EP1106678B1 - Niotensidgranulate durch Prillen - Google Patents

Niotensidgranulate durch Prillen Download PDF

Info

Publication number
EP1106678B1
EP1106678B1 EP00126126A EP00126126A EP1106678B1 EP 1106678 B1 EP1106678 B1 EP 1106678B1 EP 00126126 A EP00126126 A EP 00126126A EP 00126126 A EP00126126 A EP 00126126A EP 1106678 B1 EP1106678 B1 EP 1106678B1
Authority
EP
European Patent Office
Prior art keywords
granules
nonionic surfactants
acid
polymers
preferred
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00126126A
Other languages
English (en)
French (fr)
Other versions
EP1106678A3 (de
EP1106678A2 (de
Inventor
Wilfried Dr. Rähse
Georg Dr. Assmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1106678A2 publication Critical patent/EP1106678A2/de
Publication of EP1106678A3 publication Critical patent/EP1106678A3/de
Application granted granted Critical
Publication of EP1106678B1 publication Critical patent/EP1106678B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/72Ethers of polyoxyalkylene glycols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D11/00Special methods for preparing compositions containing mixtures of detergents
    • C11D11/0082Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0034Fixed on a solid conventional detergent ingredient
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0039Coated compositions or coated components in the compositions, (micro)capsules
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/18Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2003Alcohols; Phenols
    • C11D3/2006Monohydric alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2079Monocarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides

Definitions

  • the present invention relates to granules containing nonionic surfactants, as well as a production process for such granules and detergents and / or cleaning agents containing such granules.
  • Detergents and cleaning agents contain non-ionic surfactants to increase their washing and cleaning performance, especially against dust / skin grease soiling.
  • nonionic surfactants are liquid at room temperature, which makes their incorporation into powdery agents difficult.
  • the liquid nonionic surfactants are usually used in the form of so-called compounds, which are usually produced by wet granulation with zeolite or another solid Waschschbuilder and Granulier crampkeit.
  • the nonionic surfactants are applied to the zeolite.
  • zeolites are zeolites A, X and P.
  • a limitation of the proportion of nonionic surfactant in the compound forms the capacity of the zeolite, at too high levels, the particles produced are no longer flowable. These products are therefore not suitable for processing and for direct use in powdery products.
  • nonionic surfactants Another disadvantage of nonionic surfactants is their tendency to gel. To avoid gel formation and increase solubility, some processes for the preparation of solid detergent particles containing nonionic surfactants are known in the art.
  • DE-A-41 24 701 a process for the preparation of solid detergents and cleaners is disclosed wherein solid and liquid detergent raw materials are mixed with simultaneous or subsequent shaping and optionally drying.
  • solid components anionic surfactants, builders and alkalizing agents and nonionic surfactants are used as liquid components.
  • the liquid nonionic surfactants are mixed with a structure breaker in a weight ratio of 10: 1 to 1: 1.
  • As a structure breaker are polyethylene glycol or polypropylene glycol, sulfates and / or disulfates of polyethylene glycol or polypropylene glycol; Sulfosuccinates and / or disulfosuccinates of polyethylene glycol or polypropylene glycol or mixtures thereof used.
  • a builder component which is a crystalline sheet silicate of the general formula NaMSi x O 2x + 1 ⁇ H 2 O, where M is sodium or hydrogen, x is a number of 1 , 9 to 4 and y is a number from 0 to 20, and contains an impregnating agent.
  • the builder component contains at least 60% by weight, based on the impregnated builder component, of crystalline sheet silicates in granular form with bulk densities above 650 g / l.
  • the impregnating agent is preferably selected from ethoxylated nonionic surfactants, mixtures of nonionic and anionic surfactants, pasty aqueous nonionic surfactants and / or anionic surfactants, silicone oils and paraffin oils.
  • European Patent Application 0 799 884 describes a mixture of ethoxylated nonionic surfactants and alkyl polyglycosides which is applied to a carrier material for the preparation of surfactant granules.
  • support materials zeolite A, zeolite P and NaCO 3 may be mentioned .
  • WO 97/03165 a process for the preparation of Alkylpolyglykosidgranulaten beschriben.
  • the alk (en) ylpolyglycosides and / or fatty acid N-alkylpolyhydroxyalkylamides are granulated in the presence of zeolites and / or waterglasses.
  • zeolites and / or waterglasses In one possible embodiment, a mixture of alkyl polyglycosides and ethoxylated fatty alcohols is used.
  • Nonionic surfactant and structurant constitute a more or less homogeneous mixture, i.
  • Nonionic surfactant and structurant are converted together to the molten state in which they are present as a mixture. From this mixture is then produced, for example, by cooling the composition in question.
  • no granules are described which have a liquid core of nonionic surfactants which is surrounded by a shell of solidified polymer melt.
  • No. 5,739,094 also does not describe a method which, among other things, defines the channel constellation and assignment of the nozzles.
  • compositions which are distinguished by the fact that at least three different nonionic surfactants and PEG are a more or less homogeneous mixture, ie at least three nonionic surfactants and PEG are transferred together to the molten state in which they are present as a mixture. From this mixture is then produced, for example, by cooling the composition in question.
  • no granules are described which have a liquid core of nonionic surfactants which is surrounded by a shell of solidified polymer melt.
  • no method is described there which, inter alia, defines the channel constellation and assignment of the nozzles.
  • the object of the present invention was therefore to provide alternative particles for use in detergents and cleaners which have a high content of liquid nonionic surfactants, in particular more than 20% by weight, but essentially manage without water-insoluble carrier material and are well suited for incorporation in detergents or cleaners.
  • a first subject of the invention accordingly are granules at room temperature of liquid nonionic surfactants which contain a solidified polymer melt as the carrier material and contain less than 10% by weight of inorganic carriers, the polymers consisting of thermoplastic polymers, polyalkylene oxides, natural and synthetic fats, long-chain fatty acids , long chain fatty alcohols, paraffins, and long chain nonionic surfactants solid at room temperature, and wherein the granules have a liquid core of nonionic surfactants surrounded by a shell of solidified polymer melt.
  • Preferred granules consist of more than 20 wt .-%, in particular at least 40 wt .-% of liquid at room temperature nonionic surfactants.
  • the nonionic surfactants which are liquid at room temperature are selected from the nonionic surfactants customarily used in detergents and cleaners.
  • alkoxylated C 8 -C 18 -alcohols should be mentioned here.
  • ethoxylated especially primary alcohols having 8 to 18 carbon atoms and used on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol in which the alcohol radical may be linear or preferably methyl branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 -C 14 -alcohols with 3 EO or 4 EO, C 9 -C 11 -alcohols with 7 EO, C 13 -C 15 -alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 -C 18 -alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -C 14 -alcohol with 3 EO and C 12 -C 18 -alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • alkoxylated C 8 -C 18 alcohols and alkyl polyglycosides can be used.
  • these compounds have the general formula RO (G) x , in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is the symbol that represents a glycose unit having 5 or 6 C atoms, preferably glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is any number between 1 and 10; preferably x is 1.2 to 1.4.
  • nonionic surfactants also alkoxylated, preferably ethoxylated or ethoxylated and propoxylated C 8 -C 18 fatty acid alkyl esters, N-fatty alkyl amine oxides, polyhydroxy fatty acid amides or mixtures thereof are used.
  • preferred nonionic surfactants are selected from the group consisting of alkoxylated, preferably ethoxylated or ethoxylated and propoxylated C 8 -C 18 alcohols, alkyl polyglycosides, alkoxylated, preferably ethoxylated or ethoxylated and propoxylated C 8 -C 18 fatty acid alkyl esters, N-fatty alkyl amine oxides , Polyhydroxy fatty acid amides or mixtures thereof. Particularly preferred is the use of the alkoxylated, preferably ethoxylated C 8 -C 18 -alcohols.
  • the granules as the polymeric carrier material preferably contain a polymer selected from the group comprising thermoplastic polymers, polyalkylene oxides, preferably having a melting point above room temperature, natural and synthetic fats, long-chain fatty acids, long-chain fatty alcohols, paraffins and long-chain nonionic surfactants solid at room temperature in which preferred polymers are in particular polyalkylene oxides, of which in turn polyethylene glycols having a molecular weight in the range from 400 to 10,000 g / mol are preferred.
  • a polymer selected from the group comprising thermoplastic polymers, polyalkylene oxides, preferably having a melting point above room temperature, natural and synthetic fats, long-chain fatty acids, long-chain fatty alcohols, paraffins and long-chain nonionic surfactants solid at room temperature in which preferred polymers are in particular polyalkylene oxides, of which in turn polyethylene glycols having a molecular weight in the range from 400 to 10,000 g / mol are preferred.
  • granules are suitable for incorporation into solid detergents with high bulk densities.
  • the particle size distribution is narrow and the granules have a bulk density between 400 and 1000 g / l, preferably between 550 and 850 g / l.
  • the granules are constructed so that they have a liquid core of nonionic surfactants, which is surrounded by a shell of solidified polymer melt. Granules with this structure appear to the outside as pure polymer granules with the corresponding advantages in terms of storage and flowability. When dissolved in water they then release the nonionic surfactants contained.
  • Another object of the present invention is accordingly a process for the preparation of granules of nonionic surfactants, being used for granulation of liquid nonionic surfactants polymer melts, which are prilled in the gas stream, wherein the melt is introduced via one or more nozzles in a fluidized bed, wherein the individual Components are introduced via the various channels of a multi-fluid nozzle, wherein the liquid nonionic surfactants are sprayed via the inner channel and the polymer melt via the outer channel of the nozzle.
  • Prillen is understood to mean a process in which a melt is sprayed and solidify the drops thus formed.
  • the polymers used may be any organic compounds which have a melting point (softening point) below their decomposition temperature and the decomposition temperature of the nonionic surfactants and which can be processed in the form of their melt.
  • examples are thermoplastic polymers, polyethylene glycols, preferably having a melting point above room temperature, natural and synthetic fats, long-chain fatty acids, long-chain fatty alcohols, paraffins and long-chain nonionic surfactants. These compounds can be granulated as individual substances or as a mixture.
  • Long-chain in the context of this invention are those compounds which have a softening point above 20 ° C, preferably even above 25 ° C due to the alkyl radical.
  • solid components may be selected from organic and inorganic substances, which are preferably selected according to the intended use of the granules produced.
  • solid particles are introduced as "crystallization nuclei" in the fluidized bed. These solid constituents, or solid particles, are usually those substances which perform a carrier function. It is when the granules are to be used in detergents or cleaning agents, it is particularly preferred if the solid constituents of finely divided carriers which simultaneously have a builder effect in the wash liquor, are selected.
  • aluminosilicates, alkali metal sulfates and carbonates are to be counted among the suitable inorganic carrier components.
  • the joint use of various inorganic carriers in particular the combination of aluminosilicate and soda as carrier, wherein the weight ratio of aluminosilicate to soda is in the range 1: 5 to 5: 1, particularly preferably in the range 1: 2 to 2: 1, is selected.
  • zeolites - are used among the aluminosilicates.
  • Preferred zeolites are zeolites A, P, X, Y and mixtures thereof.
  • the use of zeolite A as a carrier is known from numerous publications.
  • zeolite P and the faujasite-type zeolites have an increased oil absorption capacity compared to zeolite A and may therefore be preferred in granules.
  • the zeolite A-LSX described in the European patent application EP-A-816 291 which corresponds to a co-crystallizate of zeolite X and zeolite A and in its anhydrous form has the formula (M 2 / n O + M ' 2 / n O) ⁇ Al 2 O 3 ⁇ zSiO 2 , where M and M' may be alkali or alkaline earth metals and z is a number between 2.1 and 2.6.
  • M and M' may be alkali or alkaline earth metals and z is a number between 2.1 and 2.6.
  • This product is commercially available under the trade name VEGOBOND AX from CONDEA Augusta SpA.
  • zeolite P it may be preferable to use a zeolite MAP as described in European Patent EP-B-380,070.
  • the particle sizes of the zeolites used according to the invention are preferably in the range from 0.1 to 100 .mu.m, preferably between 0.5 and 50 .mu.m and in particular between 1 and 30 .mu.m, in each case measured using standard particle size determination methods.
  • Suitable organic builder components as carrier are in particular polycarboxylates.
  • polycarboxylic acids are understood as meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof, in particular trisodium citrate.
  • polymeric polycarboxylates are also suitable as organic carrier materials. These are, for example, the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those having a molecular weight of 500 to 70000 g / mol.
  • the molecular weights stated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form, which were determined in principle by means of gel permeation chromatography (GPC), a UV detector being used. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the carrier content in the granules is less than 10 wt .-%, preferably less than 5 wt .-%.
  • the prilling can be done in different apparatuses.
  • the prilling can take place in a conventional prilling tower, which is less preferred in the context of the present invention.
  • the melt is introduced via one or more nozzles into a fluidized bed, wherein the individual components are introduced via the various channels of a multi-component nozzle, wherein the liquid nonionic surfactants are sprayed via the inner channel and the polymer melt via the outer channel of the nozzle.
  • the nozzle jet breaks, the polymer melt envelops it Process the liquid and the polymeric outer surface thus formed solidifies very fast.
  • the fluidized bed chamber used in the process according to the invention is usually round, the apparatus may be cylindrical, i. can have a constant diameter in height. Preference is given to those fluidized bed chambers in which the vortex zone is designed conically, widening upwards, and only the adjoining calming zone after a conical transition piece is cylindrical.
  • the process can be carried out batchwise or continuously, regardless of the form of the fluidized bed apparatus, but in the context of the present invention continuous process operation is preferred.
  • a particularly suitable embodiment of a fluidized bed apparatus according to the invention is a Jet-Priller® (GMF Gouda). These systems allow either the pre-cooling of ambient air used for prilling and in a preferred embodiment, the circulation of nitrogen used as process gas, which is fed via a tank of liquid nitrogen.
  • GMF Gouda Jet-Priller®
  • additional carrier components, and optionally other solids are used, they are dusted either pneumatically via blowing lines, the addition either before the atomization of the melt or simultaneously with this, or added as a mixture with the melt, the mixture of these Components either before the atomization or directly in the nozzle takes place.
  • the arrangement of the nozzle or the nozzles and the spray direction can be arbitrary, as long as a substantially uniform distribution of the liquid components in the fluidized bed is achieved.
  • solid constituents are mixed with the melt prior to atomization and then blown through a nozzle into the fluidized bed.
  • Preferably used fluidized bed apparatuses have bottom plates with dimensions of at least 0.15 m.
  • fluidized bed apparatuses are preferred which have a bottom plate with a diameter of 0.4 and 5 m, for example 1.2 m or 2.5 m.
  • fluid bed apparatuses are also suitable which have a bottom plate with a diameter larger than 5 m.
  • bottom plate can be a perforated bottom plate or a Conidurplatte (commercial product of the company Hein & Lehmann, Federal Republic of Germany), a wire mesh or a combination bottom of a perforated bottom plate with a grid, as described in German Patent Application DE-A-197 50 424, are used.
  • a Conidurêt can support the swirl effect of the additional air supply.
  • the process according to the invention is preferably carried out at fluidized air velocities of between 1 and 8 m / s and in particular between 1.5 and 5.5 m / s.
  • the discharge of the granules from the fluidized bed is carried out according to the invention via a size classification of the granules.
  • This classification can be carried out, for example, with a sieve device or through a countercurrent air stream (classifier air) which is regulated so that only particles of a certain particle size are removed from the fluidized bed and smaller particles are retained in the fluidized bed.
  • the air flowing in from below is composed of the unheated classifier air and possibly the heated bottom air.
  • the soil air temperature is in a preferred embodiment between 10 and 35 ° C, more preferably between 10 and 25 ° C, wherein it is particularly preferred if the soil air temperature is at least 5 ° C below the softening temperature of the organic substance.
  • the bottom air temperature is even more than 10 ° C, preferably even more than 15 ° C below the softening temperature, since such low temperatures accelerate the solidification of the substances.
  • the temperature of the fluidized air measured about 5 cm above the bottom plate, preferably also lies well below the softening temperature of the organic substances.
  • the fluidized air temperature is more than 10 ° C below the softening temperature, in particular even more than 15 ° C below the softening temperature of the organic substance.
  • the vortex becomes warmer by absorption the solidification released heat of fusion.
  • the air outlet temperature is below the softening temperature of the granulated organic substances. In particular, it is preferred if the air outlet temperature is still at least 5 ° C below the softening temperature.
  • process gas nitrogen is used as process gas (soil air)
  • the soil air temperature can be much lower.
  • Process gas temperatures of -196 ° C to 35 ° C are conceivable, but temperatures below 0 ° C are less preferred, otherwise problems with the condensation of moisture can occur.
  • the bulk densities of the resulting granules are highly dependent on the granulation conditions and the added carriers. Usual bulk densities are in the range from 400 to 1000 g / l, and in particular bulk densities in the range from 550 to 850 g / l may be preferred for the use of the granules in detergents or cleaners.
  • the granules preferably contain no particles having a particle size below 50 microns, preferably also no Particles with a particle size below 100 microns.
  • Granules preferred according to the invention have a d 50 value between 0.4 and 2.5 mm.
  • the grain fraction which is greater than 1.6 mm, is recycled. This coarse grain fraction can either be added after grinding the fluidized bed as a solid component or it is melted again and sprayed into the fluidized bed.
  • the granules obtained, to further improve their processability and meterability, can be powdered with an oil absorption component.
  • an oil absorption component By this Abpud fürs Kunststoff with a finely divided component, the liquids are set on the granules surface, so that the granules can not agglutinate during storage.
  • the oil absorption component should have an oil absorption capacity of at least 20 g / 100 g, more suitably at least 50 g / 100 g, preferably at least 80g / 100g, more preferably at least 120g / 100g and especially at least 140g / 100g.
  • the oil absorption capacity is a physical property of a substance that can be determined by standardized methods. For example, there are the British standard methods BS1795 and BS3483: Part B7: 1982, both of which refer to the ISO 787/5 standard.
  • a well-balanced sample of the substance in question is placed on a plate and treated dropwise with refined linseed oil (density: 0.93 gcm -3 ) from a burette. After each addition, the powder is mixed thoroughly with the oil using a spatula, with the addition of oil continuing until a paste of smooth consistency is achieved. This paste should flow or run without crumbling.
  • the oil absorption capacity is now the amount of oil dropped, based on 100 g absorbent and is given in ml / 100g or g / 100g, with conversions on the density of linseed oil are easily possible.
  • the oil absorption component preferably has the smallest possible average particle size, since the active surface increases with decreasing particle size.
  • Preferred detergent tablets contain a component having an oil absorption capacity of at least 20 g / 100 g, which has an average particle size of less than 50 ⁇ m, preferably less than 20 ⁇ m and in particular less than 10 ⁇ m.
  • the oil absorption component a variety of substances are suitable. There are a large number of both inorganic and organic substances which have a sufficiently large oil absorption capacity. By way of example, finely divided substances which are obtained by precipitation may be mentioned here.
  • the substances used are, for example, silicates, aluminosilicates, calcium silicates, magnesium silicates and calcium carbonate.
  • kieselguhr diatomaceous earth
  • finely divided cellulose fibers or derivatives thereof can also be used in the context of the present invention.
  • zeolite particularly preferably zeolite A, X or P
  • powdering agents additionally reduce the stickiness of the moist granules and thus promote turbulence and cooling or prilling to the desired product.
  • the particle size of the powdering agent is preferably less than 10 microns and the resulting granules then contain between 1 and 4 wt .-% of the powdering agent.
  • this variant may be advantageous, but it is not absolutely necessary for carrying out the invention.
  • the granules obtained according to the invention can be processed directly or put on the market. Particularly preferred is the use of such granules in detergents or cleaners.
  • Another object of the invention are therefore washing or cleaning agents containing granules according to the invention or granules produced according to the invention.
  • the detergents and cleaners according to the invention which may be in the form of granules, pulverulent or tablet-form solids or other shaped bodies, may in principle contain all known ingredients common in such agents as well as the granules according to the invention.
  • Preferred agents within the meaning of the invention are granular agents, in particular those produced by mixing different granules of detergent and / or detergent components.
  • detergents of the invention may be mentioned primarily anionic, nonionic, cationic, amphoteric and / or zwitterionic surfactants.
  • Suitable anionic surfactants are in particular soaps and those which contain sulfate or sulfonate groups.
  • surfactants of the sulfonate type are preferably C 9 -C 13 alkylbenzenesulfonates, olefinsulfonates, that is, mixtures of alkene and hydroxyalkanesulfonates and disulfonates, as they are, for example, from C 12 -C 18 monoolefins having terminal or internal double bond by sulfonation with gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation obtained.
  • alkanesulfonates the C 12 -C 18 alkanes are obtained, for example, by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of .alpha.-sulfo fatty acids esters of .alpha.-sulfo fatty acids (ester sulfonates), for example the .alpha.-sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids obtained by .alpha.-sulfonation of the methyl esters of fatty acids of vegetable and or animal origin having from 8 to 20 carbon atoms in the fatty acid molecule and subsequent neutralization to water-soluble mono-salts are prepared, into consideration.
  • ⁇ -sulfonated esters of hydrogenated coconut, palm, palm kernel or tallow fatty acids although sulfonated products of unsaturated fatty acids, for example oleic acid, in small amounts, preferably in amounts not above about 2 to 3 wt. %, can be present.
  • ⁇ -sulfofatty acid alkyl esters are preferred which have an alkyl chain with not more than 4 C atoms in the ester group, for example, methyl ester, ethyl ester, propyl ester and butyl ester.
  • the methyl esters of ⁇ -sulfo fatty acids (MES), but also their saponified disalts are used.
  • Suitable anionic surfactants are sulfated fatty acid glycerol esters, which are mono-, di- and triesters and mixtures thereof, as in the preparation by esterification by a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol to be obtained.
  • alk (en) ylsulfate the alkali metal salts and in particular the sodium salts of the sulfuric monoesters of C 12 -C 18 fatty alcohols are, for example, coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred.
  • alk (en) ylsulfates of said chain length which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • sulfuric acid monoesters of straight-chain or branched C 7 -C 21 -alcohols ethoxylated with from 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9 -C 11 -alcohols having on average 3.5 mol of ethylene oxide (EO) or C 12 - C 18 -fatty alcohols with 1 to 4 EO. Due to their high foaming behavior, they are normally only used in detergents and cleaners in relatively small amounts, for example in amounts of from 1 to 5% by weight.
  • the preferred anionic surfactants also include the salts of alkylsulfosuccinic acid, also referred to as sulfosuccinates or sulfosuccinic acid esters, which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • alcohols preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 to C 18 fatty alcohol residues or mixtures of these.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which by themselves are nonionic surfactants.
  • Sulfosuccinates whose fatty alcohol residues are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are again particularly preferred.
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof.
  • Suitable further anionic surfactants are fatty acid derivatives of amino acids, for example N-methyltaurine (Tauride) and / or N-methylglycine (sarcosides). Particularly preferred are the sarcosides or the sarcosinates and here especially sarcosinates of higher and optionally monounsaturated or polyunsaturated fatty acids such as oleyl sarcosinate.
  • anionic surfactants are in particular soaps, for example in amounts of 0.2 wt .-% to 5 wt .-%, into consideration.
  • Particularly suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid and, in particular, soap mixtures derived from natural fatty acids, for example coconut, palm kernel or tallow fatty acids.
  • the anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • the anionic surfactants are preferably present in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • Anionic surfactants are preferably present in detergents according to the invention in amounts of from 1% by weight to 35% by weight and in particular in amounts of from 5% by weight to 30% by weight.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • alcohol ethoxylates with linear radicals of alcohols of natural origin having 12 to 18 carbon atoms, for example of coconut, palm, tallow or oleyl alcohol, and on average 2 to 8 EO per mole of alcohol are preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 -C 14 -alcohols with 3 EO or 4 EO, C 9 -C 11 -alcohols with 7 EO, C 13 -C 15 -alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 -C 18 -alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -C 14 -alcohol with 3 EO and C 12 -C 18 -alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used. Examples include (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • the nonionic surfactants also include alkyl glycosides of the general formula RO (G) x , in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18C atoms and G is a glycose unit with 5 or 6C atoms, preferably for glucose.
  • R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18C atoms and G is a glycose unit with 5 or 6C atoms, preferably for glucose.
  • the degree of oligomerization x, the distribution of monoglycosides and Indicates that any number - which can take on an analytically determined size - also has a fractional value - is between 1 and 10; preferably x is 1.2 to 1.4.
  • polyhydroxy fatty acid amides of the formula (I) in which R 1 is CO for an aliphatic acyl radical having 6 to 22 carbon atoms, R 2 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups:
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars having 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II) in the R 3 is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms
  • R 4 is a linear, branched or cyclic alkylene radical or an arylene radical having 2 to 8 carbon atoms
  • R 5 is a linear, branched or cyclic alkyl radical or a Aryl radical or an oxy-alkyl radical having 1 to 8 carbon atoms, wherein C 1 -C 4 alkyl or phenyl radicals are preferred
  • [Z] is a linear polyhydroxyalkyl radical whose alkyl chain is substituted with at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this group.
  • [Z] is also obtained here preferably by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then be synthesized, for example, according to the teaching of international patent application WO 95/07331 by reaction with fatty acid methyl esters in the presence an alkoxide can be converted as a catalyst into the desired polyhydroxy fatty acid amides.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably from 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters, as described for example in Japanese Patent Application JP 58/217598 or which are preferably prepared according to the method described in International Patent Application WO 90/13533.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof. It is preferred according to the invention for the nonionic surfactants to be used in the form of the granules according to the invention. However, it may also be preferred if only a part or only certain nonionic surfactants are introduced into the agent via the granules according to the invention.
  • gemini surfactants are so-called gemini surfactants. These are generally understood as meaning those compounds which have two hydrophilic groups per molecule. These groups are usually separated by a so-called “spacer.” This spacer is usually a carbon chain, which should be long enough that the hydrophilic groups have a sufficient distance so that they can act independently of each other.
  • gemini surfactants is understood to mean not only such "dimeric” but also correspondingly "trimeric” surfactants
  • Suitable gemini surfactants For example, sulfated hydroxy mixed ethers or dimer alcohol bis- and Trimeralcohol tris-sulfate and ether sulfates.
  • End-capped dimeric and trimeric mixed ethers are characterized in particular by their bi- and multi-functionality.
  • the end-capped surfactants mentioned have good wetting properties and are low foaming, so that they are particularly suitable for use in machine washing or cleaning processes.
  • gemini-polyhydroxy fatty acid amides or poly-polyhydroxy fatty acid amides it is also possible to use gemini-polyhydroxy fatty acid amides or poly-polyhydroxy fatty acid amides.
  • compositions according to the invention usually contain a builder system which consists of at least one organic and / or inorganic builder.
  • Useful organic builder substances are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), if such use is not objectionable for ecological reasons, and mixtures of these.
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • polymeric polycarboxylates for example the alkali metal salts of polyacrylic acid or polymethacrylic acid, for example those having a relative molecular mass of from 500 to 70,000 g / mol.
  • the molecular weights indicated for polymeric polycarboxylates are weight-average molar masses M w of the particular acid form which were determined in principle by gel permeation chromatography (GPC) using a UV detector. The measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship with the polymers investigated. These data differ significantly from the molecular weight data, in which polystyrene sulfonic acids are used as standard. The molar masses measured against polystyrenesulfonic acids are generally significantly higher than the molecular weights specified in this document.
  • Suitable polymers are, in particular, polyacrylates which preferably have a molecular weight of 2,000 to 20,000 g / mol. Because of their superior solubility, the short-chain polyacrylates, which have molar masses of from 2000 to 10000 g / mol, and particularly preferably from 3000 to 5000 g / mol, may again be preferred from this group.
  • copolymeric polycarboxylates in particular those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • Their relative molecular weight, based on free acids is generally from 2000 to 70000 g / mol, preferably from 20,000 to 50,000 g / mol and in particular from 30,000 to 40,000 g / mol.
  • the (co) polymeric polycarboxylates can be used either as a powder or as an aqueous solution.
  • the content of (co) polymeric polycarboxylates in the compositions is preferably 0.5 to 20% by weight, in particular 3 to 10% by weight.
  • the polymers may also contain allylsulfonic acids such as allyloxybenzenesulfonic acid and methallylsulfonic acid as a monomer.
  • biodegradable polymers of more than two different monomer units for example those containing as monomers, salts of acrylic acid and maleic acid and vinyl alcohol or vinyl alcohol derivatives or the as monomers, salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives.
  • copolymers are those which are described in the German patent applications DE-A-43 03 320 and DE-A-44 17 734 and preferably have as monomers acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate.
  • polymeric aminodicarboxylic acids their salts or their precursors.
  • polyaspartic acids or their salts and derivatives which is disclosed in the German patent application DE-A-195 40 086, that they also have a bleach-stabilizing effect in addition to Cobuilder properties.
  • polyacetals which can be obtained by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • dextrins for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes.
  • it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • oxidized derivatives of such dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • oxidizing agents capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • Such oxidized dextrins and methods of their preparation are known from numerous publications. Also suitable is an oxidized oligosaccharide according to the German patent application DE-A-196 00 018. A product oxidized to C 6 of the saccharide ring may be particularly advantageous.
  • Oxydisuccinates and other derivatives of disuccinates are other suitable co-builders.
  • ethylenediamine-N, N'-disuccinate (EDDS) is preferably used in the form of its sodium or magnesium salts.
  • glycerol disuccinates and glycerol trisuccinates are also preferred in this context. Suitable amounts are in zeolithissen and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or their salts, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such co-builders are described, for example, in International Patent Application WO 95/20029.
  • phosphonates are, in particular, hydroxyalkane or aminoalkanephosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a co-builder.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of neutral sodium salts, eg. B.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the aminoalkane phosphonates also have a pronounced Schwermetallbindeabmögen. Accordingly, in particular if the agents also contain bleach, it may be preferable to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • a preferably used inorganic builder is fine crystalline, synthetic and bound water-containing zeolite, preferably zeolite A, X and / or P. However, mixtures of A, X and / or P are also suitable.
  • zeolite P zeolite MAP (eg Doucil A24 Commercial product of Crosfield) is particularly preferred.
  • zeolite MAP eg Doucil A24 Commercial product of Crosfield
  • zeolite MAP eg Doucil A24 Commercial product of Crosfield
  • zeolite MAP eg Doucil A24 Commercial product of Crosfield
  • zeolite MAP eg Doucil A24 Commercial product of Crosfield
  • VEGOBOND AX® commercial product from Condea Augusta SpA.
  • the zeolite can be used as a spray-dried powder or else as undried, still moist, stabilized suspension of its preparation.
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3 wt .-%, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols having 2 to 5 ethylene oxide groups , C 12 -C 14 fatty alcohols having 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 ⁇ m (volume distribution, measuring method: Coulter Counter) and preferably contain 10 to 22% by weight, in particular 15 to 22% by weight, of bound water.
  • Suitable substitutes or partial substitutes for the zeolite are phyllosilicates of natural and synthetic origin. Its usability is not limited to any particular composition or structural formula. However, smectites, in particular bentonites, are preferred here. Crystalline, layered sodium silicates of the general formula NaMSi x O 2x + 1 ⁇ yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2 , 3 or 4, are suitable for the substitution of zeolites or phosphates. Such crystalline Layered silicates are described, for example, in European Patent Application EP-A-0 164 514. Preferred crystalline layered silicates of the formula given are those in which M is sodium and x assumes the values 2 or 3. In particular, both ⁇ - and ⁇ -sodium disilicates Na 2 Si 2 O 5 .yH 2 O are preferred.
  • the preferred builder substances also include amorphous sodium silicates having a modulus of Na 2 O: SiO 2 of from 1: 2 to 1: 3.3, preferably from 1: 2 to 1: 2.8 and in particular from 1: 2 to 1: 2,6, which are delay-delayed and have secondary washing properties.
  • the dissolution delay compared to conventional amorphous sodium silicates may have been caused in various ways, for example by surface treatment, compounding, compaction / densification or by overdrying.
  • the term "amorphous” is also understood to mean "X-ray amorphous”.
  • the silicates do not give sharp X-ray reflections typical of crystalline substances but at best one or more maxima of the scattered X-rays having a width of several degrees of diffraction angle. However, it may well even lead to particularly good builder properties if the silicate particles provide blurred or even sharp diffraction maxima in electron diffraction experiments. This is to be interpreted as meaning that the products have microcrystalline regions of size 10 to a few hundred nm, values of up to max. 50 nm and in particular up to max. 20 nm are preferred.
  • Such so-called X-ray amorphous silicates which likewise have a dissolution delay compared with the conventional water glasses, are described, for example, in German patent application DE-A-44 00 024.
  • Especially preferred are densified / compacted amorphous silicates, compounded amorphous silicates and overdried X-ray amorphous silicates.
  • phosphates as builders are possible, unless such use should not be avoided for environmental reasons.
  • Particularly suitable are the sodium salts of orthophosphates, pyrophosphates and in particular tripolyphosphates.
  • Their content is generally not more than 25 wt .-%, preferably not more than 20 wt .-%, each based on the finished composition. In some cases it has been shown that in particular tripolyphosphates even in small amounts up to a maximum of 10 wt .-%, based on the finished agent, in combination with other builders lead to a synergistic improvement of the secondary washing power.
  • bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -forming peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • the content of bleaching agents in the composition is from 0 to 30% by weight and in particular from 5 to 25% by weight, it being advantageous to use perborate monohydrate or percarbonate.
  • bleach activators can be incorporated.
  • bleach activators it is possible to use compounds which, under perhydrolysis conditions, give aliphatic peroxycarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable substances are those which carry O- and / or N-acyl groups of the stated C atom number and / or optionally substituted benzoyl groups.
  • polyacylated alkylenediamines in particular tetraacetylethylenediamine (TAED), acylated triazine derivatives, in particular 1,5-diacetyl-2,4-dioxohexahydro-1,3,5-triazine (DADHT), acylated glycolurils, in particular tetraacetylglycoluril (TAGU), N- Acylimides, in particular N-nonanoylsuccinimide (NOSI), acylated phenolsulfonates, in particular n-nonanoyl or isononanoyloxybenzenesulfonate (n- or iso-NOBS), carboxylic anhydrides, in particular phthalic anhydride, acylated polyhydric alcohols, in particular triacetin, ethylene glycol diacetate and 2,5-diacetoxy- 2,5-dihydrofuran.
  • TAED tetraacet
  • bleach catalysts can also be incorporated.
  • bleach-enhancing transition metal salts or transition metal complexes such as, for example, Mn, Fe, Co, Ru or Mo saline complexes or carbonyl complexes.
  • Mn, Fe, Co, Ru, Mo, Ti, V and Cu complexes with N-containing tripod ligands and Co, Fe, Cu and Ru ammine complexes can also be used as bleach catalysts.
  • Suitable enzymes are those from the class of proteases, lipases, amylases, cellulases or mixtures thereof. Particularly suitable are bacterial strains or fungi, such as Bacillus subtilis, Bacillus licheniformis and Streptomyces griseus derived enzymatic agents. Preferably, subtilisin-type proteases and in particular proteases derived from Bacillus lentus are used.
  • Enzyme mixtures for example from protease and amylase or protease and lipase or protease and cellulase or from cellulase and lipase or from protease, amylase and lipase or protease, lipase and cellulase, but in particular cellulase-containing mixtures are of particular interest.
  • Peroxidases or oxidases have also proved suitable in some cases.
  • the enzymes may be adsorbed to carriers and / or embedded in encapsulants to protect against premature degradation.
  • the preferred oil and fat dissolving components include, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxy-propylcellulose with a proportion of methoxyl groups of 15 to 30 wt .-% and hydroxypropoxyl groups of 1 to 15 wt .-%, each based on the nonionic cellulose ethers, as well as the known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives thereof. Particularly preferred of these are the sulfonated derivatives of phthalic and terephthalic acid polymers.
  • the detergents and cleaners may contain, as optical brighteners, derivatives of diaminostilbenedisulfonic acid or its alkali metal salts. Suitable are, for example
  • Salts of 4,4'-bis (2-anilino-4-morpholino-1,3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or compounds of similar construction which carry a diethanolamino group, a methylamino group, an anilino group or a 2-methoxyethylamino group instead of the morpholino group.
  • brighteners of the substituted diphenylstyrene type may be present, e.g.
  • Dyes and fragrances are added to detergents and cleaners to improve the aesthetics of the products and to provide the consumer with a visual and sensory "typical and unmistakable" product in addition to the softness performance.
  • perfume oils or fragrances individual perfume compounds, for example the synthetic products of the ester type, ethers, aldehydes, ketones, alcohols and hydrocarbons can be used.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinyl acetate, phenylethyl acetate, linalyl benzoate, benzylformate, ethylmethylphenylglycinate, allylcyclohexylpropionate, styrallylpropionate and benzylsalicylate.
  • Ethers include, for example, benzyl ethyl ether, to the aldehydes, for example, the linear alkanals with 8-18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamen aldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones such as the ionone, ⁇ -isomethylionone and methyl cedrylketone , the alcohols include anethole, citronellol, eugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes such as limonene and pinene.
  • fragrance oils may also contain natural fragrance mixtures such as those available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • perfume oils may also contain natural fragrance mixtures such as those available from vegetable sources, eg pine, citrus, jasmine, patchouly, rose or ylang-ylang oil.
  • the content of detergents and cleaners to dyes is less than 0.01 wt .-%, while perfumes can account for up to 2 wt .-% of the total formulation.
  • the fragrances can be incorporated directly into the detergents and cleaners, but it can also be advantageous to apply the fragrances to carriers, which enhance the adhesion of the perfume to the laundry and provide a slower fragrance release for long-lasting fragrance of the textiles.
  • carrier materials for example, cyclodextrins have been proven, the cyclodextrin-perfume complexes can be additionally coated with other excipients.
  • Preferred dyes the selection of which presents no difficulty to the skilled person, have a high storage stability and insensitivity to the other ingredients of the agents and to light and no pronounced substantivity to textile fibers so as not to stain them.
  • the bulk density of the advantageously granular detergents and / or cleaning agents is preferably at least about 600 g / l, in particular 650 to 1100 g / l.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Detergent Compositions (AREA)
  • Medicinal Preparation (AREA)

Description

  • Die vorliegende Erfindung betrifft Granulate enthaltend nichtionische Tenside, sowie ein Herstellverfahren für derartige Granulate und Wasch- und/oder Reinigungsmittel, die solche Granulate enthalten.
  • Wasch- und Reinigungsmittel enthalten zur Erhöhung ihrer Wasch- und Reinigungsleistung, insbesondere gegenüber Staub/Hautfett-Anschmutzungen, nichtionische Tenside. Die meisten nichtionischen Tenside sind jedoch bei Raumtemperatur flüssig, was ihre Einarbeitbarkeit in pulverförmige Mittel erschwert.
  • In pulverförmigen Mitteln werden die flüssigen nichtionischen Tenside meistens in Form von sogenannten Compounds eingesetzt, die in der Regel über Naßgranulation mit Zeolith oder einem anderen festen Waschmittelbuilder sowie Granulierflüssigkeit hergestellt werden. Dabei werden die nichtionischen Tenside auf den Zeolith aufgebracht. Häufig verwendete Zeolithe sind Zeolith A, X und P. Eine Begrenzung des Anteils an nichtionischem Tensid im Compound bildet das Aufnahmevermögen des Zeoliths, bei zu hohen Gehalten sind die hergestellten Teilchen nicht mehr fließfähig. Diese Produkte sind daher zur Verarbeitung zu und zum direkten Einsatz in pulverförmigen Produkten nicht geeignet.
  • Ein weiterer Nachteil von nichtionischen Tensiden ist ihre Neigung zur Gelbildung. Zur Vermeidung der Gelbildung und zur Erhöhung der Löslichkeit sind aus dem Stand der Technik einige Verfahren zur Herstellung von festen Reinigungsmittelteilchen, die nichtionische Tenside enthalten, bekannt.
  • In der DE-A- 41 24 701 wird ein Verfahren zur Herstellung von festen Wasch- und Reinigungsmitteln offenbart, worin feste und flüssige Waschmittelrohstoffe unter gleichzeitiger oder anschließender Formgebung und ggf. Trocknung vermischt werden. Als feste Bestandteile werden Aniontenside, Buildersubstanzen und Alkalisierungsmittel und als flüssige Bestandteile Niotenside eingesetzt. Zur Verbesserung des Auflöseverhaltens und zur Erleichterung der Einarbeitung werden die flüssigen Niotenside mit einem Strukturbrecher in einem Gewichtsverhältnis 10 : 1 bis 1 : 1 vermischt. Als Strukturbrecher werden Polyethylenglykol oder Polypropylenglykol, Sulfate und/oder Disulfate von Polyethylenglykol oder Polypropylenglykol; Sulfosuccinate und/oder Disulfosuccinate von Polyethylenglykol oder Polypropylenglykol oder Mischungen aus diesen eingesetzt.
  • Zur Beseitigung der beschriebenen Probleme wird im europäischen Patent 0 715 648 B1 vorgeschlagen, eine Gerüststoffkomponente einzusetzen, die ein kristallines Schichtsilikate der allgemeinen Formel NaMSixO2x+1·H2O ist, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist, und ein Imprägniermittel enthält. Die Builderkomponente enthält mindestens 60 Gew.-%, bezogen auf die imprägnierte Builderkomponente, kristalline Schichtsilikate in granularer Form mit Schüttgewichten oberhalb 650 g/l. Das Imprägniermittel ist vorzugsweise ausgewählt aus ethoxylierten nichtionischen Tensiden, Mischungen aus nichtionischen und anionischen Tensiden, pastenförmigen wäßrigen nichtionischen Tensiden und/oder anionischen Tensiden, Silikonöle und Paraffinöle.
  • In der europäischen Patentanmeldung 0 799 884 wird ein Gemisch aus ethoxylierten nichtionischen Tensiden und Alkylpolyglykosiden beschrieben, das zur Herstellung von Tensidgranulaten auf ein Trägermaterial aufgebracht wird. Als Trägermaterialien werden Zeolith A, Zeolith P und NaCO3 genannt.
  • In der WO 97/03165 wird ein Verfahren zur Herstellung von Alkylpolyglykosidgranulaten beschriben. Die Alk(en)ylpolyglykoside und/oder Fettsäure-N-alkyopolyhydroxyalkylamide werden in Gegenwart von Zeolithen und/oder Wassergläsern granuliert. In einer möglichen Ausführungsform wird ein Gemisch aus Alkylpolyglykosiden und ethoxylierten Fettalkoholen eingesetzt.
  • In der Druckschrift US 5,739,094 werden Zusammensetzungen beschrieben, in welchen Niotensid und Strukturierungsmittel eine mehr oder minder homogene Mischung darstellen, d.h. Niotensid und Strukturierungsmittel werden zusammen in den schmelzflüssigen Zustand überführt, in welchem sie als Mischung vorliegen. Aus dieser Mischung wird dann beispielsweise durch Erkaltenlassen die betreffende Zusammensetzung erzeugt. Es werden aber keine Granulate beschrieben, welche einen flüssigen Kern aus nichtionischen Tensiden aufweisen, der von einer Hülle aus erstarrter Polymerschmelze umgeben ist. In US 5,739,094 wird auch kein Verfahren beschrieben, das sich unter anderem über die Kanalkonstellation und -belegung der Düsen definiert.
  • In der Druckschrift US 4,545,917 werden Zusammensetzungen beschrieben, welche sich dadurch auszeichnen, daß dort mindestens drei verschiedene Niotenside und PEG eine mehr oder minder homogene Mischung darstellen, d.h. mindestens drei Niotenside und PEG werden zusammen in den schmelzflüssigen Zustand überführt, in welchem sie als Mischung vorliegen. Aus dieser Mischung wird dann beispielsweise durch Erkaltenlassen die betreffende Zusammensetzung erzeugt. Es werden aber keine Granulate beschrieben, welche einen flüssigen Kern aus nichtionischen Tensiden aufweisen, der von einer Hülle aus erstarrter Polymerschmelze umgeben ist. Ebenfalls wird auch dort kein Verfahren beschrieben wird, das sich unter anderem über die Kanalkonstellation und -belegung der Düsen definiert.
  • Die aus dem Stand der Technik bekannten Mittel haben den Nachteil, daß hier üblicherweise wasserunlösliche Träger benötigt werden und die niotensid-haltigen Granulate keine zu hohen Gehalte dieser Tenside aufweisen können, ohne ihre Fließfähigkeit und ihre Verarbeitbarkeit zu verlieren. Häufig sind derartige Granulate, die flüssiges nichtionisches Tenside in einer Menge von ca. 23 Gew.-% nur schlecht fließfähig und ab einer Menge von 25 Gew.-% kaum noch bzw. nicht mehr zu Granulaten bzw. Compounds verarbeitbar. Auf der anderen Seite ist es bekannt, daß stark verdichtete Mittel mit hohem Schüttgewicht, die sehr hohe Gehalte an flüssigen nichtionischen Tensiden aufweisen, beim Einsatz als Waschmittel vergelen, d.h. nur schlecht löslich sind.
  • Der vorliegenden Erfindung lag somit die Aufgabe zugrunde, alternative Teilchen zum Einsatz in Wasch- und Reinigungsmitteln zur Verfügung zu stellen, die einen hohen Gehalt an flüssigen nichtionischen Tensiden, insbesondere über 20 Gew.-%, aufweisen, jedoch im wesentlichen ohne wasserunlösliches Trägermaterial auskommen und sich gut zur Einarbeitung in Wasch- oder Reinigungsmittel eignen.
  • Überraschenderweise wurde festgestellt, daß Granulate bei Raumtemperatur flüssiger nichtionischer Tenside, die als Trägermaterial eine erstarrte Polymerschmelze enthalten, diese Anforderungen erfüllen.
  • Ein erster Gegenstand der Erfindung sind dementsprechend Granulate bei Raumtemperatur flüssiger nichtionischer Tenside, die als Trägermaterial eine erstarrte Polymerschmelze enthalten, und weniger als 10 Gew.-% anorganischen Träger enthalten, wobei die Polymere aus thermoplastischen Polymeren, Polyalkylenoxiden, natürlichen und synthetischen Fetten, langkettigen Fettsäuren, langkettigen Fettalkoholen, Paraffinen und langkettigen bei Raumtemperatur festenNiotensiden ausgewählt sind und wobei die Granulate einen flüssigen Kern aus nichtionischen Tensiden aufweisen, der von einer Hülle aus erstarrter Polymerschmelze umgeben ist.
  • Diese Granulate sind gut verarbeitbar und weisen bei Einarbeitung in Wasch- oder Reinigungsmittel, insbesondere auch in solche mit hohem Schüttgewicht, die bekannten Löslichkeitsprobleme nicht auf.
  • Bevorzugte Granulate bestehen zu mehr als 20 Gew.-%, insbesondere zu mindestens 40 Gew.-% aus bei Raumtemperatur flüssigen nichtionischen Tensiden. Dabei werden die bei Raumtemperatur flüssigen nichtionischen Tenside ausgewählt aus den üblicherweise in Wasch- und Reinigungsmitteln eingesetzten Niotensiden.
  • Insbesondere sind hier die alkoxylierten C8-C18-Alkohole zu nennen. Vorzugsweise werden ethoxylierte, insbesondere primäre Alkohole mit 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-C14-Alkohole mit 3 EO oder 4 EO, C9-C11-Alkohole mit 7 EO, C13-C15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-C18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-C14-Alkohol mit 3 EO und C12-C18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE).
  • Darüber hinaus bzw. in Mischung mit diesen alkoxylierten C8-C18-Alkoholen können auch Alkylpolyglykoside eingesetzt werden. diese Verbindungen weisen die allgemeine Formel RO(G)x auf, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Als weitere geeignete nichtionische Tenside auch alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte C8-C18-Fettsäurealkylester, N-Fettalkyl-Aminoxide, Polyhydroxyfettsäureamide oder deren Gemische eingesetzt werden.
  • Bevorzugte nichtionische Tenside sind dementsprechend ausgewählt aus der Gruppe, die alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte C8-C18-Alkohole, Alkylpolyglykoside, alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte C8-C18-Fettsäurealkylester, N-Fettalkyl-Aminoxide, Polyhydroxyfettsäureamide oder deren Gemische umfaßt. Besonders bevorzugt ist der Einsatz der alkoxylierten, vorzugsweise ethoxylierten C8-C18-Alkohole.
  • Dabei enthalten die Granulate als polymeres Trägermaterial vorzugsweise ein Polymer, das ausgewählt ist aus der Gruppe, die thermoplastische Polymere, Polyalkylenoxide, vorzugsweise mit einem Schmelzpunkt oberhalb Raumtemperatur, natürliche und synthetische Fette, langkettige Fettsäuren, langkettige Fettalkohole, Paraffine und langkettige bei Raumtemperatur feste Niotenside umfaßt, wobei bevorzugte Polymere insbesondere Polyalkylenoxide sind, von denen wiederum Polyethylenglycole mit einer Molmasse aus dem Bereich 400 bis 10000 g/mol bevorzugt sind.
  • Erfindungsgemäß bevorzugte Granulate eignen sich zur Einarbeitung in feste Waschmittel mit hohen Schüttgewichten. Für solche Granulate ist es erwünscht, daß sie sowohl in ihrem Schüttgewicht als auch in ihrer Teilchengrößenverteilung den übrigen Bestandteilen des Mittels ähneln. Dementsprechend ist es bevorzugt, wenn die Teilchengrößenverteilung eng ist und die Granulate ein Schüttgewicht zwischen 400 und 1000g/l, vorzugsweise zwischen 550 und 850 g/l, aufweisen.
  • Erfindungsgemäß sind die Granulate so aufgebaut, daß sie einen flüssigen Kern aus nichtionischen Tensiden aufweisen, der von einer Hülle aus erstarrter Polymerschmelze umgeben ist. Granulate mit diesem Aufbau erscheinen nach außen als reine Polymergranulate mit den entsprechenden Vorteilen hinsichtlich Lager- und Rieselfähigkeit. Beim Auflösen in Wasser setzen sie dann die enthaltenen nichtionischen Tenside frei.
  • Herstellen lassen sich diese Granulate nach verschiedenen Methoden. Es hat sich allerdings gezeigt, daß es vorteilhaft ist, wenn das Herstellverfahren ein Prillen der Schmelzen beinhaltet.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist demgemäß ein Verfahren zur Herstellung von Granulaten nichtionischer Tenside, wobei zur Granulation flüssiger nichtionischer Tenside Polymerschmelzen eingesetzt werden, die im Gasstrom geprillt werden, wobei die Schmelze über eine oder mehrere Düsen in eine Wirbelschicht eingebracht wird, wobei die einzelnen Komponenten über die verschiedenen Kanäle einer Mehrstoffdüse eingebracht werden, wobei die flüssigen nichtionischen Tenside über den Innenkanal und die Polymerschmelze über den Außenkanal der Düse versprüht werden.
  • Unter Prillen wird dabei ein Vorgang verstanden, bei dem eine Schmelze versprüht wird und die so gebildeten Tropfen erstarren.
  • Als Polymere können beliebige organische Verbindungen eingesetzt werden, die einen Schmelzpunkt (Erweichungspunkt) unterhalb ihrer Zersetzungstemperatur und der Zersetzungstemperatur der nichtionischen Tenside aufweisen und die sich in Form ihrer Schmelze verarbeiten lassen. Beispiele sind thermoplastische Polymere, Polyethylenglykole, vorzugsweise mit einem Schmelzpunkt oberhalb Raumtemperatur, natürliche und synthetische Fette, langkettige Fettsäuren, langkettige Fettalkohole, Paraffine und langkettige Niotenside. Diese Verbindungen können dabei als einzelne Substanzen oder als Gemisch granuliert werden. Langkettig im Sinne dieser Erfindung sind solche Verbindungen, die aufgrund des Alkylrestes einen Erweichungspunkt oberhalb von 20°C, vorzugsweise sogar oberhalb 25°C aufweisen.
  • Es ist auch möglich, der Schmelze feste Bestandteile in einer Menge bis zu 10 % bezogen auf das Gewicht der Schmelze, zuzumischen. Diese festen Bestandteile können ausgewählt sein aus organischen und anorganischen Stoffen, die vorzugsweise entsprechend dem Einsatzzweck der hergestellten Granulate ausgewählt werden. In einer bevorzugten Ausführungsform werden feste Teilchen als "Kristallisationskeime" in der Wirbelschicht vorgelegt. Bei diesen festen Bestandteilen, oder festen Teilchen handelt es sich üblicherweise um solche Stoffe, die eine Trägerfunktion wahrnehmen. Dabei ist es, wenn die Granulate in Wasch- oder Reinigungsmitteln eingesetzt werden sollen, insbesondere bevorzugt, wenn die festen Bestandteile aus feinteiligen Trägerstoffen, die gleichzeitig eine Builderwirkung in der Waschflotte aufweisen, ausgewählt sind.
  • Zu den geeigneten anorganischen Trägerkomponenten sind dabei insbesondere Aluminosilicate, Alkalisulfate und -carbonate zu zählen. Erfindungsgemäß auch bevorzugt ist der gemeinsame Einsatz verschiedener anorganischer Träger, insbesondere die Kombination von Aluminosilicat und Soda als Träger, wobei das Gewichtsverhältnis von Aluminosilicat zu Soda aus dem Bereich 1:5 bis 5:1, besonders bevorzugt aus dem Bereich 1:2 bis 2:1, gewählt wird.
  • Unter den Aluminosilicaten wiederum werden bevorzugt kristalline Aluminosilicate - die Zeolithe - eingesetzt. Als Träger bevorzugte Zeolithe sind dabei die Zeolithe A, P, X, Y und Mischungen davon. Der Einsatz von Zeolith A als Träger ist dabei aus zahlreichen Publikationen bekannt. Zeolith P und die Zeolithe vom Faujasit-Typ besitzen jedoch ein im Vergleich zu Zeolith A erhöhtes Ölabsorptionsvermögen und können daher in Granulaten bevorzugt sein. Im Rahmen des erfindungsgemäßen Verfahrens bevorzugt einsetzbar ist beispielsweise auch der in der europäischen Patentanmeldung EP-A-816 291 beschriebene Zeolith A-LSX, der einem Co-Kristallisat aus Zeolith X und Zeolith A entspricht und in seiner wasserfreien Form die Formel (M2/nO + M'2/nO)·Al2O3·zSiO2 besitzt, wobei M und M' Alkali- oder Erdalkalimetalle sein können und z eine Zahl zwischen 2,1 und 2,6 ist. Kommerziell erhältlich ist dieses Produkt unter dem Markennamen VEGOBOND AX von der Firma CONDEAAugusta S.p.A. Wird Zeolith P eingesetzt, so kann es bevorzugt sein, einen Zeolith MAP, wie er in dem Europäischen Patent EP-B-380 070 beschrieben ist, einzusetzen. Die Teilchengrößen der erfindungsgemäß eingesetzten Zeolithe liegt vorzugsweise im Bereich von 0,1 bis zu 100 µm, vorzugsweise zwischen 0,5 und 50 µm und insbesondere zwischen 1 und 30 µm, jeweils mit Standard-Teilchengrößebestimmungsmethoden gemessen.
  • Als Träger geeignete organische Builderkomponenten sind insbesondere Polycarboxylate. Hier sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen, zu nennen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen, insbesondere Trinatriumcitrat.
  • Darüber hinaus sind auch polymere Polycarboxylate als organische Trägermaterialien geeignet. Dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol. Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen. Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein. Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
  • Dabei können in besonders vorteilhaften Ausführungsformen auch Mischungen aus organischen und anorganischen Trägern eingesetzt werden. Unabhängig davon, ob Mischungen verschiedener Träger, oder nur eine Trägerkomponente verwendet werden, liegt der Trägergehalt in den Granulaten unter 10 Gew.-%, vorzugsweise unter 5 Gew.-%.
  • Unabhängig von der genauen Zusammensetzung der Schmelze kann das Prillen in verschiedenen Apparaturen erfolgen. Beispielsweise kann das Prillen in einem üblichen Prillturm erfolgen, was im Sinne der vorliegenden Erfindung weniger bevorzugt ist.
  • Erfindungsgemäß wird die Schmelze über eine oder mehrere Düsen in eine Wirbelschicht eingebracht, wobei die einzelnen Komponenten über die verschiedenen Kanäle einer Mehrstoffdüse eingebracht werden, wobei die flüssigen nichtionischen Tenside über den Innenkanal und die Polymerschmelze über den Außenkanal der Düse versprüht werden. Beim Zerreißen des Düsenstrahls umhüllt die Polymerschmelze bei diesem Verfahren die Flüssigkeit und die so gebildete polymere Außenfläche erstarrt besonders schnell.
  • Die im erfindungsgemäßen Verfahren eingesetzte Wirbelschichtkammer ist üblicherweise rund, wobei die Apparatur zylinderförmig sein kann, d.h. einen in der Höhe konstanten Durchmesser haben kann. Bevorzugt sind solche Wirbelschichtkammern, bei denen die Wirbelzone konisch, nach oben erweitert ausgelegt ist und erst die daran anschließende Beruhigungszone nach einem konischen Übergangsstück zylinderförmig ist. Das Verfahren kann unabhängig von der Form der Wirbelschichtapparatur batchweise oder kontinuierlich durchgeführt werden, im Sinne der vorliegenden Erfindung ist jedoch die kontinuierliche Verfahrensführung bevorzugt.
  • Eine für das erfindungsgemäße Verfahren besonders geeignete Ausführungsform einer Wirbelschichtapparatur ist ein Jet-Priller® (Fa. GMF Gouda). Diese Anlagen erlauben entweder die Vorkühlung von zum Prillen eingesetzter Umgebungsluft und in einer bevorzugten Ausführungsform die Kreislaufführung von als Prozeßgas verwendetem Stickstoff, der über einen Tank an flüssigem Stickstoff gespeist wird.
  • Sollen in dem Verfahren zusätzliche Trägerkomponenten, sowie gegebenenfalls weitere Feststoffe eingesetzt werden, so werden diese entweder pneumatisch über Blasleitungen eingestaubt, wobei die Zugabe entweder vor der Verdüsung der Schmelze oder gleichzeitig mit dieser erfolgt, oder als Gemisch mit der Schmelze zugegeben, wobei die Mischung dieser Bestandteile entweder vor der Verdüsung oder unmittelbar in der Düse erfolgt. Dabei kann die Anordnung der Düse beziehungsweise der Düsen und die Sprührichtung beliebig sein, solange eine im wesentlichen gleichmäßige Verteilung der flüssigen Komponenten in der Wirbelschicht erreicht wird. In einer erfindungsgemäß bevorzugten Ausführungsform werden feste Bestandteile vor der Verdüsung mit der Schmelze gemischt und anschließend durch eine Düse in die Wirbelschicht eingeblasen.
  • Bevorzugt eingesetzte Wirbelschicht-Apparate besitzen Bodenplatten mit Abmessungen von mindestens 0,15 m. Insbesondere sind Wirbelschicht-Apparate bevorzugt, die eine Bodenplatte mit einem Durchmesser von 0,4 und 5 m, beispielsweise 1,2 m oder 2,5 m besitzen. Es sind jedoch auch Wirbelschicht-Apparate geeignet, die eine Bodenplatte mit einem größeren Durchmesser als 5 m aufweisen. Als Bodenplatte kann eine Lochbodenplatte oder eine Conidurplatte (Handelsprodukt der Fa. Hein & Lehmann, Bundesrepublik Deutschland), ein Drahtgewebe oder ein Kombinationsboden aus einer Lochbodenplatte mit einem Gitternetz, wie in der deutschen Patentanmeldung DE-A-197 50 424 beschrieben, eingesetzt werden. Insbesondere ein Conidurboden kann dabei die Drallwirkung der zusätzlichen Luftzufuhr unterstützen.
  • Vorzugsweise wird das erfindungsgemäße Verfahren bei Wirbelluftgeschwindigkeiten zwischen 1 und 8 m/s und insbesondere zwischen 1,5 und 5,5 m/s durchgeführt. Der Austrag der Granulate aus der Wirbelschicht erfolgt erfindungsgemäß über eine Größenklassierung der Granulate. Diese Klassierung kann beispielsweise mit einer Siebvorrichtung oder durch einen entgegengeführten Luftstrom (Sichterluft) erfolgen, der so reguliert wird, dass nur Teilchen ab einer bestimmten Teilchengröße aus der Wirbelschicht entfernt und kleinere Teilchen in der Wirbelschicht zurückgehalten werden. In einer bevorzugten Ausführungsform setzt sich die von unten einströmende Luft aus der unbeheizten Sichterluft und eventuell der beheizten Bodenluft zusammen.
  • Die Bodenlufttemperatur liegt in einer bevorzugten Ausführungsform zwischen 10 und 35°C, insbesondere bevorzugt zwischen 10 und 25°C, wobei es insbesondere bevorzugt ist, wenn die Bodenlufttemperatur mindestens 5°C unterhalb der Erweichungstemperatur der organischen Substanz liegt. Im Sinne einer schnellen Verfahrensführung kann es dabei bevorzugt sein, wenn die Bodenlufttemperatur sogar mehr als 10°C, vorzugsweise sogar mehr als 15°C unterhalb der Erweichungstemperatur liegt, da derartig niedrige Temperaturen die Erstarrung der Substanzen beschleunigen. Die Temperatur der Wirbelluft etwa 5 cm oberhalb der Bodenplatte gemessen, liegt vorzugsweise ebenfalls deutlich unter der Erweichungstemperatur der organischen Substanzen. Vorzugsweise liegt die Wirbellufttemperatur mehr als 10°C unter der Erweichungstemperatur, insbesondere sogar mehr als 15°C unter der Erweichungstemperatur der organischen Substanz. Während der Granulation erwärmt sich die Wirbelluft durch Aufnahme der bei der Erstarrung freiwerdenden Schmelzwärme. Vorzugsweise liegt jedoch auch die Luftaustrittstemperatur unterhalb der Erweichungstemperatur der granulierten organischen Substanzen. Insbesondere ist es bevorzugt, wenn die Luftaustrittstemperatur noch mindestens 5°C unterhalb der Erweichungstemperatur liegt.
  • Wird Stickstoff als Prozeßgas (Bodenluft) eingesetzt, so kann die Bodenlufttemperatur wesentlich niedriger liegen. Denkbar sind dann Prozeßgastemperaturen von -196°C bis 35°C, wobei jedoch Temperaturen unter 0°C weniger bevorzugt sind, da ansonsten Probleme mit der Kondensation von Feuchtigkeit auftreten können..
  • Die Schüttgewichte der resultierenden Granulate hängen stark von den Granulationsbedingungen und den zugesetzten Trägerstoffen ab. Übliche Schüttgewichte liegen im Bereich 400 bis 1000 g/l, wobei insbesondere Schüttgewichte im Bereich 550 bis 850 g/l für den Einsatz der Granulate in Wasch- oder Reinigungsmitteln bevorzugt sein können.
  • Erfolgt der Austrag aus der Wirbelschicht, wie in der EP-B-0 603 207 beschrieben, gegen einen Sichterluftstrom, so werden durch diese Klassierung staubfreie Granulate erhalten., d.h. die Granulate enthalten vorzugsweise keine Teilchen mit einer Teilchengröße unterhalb 50 µm, vorzugsweise auch keine Teilchen mit einer Teilchengröße unterhalb 100 µm. Erfindungsgemäß bevorzugte Granulate haben einen d50-Wert zwischen 0,4 und 2,5 mm. In einer besonders bevorzugten Ausführungsform - bei feinen, engen Korngrößenverteilungen - wird der Kornanteil, der größer 1,6 mm ist, zurückgeführt. Dieser Grobkornanteil kann entweder nach Mahlen der Wirbelschicht als feste Komponente zugesetzt werden oder er wird erneut geschmolzen und in die Wirbelschicht eingesprüht.
  • Die erhaltenen Granulate können, um Ihre Verarbeitbarkeit und Dosierbarkeit noch weiter zu verbessern, mit einer Ölabsorptionskomponente abgepudert werden. Durch diesen Abpuderungsschritt mit einer feinteiligen Komponente werden die Flüssigkeiten an der Granulatoberfläche abgebunden, so daß das Granulat bei Lagerung nicht verklumpen kann. Die Ölabsorptionskomponente sollte eine Ölabsorptionskapazität von mindestens 20g/100g, geeigneter mindestens 50g/100g, vorzugsweise mindestens 80g/100g, besonders bevorzugt mindestens 120g/100g und insbesondere mindestens 140g/100g aufweisen.
  • Die Ölabsorptionskapazität ist dabei eine physikalische Eigenschaft eines Stoffes, die sich nach genormten Methoden bestimmen läßt. So existieren beispielsweise die britischen Standardmethoden BS1795 und BS3483:Part B7:1982, die beide auf die Norm ISO 787/5 verweisen. Bei den Testmethoden wird eine ausgewogene Probe des betreffenden Stoffes auf einen Teller aufgebracht und tropfenweise mit raffiniertem Leinsamenöl (Dichte: 0,93 gcm-3) aus einer Bürette versetzt. Nach jeder Zugabe wird das Pulver mit dem Öl unter Verwendung eines Spatels intensiv vermischt, wobei die Zugabe von Öl fortgesetzt wird, bis eine Paste von geschmeidiger Konsistenz erreicht ist. Diese Paste sollte fließen bzw. verlaufen, ohne zu krümeln. Die Ölabsorptionskapazität ist nun die Menge des zugetropften Öls, bezogen auf 100g Absorptionsmittel und wird in ml/100g oder g/100g angegeben, wobei Umrechnungen über die Dichte des Leinsamenöls problemlos möglich sind.
  • Die Ölabsorptionskomponente besitzt vorzugsweise eine möglichst kleine mittlere Teilchengröße, da mit sinkender Teilchengröße die aktive Oberfläche steigt. Bevorzugte Wasch- und Reinigungsmittelformkörper enthalten dabei eine Komponente mit einer Ölabsorptionskapazität von mindestens 20g/100g, die eine mittlere Teilchengröße von unter 50 µm, vorzugsweise unter 20 µm und insbesondere unter 10 µm aufweist.
  • Als Ölabsorptionskomponente eignen sich eine Vielzahl von Stoffen. Es existiert eine große Anzahl sowohl anorganischer als auch organischer Substanzen, die eine genügend große Ölabsorptionskapazität aufweisen. Beispielhaft seien hier feinteilige Stoffe, die durch Fällung gewonnen werden genannt. Als Substanzen finden beispielsweise Silikate, Aluminosilikate, Calciumsilikate, Magnesiumsilikate und Calciumcarbonat Verwendung. Aber auch Kieselgur (Diatomeenerde) und feinteilige Cellulosefasern bzw. Derivate hiervon sind im Rahmen der vorliegenden Erfindung einsetzbar.
  • Insbesondere bevorzugt ist es, wenn als Bepuderungsmittel Zeolith, besonders bevorzugt Zeolith A, X oder P, in die Wirbelschicht eingebracht wird. Diese Bepuderungsmittel vermindern bei der Granulation die Klebrigkeit der feuchten Granulatkörner zusätzlich und fördern somit die Verwirbelung und die Kühlung bzw. Prillung zum gewünschten Produkt. Die Teilchengröße des Bepuderungsmittels liegt dabei vorzugsweise unter 10 µm und die so erhaltenen Granulate enthalten dann zwischen 1 und 4 Gew.-% des Bepuderungsmittels. Für die Herstellung von Granulaten nach dem erfindungsgemäßen Verfahren kann diese Variante vorteilhaft sein, sie ist zur Ausführung der Erfindung jedoch nicht zwingend erforderlich.
  • Die erfindungsgemäß erhaltenen Granulate können direkt verarbeitet oder in den Handel gebracht werden. Insbesondere bevorzugt ist der Einsatz derartiger Granulate in Wasch- oder Reinigungsmitteln.
  • Ein weiterer Gegenstand der Erfindung sind daher Wasch- oder Reinigungsmittel, die erfindungsgemäße Granulate bzw. erfindungsgemäß hergestellte Granulate enthalten.
  • Die erfindungsgemäßen Wasch- und Reinigungsmittel, die als Granulate, pulver- oder tablettenförmige Feststoffe oder sonstige Formkörper vorliegen können, können außer den erfindungsgemäßen Granulaten im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Bevorzugte Mittel im Sinne der Erfindung sindgranulare Mittel, insbesondere solche, die durch Mischen verschiedener Granulate von Wasch- und/oder Reinigungsmittelkomponenten entstehen.
  • Als wesentliche Inhaltsstoffe der erfindungsgemäßen Waschmittel können in erster Linie anionische, nichtionische, kationische, amphotere und/oder zwitterionische Tenside genannt werden.
  • Geeignete anionische Tenside sind insbesondere Seifen und solche, die Sulfat- oder Sulfonat-Gruppen enthalten. Als Tenside vom Sulfonat-Typ kommen vorzugsweise C9-C13-Alkylbenzolsulfonate, Olefinsulfonate, das heißt Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-C18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C12-C18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse beziehungsweise Neutralisation gewonnen werden. Geeignet sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), zum Beispiel die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren, die durch α-Sulfonierung der Methylester von Fettsäuren pflanzlichen undioder tierischen Ursprungs mit 8 bis 20 C-Atomen im Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen Mono-Salzen hergestellt werden, in Betracht. Vorzugsweise handelt es sich hierbei um die α-sulfonierten Ester der hydrierten Kokos-, Palm-, Palmkern- oder Talgfettsäuren, wobei auch Sulfonierungsprodukte von ungesättigten Fettsäuren, beispielsweise Ölsäure, in geringen Mengen, vorzugsweise in Mengen nicht oberhalb etwa 2 bis 3 Gew.-%, vorhanden sein können. Insbesondere sind α-Sulfofettsäurealkylester bevorzugt, die eine Alkylkette mit nicht mehr als 4 C-Atomen in der Estergruppe aufweisen, beispielsweise Methylester, Ethylester, Propylester und Butylester. Mit besonderem Vorteil werden die Methylester der α-Sulfofettsäuren (MES), aber auch deren verseifte Disalze eingesetzt.
  • Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden.
  • Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind C12-C16-Alkylsulfate und C12-C15-Alkylsulfate sowie C14-C15-Alkylsulfate insbesondere bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-amerikanischen Patentschriften US 3 234 258 oder US 5 075 041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
  • Geeignet sind auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C21-Alkohole, wie 2-Methylverzweigte C9-C11-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-C18-Fettalkohole mit 1 bis 4 EO. Sie werden in Wasch- und Reinigungsmitteln aufgrund ihres hohen Schaumverhaltens normalerweise nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
  • Zu den bevorzugten Aniontensiden gehören auch die Salze derAlkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden, und die Monoester und/oder Diester der Sulfobemsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8- bis C18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen. Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.
  • Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside beziehungsweise die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat.
  • Als weitere anionische Tenside kommen insbesondere Seifen, beispielsweise in Mengen von 0,2 Gew.-% bis 5 Gew.-%, in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische.
  • Die anionischen Tenside, einschließlich der Seifen, können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor. Anionische Tenside sind in erfindungsgemäßen Waschmitteln vorzugsweise in Mengen von 1 Gew.-% bis 35 Gew.-% und insbesondere in Mengen von 5 Gew.-% bis 30 Gew.-% enthalten.
  • Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann beziehungsweise lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z.B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-C14-Alkohole mit 3 EO oder 4 EO, C9-C11-Alkohole mit 7 EO, C13-C15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-C18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-C14-Alkohol mit 3 EO und C12-C18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO.
  • Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)x, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18C-Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann - zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Ebenfalls geeignet sind Polyhydroxyfettsäureamide der Formel (I), in der R1CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht:
    Figure imgb0001
    Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
    Figure imgb0002
    in der R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R4 für einen linearen, verzweigten oder cyclischen Alkylenrest oder einen Arylenrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C1-C4-Alkyl- oder Phenylreste bevorzugt sind, und [Z] für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Aminierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Patentanmeldung WO 95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO 90/13533 beschriebenen Verfahren hergestellt werden.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon. Erfindungsgemäß bevorzugt ist es, wenn die nichtionischen Tenside in Form der erfindungsgemäßen Granulate eingesetzt werden. es kann jedoch auch bevorzugt sein, wenn nur ein teil oder nur bestimmte nichtionische Tenside über die erfindungsgemäßen Granulate in das Mittel eingebracht werden.
  • Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, daß die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden unter dem Ausdruck Gemini-Tenside nicht nur derartig "dimere", sondern auch entsprechend "trimere" Tenside verstanden. Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether oder Dimeralkohol-bis- und Trimeralkohol-tris-sulfate und -ethersulfate. Endgruppenverschlossene dimere und trimere Mischether zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so daß sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide.
  • Die erfindungsgemäßen Mittel enthalten üblicherweise ein Buildersystem, das aus mindestens einem organischen und/oder anorganischen Builder besteht.
  • Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen.
  • Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen.
  • Als Builder sind weiter polymere Polycarboxylate geeignet, dies sind beispielsweise die Alkalimetallsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 500 bis 70000 g/mol.
  • Bei den für polymere Polycarboxylate angegebenen Molmassen handelt es sich im Sinne dieser Schrift um gewichtsmittlere Molmassen Mw der jeweiligen Säureform, die grundsätzlich mittels Gelpermeationschromatographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsulfonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel deutlich höher als die in dieser Schrift angegebenen Molmassen.
  • Geeignete Polymere sind insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 2000 bis 20000 g/mol aufweisen. Aufgrund ihrer überlegenen Löslichkeit können aus dieser Gruppe wiederum die kurzkettigen Polyacrylate, die Molmassen von 2000 bis 10000 g/mol, und besonders bevorzugt von 3000 bis 5000 g/mol, aufweisen, bevorzugt sein.
  • Geeignet sind weiterhin copolymere Polycarboxylate, insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im allgemeinen 2000 bis 70000 g/mol, vorzugsweise 20000 bis 50000 g/mol und insbesondere 30000 bis 40000 g/mol.
  • Die (co-)polymeren Polycarboxylate können entweder als Pulver oder als wäßrige Lösung eingesetzt werden. Der Gehalt der Mittel an (co-)polymeren Polycarboxylaten beträgt vorzugsweise 0,5 bis 20 Gew.-%, insbesondere 3 bis 10 Gew.-%.
  • Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, wie beispielsweise Allyloxybenzolsulfonsäure und Methallylsulfonsäure, als Monomer enthalten.
  • Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, beispielsweise solche, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker-Derivate enthalten.
  • Weitere bevorzugte Copolymere sind solche, die in den deutschen Patentanmeldungen DE-A-43 03 320 und DE-A-44 17 734 beschrieben werden und als Monomere vorzugsweise Acrolein und Acrylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat aufweisen.
  • Ebenso sind als weitere bevorzugte Buildersubstanzen polymere Aminodicarbonsäuren, deren Salze oder deren Vorläufersubstanzen zu nennen. Besonders bevorzugt sind Polyasparaginsäuren bzw. deren Salze und Derivate, von denen in der deutschen Patentanmeldung DE-A-195 40 086 offenbart wird, daß sie neben CobuilderEigenschaften auch eine bleichstabilisierende Wirkung aufweisen.
  • Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können. Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannte Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2000 bis 30000 g/mol.
  • Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkoholfunktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind aus zahlreichen Veröffentlichungen bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A-196 00 018. Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein.
  • Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ethylendiamin-N,N'-disuccinat (EDDS) bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%.
  • Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche gegebenenfalls auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
  • Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden.
  • Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden.
  • Ein bevorzugt eingesetzter anorganischer Builder ist feinkristalliner, synthetischer und gebundenes Wasser enthaltender Zeolith, vorzugsweise Zeolith A, X und/oder P. Geeignet sind jedoch auch Mischungen aus A, X und/oder P. Als Zeolith P wird beispielsweise Zeolith MAP (z.B. Doucil A24; Handelsprodukt der Firma Crosfield) besonders bevorzugt. Von besonderem Interesse ist auch ein cokristallisiertes Natrium/Kalium-Aluminiumsilicat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.p.A.) im Handel erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C12-C14-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 10 bis 22 Gew.-%, insbesondere 15 bis 22 Gew.-% an gebundenem Wasser.
  • Geeignete Substitute bzw. Teilsubstitute für den Zeolith sind Schichtsilicate natürlichen und synthetischen Ursprungs. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Auch kristalline, schichtförmige Natriumsilicate der allgemeinen Formel NaMSixO2x+1 ·yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind, eigenen sich zur Substitution von Zeolithen oder Phosphaten. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisilicate Na2Si2O5·yH2O bevorzugt.
  • Zu den bevorzugten Builder-Substanzen gehören auch amorphe Natriumsilicate mit einem Modul Na2O : SiO2 von 1:2 bis 1:3,3, vorzugsweise von 1:2 bis 1:2,8 und insbesondere von 1:2 bis 1:2,6, welche löseverzögert sind und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilicaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Kompaktierung/Verdichtung oder durch Übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff "amorph" auch "röntgenamorph" verstanden. Dies heißt, daß die Silicate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silicatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, daß die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis max. 50 nm und insbesondere bis max. 20 nm bevorzugt sind. Derartige sogenannte röntgenamorphe Silicate, welche ebenfalls eine Löseverzögerung gegenüber den herkömmlichen Wassergläsern aufweisen, werden beispielsweise in der deutschen Patentanmeldung DE-A- 44 00 024 beschrieben. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silicate, compoundierte amorphe Silicate und übertrocknete röntgenamorphe Silicate.
  • Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate. Ihr Gehalt im allgemeinen nicht mehr als 25 Gew.-%, vorzugsweise nicht mehr als 20 Gew.-%, jeweils bezogen auf das fertige Mittel. In einigen Fällen hat es sich gezeigt, daß insbesondere Tripolyphosphate schon in geringen Mengen bis maximal 10 Gew.-%, bezogen auf das fertige Mittel, in Kombination mit anderen Buildersubstanzen zu einer synergistischen Verbesserung des Sekundärwaschvermögens führen.
  • Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben Natriumperboratmonohydrat bzw. -tetrahydrat und Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Der Gehalt der Mittel an Bleichmitteln beträgt 0 bis 30 Gew.% und insbesondere 5 bis 25 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat oder Percarbonat eingesetzt wird.
  • Um beim Waschen oder Reinigen bei Temperaturen von 60 °C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1,5-Diacetyl-2,4-dioxohexahydro-1,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran.
  • Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru - oder Mo-Salenkomplexe oder -carbonylkomplexe.
  • Auch Mn-, Fe-, Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit N-haltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar.
  • Als Enzyme kommen solche aus der Klasse der Proteasen, Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus licheniformis und Streptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase oder Protease und Cellulase oder aus Cellulase und Lipase oder aus Protease, Amylase und Lipase oder Protease, Lipase und Cellulase, insbesondere jedoch Cellulase-haltige Mischungen von besonderem Interesse. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen.
  • Zusätzlich können auch Komponenten eingesetzt werden, welche die Öl- und Fettauswaschbarkeit aus Textilien positiv beeinflussen (sogenannte soil repellents). Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxy-propylcellulose mit einem Anteil an Methoxyl-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
  • Die Wasch- und Reinigungsmittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z.B.
  • Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen. die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z.B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3-sulfostyryl)-diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
  • Farb- und Duftstoffe werden Wasch- und Reinigungsmitteln zugesetzt, um den ästhetischen Eindruck der Produkte zu verbessern und dem Verbraucher neben der Weichheitsleistung ein visuell und sensorisch "typisches und unverwechselbares" Produkt zur Verfügung zu stellen. Als Parfümöle bzw. Duftstoffe können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethem zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8-18 C-Atomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, ∝-Isomethylionon und Methyl-cedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-ÖI. Ebenfalls geeignet sind Muskateller, Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl. Üblicherweise liegt der Gehalt von Wasch- und Reinigungsmitteln an Farbstoffen unter 0,01 Gew.-%, während Duftstoffe bis zu 2 Gew.-% der gesamten Formulierung ausmachen können.
  • Die Duftstoffe können direkt in die Wasch- und Reinigungsmittel eingearbeitet werden, es kann aber auch vorteilhaft sein, die Duftstoffe auf Träger aufzubringen, die die Haftung des Parfüms auf der Wäsche verstärken und durch eine langsamere Duftfreisetzung für langanhaltenden Duft der Textilien sorgen. Als solche Trägermaterialien haben sich beispielsweise Cyclodextrine bewährt, wobei die Cyclodextrin-Parfüm-Komplexe zusätzlich noch mit weiteren Hilfsstoffen beschichtet werden können.
  • Um den ästhetischen Eindruck von Wasch- und Reinigungsmitteln zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Mittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.
  • Das Schüttgewicht der vorteilhafterweise granularen Wasch- und/oder Reinigungsmittel beträgt vorzugsweise mindestens etwa 600 g/l, insbesondere 650 bis 1100 g/l. Es können jedoch durchaus auch Mittel hergestellt werden, welche ein niedrigeres Schüttgewicht aufweisen. Insbesondere kann es bevorzugt sein, die Mittel aus granularen Einzelkomponenten, in einer Art Baukastensystem, zusammenzustellen.
  • Die vorliegende Erfindung wird an Hand der folgenden Beispiele näher erläutert.
  • Beispiele
  • Eine Schmelze aus 40 Gew.-% C12-18-Fettalkohol-ethoxylat (EO = 7) (Dehydol LT7® ; Fa. Cognis) und Polyethylenglycol (Beispiel 1: Molmasse 6000g/mol; Beispiel 2: Molmasse 12000 g/mol) wurde bei 60°C durch eine Düse (Durchmesser 0,5 mm) getropft. Die Tropfen kühlten in einem kalten Stickstoffstrom (T = -196°C) ab. Es wurden jeweils kugelförmige Granulate erhalten, die rieselfähig sind.

Claims (12)

  1. Granulate bei Raumtemperatur flüssiger nichtionischer Tenside, dadurch gekennzeichnet, daß die Granulate als Trägermaterial eine erstarrte Polymerschmelze enthalten und weniger als 10 Gew.-% anorganischen Träger enthalten, wobei die Polymere aus thermoplastischen Polymeren, Polyalkylenoxiden, natürlichen und synthetischen Fetten, langkettigen Fettsäuren, langkettigen Fettalkoholen, Paraffinen und langkettigen bei Raumtemperatur festen Niotensiden ausgewählt sind und wobei die Granulate einen flüssigen Kern aus nichtionischen Tensiden aufweisen, der von einer Hülle aus erstarrter Polymerschmelze umgeben ist.
  2. Granulate nach Anspruch 1, dadurch gekennzeichnet, daß die Granulate zu mehr als 40 Gew.-% aus bei Raumtemperatur flüssigen nichtionischen Tensiden bestehen, wobei die bei Raumtemperatur flüssigen nichtionischen Tenside ausgewählt sind aus der Gruppe, die alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte C8-C18-Alkohole, Alkylpolyglykoside, alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte C8-C18-Fettsäurealkylester, N-Fettalkyl-Aminoxide, Polyhydroxyfettsäureamide oder deren Gemische umfaßt.
  3. Granulate nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die Granulate ein Schüttgewicht zwischen 400 und 1000g/l, vorzugsweise zwischen 550 und 850 g/l, aufweisen.
  4. Verfahren zur Herstellung von Granulaten nichtionischer Tenside, wobei zur Granulation flüssiger nichtionischer Tenside Polymerschmelzen eingesetzt werden, die im Gasstrom geprillt werden, wobei die Schmelze über eine oder mehrere Düsen in eine Wirbelschicht eingebracht wird, wobei die einzelnen Komponenten über die verschiedenen Kanäle einer Mehrstoffdüse eingebracht werden, wobei die flüssigen nichtionischen Tenside über den lnnenkanal und die Polymerschmelze über den Außenkanal der Düse versprüht werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Polymere ausgewählt sind aus der Gruppe, die thermoplastische Polymere, Polyalkylenoxide, vorzugsweise mit einem Schmelzpunkt oberhalb Raumtemperatur, natürliche und synthetische Fette, langkettige Fettsäuren; langkettige Fettalkohole, Paraffine und langkettige bei Raumtemperatur feste Niotenside umfaßt, wobei bevorzugte Polymere insbesondere Polyalkylenoxide sind, von denen wiederum Polyethylenglycole mit einer Molmasse aus dem Bereich 400 bis 10000 g/mol bevorzugt sind.
  6. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß die Schmelze feste Bestandteile in einer Menge bis zu 10 %, bezogen auf das Gewicht der Schmelze, enthält und die festen Bestandteile ausgewählt sind aus feinteiligen Trägerstoffen, die gleichzeitig eine Builderwirkung in einer Waschflotte besitzen.
  7. Verfahren nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, daß die Granulierung batchweise oder kontinuierlich, vorzugsweise kontinuierlich, durchgeführt wird.
  8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß die Wirbelluftgeschwindigkeit zwischen 1 und 8 m/s, vorzugsweise zwischen 1,5 und 5,5 m/s liegt und die Temperatur der Wirbelluft etwa 5 cm oberhalb der Bodenplatte gemessen, deutlich unter der Erweichungstemperatur der Polymere, vorzugsweise mehr als 10°C unter der Erweichungstemperatur, insbesondere sogar mehr als 15°C unter der Erweichungstemperatur der Polymere liegt.
  9. Verfahren nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß die Bodenlufttemperatur vorzugsweise zwischen 10 und 35°C liegt, insbesondere bevorzugt zwischen 10 und 25°C, wobei es insbesondere bevorzugt ist, wenn die Bodenlufttemperatur mindestens 5°C, vorzugsweise mehr als 10°C, insbesondere sogar mehr als 15°C unterhalb der Erweichungstemperatur der Polymere liegt und die Luftaustrittstemperatur unterhalb der Erweichungstemperatur der Polymere, insbesondere mindestens 5°C unterhalb der Erweichungstemperatur liegt.
  10. Verfahren nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, daß das erhaltene Granulat ein Schüttgewicht zwischen 400 und 1000g/l, vorzugsweise zwischen 550 und 850 g/l, aufweist und das erhaltene Granulat keine Teilchen mit einer Teilchengröße unterhalb 50 µm, vorzugsweise unterhalb 100 µm, aufweist.
  11. Verfahren nach einem der Ansprüche 4 bis 10, dadurch gekennzeichnet, daß die erhaltenen Granulate abgepudert werden.
  12. Wasch- oder Reinigungsmittel enthaltend Granulate nach einem der Ansprüche 1 bis 3 bzw. Granulate, die nach einem der Ansprüche 4 bis 11 hergestellt wurden.
EP00126126A 1999-12-11 2000-11-30 Niotensidgranulate durch Prillen Expired - Lifetime EP1106678B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19959915A DE19959915A1 (de) 1999-12-11 1999-12-11 Niotensidgranulate durch Prillen
DE19959915 1999-12-11

Publications (3)

Publication Number Publication Date
EP1106678A2 EP1106678A2 (de) 2001-06-13
EP1106678A3 EP1106678A3 (de) 2003-06-04
EP1106678B1 true EP1106678B1 (de) 2006-09-06

Family

ID=7932380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00126126A Expired - Lifetime EP1106678B1 (de) 1999-12-11 2000-11-30 Niotensidgranulate durch Prillen

Country Status (6)

Country Link
US (1) US20010014657A1 (de)
EP (1) EP1106678B1 (de)
AT (1) ATE338811T1 (de)
CA (1) CA2327968A1 (de)
DE (2) DE19959915A1 (de)
ES (1) ES2270777T3 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19959915A1 (de) * 1999-12-11 2001-07-05 Henkel Kgaa Niotensidgranulate durch Prillen
BRPI0407182A (pt) * 2003-02-03 2006-02-07 Ciba Sc Holding Ag Formulações de agente de lavagem e amaciante de tecido
DE102004042933A1 (de) * 2004-09-02 2006-03-23 Henkel Kgaa In fester Form konfektionierte Flüssigkeiten für den Einsatz in teilchenförmigen Wasch- und Reinigungsmitteln
DE102005027660A1 (de) * 2005-06-15 2006-12-28 Henkel Kgaa Dosiervorrichtung
JP4633657B2 (ja) * 2005-09-30 2011-02-16 花王株式会社 自動食器洗浄機用洗浄剤組成物
JP7485605B2 (ja) 2018-01-26 2024-05-16 エコラボ ユーエスエー インコーポレイティド 担体を用いる、液体アミンオキシド、ベタイン、および/またはスルタイン界面活性剤の固化
JP7485606B2 (ja) 2018-01-26 2024-05-16 エコラボ ユーエスエー インコーポレイティド 液体アニオン性界面活性剤の固化
CN111655829A (zh) 2018-01-26 2020-09-11 埃科莱布美国股份有限公司 用粘合剂及任选载体固化液体氧化胺、甜菜碱和/或磺基甜菜碱表面活性剂
CA3140905A1 (en) * 2019-06-21 2020-12-24 Ecolab Usa Inc. Solid nonionic surfactants compositions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4088431A (en) * 1974-05-07 1978-05-09 Imperial Chemical Industries Limited Melt spinning filter
US4545917A (en) * 1984-02-09 1985-10-08 Creative Products Resource Associates Ltd. Automatic dishwasher product in solid form
BR9610548A (pt) * 1995-09-14 1999-07-06 Procter & Gamble Processo para preparação de uma composição detergente de alta densidade a partir de uma pasta tensoativa contendo um aglutinante não-aquoso
US5739094A (en) * 1997-01-17 1998-04-14 The Procter & Gamble Company Free-flowing particulate detergent admix composition containing nonionic surfactant
DE19718664A1 (de) * 1997-05-02 1998-11-05 Clariant Gmbh Verfahren zur Herstellung von lagerstabilen schmutzablösevermögende Polymere (Soil Release Polymere, SRP) enthaltende Granulate und ihre Verwendung zur Herstellung fester Wasch- und Reinigungsmittel
DE19959915A1 (de) * 1999-12-11 2001-07-05 Henkel Kgaa Niotensidgranulate durch Prillen
DE10021113A1 (de) * 2000-05-02 2001-11-15 Henkel Kgaa Partikuläre Compounds, enthaltend nichtionische Tenside

Also Published As

Publication number Publication date
EP1106678A3 (de) 2003-06-04
CA2327968A1 (en) 2001-06-11
DE19959915A1 (de) 2001-07-05
ES2270777T3 (es) 2007-04-16
DE50013430D1 (de) 2006-10-19
EP1106678A2 (de) 2001-06-13
US20010014657A1 (en) 2001-08-16
ATE338811T1 (de) 2006-09-15

Similar Documents

Publication Publication Date Title
WO2001034747A1 (de) Feste wasch-, spül- und reinigungsmittel
EP1253193A2 (de) Feste Tensidzusammensetzungen, deren Herstellung und Verwendung
EP1117759B1 (de) Granulationsverfahren
EP1106678B1 (de) Niotensidgranulate durch Prillen
EP1081219B1 (de) Detergentien in fester Form
DE19735783A1 (de) Hochdosierte Duftstoff-Formkörper
EP1807498B1 (de) Herstellungsverfahren für granulate / agglomerate für wasch- oder reinigungsmittel
DE19961333B4 (de) Verfahren zur Herstellung von Zuckertensidgranulaten
DE10235942B4 (de) Mittel und Vorrichtung sowie Verfahren zu seiner Herstellung für Wasch-, Reinigungs- oder Pflegemittel
EP1438383B1 (de) Verfahren zur herstellung von wasch- und reinigungsmitteln
DE19959914A1 (de) Granulate durch Wirbelschichtgranulation
EP2207871A2 (de) Wasch- oder reinigungsmittelcompounds und deren herstellung
DE19851454B4 (de) Tensid-Granulate durch Wirbelschichtgranulation
EP0853117B1 (de) Granulares Waschmittel mit verbessertem Fettauswaschvermögen
EP1081217A2 (de) Waschmittelzusatzstoffe in fester Form
EP1086202B1 (de) Herstellung alkylpolyglycosid-haltiger granulate
WO2001000763A1 (de) Schaumkontrollierte feste waschmittel
DE19939806A1 (de) Schaumkontrollierte feste Waschmittel
DE19847569A1 (de) Phosphonathaltige Granulate
DE19911570A1 (de) Aniontensid-Granulate
EP1088884A1 (de) Formkörper mit verbesserter Wasserlöslichkeit
DE10108573A1 (de) Feste Waschmittelzusatzstoffe, deren Herstellung und Verwendung
DE19936726A1 (de) Verfahren zur Herstellung cobuilder-haltiger Zubereitungen
EP1081214A2 (de) Formkörper mit verbesserter Wasserlöslichkeit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20001130

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 11D 1/66 B

Ipc: 7C 11D 1/825 B

Ipc: 7C 11D 3/32 B

Ipc: 7C 11D 11/02 B

Ipc: 7C 11D 3/20 B

Ipc: 7C 11D 17/06 A

Ipc: 7C 11D 3/37 B

Ipc: 7C 11D 3/18 B

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20041001

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060906

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50013430

Country of ref document: DE

Date of ref document: 20061019

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070219

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2270777

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070607

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061130

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151125

Year of fee payment: 16

Ref country code: DE

Payment date: 20151119

Year of fee payment: 16

Ref country code: GB

Payment date: 20151118

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151119

Year of fee payment: 16

Ref country code: ES

Payment date: 20151111

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50013430

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161201