periodisch ändernder Druckverlauf im Kurbelgehäuse entsteht.
  • Jedoch ergibt sich dabei das Problem, dass sich bei einem Abzweig der Kühlluft von der Ansaugleitung durch die Position des Abzweigs im Zylinderkopf oder nahe des Zylinderkopfes und ein direktes Einleiten der Kühlluft über ein im Zylinderkopf befindliches Einlassventil und anschließendes Vorbeiführen der Kühlluft am Zylinder die Kühlluft derart erwärmt, dass zur Kühlung der Wälzlager im Kurbelgehäuse keine Kühlluft entsprechend niedriger Temperatur mehr zur Verfügung steht. Durch die damit verursachten hohen Betriebstemperaturen insbesondere der Wälzlagerungen ist die Lebensdauer ölfreier Kolbenkompressoren erheblich eingeschränkt, was mit verkürzten Wartungsintervallen verbunden ist und Betriebsausfälle verursachen kann. Die Fettschmierung der Wälzlager altert durch Zersetzungsprozesse bei hohen Betriebstemperaturen, für die meisten Fette gelten Temperaturgrenzen von 90°C, die bei einem Betrieb des Kompressors schon nach kurzer Dauer erreichet werden können. Dadurch ist eine zuverlässige Schmierwirkung nicht mehr sichergestellt, was zu einem Ausfall der Wälzlagerung führt.
  • Die DE 473 347 A offenbart einen einzylindrigen Kolbenkompressor, bei dem ein interner Kühlluftstrom in einem Kreislauf durch das Kurbelwellengehäuse hindurchgeleitet wird. Der interne Kreislauf ist geschlossen, wodurch die insgesamt erwärmte Kühlluft wieder in den Bereich des Zylinderkopfs zurückgeführt wird, sich mit der neu angesaugten Luft vermischt und erneut von dem Kühlkreislauf angesaugt wird. Daher erscheint die Kühlwirkung hier recht begrenzt. Bei dieser technischen Lösung ist eine über die Außenfläche der Ventilplatte vorgesehene Kühlung erforderlich, da die erwärmten Bauteile unterhalb einer Filterhaube angeordnet sind, und eine Wärmeabgabe über eine Konvektion durch die Filterhaube verhindert wird. Es entsteht außerdem ein recht großbauender Zylinderkopfbereich.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, eine Kurbelgehäusebelüftung für einen ölfreien Kolbenkompressor zu schaffen, die zur Kühlung von thermisch beasteten Komponenten im Kurbelgehäuse, insbesondere von Wälzlagerungen, eine saubere Kühlluft in das Kurbelgehäuse befördert und die beim Eintritt in das Kurbelgehäuse eine niedrige Temperatur aufweist.
  • Diese Aufgabe wird ausgehend von einer Kurbelgehäusebelüftung für einen ölfreien Kolbenkompressor gemäß dem Oberbegriff des Anspruchs 1 in Verbindung mit dessen kennzeichnenden Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Die Erfindung schließt die technische Lehre ein, dass die Abzweigung der Kühlluft aus der Ansaugleitung selbst oder im Zylinderkopf angeordnet ist und die Kühlluft über mindestens eine außen am Zylinder vorbeiführende Rohrverbindung zwischen Zylinderkopf und dem Kurbelgehäuse am Zylinder vorbeileitbar ist, um eine Erwärmung der Kühlluft zu vermeiden.
  • Diese Lösung bietet den Vorteil, die Kühlluft nicht der Wärme auszusetzen, die im Bereich der Anschlusseinheit entsteht, sondern fern von dieser Wärmequelle von der Ansaugleitung abzuzweigen und direkt in das Kurbelgehäuse zu leiten. Die vorbekannte Lösung, die die Kühlluft zunächst über Kanäle an der Mantelfläche des Zylinders entlang führt, bedingt ein Aufheizen der Kühlluft, noch bevor diese das Kurbelwellengehäuse erreicht. Die Kühlung des Zylinders und des Zylinderkopfes kann bei der erfindungsgemäßen Lösung auch durch einen zweiten, separaten Kühlluftstrom erfolgen, so dass auf eine Kühlung dieser Komponenten nicht verzichtet werden muss. So kann eine vor dem Eintritt in das Kurbelgehäuse stattfindende Erwärmung der Kühlluft einfach vermieden werden. Die Rohrverbindung ist außen am Gehäuse angeordnet und leitet die Kühlluft an den Bauteilen mit den höchsten Temperaturen wie Zylinder und Zylinderkopf, vorbei. Durch die frei angeordnete Rohrverbindung kann die Temperatur der Kühlluft über eine auf Konvektion über die Rohroberfläche beruhende Wärmeabfuhr zudem weiter reduziert werden, bevor diese in das Kurbelgehäuse eintritt.
  • Eine weitere die Erfindung verbessernde Maßnahme sieht vor, dass die über die mindestens eine Rohrverbindung geführte Kühlluft an einer Stelle ins Kurbelgehäuse einleitbar ist, in deren Nähe die thermisch belasteten Komponenten wie die Wälzlagerungen im Kurbelgehäuse angeordnet sind und die Kühlluft das Kurbelgehäuse (2) diagonal durchströmt, um eine maximale Kühlwirkung zu erzielen. Durch die variable Gestaltung der Rohrverbindung ist es möglich, die Eintrittsstelle der Kühlluft in das Kurbelgehäuse so zu wählen, dass sich die zu kühlenden Komponenten direkt im Kühlluftstrom befinden. Dieser Vorteil kann gerade bei den ortsfest im Kurbelgehäuse angeordneten Wälzlagern, wie der Kurbelwellenlagerung im Kurbelgehäuse, angewendet werden, indem die Kühlluft direkt die Wälzlagerungen anströmt und diese kühlt.
  • Nach einer möglichen Weiterbildung der Erfindung wird vorgeschlagen, dass die Verbindung für die Kühlluft zwischen dem Zylinderkopf und dem Kurbelgehäuse aus mindestens zwei einzeln angeordneten und zueinander parallel geschalteten Rohrverbindungen besteht, um die verfügbare Rohroberfläche zur Kühlung zu vergrößern. Der Vorteil der Anordnung von mindestens zwei Rohrverbindungen ist neben der vergrößerten Oberfläche zur Konvektionskühlung zudem die Möglichkeit, die Rohrverbindungen derart symmetrisch anzuordnen, dass die Eintrittsstellen der Kühlluft sowohl das motorseitig als auch das endseitig im Kurbelgehäuse angeordnete Wälzlager der Kurbelwelle mit Kühlluft direkt versorgen. Die Kühlluft wird dabei aus einer Kühlluftkammer im Zylinderkopf in die Rohrverbindung geführt, wobei die Kühlluftkammer über das Einlassventil mit Kühlluft gefüllt wird und diese auf die Rohrverbindungen verteilt. In der Regel ist es ausreichend, wenn zwei Rohrverbindungen vorgesehen werden.
  • Um eine betriebssichere und platzsparende Ventilanordnung zu schaffen, wird als weitere die Erfindung verbessernde Maßnahme vorgeschlagen, das Einlassventil und/oder das Auslassventil für den Kühlluftstrom nach Art eines Lamellenventils auszubilden und das Einlassventil im Zylinderkopf, in einer Ventilplatte oder im Kurbelgehäuse anzuordnen. Vorteilhaft bei einem Lamellenventil ist der geringe konstruktive Aufwand und die hohe Betriebssicherheit. Aufgrund des geringen Platzbedarfs und der flachen Bauweise eines Lamellenventils lässt sich dieses optimal in der Kühlluftkammer des Zylinderkopfes oder in der Ventilplatte integrieren, und zwar benachbart zum Haupteinlassventil des Kompressors.
  • Um mit einer weiteren Maßnahme eine Erwärmung der Kühlluft zu minimieren, wird vorgeschlagen, das Einlassventil im Zylinderkopf fern vom Ort der Anschlusseinheit anzuordnen. Mit einer möglichst distalen Anordnung des Einlassventils und damit des Strömungsverlaufs der Kühlluft nach der Abzweigung aus der Ansaugleitung wird die Erwärmung der Kühlluft minimiert und auf dem direkten Weg in das Kurbelwellengehäuse geführt. Eine Abzweigung der Kühlluft außerhalb des Zylinderkopfes bzw. der Ventilplatte bietet ebenfalls eine weitere Lösung, jedoch ist dabei zusätzlich ein Abzweigelement in der Ansaugleitung erforderlich und das Einlassventil muss am Kühllufteingang des Kurbelgehäuses angeordnet sein. Diese Lösung wäre jedoch nur bei der Anwendung von einer Rohrverbindung sinnvoll, da bei einer Kühlluftführung über mehrere Rohre entsprechend der Anzahl der Rohrverbindungen auch mehrere Einlassventile erforderlich wären.
  • Es ist aus konstruktiven Gründen von besonderem Vorteil, wenn ein Verschraubungsmittel von Kurbelgehäuse, Zylinder und Zylinderkopf aus mindestens einem Zuganker besteht, der durch die Rohrverbindung verläuft oder ein Verschraubungsmittel von Kurbelgehäuse, Zylinder und Zylinderkopf aus der Rohrverbindung besteht. Mit beiden Maßnahmen kann die Anzahl der Einzelteile reduziert werden, indem die Rohrverbindung neben der Kühlluftführung auch die mechanische Funktion der Verschraubung erfüllt. Im Falle einer Durchführung von Zugankern durch die Rohrverbindung kann eine separate Verschraubung von Kurbelgehäuse, Zylinder und Zylinderkopf entfallen und die Rohrverbindungen werden mit den Zugankern mechanisch verspannt, wobei mit der Verspannung zusätzlich eine Dichtwirkung zwischen der Rohrverbindung und dem Kurbelgehäuse bzw. dem Zylinderkopf erreicht werden kann, da die Rohrverbindung durch die Verspannung in Längsrichtung druckbelastet ist. Bei einer Verschraubung von Kurbelgehäuse, Zylinder und Zylinderkopf über die Rohrverbindung ist diese derart mechanisch verspannt, dass sowohl die mechanischen Zugkräfte aufgenommen werden als auch die Funktion der Kühlluftführung übernommen werden kann und somit die Anzahl von Einzelteilen reduzierbar ist.
  • Um eine Dichtwirkung zwischen der Rohrverbindung und dem Kurbelgehäuse bzw. dem Zylinderkopf zu erreichen, wird vorgeschlagen, dass der Übergang von der Rohrverbindung zum Kurbelgehäuse und zum Zylinderkopf mindestens ein Dichtelement aufweist, um Leckagen zu vermeiden. Dieses Dichtelement kann aus einem O-Ring auf Kunststoffbasis bestehen oder aus einem vergleichbaren Dichtelement wie beispielsweise eines Messingdichtrings hergestellt sein, da damit eine höhere thermische Stabilität und eine verbesserte Alterungsbeständigkeit gegeben ist.
  • Eine zusätzliche Maßnahme zur weiteren Verbesserung der Kühlung des gesamten Hubkolbenkompressors besteht darin, dass die Kühlluft vor Eintritt in die Rohrverbindung über mindestens einen Strömungskanal innerhalb des Zylinderkopfes und/oder des Zylinders verläuft und eine Kühlung bewirkt, wobei die Temperatur der Kühlluft beim nachfolgenden Durchströmen der Rohrverbindung insbesondere durch eine aktive Kühleinheit oder beruhend auf Konvektionskühlung wieder reduzierbar ist und dass die Rohrverbindung auf der Mantelfläche Kühlkörper aufweist, um die Wärmeabfuhr durch Konvektion zu verstärken. Dieses Prinzip der Zwischenkühlung ermöglicht den Eintritt von Kühlluft niedriger Temperatur in das Kurbelgehäuse, obwohl zuvor der thermisch stark beanspruchte Bereich des Zylinders und des Zylinderkopfes mit der gleichen Kühlluft vorab gekühlt wird. Der nicht näher dargestellte Strömungskanal im Zylindermantel und/oder im Zylinderkopf leitet dabei die Kühlluft an den thermisch belasteten Bauteilen vorbei und wird dann in die Rohrverbindung geführt. Um die Temperatur der Kühlluft wieder hinreichend zu reduzieren, so dass diese bei Eintritt in das Kurbelgehäuse eine effektive Kühlung der Wälzlagerungen bewirkt, sind erfindungsgemäß Kühlkörper an der Außenseite der Rohrverbindung vorzusehen, um dadurch die Oberfläche zu vergrößern und den Effekt der Konvektionskühlung zu verstärken. Eine Kühlung durch aktive Kühlmedien ist ebenfalls anwendbar, jedoch erfordern diese einen zusätzlichen konstruktiven Aufwand.
  • Weitere die Erfindung verbessernde Maßnahmen sind in den Unteransprüchen angegeben oder werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispieles der Erfindung anhand einer Figur näher dargestellt. Die einzige Figur zeigt:
    Einen Querschnitt durch einen Hubkolbenkompressor mit einer seitlich angeordneten Rohrverbindung.
  • Der in der Figur dargestellte Hubkolbenkompressor 1 besteht aus einem Kurbelgehäuse 2, einem Zylinder 3 und einem Zylinderkopf 4, der aus einer Ventilplatte 5 und einer Anschlusseinheit 6 aufgebaut ist. Im Zylinder 3 führt ein Kolben 7 eine Hubbewegung aus, die über eine Kurbelwelle 8 und einer als Verbindung angeordneten Pleuel 9 erzeugt wird. Die sich im Zylinder 3 befindliche Luft wird durch die Abwärtsbewegung des Kolbens 7 in den Zylinder 3 eingezogen und bei der Aufwärtsbewegung des Kolbens 7 verdichtet. Die Anschlusseinheit 6 weist neben einer Ansaugleitung 11 und einer Ausgangsleitung 12 ein Haupteinlassventil und ein Hauptauslassventil auf, wobei sich das Haupteinlassventil bei der Abwärtsbewegung des Kolbens 7 in seiner Offenstellung befindet und Luft aus der Ansaugleitung 11 in den Zylinder 3 einzieht und bei der Aufwärtsbewegung schließt. Hingegen befindet sich das Hauptauslassventil während der Abwärtsbewegung des Kolbens 7 in der Schließstellung, und öffnet in der Aufwärtsbewegung des Kolbens 7, wodurch die damit sich verdichtende Luft aus dem Zylinder 3 über die Ausgangsleitung 12 herausgeführt und einem externen Verbraucher zuführt wird.
  • Der Zylinder ist 3 über ein Verschraubungsmittel 18 mit dem Kurbelgehäuse 2 lösbar verbunden. Die Kurbelwelle 8 ist durch Wälzlager 10 drehbar im Kurbelgehäuse 2 gelagert, wobei die Pleuel 9 ebenfalls über Wälzlager 10' drehbar auf dem gekröpften Abschnitt der Kurbelwelle 8 gelagert ist.
  • Durch die Hubbewegung des Kolbens 7 wird wie im Arbeitszylinder auch im Kurbelgehäuse 2 eine periodische Druckänderung hervorgerufen. Durch die Anordnung eines Einlassventils 13 und eines Auslassventils 14, durch die Luft in das Kurbelgehäuse 2 gelangen und entweichen kann, wird im Kurbelgehäuse 2 ein Luftdurchsatz hervorgerufen. Das Einlassventil 13 befindet sich innerhalb des Zylinderkopfes 4, und entnimmt die Kühlluft aufgrund des Unterdruckes im Kurbelgehäuse 2 durch die Aufwärtsbewegung des Kolbens 7 aus der Ansaugleitung 11, die durch eine Rohrverbindung 15 in das Kurbelgehäuse 2 geleitet wird. Die Rohrverbindung 15 ist im Ausführungsbeispiel zwischen der Ventilplatte 5 und dem Kurbelgehäuse 2 angeordnet, womit ein Luftkanal zwischen der Kühlluftkammer 16, in der sich die Kühlluft über das Einlassventil 13 aus der Ansaugleitung 11 sammelt, und dem Kurbelgehäuse 2 hergestellt ist. Die Kühlluft strömt somit durch die Rohrverbindung 15 in das Kurbelgehäuse 2, ohne sich an den Bauteilen hoher Temperatur wie Zylinder 3 oder Zylinderkopf 4 zu erwärmen.
  • Zur Abdichtung der Rohrverbindung 15 und der Ventilplatte 5 bzw. dem Kurbelgehäuse 2 sind Dichtelemente 17 derart angeordnet, dass diese die Übergänge der Rohrverbindung 15 zu Ventilplatte 5 und Kurbelgehäuse 2 dichten und einen Luftnebenstrom und damit das Eindringen von Verunreinigungen verhindern. Bei geöffnetem Einlassventil 13 strömt somit Kühlluft direkt in das Kurbelgehäuse und verlässt dieses über das Auslassventil 14 wieder, wenn der Kolben 7 im Zylinder 3 eine Abwärtsbewegung ausführt und damit einen Überdruck im Kurbelgehäuse 2 hervorruft. Die Wälzlager 10 im Kurbelgehäuse 2 werden von der einströmenden Kühlluft direkt gekühlt, wobei die Kühlluft bei einer hier nicht näher dargestellten Bauweise mit zwei symmetrisch angeordneten Rohrverbindungen 15 derart in das Kurbelgehäuse 2 eingeleitet wird, dass die Wälzlager 10 direkt mit Kühlluft angeströmt werden. Zudem erfährt die Wälzlagerung 10' zwischen der Kurbelwelle 8 und der Pleuel 9 ebenfalls eine Kühlung durch den Kontakt mit der Kühlluft im Kurbelgehäuse 2.
  • Das Auslassventil 14 ist auf der Bodenseite des Kurbelgehäuses 2 angeordnet, um eventuelle Verunreinigungen und Wasseransammlungen aus dem Kurbelgehäuse 2 herauszutransportieren und die Belastung durch Verunreinigungen von außen aufgrund der bodenseitigen Anordnung zu minimieren.
  • 1
    Hubkolbenkompressor
    2
    Kurbelgehäuse
    3
    Zylinder
    4
    Zylinderkopf
    5
    Ventilplatte
    6
    Anschlusseinheit
    7
    Kolben
    8
    Kurbelwelle
    9
    Pleuel
    10, 10'
    Wälzlagerung
    11
    Ansaugleitung
    12
    Ausgangsleitung
    13
    Einlassventil
    14
    Auslassventil
    15
    Rohrverbindung
    16
    Kühlluftkammer
    17
    Dichtelement
    18
    Verschraubungsmittel

Claims (11)

  1. Kolbenkompressor (1), insbesondere ein Hubkolbenkompressor zur Erzeugung von Druckluft, welcher mindestens einen über eine zugeordnete mit einer Wälzlagerung (10, 10') gelagerte Pleuel (9) mit einer Kurbelwelle (8) verbundenen Kolben (7) umfasst, der in einem zugeordneten Zylinder (3) eine Hubbewegung ausführt und über eine im Zylinderkopf (4) integrierte Anschlusseinheit (6) die Verdichtung von Ansaugluft bewirkt, wobei über ein Einlassventil (13) aufgrund eines durch die Kolbenbewegung erzeugten Unterdruckes im Kurbelgehäuse (2) Kühlluft aus der Ansaugleitung (11) in das Kurbelgehäuse gelangt, so dass ein interner Kühlluftstrom im Kurbelgehäuse (2) aufgrund des über die Kolbenrückbewegung erzeugten Überdruckes erzeugbar ist, wobei die Abzweigung der Kühlluft aus der Ansaugleitung (11) selbst oder im Zylinderkopf (4) angeordnet ist und die Kühlluft über mindestens eine außen am Zylinder (3) vorbeiführende Rohrverbindung (15) zwischen Zylinderkopf (4) und dem Kurbelgehäuse (2) am Zylinder (3) vorbeileitbar ist, dadurch gekennzeichnet, dass die Kühlluft über ein im Kurbelgehäuse (2) angeordnetes Auslassventil (14) aus dem Kurbelgehäuse (2) in die Umgebung entweicht, so dass ein interner Kühlluftstrom im Kurbelgehäuse (2) erzeugbar ist, und die Kühlluft vor Eintritt in die Rohrverbindung (15) über einen Strömungskanal innerhalb des Zylinderkopfes (4) und/oder des Zylinders (3) verläuft und eine Kühlung bewirkt, wobei die Temperatur der Kühlluft beim nachfolgenden Durchströmen der Rohrverbindung (15) wieder reduzierbar ist.
  2. Kolbenkompressor (1) nach Anspruch 1, dadurch gekennzeichnet, dass die über die mindestens eine Rohrverbindung (15) geführte Kühlluft an einer Stelle ins Kurbelgehäuse (2) einleitbar ist, in deren Nähe die thermisch belasteten Komponenten wie die Wälzlagerungen (10, 10') im Kurbelgehäuse (2) angeordnet sind und die Kühlluft das Kurbelgehäuse (2) diagonal durchströmt, um eine maximale Kühlwirkung zu erzielen.
  3. Kolbenkompressor (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Verbindung für die Kühlluft zwischen dem Zylinderkopf (4) und dem Kurbelgehäuse (2) aus mindestens zwei einzeln angeordneten und zueinander parallel geschalteten Rohrverbindungen (15) besteht, um die verfügbare Kühloberfläche zu vergrößern.
  4. Kolbenkompressor (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Einlassventil (13) und/oder das Auslassventil (14) nach Art eines Lamellenventils ausgebildet ist.
  5. Kolbenkompressor (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Einlassventil (13) im Zylinderkopf (4), in einer Ventilplatte (5) oder im Kurbelgehäuse (2) angeordnet ist, um die Kühlluft über das Einlassventil (13) in das Kurbelgehäuse (2) einzuleiten.
  6. Kolbenkompressor (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Einlassventil (13) im Zylinderkopf (4) fern vom Ort der Anschlusseinheit (6) angeordnet ist, um eine Erwärmung der Kühlluft zu minimieren.
  7. Kolbenkompressor (1) nach Anspruch 1, dadurch gekennzeichnet, dass ein Verschraubungsmittel (18) von Kurbelgehäuse (2), Zylinder (3) und Zylinderkopf (4) aus mindestens einem Zuganker besteht, der durch die Rohrverbindung (15) hindurch verläuft.
  8. Kolbenkompressor (1) nach Anspruch 1, dadurch gekennzeichnet, dass ein Verschraubungsmittel (18) von Kurbelgehäuse (2), Zylinder (3) und Zylinderkopf (4) aus der Rohrverbindung (15) besteht.
  9. Kolbenkompressor (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Übergang von der Rohrverbindung (15) zum Kurbelgehäuse (2) und zum Zylinderkopf (4) jeweils mindestens ein Dichtelement (17) aufweist, um Leckagen zu vermeiden.
  10. Kolbenkompressor (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur der Kühlluft beim Durchströmen der Rohrverbindung (15) durch eine aktive Kühleinheit wieder reduzierbar ist.
  11. Kolbenkompressor (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Rohrverbindung (15) auf der Oberfläche Kühlkörper aufweist, um die Wärmeabfuhr durch Konvektion zu verstärken.
DE102004042944A 2004-09-02 2004-09-02 Kolbenkompressor mit einem internen Kühlluftstrom im Kurbelgehäuse Expired - Fee Related DE102004042944B4 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
DE102004042944A DE102004042944B4 (de) 2004-09-02 2004-09-02 Kolbenkompressor mit einem internen Kühlluftstrom im Kurbelgehäuse
EP05778871A EP1789681B1 (de) 2004-09-02 2005-08-31 Kolbenkompressor mit einem internen kühlluftstrom im kurbelgehäuse
PCT/EP2005/009367 WO2006024510A1 (de) 2004-09-02 2005-08-31 Kolbenkompressor mit einem internen kühlluftstrom im kurbelgehäuse
CA002578843A CA2578843A1 (en) 2004-09-02 2005-08-31 Piston compressor producing an internal cooling air flow in the crankcase
RU2007111955/06A RU2362051C2 (ru) 2004-09-02 2005-08-31 Поршневой компрессор с внутренним потоком охлаждающего воздуха в картере
MX2007002495A MX2007002495A (es) 2004-09-02 2005-08-31 Compresor de embolo teniendo una corriente de enfriamiento de aire en la caja de ciguenal.
BRPI0514877-4A BRPI0514877B1 (pt) 2004-09-02 2005-08-31 Compressor de pistão com uma corrente de ar refrigerante interna no cárter
DE502005007800T DE502005007800D1 (de) 2004-09-02 2005-08-31 Kolbenkompressor mit einem internen kühlluftstrom im kurbelgehäuse
AT05778871T ATE438036T1 (de) 2004-09-02 2005-08-31 Kolbenkompressor mit einem internen kühlluftstrom im kurbelgehäuse
US11/574,529 US8308447B2 (en) 2004-09-02 2005-08-31 Piston compressor producing an internal cooling air flow in the crankcase
CNB2005800295806A CN100501160C (zh) 2004-09-02 2005-08-31 具有曲轴箱中内部冷却空气流的活塞式压缩机
HK08100737.0A HK1110374A1 (en) 2004-09-02 2008-01-21 Piston compressor producing an internal cooling air flow in the crankcase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004042944A DE102004042944B4 (de) 2004-09-02 2004-09-02 Kolbenkompressor mit einem internen Kühlluftstrom im Kurbelgehäuse

Publications (2)

Publication Number Publication Date
DE102004042944A1 DE102004042944A1 (de) 2006-03-23
DE102004042944B4 true DE102004042944B4 (de) 2009-09-10

Family

ID=35124312

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102004042944A Expired - Fee Related DE102004042944B4 (de) 2004-09-02 2004-09-02 Kolbenkompressor mit einem internen Kühlluftstrom im Kurbelgehäuse
DE502005007800T Active DE502005007800D1 (de) 2004-09-02 2005-08-31 Kolbenkompressor mit einem internen kühlluftstrom im kurbelgehäuse

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE502005007800T Active DE502005007800D1 (de) 2004-09-02 2005-08-31 Kolbenkompressor mit einem internen kühlluftstrom im kurbelgehäuse

Country Status (11)

Country Link
US (1) US8308447B2 (de)
EP (1) EP1789681B1 (de)
CN (1) CN100501160C (de)
AT (1) ATE438036T1 (de)
BR (1) BRPI0514877B1 (de)
CA (1) CA2578843A1 (de)
DE (2) DE102004042944B4 (de)
HK (1) HK1110374A1 (de)
MX (1) MX2007002495A (de)
RU (1) RU2362051C2 (de)
WO (1) WO2006024510A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947589A (zh) * 2010-06-18 2013-02-27 克诺尔-布里姆斯轨道车辆系统有限公司 具有特殊的冷却空气导向装置的气冷的活塞式压缩机
US20150322937A1 (en) * 2014-05-09 2015-11-12 Westinghouse Air Brake Technologies Corporation Oil-free compressor crankcase cooling arrangement

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006012174A1 (de) * 2006-03-16 2007-09-20 Pari GmbH Spezialisten für effektive Inhalation Inhalationstherapiegerätekompressor
DE102007042318B4 (de) * 2007-09-06 2017-11-30 Knorr-Bremse Systeme für Nutzfahrzeuge GmbH Kompakter trockenlaufender Kolbenverdichter
EP2161451A1 (de) * 2008-09-09 2010-03-10 HAUG Kompressoren AG Kolbenkompressor
CN101699069B (zh) * 2009-11-16 2012-05-02 浙江鸿友压缩机制造有限公司 低噪声往复活塞式空气压缩机
CN101776061A (zh) * 2010-03-05 2010-07-14 浙江鸿友压缩机制造有限公司 活塞阀控进气无油润滑空气压缩机
US9856866B2 (en) 2011-01-28 2018-01-02 Wabtec Holding Corp. Oil-free air compressor for rail vehicles
WO2012113144A1 (zh) * 2011-02-24 2012-08-30 Zhang Yongsheng 具有内循环管路装置的低油耗活塞式空气压缩机
TWI405899B (zh) * 2011-05-23 2013-08-21 Sanyang Industry Co Ltd Cleaning device for stepless speed change system
CN102359444B (zh) * 2011-11-01 2014-08-13 中国石油集团济柴动力总厂成都压缩机厂 适用于天然气工业的高速大功率往复活塞式压缩机
DE102013101498A1 (de) * 2013-02-14 2014-08-28 Knorr-Bremse Systeme für Schienenfahrzeuge GmbH Kurbeltriebanordnung eines vorzugsweise ölfreien Kolbenverdichters
RU2622584C1 (ru) * 2016-03-15 2017-06-16 Теймураз Нодарович Кечиян Способ повышения давления газов
US11002270B2 (en) 2016-04-18 2021-05-11 Ingersoll-Rand Industrial U.S., Inc. Cooling methods for electrically operated diaphragm pumps
GB2551251A (en) 2016-04-18 2017-12-13 Ingersoll-Rand Company Cooling methods for electrically operated diaphragm pumps
CN107218204B (zh) * 2017-07-11 2020-06-23 江苏恒达动力科技发展股份有限公司 一种带有压缩空气缓冲的曲轴箱
US11333140B2 (en) * 2019-06-11 2022-05-17 Caterpillar Inc. Cooling block for multi-cylinder air compressor
CN111828285B (zh) * 2020-07-02 2021-01-08 北京建筑大学 一种空压机机体、冷却气管及空压机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE473347C (de) * 1929-03-15 Albert Krautzberger Kompressor mit Schleuderschmierung und einer ueber die Einlassventile zum Zylinder gestuelpten Filterhaube
DD238645A1 (de) * 1985-06-26 1986-08-27 Pumpen & Verdichter Veb K Kleinstverdichteranlage
EP1028254A2 (de) * 1999-02-09 2000-08-16 DeVilbiss Air Power Company Ölfreier zweistufige Verdichter
DE10138070C2 (de) * 2001-08-03 2003-05-22 Knorr Bremse Systeme Kolbenkompressor mit einem Kühlluftstrom

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE157808C (de) * 1903-12-21
US1109154A (en) * 1913-04-11 1914-09-01 Thomas Motive Power Company Air-compressor.
US1399151A (en) * 1919-06-10 1921-12-06 Delmer M Putnam Air-compressor
US1445073A (en) * 1919-10-25 1923-02-13 Corpl Domenico Portable compressor
US1891083A (en) * 1928-10-18 1932-12-13 Adiel Y Dodge Air compressor
US2500567A (en) * 1946-10-16 1950-03-14 Hastings Mfg Co Crankcase air filter
US3338509A (en) * 1965-07-07 1967-08-29 Borg Warner Compressors
AT320123B (de) * 1972-12-22 1975-01-27 Hoerbiger Ventilwerke Ag Lamellenventil, insbesondere für Verdichter
US4492533A (en) * 1980-06-17 1985-01-08 Tokico Ltd. Air compressor
EP0085687B1 (de) * 1981-08-13 1988-11-09 Commonwealth Scientific And Industrial Research Organisation Maschine mit zylinder und hin- und hergehenden kolben
CH684020A5 (de) * 1990-04-18 1994-06-30 Bauer Kompressoren Trockenlaufender Hubkolben-Kompressor.
BE1010122A3 (nl) * 1996-03-19 1998-01-06 Atlas Copco Airpower Nv Kompressorinrichting.
DE19726943C2 (de) * 1997-06-25 2000-03-23 Bitzer Kuehlmaschinenbau Gmbh Kältemittelkompressor
JP4286972B2 (ja) * 1998-07-31 2009-07-01 株式会社日立製作所 空気圧縮機
US6227815B1 (en) * 1999-06-30 2001-05-08 Campbell Hausfeld/Scott Fetzer Company Pressure control for a reciprocating compressor
US6890005B1 (en) * 1999-10-29 2005-05-10 Hutchinson Fts, Inc. Self-centering tubular connection
IT1311171B1 (it) * 1999-12-21 2002-03-04 Automac Sas Di Bigi Ing Mauriz Motore termico alternativo dotato di equilibratura e precompressione
AT411258B (de) * 2001-11-07 2003-11-25 Hoerbiger Kompressortech Serv Dichtelemente für kompressorventile
US6644263B2 (en) * 2001-12-04 2003-11-11 Nicholas S. Hare Engine with dry sump lubrication
JP3542990B2 (ja) * 2001-12-05 2004-07-14 株式会社ヤマダコーポレーション ダイヤフラムポンプ装置
DE20209794U1 (de) * 2002-06-24 2003-11-06 Dolmar Gmbh Gemischschmierung einer Vier-Takt-Verbrennungskraftmaschine
US6745568B1 (en) * 2003-03-27 2004-06-08 Richard K. Squires Turbo system and method of installing
US6945201B2 (en) * 2004-01-15 2005-09-20 Daimlerchrysler Corporation Positive crankcase ventilation in an engine having a cyclically varying crankcase volume

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE473347C (de) * 1929-03-15 Albert Krautzberger Kompressor mit Schleuderschmierung und einer ueber die Einlassventile zum Zylinder gestuelpten Filterhaube
DD238645A1 (de) * 1985-06-26 1986-08-27 Pumpen & Verdichter Veb K Kleinstverdichteranlage
EP1028254A2 (de) * 1999-02-09 2000-08-16 DeVilbiss Air Power Company Ölfreier zweistufige Verdichter
DE10138070C2 (de) * 2001-08-03 2003-05-22 Knorr Bremse Systeme Kolbenkompressor mit einem Kühlluftstrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102947589A (zh) * 2010-06-18 2013-02-27 克诺尔-布里姆斯轨道车辆系统有限公司 具有特殊的冷却空气导向装置的气冷的活塞式压缩机
US8992187B2 (en) 2010-06-18 2015-03-31 Knorr-Bremse Systeme Fuer Schienenfahrzeuge Gmbh Air-cooled reciprocating compressor having special cooling air conduction
CN102947589B (zh) * 2010-06-18 2016-08-03 克诺尔-布里姆斯轨道车辆系统有限公司 具有特殊的冷却空气导向装置的气冷的活塞式压缩机
US20150322937A1 (en) * 2014-05-09 2015-11-12 Westinghouse Air Brake Technologies Corporation Oil-free compressor crankcase cooling arrangement

Also Published As

Publication number Publication date
RU2007111955A (ru) 2008-10-10
CN100501160C (zh) 2009-06-17
EP1789681A1 (de) 2007-05-30
HK1110374A1 (en) 2008-07-11
RU2362051C2 (ru) 2009-07-20
DE502005007800D1 (de) 2009-09-10
US8308447B2 (en) 2012-11-13
EP1789681B1 (de) 2009-07-29
CN101010511A (zh) 2007-08-01
BRPI0514877B1 (pt) 2018-03-13
ATE438036T1 (de) 2009-08-15
WO2006024510A1 (de) 2006-03-09
MX2007002495A (es) 2007-10-10
BRPI0514877A (pt) 2008-06-24
DE102004042944A1 (de) 2006-03-23
CA2578843A1 (en) 2006-03-09
US20070292289A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
EP1789681B1 (de) Kolbenkompressor mit einem internen kühlluftstrom im kurbelgehäuse
DE10138070C2 (de) Kolbenkompressor mit einem Kühlluftstrom
EP1922485A1 (de) Mehrzylindriger trockenlaufender kolbenverdichter mit einem kühlluftstrom
WO2007068463A1 (de) Wassergekühlter kolbenverdichter
DE102005059668A1 (de) Brennkraftmaschine
DE3836643A1 (de) Kompressoranlage
WO2017102397A1 (de) Zylinderkopf für mehrstufigen kolbenverdichter
DE2455430A1 (de) Kolben-zylinder-einheit
DE102008004569A1 (de) Hubkolbenverdichter
EP1948930B1 (de) Kompressoranordnung mit bypassmitteln zur vermeidung eines einfrierens der kühleinheit
EP2672082A1 (de) Schmiermittelsammelvorrichtung
DE102018205269B4 (de) Schraubenverdichter
DE19940144A1 (de) Ölgekühlte Brennkraftmaschine
DE3601816A1 (de) Luftgekuehlter, insbesondere fahrbarer kompressor
DE4110912A1 (de) Trockenlaufender hubkolben-kompressor
DE102006053923A1 (de) Kolbenarbeitsmaschine
EP2708745B1 (de) Mehrstufiger Kolbenverdichter mit Leerlaufventilen zur Erzeugung einer Leerlauffunktion
DE102018124757B4 (de) Elektrisch angetriebene Verdichteranordnung
DE19736017A1 (de) Trockenverdichtende Vakuumpumpe oder Kompressor
DE4290033C2 (de) Kompressor geschlossener Bauart
DE102012110326B3 (de) Wasserfilter und Drucklufterzeugungsvorrichtung
DE2831879A1 (de) Waermepumpenantrieb
EP0162833A1 (de) Kolbenverdichter
DE102016001649A1 (de) Verbrennungskraftmaschine für ein Kraftfahrzeug, insbesondere einen Personenkraftwagen
DE10221396A1 (de) C02-Axialkolbenverdichter für Fahrzeugklimaanlagen

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee

Effective date: 20120403