DE102004020016A1 - Verfahren zur Herstellung von Polymer-Granulaten - Google Patents

Verfahren zur Herstellung von Polymer-Granulaten Download PDF

Info

Publication number
DE102004020016A1
DE102004020016A1 DE200410020016 DE102004020016A DE102004020016A1 DE 102004020016 A1 DE102004020016 A1 DE 102004020016A1 DE 200410020016 DE200410020016 DE 200410020016 DE 102004020016 A DE102004020016 A DE 102004020016A DE 102004020016 A1 DE102004020016 A1 DE 102004020016A1
Authority
DE
Germany
Prior art keywords
granules
acid
cellulose
cellulose derivative
alkali
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE200410020016
Other languages
English (en)
Inventor
Georg Dr. Assmann
Thorsten Dr. Scottsdale Bastigkeit
Josef Dr. Penninger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to DE200410020016 priority Critical patent/DE102004020016A1/de
Publication of DE102004020016A1 publication Critical patent/DE102004020016A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents ; Methods for using cleaning compositions one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • C11D3/225Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin etherified, e.g. CMC

Abstract

Polymer-Granulate werden durch Granulation eines Gemisches aus einem Cellulosederivat, das erhältlich ist durch Alkylierung und Hydroxylalkylierung von Cellulose, mit einem tensidischen Bindemittel und gegebenenfalls einem anorganischen Trägermaterial hergestellt. Sie können in teilchenförmigen Wasch- oder Reinigungsmitteln eingesetzt werden.

Description

  • Die vorliegende Patentanmeldung betrifft ein Verfahren zur Herstellung von Polymer-Granulaten, die in teilchenförmigen Wasch- und Reinigungsmitteln eingesetzt werden können.
  • Der Zusatz von Polymeren zu pulverförmigen Waschmitteln führt häufig zu einer Beeinträchtigung der Lagerfähigkeit, die Waschmittel verklumpen und verlieren ihre Rieselfähigkeit. Aus diesem Grund werden solche Polymere bevorzugt in Form von Granulaten eingesetzt. Die Herstellung und Verwendung polymerhaltiger Granulate ist dementsprechend Gegenstand zahlreicher Literaturstellen.
  • Die europäische Patentanmeldung EP-A-0 759 463 beschreibt Waschmittelzusammensetzungen, die aus einem Basispulver bestehen, dem nachträglich ein handelsübliches Granulat eines Polycarboxylat-Polymeren (z.B. Sokalan CP 5®) zugemischt wird. Durch die nachträgliche Zugabe des Polymeren in Granulatform wird eine Stabilisierung des Bleichsystems im Vergleich zu Mitteln, die das Polymer im Basispulver enthalten, erreicht.
  • Ein Zusatz für Wasch- und Reinigungsmittel, der 20 – 80 Gew.-% polymeres Polycarboxylat neben 20 – 80 Gew.-% Nitrilotriacetat enthält, wird in der Patentschrift US-4 698 174 beschrieben. Das Nitrilotriacetat dient dabei zur Verminderung der Hygroskopizität des Polycarboxylats.
  • Mit Zeolith-Granulaten, die auch Polycarboxylat-Polymer enthalten, befassen sich die EP-A-0 368 137 und die DE-A-33 16 513. Die Granulate gemäß DE-A-33 16 513 werden durch Sprühtrocknung hergestellt und enthalten polymere Polycarboxylate in Mengen von mindestens 5 Gew.-% zur Verringerung des Abriebs der Zeolith-Granulate. Die EP-A-0 368 137 beschreibt ein Verfahren zur Herstellung solcher Granulate, die 2 – 15 Gew.-% Polycarboxylat enthalten. Es wird zuerst eine homogene, pulvrige Mischung aus dem Zeolith und dem Polycarboxylat hergestellt, die Mischung anschließend agglomeriert und das erhaltene Agglomerat nachgetrocknet.
  • Die WO 94/13775 beschäftigt sich mit einem Verfahren zur Herstellung von pulverförmigen Waschmitteln mit einem Gehalt an Polyvinylpyrrolidon (PVP), wobei, zur Erhaltung der Rieselfähigkeit des Waschmittels, das PVP vollständig oder teilweise in Form eines separaten Gemischs (PVP-Konzentrat) mit anderen pulverförmigen Waschmittelbestandteilen dem pulverförmigen Waschmittel, das die übrigen Waschmittelbestandteile enthält, beigemischt wird. Das PVP-Konzentrat kann 10 – 50 Gew.-% PVP und bevorzugt 40 – 80 Gew.-% anorganische Trägersalze neben geringen Mengen Wasser enthalten. Die Herstellung dieser Konzentrate erfolgt bevorzugt durch Sprühtrocknung.
  • Ein Waschmitteladditiv, das 15 – 60 Gew.-% PVP, 5 – 90 Gew.-% Trägermaterial sowie 5 – 60 Gew.-% Salz und 0,5 – 30 Gew.-% Bindemittel enthält, wird in der EP-B-0 652 937 beschrieben. Hergestellt wird das Additiv durch Mischen von PVP, Träger und Salz und anschließendes Aufsprühen des Bindemittels. Der Vorteil dieses Additivs besteht darin, daß Waschmittel, die es enthalten, nicht so schnell verklumpen wie vergleichbare Mittel, denen PVP direkt zugesetzt wird, da zuerst das Trägermaterial mit dem feuchten PVP verklebt.
  • Einen verfärbungsinhibierenden Waschmittelzusatz der wenigstens teilweise wasserlösliche Polymerbestandteile auf Basis von N-Vinylpyrrolidon oder N-Vinylimidazol oder N-Vinyloxazolidon in Kombination mit einer kationischen Verbindung enthält und auch in Kombination mit alkalischen Waschmittelbestandteilen geruchsneutral ist, beschreibt die EP-A-0 327 927 Erhalten wird dieser Zusatz dadurch, daß man die Ausgangsstoffe miteinander vermischt und das Gemisch mit erhitzter Luft trocknet.
  • Mit Granulaten, die sich in Waschmitteln einsetzen lassen, beschäftigt sich auch die europäische Patentanmeldung EP-A-0 421 664. Die Granulate enthalten mindestens 10 Gew.-% Polymer sowie mindestens 20 Gew.-% einer wasserlöslichen anorganischen Komponente oder mindestens 20 Gew.-% Polymer neben mindestens 20 Gew.-% einer wasserunlöslichen anorganischen Komponente und haben ein Schüttgewicht von mindestens 700 g/l. Bevorzugte Granulate enthalten 20 bis 40 Gew.-% Polymer. Hergestellt werden diese Granulate durch Mischen einer Lösung bzw. eines Slurries des Polymeren mit der anorganischen Komponente und Granulation der Mischung unter Wärmeanwendung.
  • Das europäische Patent EP-B-0 658 189 beschreibt Wasch- und Reinigungsmittel, die mindestens 2 granulare Komponenten enthalten, wobei eine Komponente eine Zumischkomponente in granularer Form aus polymeren Polycarboxylaten ist. Die Polymergranulate weisen ein Schüttgewicht zwischen 350 und 850 g/l auf und werden auf übliche Weise, beispielsweise durch Trocknung von Polymerlösungen, anschließende Granulierung und ggf. Größenklassierung hergestellt. Bevorzugt ist dabei die Trocknung der Polymerlösung in einem Sprühturm oder in einer Wirbelschicht. Genaue Angaben zum Herstellungsverfahren oder zur Zusammensetzung der Polymergranulate enthält diese Patentschrift jedoch nicht.
  • Die aus dem genannten Stand der Technik bekannten Granulate besitzen meist nur niedrige Polymergehalte oder enthalten Zusätze, die die Hygroskopizität der Compounds und damit deren Wassergehalt begrenzen sollen. Keines der bislang beschriebenen Verfahren ist allgemein zur Herstellung von Granulaten polymerer Waschmittelinhaltsstoffe geeignet, die einen hohen Polymergehalt besitzen, leicht löslich, lagerstabil und rieselfähig sind und zudem den hohen Anforderungen an moderne Wasch- und Reinigungsmittel genügen.
  • Aufgabe der vorliegenden Erfindung ist es, die vorgenannten Nachteile des Standes der Technik zu überwinden und insbesondere ein Verfahren zur Herstellung von Polymergranulaten zur Verfügung zu stellen, die leicht löslich, lagerstabil und rieselfähig sind und zudem bei Einsatz in der Textilpflege die Flusen- und Pillbildung textiler Flächengebilde erheblich reduzieren.
  • Überraschend wurde gefunden, daß sich aus bestimmten Cellulosederivaten Granulate herstellen lassen, die leicht löslich, lagerstabil und rieselfähig sind und zudem bei Einsatz in der Textilpflege die Flusen- und Pillbildung textiler Flächengebilde erheblich reduzieren.
  • Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zur Herstellung von Polymer-Granulaten durch Granulation eines Gemisches aus einem Cellulosederivat, das erhältlich ist durch Alkylierung und Hydroxyalkylierung von Cellulose, mit einem tensidischen Bindemittel und gegebenenfalls einem anorganischen Trägermaterial.
  • Die Granulation wird vorzugsweise durch einen Agglomerisationsschritt und/oder einen Kompaktierungsschritt durchgeführt. Der Kompaktierschritt wird vorzugsweise mit Hilfe einer Walzenpresse oder eines Extruders durchgeführt, der Agglomerisationsschritt wird vorzugsweise in einem Granulationsmischer oder einer Wirbelschichtapparatur durchgeführt. Dabei werden vorzugsweise solche Drucke angewendet beziehungsweise das Granulat wird vorzugsweise nach solchen Zeiten aus dem Mischer oder der Wirbelschicht ausgetragen, dass das entstehende Granulat eine Schüttdichte im Bereich von 350 g/l bis 800 g/l, insbesondere 450 g/l bis 750 g/l aufweist.
  • Als wesentliche Komponente wird in dem erfindungsgemäßen Verfahren ein Cellulosederivat eingesetzt, das erhältlich ist durch Alkylierung und Hydroxyalkylierung von Cellulose. Bevorzugte Cellulosederivate sind solche, die mit C1- bis C10-Gruppen, insbesondere C1- bis C3-Gruppen alkyliert sind und zusätzlich C2- bis C10-Hydroxyalkylgruppen, insbesondere C2- bis C3-Hydroxyalkylgruppen, tragen. Diese können in bekannter Weise durch Umsetzung von Cellulose mit entsprechenden Alkylierungsmitteln, beispielsweise Alkylhalogeniden oder Alkylsulfaten, und anschließende Umsetzung mit entsprechenden Alkylenoxiden, wie beispielsweise Ethylenoxid und/oder Propylenoxid, erhalten werden. In einer bevorzugten Ausführungsform der Erfindung sind im Cellulosederivat gemittelt 0,5 bis 2,5, insbesondere 1 bis 2 Alkylgruppen und 0,02 bis 0,5, insbesondere 0,05 bis 0,3 Hydroxyalkylgruppen pro Anhydroglykosemonomereinheit enthalten. Die mittlere Molmasse der erfindungsgemäß eingesetzten Cellulosederivate liegt vorzugsweise im Bereich von 10 000 D bis 150 000 D, insbesondere von 40 000 D bis 120 000 D und besonders bevorzugt im Bereich von 80 000 D bis 110 000 D. Die Bestimmung des Polymerisationsgrads beziehungsweise des Molekulargewichts des schmutzablösevermögenden Cellulosederivats basiert auf der Bestimmung der Grenzviskositätszahl an hinreichend verdünnten wäßrigen Lösungen mittels einem Ubbelohde Kapillarviskosimeter (Kapillare 0c). Unter Verwendung einer Konstanten [H. Staudinger und F.
  • Reinecke, "Über Molekulargewichtsbestimmung an Celluloseethern", Liebigs Annalen der Chemie 535, 47 (1938)] und eines Korrekturfaktors [F. Rodriguez und L. A. Goettler, "The Flow of Moderately Concentrated Polymer Solutions in Water", Transactions of the Society of Rheology VIII, 3 17 (1964)] läßt sich hieraus der Polymerisationsgrad sowie unter Einbezug der Substitutionsgrade (DS und MS) das korrespondierende Molekulargewicht berechnen.
  • Die erfindungsgemäß einzusetzenden Cellulosederivate sind wie geschildert auf einfachem Wege herstellbar und ökologisch sowie toxikologisch unbedenklich. Sie führen zu einer signifikant besseren Ablösung von insbesondere Fett- und Kosmetik-Anschmutzungen auf Baumwolle beziehungsweise baumwollhaltigen Geweben als dies bei Verwendung bisher für diesen Zweck bekannter Verbindungen der Fall ist. Alternativ können bei gleichbleibendem Fettablösevermögen bedeutende Mengen an Tensiden eingespart werden.
  • Als Bindemittel geeignete anionische Tenside sind insbesondere solche, die Sulfat- oder Sulfonat-Gruppen enthalten.
  • Als Tenside vom Sulfonat-Typ kommen vorzugsweise C9-C13-Alkylbenzolsulfonate, Olefinsulfonate, das heißt Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-C18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-C18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse beziehungsweise Neutralisation gewonnen werden. Geeignet sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), zum Beispiel die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren, die durch α-Sulfonierung der Methylester von Fettsäuren pflanzlichen und/oder tierischen Ursprungs mit 8 bis 20 C-Atomen im Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen Mono-Salzen hergestellt werden, in Betracht. Vorzugsweise handelt es sich hierbei um die α-sulfonierten Ester der hydrierten Kokos-, Palm-, Palmkern- oder Talgfettsäuren, wobei auch Sulfonierungsprodukte von ungesättigten Fettsäuren, beispielsweise Ölsäure, in geringen Mengen, vorzugsweise in Mengen nicht oberhalb etwa 2 bis 3 Gew.-%, vorhanden sein können. Insbesondere sind α-Sulfofettsäurealkylester bevorzugt, die eine Alkylkette mit nicht mehr als 4 C-Atomen in der Estergruppe aufweisen, beispielsweise Methylester, Ethylester, Propylester und Butylester. Mit besonderem Vorteil werden die Methylester der α-Sulfofettsäuren (MES), aber auch deren verseifte Disalze eingesetzt.
  • Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden.
  • Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate insbesondere bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-amerikanischen Patentschriften US 3 234 258 oder US 5 075 041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
  • Darüberhinaus können auch alle anderen Aniontenside, insbesondere Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C21-Alkohole, wie 2-Methylverzweigte C9-C11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-C18-Fettalkohole mit 1 bis 4 EO und die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, eingesetzt werden. Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside beziehungsweise die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat.
  • Die anionischen Tenside können in Form ihrer Natrium-, Kalium-, Ammonium oder Magnesiumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
  • Erfindungsgemäß bevorzugte Granulate enthalten Aniontenside vom Sulfonat-Typ, wobei es zur weiteren Verbesserung des Auflöseverhaltens von Vorteil sein kann, wenn die Granulate neben den Sulfonaten auch Tenside vom Sulfat-Typ enthalten. Dementsprechend sind Granulate, die neben Tensiden vom Sulfonat-Typ auch C12-C18-Alkylsulfate, insbesondere C12-C14-Alkylsulfate, enthalten, in einer besonderen Ausführungsform der Erfindung bevorzugt, wobei das Gewichtsverhältnis von Sulfonat-Tensiden:Sulfat-Tensiden in einer besonders bevorzugten Ausführungsform 1:1 bis 20:1, insbesondere 2:1 bis 10:1 beträgt.
  • Neben den Aniontensiden oder an deren Stelle können in den Verfahren zur Herstellung der Granulate auch nichtionische Tenside eingesetzt werden. Im einzelnen gehören hierzu alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann beziehungsweise lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-C14-Alkohole mit 3 EO oder 4 EO, C9-C11-Alkohole mit 7 EO, C13-C15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-C18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-C14-Alkohol mit 3 EO und C12-C18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO.
  • Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)x, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl- die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann – zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Ebenfalls geeignet sind Polyhydroxyfettsäureamide der Formel (I), in der R1CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht:
    Figure 00080001
  • Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
    Figure 00080002
    in der R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R4 für einen linearen, verzweigten oder cyclischen Alkylenrest oder einen Arylenrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-C4-Alkyl- oder Phenylreste bevorzugt sind, und [Z] für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Aminierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Patentanmeldung WO 95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO 90/13533 beschriebenen Verfahren hergestellt werden.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten „Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, daß die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden unter dem Ausdruck Gemini-Tenside nicht nur derartig „dimere", sondern auch entsprechend „trimere" Tenside verstanden. Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether gemäß der deutschen Patentanmeldung DE 43 21 022 oder Dimeralkohol-bis- und Trimeralkohol-tris-sulfate und -ethersulfate gemäß der deutschen Patentanmeldung DE 195 03 061 . Endgruppenverschlossene dimere und trimere Mischether gemäß der deutschen Patentanmeldung DE 195 13 391 zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so daß sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide, wie sie in den internationalen Patentanmeldungen WO 95/19953, WO 95/19954 und WO 95/19955 beschrieben werden.
  • Werden die Tenside in Form wäßriger Zubereitungen, die Aniontensidsäure enthalten, eingesetzt, so ist es bevorzugt, zur Neutralisation eine wäßrige alkalische Lösung aufzusprühen, wobei die Sprühneutralisation gleichzeitig mit der Granulation stattfindet.
  • Die Bindemittel können außer den anionischen und/oder nichtionischen Tensiden auch deren Abmischungen mit polymeren Glykolen, Polymerisaten und Copolymerisaten der Acrylsäure, Methacrylsäure und/oder Maleinsäure, die auch in Form ihrer Natrium-, Kalium- oder Ammoniumsalze vorliegen können, enthalten.
  • Als Trägermaterialien werden in erfindungsgemäßen Verfahren bevorzugt Alkalicarbonate, Alkalihydrogencarbonate, Alkalisilikate, Alkalisulfate, Alkalihydrogensulfate, Alkaliphosphate, Dialkalihydrogenphosphate, Alkalidihydrogenphosphate, Alkalizeolithe und deren Mischungen, gegebenenfalls in Abmischung mit den entsprechenden Erdalkalisalzen, eingesetzt. Weiter enthalten die nach dem erfindungsgemäßen Verfahren erhältlichen Granulate vorzugsweise nur mittlere bis geringe Mengen Wasser, da die Rieselfähigkeit der hochkonzentrierten Polymergranulate mit steigendem Wassergehalt deutlich abnimmt. Erfindungsgemäß bevorzugt sind daher solche Granulate, die weniger als 7 Gew.-% Wasser und insbesondere dann, wenn der Tensidgehalt über 70 Gew.-% beträgt, bevorzugt weniger als 4,5 Gew.-% Wasser, enthalten.
  • Unter diesem Gesichtspunkt ist es bevorzugt als Träger zumindest anteilig solche Verbindungen einzusetzen, die in den Granulaten noch Feuchtigkeit aufnehmen können und damit ein Verkleben insbesondere der Aniontenside verhindern. Der Einsatz derartiger Träger verbessert damit das Riesel- und Löseverhalten solcher Granulate und erhöht deren Lagerfähigkeit.
  • Für diesen Zweck geeignete Träger sind insbesondere die Zeolithe vom Faujasit-Typ sowie zusätzlich beispielsweise calcinierte Soda und übertrocknete, amorphe Silicate.
  • Zeolithe vom Faujasit-Typ weisen die allgemeine Formel M2/nO·Al2O3·xSiO2·yH2O auf, in der M ein Kation der Wertigkeit n ist, x für Werte steht, die größer oder gleich 2 sind und y Werte zwischen 0 und 20 annehmen kann. Die Zeolithstrukturen bilden sich durch Verknüpfung von AlO4-Tetraedern mit SiO4-Tetraedern, wobei dieses Netzwerk von Kationen und Wassermolekülen besetzt ist. Die Kationen in diesen Strukturen sind relativ mobil und können in unterschiedlichen Graden durch andere Kationen ausgetauscht sein. Das interkristalline „zeolithische" Wasser kann je nach Zeolithtyp kontinuierlich und reversibel abgegeben werden, während bei einigen Zeolithtypen auch strukturelle Änderungen mit der Wasserabgabe bzw. -aufnahme einhergehen.
  • In den strukturellen Untereinheiten bilden die „primären Bindungseinheiten" (AlO4-Tetraeder und SiO4-Tetraeder) sogenannte „sekundäre Bindungseinheiten", die die Form ein- oder mehrfacher Ringe besitzen. So treten in verschiedenen Zeolithen beispielsweise 4-, 6- und 8-gliedrige Ringe auf (als S4R, S6R und S8R bezeichnet), andere Typen werden über vier- und sechsgliedrige Doppelringprismen verbunden (häufigste Typen: D4R als viereckiges bzw. D6R als sechseckiges Prisma). Diese „sekundären Untereinheiten" verbinden unterschiedliche Polyhedra, die mit griechischen Buchstaben bezeichnet werden. Am verbreitetsten ist hierbei ein Vielflächner, der aus sechs Quadraten und acht gleichseitigen Sechsecken aufgebaut ist und der als „β" bezeichnet wird. Mit diesen Baueinheiten lassen sich mannigfaltige unterschiedliche Zeolithe realisieren. Bislang sind 34 natürliche Zeolith-Mineralien sowie ungefähr 100 synthetische Zeolithe bekannt.
  • Zusammen mit den Zeolithen X und Y gehört das Mineral Faujasit zu den Faujasit-Typen innerhalb der Zeolith-Strukturgruppe 4, die durch die Doppelsechsring-Untereinheit D6R gekennzeichnet ist (Donald W. Breck, „Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seite 92). Zur Zeolith-Strukturgruppe 4 zählen neben den genannten Faujasit-Typen noch die Mineralien Chabazit und Gmelinit sowie die synthetischen Zeolithe R (Chabazit-Typ), S (Gmelinit-Typ), L und ZK-5. Die beiden letztgenannten synthetischen Zeolithe haben keine bekannten mineralischen Analoga.
  • Zeolithe vom Faujasit-Typ sind aus β-Käfigen aufgebaut, die tetrahedral über D6R-Untereinheiten verknüpft sind, wobei die β-Käfige ähnlich den Kohlenstoffatomen im Diamanten angeordnet sind. Das dreidimensionale Netzwerk der im erfindungsgemäßen Verfahren eingesetzten Zeolithe vom Faujasit-Typ weist Poren von 2,2 und 7,4 Å auf, die Elementarzelle enthält darüberhinaus 8 Kavitäten mit ca. 13 Å Durchmesser und läßt sich durch die Formel Na86[(AlO2)86(SiO2)106]·264H2O beschreiben. Das Netzwerk des Zeolith X enthält dabei ein Hohlraumvolumen von ungefähr 50%, bezogen auf den dehydratisierten Kristall, was den größten Leerraum aller bekannten Zeolithe darstellt (Zeolith Y: ca. 48% Hohlraumvolumen, Faujasit: ca. 47% Hohlraumvolumen). (Alle Daten aus: Donald W. Breck: „Zeolite Molecular Sieves", John Wiley & Sons, New York, London, Sydney, Toronto, 1974, Seiten 145, 176, 177).
  • Im Rahmen der vorliegenden Erfindung kennzeichnet der Begriff „Zeolith vom Faujasit-Typ" alle drei Zeolithe, die die Faujasit-Untergruppe der Zeolith-Strukturgruppe 4 bilden. Neben dem Zeolith X sind erfindungsgemäß also auch Zeolith Y und Faujasit sowie Mischungen dieser Verbindungen einsetzbar. Erfindungsgemäß bevorzugt ist jedoch der reine Zeolith X in den Granulaten enthalten.
  • Auch Mischungen oder Cokristallisate von Zeolithen des Faujasit-Typs mit anderen Zeolithen, die nicht zwingend der Zeolith-Strukturgruppe 4 angehören müssen, sind erfindungsgemäß einsetzbar, wobei die Vorteile der erfindungsgemäßen Granulate besonders deutlich zu Tage treten, wenn mindestens 50 Gew.-% der Zeolithkomponente aus Zeolithen vom Faujasit-Typ bestehen.
  • Beispiele für kommerziell erhältliche Zeolithe vom X-Typ können durch die folgenden Formeln beschrieben werden: Na86(AlO2)86(SiO2)106]·xH2O , K86(AlO2)86(SiO2)106]·xH2O , Ca40Na6(AlO2)86(SiO2)106·xH2O , Sr21Ba22[(AlO2)86(SiO2)106]·xH2O , in denen x Werte zwischen 0 und 276 annehmen kann und die Porengrößen von 8,0 bis 8,4 Å aufweisen.
  • Kommerziell erhältlich und im Rahmen des erfindungsgemäßen Verfahrens ebenfalls einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma CONDEA Augusta S.p.A. unter dem Markennamen VEGOBOND AX® vertrieben wird und durch die Formel nNa2O·(1 – n)K2O · Al2O3·(2 – 2,5)SiO2·(3,5 – 5,5)H2O beschrieben werden kann.
  • Auch Zeolithe vom Y-Typ sind kommerziell erhältlich und lassen sich beispielsweise durch die Formeln Na56[(AlO2)56(SiO2)136]·xH2O , K56[(AlO2)56(SiO2)136]·xH2O , in denen x für Zahlen zwischen 0 und 276 steht und die Porengrößen von 8,0 Å aufweisen, beschreiben.
  • Neben dem Zeolith vom Faujasit-Typ oder an denen Stelle kann auch feinkristalliner, synthetischer und gebundenes Wasser enthaltender Zeolith, wie Zeolith A, Zeolith P und Mischungen aus A und P eingesetzt werden. Als im Handel erhältlicher Zeolith P ist beispielsweise Zeolith MAP® (Handelsprodukt der Firma Crosfield) zu nennen.
  • Die Teilchengrößen der im erfindungsgemäßen Verfahren gegebenenfalls eingesetzten Zeolithe liegen vorzugsweise im Bereich von 0,1 bis zu 100 μm, vorzugsweise zwischen 0,5 und 50 μm und insbesondere zwischen 1 und 30 μm, jeweils mit Standard-Teilchengrößebestimmungsmethoden gemessen.
  • Zur Erhöhung der Lagerfähigkeit der erfindungsgemäßen Granulate ist es dabei bevorzugt, wenn der Zeolith in einer übertrockneten Form eingesetzt wird, d.h. daß er einen bei 800°C entfernbaren Wassergehalt besitzt, der niedriger ist als der Wassergehalt des verwendeten Zeolith-Typs im Gleichgewicht.
  • Die Granulation kann in jeder beliebigen Apparatur, die dazu geeignet ist, stattfinden, beispielsweise in einem Granulationsmischer, einer Wirbelschichtapparatur, einem Extruder oder einer Walzenpresse. In einer Ausführungsform des erfindungsgemäßen Verfahrens wird die Granulation in einer batchweise oder kontinuierlich laufenden Wirbelschicht durchgeführt, wobei flüssige Zubereitungen über Ein- oder Mehrwegdüsen oder über mehrere Düsen in die Wirbelschicht eingebracht werden können. Dabei ist es insbesondere bevorzugt, das Verfahren kontinuierlich in der Wirbelschicht durchzuführen.
  • In einer Ausführungsform des Wirbelschicht-Verfahrens werden teilchenförmiges Cellulosederivat sowie gegebenenfalls vorhandenes teilchenförmiges Trägermaterial entweder pneumatisch über Blasleitungen eingestaubt, wobei die Zugabe entweder vor der Verdüsung der flüssigen Komponenten oder gleichzeitig mit diesen erfolgt, oder Cellulosederivat sowie gegebenenfalls vorhandenes Trägermaterial werden als Lösung beziehungsweise Suspension im Gemisch mit den Flüssigkeiten eingesetzt. Dabei erfolgt die Mischung der flüssigen Bestandteile entweder vor der Verdüsung oder unmittelbar in der Düse. Die Anordnung der Düse beziehungsweise der Düsen und die Sprührichtung kann beliebig sein, solange eine im wesentlichen gleichmäßige Verteilung der flüssigen Komponenten in der Wirbelschicht erreicht wird.
  • Bevorzugt eingesetzte Wirbelschicht-Apparate besitzen Bodenplatten mit Abmessungen von mindestens 0,4 m. Insbesondere sind Wirbelschicht-Apparate bevorzugt, die eine Bodenplatte mit einem Durchmesser zwischen 0,4 und 5 m, beispielsweise 1,2 m oder 2,5 m besitzen. Es sind jedoch auch Wirbelschicht-Apparate geeignet, die eine Bodenplatte mit einem größeren Durchmesser als 5 m aufweisen. Als Bodenplatte wird vorzugsweise eine Lochbodenplatte oder eine Conidurplatte (Handelsprodukt der Firma Hein&Lehmann) eingesetzt. Vorzugsweise wird das erfindungsgemäße Verfahren bei Wirbelluftgeschwindigkeiten zwischen 1 und 8 m/s und insbesondere zwischen 1,5 und 5,5 m/s durchgeführt.
  • Der Austrag der Granulate aus der Wirbelschicht erfolgt vorteilhafterweise über eine Größenklassierung der Granulate. Diese Klassierung kann beispielsweise mit einer Siebvorrichtung oder durch einen entgegengeführten Luftstrom (Sichterluft) erfolgen, der so reguliert wird, daß erst Teilchen ab einer bestimmten Teilchengröße aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbelschicht zurückgehalten werden. In einer bevorzugten Ausführungsform setzt sich die einströmende Luft aus der beheizten oder unbeheizten Sichterluft und der beheizten Bodenluft zusammen. Die Bodenlufttemperatur liegt dabei vorzugsweise zwischen 80 und 400°C, insbesondere zwischen 90 und 350°C. Die Wirbelluft kühlt sich durch Wärmeverluste und durch die Verdampfungswärme der Bestandteile des Lösungsmittels ab. In einer besonders bevorzugten Ausführungsform beträgt die Temperatur der Wirbelluft etwa 5 cm oberhalb der Bodenplatte 60 bis 120°C, vorzugsweise 70 bis 100°C. Die Luftaustrittstemperatur liegt vorzugsweise zwischen 60 und 120°C, insbesondere unterhalb 100°C.
  • Erfolgt der Austrag aus der Wirbelschicht, wie im europäischen Patent EP-B-0 603 207 beschrieben, gegen einen Sichterluftstrom, so werden durch diese Klassierung staubfreie Granulate erhalten, das heißt die Korngrößen der Teilchen liegen normalerweise über 0,2 mm. Erfindungsgemäß bevorzugte Granulate haben einen d50-Wert zwischen 0,4 und 2,0 mm. In einer besonders bevorzugten Ausführungsform wird der Kornanteil, der größer 2,0 mm ist, in den Herstellprozess zurückgeführt. Dieser Grobkornanteil kann entweder nach Mahlen als feste Komponente zugesetzt werden oder er wird erneut gelöst.
  • Bei dem erfindungsgemäßen Wirbelgranulationsprozesses kann kontinuierlich ein Bepuderungsmittel in die Wirbelschicht eingebracht werden. Bevorzugt werden dabei Zeolithe als Bepuderungsmittel eingesetzt, wobei es insbesondere bevorzugt ist, die erfindungsgemäß als Träger eingesetzten Zeolithe auch als Bepuderungsmittel zu verwenden. Diese Bepuderungsmittel vermindern bei der Granulation die Klebrigkeit der feuchten Granulatkörner zusätzlich und fördern somit die Verwirbelung und die Trocknung zum gewünschten Produkt. Die Teilchengröße des Bepuderungsmittel liegt dabei vorzugsweise unter 100 μm. Die so erhaltenen Granulate enthalten vorzugsweise zwischen 1 und 4 Gew.-% des Bepuderungsmittels.
  • Die nach dem erfindungsgemäßen Verfahren erhältlichen Polymergranulate werden vorzugsweise zur Herstellung teilchenförmiger Wasch- oder Reinigungsmittel verwendet.
  • Ein weiterer Gegenstand der vorliegenden Erfindung sind daher Wasch- oder Reinigungsmittel, die gegebenenfalls andere Bestandteile, aber mindestens ein erfindungsgemäßes Polymergranulat beziehungsweise ein Polymergranulat, das Produkt des erfindungsgemäßen Verfahrens ist, enthalten.
  • Die erfindungsgemäßen Wasch- und Reinigungsmittel, die als Granulate, pulver- oder tablettenförmige Feststoffe oder sonstige Formkörper vorliegen können, können außer den genannten Polymergranulaten im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Bevorzugte Mittel im Sinne der Erfindung sind granulare Mittel, insbesondere solche, die durch Mischen verschiedener Granulate von Wasch- und/oder Reinigungsmittelkomponenten entstehen.
  • Als Inhaltsstoffe der erfindungsgemäßen Waschmittel können in erster Linie anionische, nichtionische, kationische, amphotere und/oder zwitterionische Tenside genannt werden.
  • Geeignete anionische Tenside sind insbesondere die bereits oben genannten Tenside, die bevorzugt in Form der erfindungsgemäßen Granulate eingesetzt werden. Als weitere anionische Tenside kommen insbesondere Seifen, beispielsweise in Mengen von 0,2 Gew.-% bis 5 Gew.-%, in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische. Die anionischen Tenside, einschließlich der Seifen, können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor. Anionische Tenside sind in erfindungsgemäßen Waschmitteln vorzugsweise in Mengen von 1 Gew.-% bis 35 Gew.-% und insbesondere in Mengen von 5 Gew.-% bis 30 Gew.-% enthalten.
  • Als nichtionische Tenside werden vorzugsweise ebenfalls die bereits oben erwähnten nichtionischen Tenside, bevorzugt ebenfalls in Form der erfindungsgemäßen Granulate, eingesetzt.
  • Bevorzugte erfindungsgemäße Waschmittel enthalten weiter ein Buildersystem, bestehend aus organischen und/oder anorganischen Buildern. Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Neben den in monomerer Form vorliegenden Polycarbonsäuren werden bevorzugt auch polymere Polycarboxylate als Builder eingesetzt. Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen und gemessen gegen Polystyrol-Standard). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000 (gemessen gegen Polystyrol-Standard).
  • Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten liegt im üblichen Rahmen und beträgt vorzugsweise 0,1 bis 10 Gew.-%.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die gemäß der DE-A-43 00 772 als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder gemäß der DE-C-42 21 381 als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
  • Auch die Säuren solcher Polymere an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln.
  • Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung 94 19 091 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202, EP-A-0 427 349, EP-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO-A-92/18542, WO-A-93/08251, WO-A-94/28030, WO-A-95/07303, WO-A-95/12619 und WO-A-95/20608 bekannt. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
  • Weitere geeignete Cobuilder sind Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat. Besonders bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patentschriften US 4 524 009 , US 4 639 325 , in der europäischen Patentanmeldung EP-A-0 150 930 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silikathaltigen Formulierungen bei 3 bis 15 Gew.-%.
  • Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO-A-95/20029 beschrieben.
  • Weitere geeignete Buildersubstanzen sind Oxidationsprodukte von carboxylgruppenhaltigen Polyglucosanen und/oder deren wasserlöslichen Salzen, wie sie beispielsweise in der internationalen Patentanmeldung WO-A-93/08251 beschrieben werden oder deren Herstellung beispielsweise in der internationalen Patentanmeldung WO-A-93/16110 beschrieben wird. Ebenfalls geeignet sind auch oxidierte Oligosaccharide gemäß der deutschen Patentanmeldung DE-A-196 00 018.
  • Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben Cobuilder-Eigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
  • Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP-A-0 280 223 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Ein bevorzugt eingesetzter anorganischer Builder ist feinkristalliner, synthetischer und gebundenes Wasser enthaltender Zeolith, wobei erfindungsgemäß immer ein Zeolith vom Faujasit-Typ enthalten ist. Weitere vorzugsweise als Builder eingesetzte Zeolithe sind Zeolith A und P. Geeignet sind jedoch auch Mischungen aus A, X, Y und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Von besonderem Interesse ist auch ein cokristallisiertes Natrium/Kalium-Aluminiumsilicat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 10 bis 24 Gew.-%, insbesondere 15 bis 22 Gew.-% an gebundenem Wasser. Dabei ist erfindungsgemäß zumindest ein Teil des anorganischen Builders ein Zeolith vom Faujasit-Tp, der zumindest teilweise über die erfindungsgemäßen Granulate bzw. über nach dem erfindungsgemäßen Verfahren hergestellte Granulate in das Wasch- und Reinigungsmittel eingebracht wird.
  • Geeignete Teilsubstitute für Zeolithe sind Schichtsilicate natürlichen und synthetischen Ursprungs. Derartige Schichtsilicate sind beispielsweise aus den Patentanmeldungen DE-B-23 34 899, EP-A-0 026 529 und DE-A-35 26 405 bekannt. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Auch kristalline, schichtförmige Natriumsilicate der allgemeinen Formel NaMSixO2x+1·yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind, eigenen sich zur Substitution von Zeolithen oder Phosphaten. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilicate Na2Si2O5·yH2O bevorzugt.
  • Zu den bevorzugten Builder-Substanzen gehören auch amorphe Natriumsilicate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A-44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgenamorphe Silicate, wobei insbesondere die übertrockneten Silicate bevorzugt auch als Träger in den erfindungsgemäßen Granulaten vorkommen bzw. als Träger in dem erfindungsgemäßen Verfahren eingesetzt werden.
  • Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
  • Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben Natriumperboratmonohydrat bzw. -tetrahydrat und Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt 0 bis 30 Gew.-% und insbesondere 5 bis 25 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat oder Percarbonat eingesetzt wird.
  • Um beim Waschen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Präparate eingearbeitet werden. Beispiele hierfür sind mit H2O2 organische Persäuren bildende N-Acyl- bzw. O-Acyl-Verbindungen, vorzugsweise mehrfach acylierte Alkylendiamine wie N,N'-tetraacylierte Diamine, acylierte Glykolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hydrazide, Triazole, Triazine, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureester wie p-(Alkanoyloxy)benzolsulfonate, insbesondere Natriumisononanoyloxybenzolsulfonat, und der p-(Alkenoyloxy)benzolsulfonate, ferner Caprolactam-Derivate, Carbonsäureanhydride wie Phthalsäureanhydrid und Ester von Polyolen wie Glucosepentaacetat. Weitere bekannte Bleichaktivatoren sind acetylierte Mischungen aus Sorbitol und Mannitol, wie sie beispielsweise in der europäischen Patentanmeldung EP-A-0 525 239 beschrieben werden, und acetyliertes Pentaerythrit. Der Gehalt der bleichmittelhaltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vorzugsweise zwischen 1 und 10 Gew.-% und insbesondere zwischen 3 und 8 Gew.-%. Besonders bevorzugte Bleichaktivatoren sind N,N,N',N'-Tetraacetylethylendiamin (TAED), 1,5-Diacetyl-2,4-dioxo-hexahydro-1,3,5-triazin (DADHT) und acetylierte Sorbitol-Mannitol-Mischungen (SORMAN). Der Bleichaktivator kann in bekannter Weise mit Hüllsubstanzen überzogen oder, gegebenenfalls unter Einsatz von Hilfsmitteln, insbesondere Methylcellulosen und/oder Carboxymethylcellulosen, granuliert oder extrudiert/pelletiert worden sein und gewünschtenfalls weitere Zusatzstoffe, beispielsweise Farbstoff, enthalten. Vorzugsweise enthält ein derartiges Granulat über 70 Gew.-%, insbesondere von 90 bis 99 Gew.-% Bleichaktivator. Vorzugsweise wird ein Bleichaktivator eingesetzt, der unter Waschbedingungen Peressigsäure bildet.
  • Zusätzlich zu den oben aufgeführten konventionellen Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften EP 0 446 982 und EP 0 453 003 bekannten Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze beziehungsweise Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die aus der deutschen Patentanmeldung DE 195 29 905 bekannten Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 196 20 267 bekannte N-Analogverbindungen, die aus der deutschen Patentanmeldung DE 195 36 082 bekannten Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen Patentanmeldung DE 196 05 688 beschriebenen Mangan-, Eisen-, Cobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen Patentanmeldung DE 196 20 411 bekannten Cobalt-, Eisen-, Kupfer- und Ruthenium-Amminkomplexe, die in der deutschen Patentanmeldung DE 44 16 438 beschriebenen Mangan-, Kupfer- und Cobalt-Komplexe, die in der europäischen Patentanmeldung EP 0 272 030 beschriebenen Cobalt-Komplexe, die aus der europäischen Patentanmeldung EP 0 693 550 bekannten Mangan-Komplexe, die aus der europäischen Patentschrift EP 0 392 592 bekannten Mangan-, Eisen-, Cobalt- und Kupfer-Komplexe und/oder die in der europäischen Patentschrift EP 0 443 651 oder den europäischen Patentanmeldungen EP 0 458 397 , EP 0 458 398 , EP 0 549 271 , EP 0 549 272 , EP 0 544 490 und EP 0 544 519 beschriebenen Mangan-Komplexe. Kombinationen aus Bleichaktivatoren und Übergangsmetall-Bleichkatalysatoren sind beispielsweise aus der deutschen Patentanmeldung DE 196 13 103 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von 0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt.
  • Zu den in erfindungsgemäßen Mitteln gegebenenfalls enthaltenen Enzymen gehören Proteasen, Amylasen, Pullulanasen, Cellulasen, Cutinasen und/oder Lipasen, beispielsweise Proteasen wie BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Durazym®, Purafect®OxP, Esperase® und/oder Savinase®, Amylasen wie Termamyl®, Amylase-LT®, Maxamyl®, Duramyl®, Purafect® OxAm, Cellulasen wie Celluzyme®, Carezyme®, KAC® und/oder die aus den internationalen Patentanmeldungen WO 96/34108 und WO 96/34092 bekannten Cellulasen und/oder Lipasen wie Lipolase®, Lipomax®, Lumafast® und/oder Lipozym®. Die verwendeten Enzyme können, wie zum Beispiel in den internationalen Patentanmeldungen WO 92/11347 oder WO 94/23005 beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in erfindungsgemäßen Wasch- und Reinigungsmitteln vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,05 Gew.-% bis 5 Gew.-%, enthalten, wobei besonders bevorzugt gegen oxidativen Abbau stabilisierte Enzyme, wie sie zum Beispiel aus den internationalen Patentanmeldungen WO 94/02597, WO 94/02618, WO 94/18314, WO 94/23053 oder WO 95/07350 bekannt sind, eingesetzt werden.
  • Als Stabilisatoren insbesondere für Perverbindungen und Enzyme, die empfindlich gegen Schwermetallionen sind, kommen die Salze von Polyphosphonsäuren, insbesondere 1-Hydroxyethan-1,1-diphosphonsäure (HEDP), Diethylentriaminpentamethylenphosphonsäure (DETPMP) oder Ethylendiamintetramethylenphosphonsäure in Betracht.
  • Zusätzlich zu dem Cellulosederivat können die Mittel auch noch weitere Komponenten enthalten, welche die Öl- und Fett-Auswaschbarkeit aus Textilien positiv beeinflussen.
  • Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
  • Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Siliconen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silicon- und/oder Paraffin-haltige Schauminhibitoren, an eine granulare, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die obengenannten Stärkeprodukte verwenden, z.B. abgebaute Stärke, Aldehydstärken usw.. Bevorzugt ist in den erfindungsgemäßen Mitteln der Einsatz von Polyvinylpyrrolidon, insbesondere in Form von PVP-Granulaten. Weiterhin bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische. Vergrauungsinhibitoren, wie PVP, werden üblicherweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
  • Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
  • Außer den genannten Inhaltsstoffen können die Mittel auch andere bekannte, in Wasch-, Spül- oder Reinigungsmitteln üblicherweise eingesetzte Zusatzstoffe, beispielsweise geringe Mengen an neutralen Füllsalzen sowie Farb- und Duftstoffe, Trübungsmittel oder Perlglanzmittel enthalten.
  • Beispiel 1:
  • In einer Wirbelschichtanlage AGT 400 wurde bei 90 °C Ablufttemperatur eine Alkylbenzolsulfonatpaste (Maranil® A 55, Hersteller Cognis) über eine Zweistoffdüse auf einen Träger aufgedüst. Gleichzeitig erfolgte eine Granulation und Trocknung. Als Träger wurde eine Mischung aus Zeolith P (Doucil® A 24, Crossfield) und Methylhydroxyethylcellulose (90 Gew.-% kleiner 0,5 mm, unter 20 Gew.-% kleiner 0,125 mm) kontinuierlich zugeführt. Der klassierende Austrag liess die Feinanteile in der Wirbelschicht. Das erhaltene Granulat bestand zu 54 % aus Alkylbenzolsulfonat, 11 % aus Methylhydroxyethylcellulose und 35 % aus Zeolith P (inkl. Wasser). Das Schüttgewicht lag bei 570 g/l. Die Körnung lag bei 0,4 bis 1,6 mm. Das rieselfähige Granulat kann beispielsweise im BigBag (doppelwandig) abgefüllt werden.
  • Beispiel 2:
  • In einer Wirbelschichtanlage AGT 400 wurde bei 88 °C Ablufttemperatur eine Alkylbenzolsulfonatpaste (Maranil® A 55, Hersteller Cognis) über eine Zweistoffdüse auf einen Träger aufgedüst. Gleichzeitig erfolgte die Granulation und Trocknung. Als Träger wurde eine Mischung aus Zeolith P (Doucil® A 24, Crossfield) und Methylhydroxyethylcellulose (90 Gew.-% kleiner 0,5 mm, unter 20 Gew.-% kleiner 0,125 mm) kontinuierlich zugeführt. Der klassierende Austrag liess die Feinanteile in der Wirbelschicht. Das erhaltene Granulat bestand zu 48 % aus Alkylbenzolsulfonat, 20 % aus Methylhydroxyethylcellulose und 32 % aus Zeolith P (inkl. Wasser). Das Schüttgewicht lag bei 540 g/l. Die Körnung lag bei 0,4 bis 1,6 mm. Das rieselfähige Granulat kann beispielsweise im BigBag (doppelwandig) abgefüllt werden.

Claims (17)

  1. Verfahren zur Herstellung von Polymer-Granulaten durch Granulation eines Gemisches aus einem Cellulosederivat, das erhältlich ist durch Alkylierung und Hydroxyalkylierung von Cellulose, mit einem tensidischen Bindemittel und gegebenenfalls einem anorganischen Trägermaterial.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man die Granulation durch einen Agglomerisationsschritt und/oder einen Kompaktierungsschritt durchführt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man den Cellulosether als Ausgangsmaterial für die Granulation gelöst oder aufgeschlämmt in einem polaren Lösungsmittel, insbesondere als wäßrige Zubereitungsform, oder als Pulver einsetzt.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man den Celluloseether als Pulver mit Teilchengrößen im Bereich von 0,04 bis unter 0,4 mm, insbesondere von 0,04 mm bis 0,25 mm oder von 0,1 mm bis 0,39 mm, einsetzt.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Cellulosederivat einen mit C1- bis C10-Gruppen, insbesondere C1- bis C3-Gruppen alkylierte Cellulose ist und zusätzlich C2- bis C10-Hydroxyalkylgruppen, insbesondere C2- bis C3-Hydroxyalkylgruppen trägt.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass im Cellulosederivat gemittelt 0,5 bis 2,5, insbesondere 1 bis 2 Alkylgruppen und 0,02 bis 0,5, insbesondere 0,05 bis 0,3 Hydroxyalkylgruppen pro Anhydroglykosemonomereinheit enthalten sind.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die mittlere Molmasse des Cellulosederivats im Bereich von 10 000 D bis 150 000 D, insbesondere von 40 000 D bis 120 000 D liegt.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Bindemittel ausgewählt wird aus anionischen und/oder nichtionischen Tensiden sowie deren Abmischungen mit polymeren Glykolen, Polymerisaten und Copolymerisaten der Acrylsäure, Methacrylsäure und/oder Maleinsäure, die auch in Form ihrer Natrium-, Kalium- oder Ammoniumsalze vorliegen können.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass man das Bindemittel als wäßrige Lösung, die insbesondere einen Wassergehalt von 30 Gew.-% bis 80 Gew.-% aufweist, einsetzt.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das anorganische Trägermaterial ausgewählt wird aus den Alkalicarbonaten, Alkalihydrogencarbonaten, Alkalisilikaten, Alkalisulfaten, Alkalihydrogensulfaten, Alkaliphosphaten, Dialkalihydrogenphosphaten, Alkalidihydrogenphosphaten, Alkalizeolithen, und deren Mischungen, gegebenenfalls in Abmischung mit den entsprechenden Erdalkalisalzen.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass man 100 Gew.-Teile Cellulosederivat, 50 Gew.-Teile bis 2000 Gew.-Teile Bindemittel und bis zu 100 Gew.-Teile anorganisches Trägermaterial einsetzt.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass es einen Kompaktierschritt, der mit Hilfe einer Walzenpresse oder eines Extruders durchgeführt wird, umfasst.
  13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass man im Kompaktierschritt solche Drucke anwendet, dass das entstehende Granulat eine Schüttdichte im Bereich von 350 g/l bis 800 g/l, insbesondere 450 g/l bis 750 g/l aufweist.
  14. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass es in einem Granulationsmischer oder einer Wirbelschichtapparatur durchgeführt wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass man das entstehende Granulat nach solchen Zeiten aus dem Mischer oder der Wirbelschicht austrägt, dass es eine Schüttdichte im Bereich von 350 g/l bis 800 g/l, insbesondere 450 g/l bis 750 g/l aufweist.
  16. Verwendung eines Polymer-Granulats, erhältlich nach dem Verfahren gemäß einem der Ansprüche 1 bis 15, zur Herstellung teilchenförmiger Wasch- oder Reinigungsmittel.
  17. Teilchenförmiges Wasch- oder Reinigungsmittel, insbesondere mit einem Schüttgewicht im Bereich von 400 g/l bis 1000 g/l, enthaltend ein Polymer-Granulat, welches erhältlich ist nach dem Verfahren gemäß einem der Ansprüche 1 bis 15, insbesondere in Mengen von 0,1 Gew.-% bis 10 Gew.-%.
DE200410020016 2004-04-21 2004-04-21 Verfahren zur Herstellung von Polymer-Granulaten Ceased DE102004020016A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE200410020016 DE102004020016A1 (de) 2004-04-21 2004-04-21 Verfahren zur Herstellung von Polymer-Granulaten

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200410020016 DE102004020016A1 (de) 2004-04-21 2004-04-21 Verfahren zur Herstellung von Polymer-Granulaten

Publications (1)

Publication Number Publication Date
DE102004020016A1 true DE102004020016A1 (de) 2005-11-10

Family

ID=35140132

Family Applications (1)

Application Number Title Priority Date Filing Date
DE200410020016 Ceased DE102004020016A1 (de) 2004-04-21 2004-04-21 Verfahren zur Herstellung von Polymer-Granulaten

Country Status (1)

Country Link
DE (1) DE102004020016A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718664A1 (de) * 1997-05-02 1998-11-05 Clariant Gmbh Verfahren zur Herstellung von lagerstabilen schmutzablösevermögende Polymere (Soil Release Polymere, SRP) enthaltende Granulate und ihre Verwendung zur Herstellung fester Wasch- und Reinigungsmittel
EP0926232A2 (de) * 1997-12-22 1999-06-30 Henkel KGaA Teilchenförmiges Wasch- und Reinigungsmittel
EP1004656A1 (de) * 1998-11-11 2000-05-31 DALLI-WERKE WÄSCHE- und KÖRPERPFLEGE GmbH & Co. KG Verdichtetes Granulat, Herstellungsverfahren und Verwendung als Sprengmittel für gepresste Formkörper
EP1469031A2 (de) * 2003-04-18 2004-10-20 Shin-Etsu Chemical Co., Ltd. Granulierung von nichtionischem Celluloseether

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718664A1 (de) * 1997-05-02 1998-11-05 Clariant Gmbh Verfahren zur Herstellung von lagerstabilen schmutzablösevermögende Polymere (Soil Release Polymere, SRP) enthaltende Granulate und ihre Verwendung zur Herstellung fester Wasch- und Reinigungsmittel
EP0926232A2 (de) * 1997-12-22 1999-06-30 Henkel KGaA Teilchenförmiges Wasch- und Reinigungsmittel
EP1004656A1 (de) * 1998-11-11 2000-05-31 DALLI-WERKE WÄSCHE- und KÖRPERPFLEGE GmbH & Co. KG Verdichtetes Granulat, Herstellungsverfahren und Verwendung als Sprengmittel für gepresste Formkörper
EP1469031A2 (de) * 2003-04-18 2004-10-20 Shin-Etsu Chemical Co., Ltd. Granulierung von nichtionischem Celluloseether

Similar Documents

Publication Publication Date Title
EP0859827B2 (de) Verfahren zur herstellung eines amorphen alkalisilikats mit imprägnierung
EP0863200A2 (de) Waschmittelformkörper
EP1106678B1 (de) Niotensidgranulate durch Prillen
DE19851454B4 (de) Tensid-Granulate durch Wirbelschichtgranulation
EP0839178B1 (de) Amorphes alkalisilicat-compound
EP1807498B1 (de) Herstellungsverfahren für granulate / agglomerate für wasch- oder reinigungsmittel
EP1518923A1 (de) Tensid-Compounds enthaltend Fettalkoholalkoxylate
EP1124628B1 (de) Polymer-granulate durch wirbelschichtgranulation
DE102004020010A1 (de) Verfahren zur Herstellung von Polymer-Granulaten
DE102004020016A1 (de) Verfahren zur Herstellung von Polymer-Granulaten
DE102004020011A1 (de) Verfahren zur Herstellung von Polymer-Granulaten
EP0846758B1 (de) Additiv für Wasch- oder Reinigungsmittel
DE19611012A1 (de) Verfahren zur Herstellung von granularen Silikaten mit hohem Schüttgewicht
DE102004063801A1 (de) Verfahren zur Herstellung von Farbschutzwirkstoff-Granulaten
EP1416039B1 (de) Verwendung wasserlöslicher Builder von bestimmter Korngrösse in bleichefreien Waschmitteln
EP1163318A1 (de) Aniontensid-granulate
WO2000037595A1 (de) Kompaktat mit silicatischem builder
EP1416040B2 (de) Wasserlösliche Builder von bestimmter Korngrösse in Wasch-und Reinigungsmitteln
EP0919614B1 (de) Verfahren zur Herstellung von Wasch- und Reinigungsmitteln mit hoher Schüttdichte
DE19923626A1 (de) Verfahren zur Herstellung von Tensidgranulaten
DE19700776A1 (de) Granulares Waschmittel mit verbessertem Fettauswaschvermögen
DE19959914A1 (de) Granulate durch Wirbelschichtgranulation
DE19611014A1 (de) Verfahren zur Herstellung rieselfähiger Wasch- oder Reinigungsmittel
WO2000022076A1 (de) Posphonathaltige granulate
EP0936267A2 (de) Alkalimetallsilicat/Niotensid-Compound

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection