EP1416040B2 - Wasserlösliche Builder von bestimmter Korngrösse in Wasch-und Reinigungsmitteln - Google Patents

Wasserlösliche Builder von bestimmter Korngrösse in Wasch-und Reinigungsmitteln Download PDF

Info

Publication number
EP1416040B2
EP1416040B2 EP02024319A EP02024319A EP1416040B2 EP 1416040 B2 EP1416040 B2 EP 1416040B2 EP 02024319 A EP02024319 A EP 02024319A EP 02024319 A EP02024319 A EP 02024319A EP 1416040 B2 EP1416040 B2 EP 1416040B2
Authority
EP
European Patent Office
Prior art keywords
detergent
builder
acid
builders
cleaning agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02024319A
Other languages
English (en)
French (fr)
Other versions
EP1416040A1 (de
EP1416040B1 (de
Inventor
Bernhard Enders
Katja Fink
Werner Jagmann
Elke Dr. Philippsen-Neu
Thomas Tillmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalli Werke GmbH and Co KG
Original Assignee
Dalli Werke GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32087992&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1416040(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dalli Werke GmbH and Co KG filed Critical Dalli Werke GmbH and Co KG
Priority to EP02024319A priority Critical patent/EP1416040B2/de
Priority to AT02024319T priority patent/ATE372373T1/de
Priority to DE50210858T priority patent/DE50210858D1/de
Publication of EP1416040A1 publication Critical patent/EP1416040A1/de
Application granted granted Critical
Publication of EP1416040B1 publication Critical patent/EP1416040B1/de
Publication of EP1416040B2 publication Critical patent/EP1416040B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1273Crystalline layered silicates of type NaMeSixO2x+1YH2O
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/10Carbonates ; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions

Definitions

  • the present invention relates to a washing or cleaning agent containing a water-soluble builder, wherein the builder has a certain particle size distribution, are excluded in the grain sizes of 0.2 mm to less than 0.4 mm.
  • Builders or cobuilder systems are among the most important classes of substances for the construction of detergents or cleaners. They fulfill various tasks in the washing or cleaning agents, which include water softening, enhancing the washing effect, a grayness inhibition and the dirt dispersion.
  • the builders are expected to contribute to the alkalinity necessary for the washing process, to exhibit high absorbency for surfactants and / or other detergent additives, to improve the effectiveness of surfactants, and to contribute to the positive properties of solid products in powder form, for example, structure formation Control of the dust problem.
  • the different requirements can not be met with just one builder component alone, so in these cases, a system of builders and co-builders is used.
  • zeolite NaA Concurrently with the development of zeolite NaA as a builder, it has been proposed to use selected water-soluble amorphous sodium silicate compounds as builders in detergents or cleaners.
  • amorphous sodium silicate compounds are described as builders prepared by spray-drying aqueous waterglass solutions, then grinding and compacting with additional dehydration of the millbase.
  • the EP-A-0 444 415 describes a detergent having from 0.5 to 60% by weight of a builder, from 5 to 50% by weight of a surfactant and further customary auxiliary detergents, the builder comprising an amorphous, low-sodium disilicate having a water content of from 0.3 to 6% by weight. represents.
  • the preparation of these highly dehydrated amorphous disilicates is carried out in a multi-stage process, which initially provides for the preparation of a pulverulent amorphous sodium silicate with a water content of 15 to 23% by weight. This material is treated in a rotary kiln with flue gas at temperatures of 250 to 500 ° C.
  • the sodium disilicate emerging from the rotary kiln is comminuted to particle sizes of 0.1 to 12 mm with the aid of a mechanical crusher and then ground to particle sizes of 2 to 400 ⁇ m.
  • the Application WO 00/37595 describes a process for the co-processing of amorphous sodium silicates with other ingredients from detergents or cleaners, in which aqueous preparations of amorphous sodium silicate and a polymeric carboxylate are sprayed together with other detergents and / or cleansing ingredients in a drier, simultaneously with drying a granulation can take place, and the resulting basic detergent is then compacted, possibly after admixing other ingredients.
  • the detergents produced in this way have an improved secondary detergency with comparable primary washing behavior.
  • the problem of incrustation resulting from various detergent compositions or the problem of remaining detergent residues on laundered fabrics has hitherto been approached from different directions.
  • the pH of the wash liquor plays a significant role in the precipitation of silicates, so that with conventional detergents a certain alkalinity is necessary for a good washing result.
  • the pH range in conventional washing liquors is preferably above pH 10 for heavy-duty detergents and between pH 9 and 10 for fine and color detergents.
  • Another approach to counteract precipitation of the builders has hitherto been the use of a relatively large amount of cobuilders, eg. B. polymeric polycarboxylates.
  • the object of the present invention was to provide a detergent which has a lower incrustation or reduced detergent residues in an ecologically and economically improved manner.
  • a washing or cleaning agent containing a water-soluble builder which is selected from amorphous alkali metal silicates, characterized in that the builder has a particle size distribution, the grain sizes of 0.4 to 3 mm, but grain sizes from 0.2 to less than 0.4 mm.
  • a preferred particle size range for the use of the builder in the detergent is 0.4 to 3 mm.
  • any type of water-soluble builder described so far is suitable for use as water-soluble builders, in particular amorphous alkali silicates, layer silicates, cogranulates of silicates with polymeric polycarboxylates, carbonate / silicate compounds, cogranules of phyllosilicates / unneutralized polycarboxylates, only amorphous alkali metal silicates) are claimed according to the invention as water-soluble builders having a specific particle size distribution.
  • the water-soluble builders may be used alone, or in conjunction with other builder / co-builders, wherein the builders may be optimized to have a high binding capacity for divalent ions, e.g. Calcium ions and magnesium ions.
  • the calcium ion concentration, as well as the magnesium ion concentration in the wash liquor can be reduced by the use of suitable builders. Dissolves the water-soluble builder, eg. As silicate, in the wash liquor at low pH all too quickly, it may cause precipitation of insoluble calcium or magnesium silicate, which settles on the laundry. For this reason, the pH in the wash liquor has hitherto been kept in the clearly alkaline range, as has already been mentioned above, and until now a high builder / cobuilder concentration has been used in the detergent.
  • silicate eg. As silicate
  • Suitable co-builders which can optionally also be used as compounds with the water-soluble builders are, for example, polymeric polycarboxylates of polyacrylic acid or poly (meth) acrylic acid, or copolymers of these two having arbitrary molecular weights, but in particular having molecular weights above 10,000 g / mol, preferably molar masses of 20,000 to 120,000 g / mol, more preferably 30,000 to 80,000 g / mol.
  • suitable copolymeric carboxylates are those of acrylic acid or (meth) acrylic acid with maleic acid. Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • polymeric polycarboxylates are not essential to the invention, but in one embodiment the builder is present as a particle comprising silicate and polymeric polycarboxylate.
  • a builder is obtained by co-spraying an aqueous solution of water glass / soda with polymeric polycarboxylate in a spray tower and then drying.
  • water-soluble alkali metal silicate can also be sprayed and dried together with the polymer.
  • the builder and the co-builder can also be present individually, ie not as a compound, but according to a further embodiment of the invention are used side by side in the washing or cleaning agent.
  • the primary material obtained from the spray tower (builder or builder / cobuilder compound) can either be further processed directly or, if necessary, e.g. granulated in a compactor and then, e.g. are ground to the desired grain size in a hammer mill, wherein subsequent to the manufacturing process, a particle size of 0.2 to less than 0.4 mm is screened from the product thus prepared, before it is used in the washing or cleaning agent.
  • copolymers of ⁇ -olefins and maleic acid, polyaspartic acid, iminodisuccinates or carboxymethylinulines can be used as further co-builders in the detergent.
  • zeolite A, X, Y and / or P As additional inorganic builders fine crystalline, synthetic and bound water-containing zeolite, preferably zeolite A, X, Y and / or P, as well as crystalline layered silicates can be used, which are preferably also present only in small amounts. Suitable zeolites are also mixtures of A, X, Y and / or P.
  • the zeolite P for example, MAP (z. B. Doucil A24 ®, a product of Ineos company) is particularly preferred.
  • MAP z. B. Doucil A24 ®, a product of Ineos company
  • a co-crystallized sodium / potassium aluminum silicate of zeolite A and zeolite X which in the trade as VEGOBOND AX ® (from Condea Augusta SpA commercial product) is available.
  • the zeolite can be used as a spray-dried powder or else as undried, still moist, stabilized suspension of its preparation.
  • the zeolite may contain minor additions of nonionic surfactants as stabilizers, for example 1 to 3 wt .-%, based on zeolite, of ethoxylated C 12 -C 18 fatty alcohols having 4 to 5 ethylene oxide groups or ethoxylated isotridecanols.
  • Suitable zeolites have an average particle size of less than 10 microns (volume distribution, measuring method: Coulter Counter) and preferably contain 10 to 22 wt .-% of bound water.
  • crystalline, layered sodium silicates according to the general formula NaMSi x O 2x + 1 ⁇ yH 2 O, where M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20 and preferred values for x 2, 3 or 4 are to be included in the compositions.
  • Such crystalline layered silicates are described, for example, in US Pat European Patent Application EP-A-0 164 514 described.
  • Preferred crystalline layered silicates of the formula given are those in which M is sodium 6 and x is 2 or 3. In particular, both ⁇ - and ⁇ -sodium disiliates Na 2 Si 2 O 5 .yH 2 O are preferred.
  • phosphate-containing builders can also be used,
  • both zeolites and crystalline layered silicates and phosphate-containing builders are only of minor importance in the agents according to the invention. In preferred embodiments of the invention, less than 5% by weight of these substances are contained in total. It may even be preferred if they are completely absent, in particular zeolites are often used as a powdering agent on blended granules, and thus may be included in the agents to a small extent, although their use as a builder was not intended.
  • the agents according to the invention also contain alkali metal carbonates, in particular sodium carbonate, and also alkali hydrogen carbonates and their mixed salts (sesquicarbonate). It is advantageous for the practice of the invention if the weight ratio of alkali metal carbonate to amorphous sodium silicate in the range 1: 100 to 10: 1, preferably 1:50 to 5: 1, is located. In embodiments according to the invention, it may be particularly advantageous if the weight ratio of alkali metal carbonate to amorphous sodium silicate is less than 1.
  • compositions according to the invention may contain further organic builders.
  • Useful organic builder substances are, for example, the polycarboxylic acids which can be used in the form of their sodium salts, polycarboxylic acids meaning those carboxylic acids which carry more than one acid function. These are, for example, citric acid, adipic acid, succinic acid, glutaric acid, malic acid, tartaric acid, maleic acid, fumaric acid, sugar acids, aminocarboxylic acids, nitrilotriacetic acid (NTA), methylglycine diacetate (MGDA), if such use is not objectionable for ecological reasons, and mixtures thereof.
  • NTA nitrilotriacetic acid
  • MGDA methylglycine diacetate
  • Preferred salts are the salts of polycarboxylic acids such as citric acid, adipic acid, succinic acid, glutaric acid, tartaric acid, sugar acids and mixtures thereof.
  • the acids themselves can also be used.
  • the acids typically also have the property of an acidifying component and thus also serve to set a lower and milder pH of detergents or cleaners.
  • citric acid, succinic acid, glutaric acid, adipic acid, gluconic acid and any desired mixtures of these can be mentioned here.
  • polyacetals which are prepared by reacting dialdehydes with polyolcarboxylic acids which have 5 to 7 C atoms and at least 3 hydroxyl groups, for example as described in US Pat European Patent Application EP-A-0 280 223 described, can be obtained.
  • Preferred polyacetals are obtained from dialdehydes such as glyoxal, glutaraldehyde, terephthalaldehyde and mixtures thereof and from polyol carboxylic acids such as gluconic acid and / or glucoheptonic acid.
  • Further suitable organic builder substances are dextrins, for example oligomers or polymers of carbohydrates, which can be obtained by partial hydrolysis of starches.
  • the hydrolysis can be carried out by customary, for example acid or enzyme catalyzed processes. Preferably, it is hydrolysis products having average molecular weights in the range of 400 to 500,000 g / mol.
  • a polysaccharide with a dextrose equivalent (DE) in the range from 0.5 to 40, in particular from 2 to 30 is preferred, DE being a common measure of the reducing action of a polysaccharide compared to dextrose, which has a DE of 100 , is.
  • DE dextrose equivalent
  • oxidized dextrins are their reaction products with oxidizing agents which are capable of oxidizing at least one alcohol function of the saccharide ring to the carboxylic acid function.
  • oxidized dextrins and methods of their preparation are for example from European Patent Applications EP-A-0 232 202 .
  • EPO-A-0 472 042 and EP-A-0 542 496 as well as the international ones Patent Applications WO 92/18542 . WO 93/08251 . WO 93/16110 . WO 94/28030 . WO 95/07303 , WO 95/12619 and WO 95/20608 known. Also suitable is an oxidized oligosaccharide according to German patent application DE-A-196 00 018 , A product oxidized to C 6 of the saccharide ring may be particularly advantageous. Oxydisuccinates and other derivatives of disuccinates, preferably ethylenediamine disuccinate, are other suitable co-builders.
  • Ehtylendiamin-N, N'-disuccinate EDDS
  • EDDS Ehtylendiamin-N, N'-disuccinate
  • glycerol disuccinates and glycerol trisuccinates as described, for example, in the US Pat US 4,524,009 .
  • US 4,639,325 in the European Patent Application EP-A-0 150 930 and the Japanese Patent Application JP 93/339896 to be discribed.
  • Suitable amounts are in zeolith lotteryn and / or silicate-containing formulations at 3 to 15 wt .-%.
  • organic cobuilders are, for example, acetylated hydroxycarboxylic acids or salts thereof, which may optionally also be present in lactone form and which contain at least 4 carbon atoms and at least one hydroxyl group and a maximum of two acid groups.
  • Such co-builders are used, for example, in the international Patent Application WO 95/20029 described.
  • phosphonates are, in particular, hydroxyalkane or aminoalkanephosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance as a co-builder.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkanephosphonates are ethylenediamine tetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of neutral sodium salts, eg. B.
  • the builder used here is preferably HEDP from the class of phosphonates.
  • the aminoalkanephosphonates also have a pronounced Schmermetallbindeabmögen. Accordingly, in particular if the agents also contain bleach, it may be preferable to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • all compounds capable of forming complexes with alkaline earth ions can be used as co-builders.
  • Such organic cobuilders may be present in the compositions according to the invention in a total amount of up to 10% by weight, but preferably not more than 5% by weight.
  • the detergents and cleaners according to the invention may, in principle, contain all known ingredients common in such agents in addition to the builders mentioned.
  • the compositions contain from 10 to 50% by weight, preferably from 15 to 35% by weight, of surfactants, these surfactants being selected from the following groups.
  • a first group are the anionic surfactants, which should be present in at least 0.5% by weight in the compositions according to the invention or agents prepared according to the invention. These include in particular sulfonates and sulfates, but also soaps.
  • Preferred surfactants of the sulfonate type are C 9 -C 13 -alkylbenzenesulfonates, olefinsulfonates, ie mixtures of alkene and hydroxyalkanesulfonates and disulfonates, such as those obtained, for example, from C 12 - to C 18 -monoolefins having terminal or internal double bonds by sulfonation gaseous sulfur trioxide and subsequent alkaline or acid hydrolysis of the sulfonation obtained.
  • alkanesulfonates which are obtained from C 10 -C 18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of ⁇ -sulfo fatty acids (ester sulfonates), z.
  • esters of ⁇ -sulfo fatty acids esters of ⁇ -sulfo fatty acids (ester sulfonates), z.
  • ⁇ -sulfonated methyl esters of hydrogenated coconut palm kernel or tallow fatty acids prepared by ⁇ -sulfonation of methyl esters of fatty acids of plant and / or animal origin with 8 to 20 carbon atoms in the fatty acid molecule and subsequent neutralization to water-soluble mono-salts be considered.
  • ⁇ -sulfonated esters of hydrogenated coconut, palm, palm kernel or tallow fatty acids although sulfonated products of unsaturated fatty acids, for example oleic acid, in small amounts, preferably in amounts not above about 2 to 3 wt.
  • ⁇ -sulfofatty acid alkyl esters are preferred which have an alkyl chain with not more than 4 C atoms in the ester group, for example, methyl ester, ethyl ester, propyl ester and butyl ester.
  • MES ⁇ -sulfo fatty acids
  • Anionentenside are sulfated Fettklareglycerinester which mono-, di- and triesters and mixtures thereof, as in the preparation by esterification by a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol to be obtained.
  • Alk (en) ylsulfates are the alkali metal salts and, in particular, the sodium salts of the sulfuric monoesters of C 10 -C 18 fatty alcohols, for example, coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 10 -C 20 oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred. Also preferred are alk (en) ylsulfates of said chain length, which contain a synthetic, produced on a petrochemical basis straight-chain alkyl radical, which have an analogous degradation behavior as the adequate compounds based on oleochemical raw materials.
  • C 10 -C 16 -alkyl sulfates and C 10 -C 15 -alkyl sulfates and C 12 -C 15 -alkyl sulfates are particularly preferred.
  • 2,3-alkyl sulfates which, for example, according to the U.S. Patents 3,234,258 or 5,075,041 are manufactured and can be obtained as commercial products from Shell Oil Company under the name DAN ®, are suitable anionic surfactants.
  • sulfuric acid monoesters of straight-chain or branched C 7 -C 21 -alcohols ethoxylated with from 1 to 6 mol of ethylene oxide such as 2-methyl-branched C 9 -C 11 -alcohols having on average 3.5 mol of ethylene oxide (EO) or C 12 -C 18 Fatty alcohols with 1 to 4 E0 are suitable. They are used in detergents due to their high foaming behavior only in relatively small amounts, for example in amounts of 1 to 5 wt .-%.
  • Preferred anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and the monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and in particular ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 to C 18 fatty alcohol residues or mixtures of these.
  • Especially preferred sulfosuccinates contain a fatty alcohol residue derived from ethoxylated fatty alcohols, which by themselves are nonionic surfactants (see description below).
  • alk (en) ylsuccinic acid having preferably 8 to 18 carbon atoms in the alk (en) yl chain or salts thereof, as well as ether sulfates (alkylene oxide sulfates) with C 10-18 and 1-7E0.
  • Suitable further anionic surfactants are fatty acid derivatives of amino acids, for example N-methyltaurine (Tauride) and / or N-methylclycine (sarcosides). Particularly preferred are the sarcosides or the sarcosinates and here especially sarcosinates of higher and optionally mono- or polyunsaturated fatty acids such as oleyl sarcosinate.
  • anionic surfactants in particular soaps preferably in amounts of 0.2 to 5 wt .-% into consideration.
  • Particularly suitable are saturated fatty acid soaps, such as the salts of lauric acid, myristic acid, palmitic acid, stearic acid, hydrogenated erucic acid and behenic acid and in particular from natural fatty acids, for. Coconut, palm kernel or tallow fatty acids, derived soap mixtures. Together with these soaps or as a substitute for soaps, it is also possible to use the known alkenylsuccinic acid salts.
  • anionic surfactants may be in the form of their sodium, potassium or ammonium salts and as soluble salts of organic bases, such as mono-, di- or triethanolamine.
  • anionic surfactants are in the form of their sodium or potassium salts, especially in the form of their sodium salts.
  • anionic surfactants are used in the compositions according to the invention or are used in the process according to the invention preferably in amounts of from 1 to 30% by weight and in particular in amounts of from 5 to 25% by weight.
  • nonionic surfactants are preferred.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary, alcohols having preferably 8 to 18 carbon atoms and on average 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • EO ethylene oxide
  • the alcohol radical can be linear or preferably methyl-branched in the 2-position or linear and methyl-branched radicals in the mixture can contain, as they are usually present in Oxoalkoholresten.
  • the preferred ethoxylated alcohols include, for example, C 12 -C 14 -alcohols with 3 E0 or 4 E0, C 9 -C 11 -alcohols with 7 E0, C 13 -C 15 -alcohols with 3 E0, 5 E0, 7 E0 or 8 E0, C 12 -C 18 -alcohols with 3 E0, 5 E0 or 7 E0 and mixtures of these, such as mixtures of C 12 -C 14 -alcohol with 3 E0 and C 12 -C 18 -alcohol with 7 E0.
  • the degrees of ethoxylation given represent statistical means which, for a particular product, may be an integer or a fractional number.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 E0 can also be used. Examples are (tallow) fatty alcohols with 14 E0, 16 E0, 20 E0, 25 E0, 30 E0 or 40 E0.
  • the nonionic surfactants also include alkyl glycosides of the general formula RO (G) x, in which R is a primary straight-chain or methyl-branched, in particular 2-methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18 carbon atoms and G is a Glykoseiki with 5 or 6 C-atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as a variable to be determined analytically, may also assume fractional values - between 1 and 10; preferably x is 1.2 to 1.4.
  • polyhydroxy fatty acid amides of the formula (I) in which R 1 is CO for an aliphatic acyl radical having 6 to 22 carbon atoms, R 2 is hydrogen, an alkyl or hydroxyalkyl radical having 1 to 4 carbon atoms and [Z] is a linear or branched polyhydroxyalkyl radical having 3 to 10 carbon atoms and 3 to 10 hydroxyl groups:
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars having 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (II) in the R 3 is a linear or branched alkyl or alkenyl radical having 7 to 12 carbon atoms, R 4 is a linear, branched or cyclic alkylene radical or an arylene radical having 2 to 8 carbon atoms and R 5 is a linear, branched or cyclic alkyl radical or a Aryl radical or an oxyalkyl radical having 1 to 8 carbon atoms; wherein C 1 -C 4 alkyl or phenyl radicals are preferred, and [Z] is a polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this radical.
  • [Z] is also obtained here preferably by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds may then be, for example, according to the teachings of the international Patent Application WO 95/07331 be converted by conversion with fatty acid methyl esters in the presence of an alkoxide as catalyst into the desired Polyhydroxyfettklaamide.
  • nonionic surfactants used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated fatty acid alkyl esters, preferably from 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl ester, as described for example in the Japanese Patent Application JP 58/217598 are described or preferably according to the in the international patent application WO 90/13533 were prepared.
  • Preferred nonionic surfactants are C 12 -C 18 fatty acid methyl esters having on average from 3 to 15 EO, in particular having an average of from 5 to 12 EO, while, as binders, as described above, especially higher ethoxylated fatty acid methyl esters are advantageous.
  • C 12 -C 18 fatty acid methyl esters with 10 to 12 EO can be used both as surfactants and as binders.
  • Nonionic surfactants of the amine oxide type for example N-cocoalkyl-N, N-dimethylamine oxide and N-tallowalkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanolamides may also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, especially not more than half thereof.
  • gemini surfactants are so-called gemini surfactants. These are generally understood as meaning those compounds which have two hydrophobic groups per molecule. These groups are usually separated by a so-called “spacer”. This spacer is typically a carbon chain that should be long enough for the hydrophilic groups to be spaced sufficiently apart for them to act independently of each other. Such surfactants are generally characterized by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water. In exceptional cases, however, the term gemini surfactants is understood to mean not only dimeric but also trimeric surfactants.
  • gemini surfactants are sulfated hydroxy mixed ethers according to US Pat German patent application DE-A-43 21 022 or dimer alcohol bis and trimeralcyl tris sulfates and ether sulfates according to the German patent application DE-A-195 03 061 , End-capped dimer or trimeric mixed ethers according to the German patent application DE-A-195 13 391 They are characterized by their bi- and multi-functionality. Thus, the end-capped surfactants mentioned have good wetting properties and are low foaming, so that they are particularly suitable for use in machine washing or cleaning processes.
  • gemini polyhydroxy fatty acid amides or poly-polyhydroxy fatty acid amides as described in international patent applications WO-A-95/19953, WO-A-95/19954 and WO-A-95/19955.
  • bleaching agents are, for example, peroxypyrophosphates, peroxophthalates, citrate perhydrates and H 2 O 2 -producing peracidic salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloimido peracid, phthalimidoperoxohexanoic acid (PAP), or diperdodecanedioic acid. Salts of peracids, such as peroxymonosulfate can be used.
  • the content of the bleaching agents is from 0 to 30% by weight and in particular from 5 to 25% by weight, it being advantageous to use perborate monohydrate, tetrahydrate, percarbonate or PAP.
  • Bleach activators can be incorporated into the preparations.
  • N-acyl or O-acyl compounds which form organic peracids with H 2 O 2 , preferably polyacylated alkylenediamines such as N, N'-tetraacylated diamines, acylated glucolurils, in particular tetraacetylglycoluril, N-acylated hydantoins, hydrazides, triazoles , Triazines, urazoles, diketopiperazines, sulfuryl amides and cyanurates, as well as carboxylic acid esters such as p- (alkanoyl) benzenesulfonate, especially sodium isononoyloxybenzenesulfonate, and p- (alkenoyloxy) benzenesulfonates, also caprolactam derivatives, carboxylic anhydr
  • bleach activators are acetylated mixtures of sorbitol and mannitol, as described, for example, in US Pat European Patent Application EP-A-0 525 239 and acetylated pentaerythritol.
  • the content of the bleach-containing agents in bleach activators is in the usual range, preferably between 1 and 10 wt .-% and in particular between 3 and 8 wt .-%.
  • bleach activators are N, N, N ', N'-tetraacetylethylenediamine (TAED), 1,5-diacetyl-2,4-dioxo-hexahydro-1,3,5-triazine (DADHT) and actylated sorbitol-mannitol mixtures (SORMAN).
  • the bleach activator can be coated in a known manner with coating substances or, if appropriate with the use of auxiliaries, in particular methylcelluloses and / or carboxymethylcelluloses, granulated or extruded / pelletized and, if desired, further additives, for example dye.
  • Such a granulate preferably contains more than 70% by weight, in particular from 80 to 99% by weight, of bleach activator.
  • a bleach activator is used which forms peracetic acid under washing conditions. Quaternized aminoalkyl nitriles or acetonitrile derivatives can also be used as bleach activators.
  • Another preferred bleach activator is a morpholinonitrile quat, or a quaternized glycine nitrile, as described in the EP 0 941 299 is described.
  • the candidate transition metal compounds include in particular from German patent application DE 195 29 082 known manganese, iron, cobalt, ruthenium or molybdenum-salene complexes and their from the German patent application DE 196 20 267 known N-analogues derived from the German patent application DE 195 36 082 known manganese, iron, cobalt, ruthenium or molybdenum carbonyl complexes, which in the German patent application DE 196 05 688 manganese, iron, cobalt, ruthenium, molybdenum, titanium, vanadium and copper complexes with nitrogen-containing tripod ligands described in the German patent application DE 196 20 411 known cobalt, iron, copper and ruthenium ammine complexes, which are described in the German patent application DE 44 16 438 described manganese, copper and cobalt complexes, which in the European Patent Application EP 0 272 030 Cobalt complexes described in the European patent application EP 0 693 550 known manga
  • EP 0 544 490 and EP 0 544 519 described manganese complexes, combinations of bleach activators are for example from German patent application DE 196 13 103 and international Patent Application WO 95/27775 known.
  • Bleach-enhancing transition metal complexes in particular having the central atoms Mn, Fe, Co, Cu, Mo, V, Ti and / or Ru, are used in customary amounts, preferably in an amount of up to 1% by weight, in particular 0.0025% by weight. % to 0.25 wt .-% and particularly preferably from 0.01 wt .-% to 0.1 wt .-%, each based on the total agent used.
  • enzymes include proteases, amylases, pullulanases, cellulases, cutinases and / or lipases, for example proteases such as Properase®, Alcalase®, BLAP ®, Optimase ®, Opticlean ®, Maxacal ®, Maxapem ®, Durazym ® ®, Purafect ® OxP, Esperase ® and / or Savinase ®, amylases such as Termamyl ®, amylase LT, Maxamyl ®, Duramyl ®, Purastar® ®, Kenzym ®, Purastar® ® Ox Am, cellulases as Celluzyme ®, Carezyme ®, KAC ® and / or from international Patent Applications WO 96/34108 and WO 96/34092 known cellulases and / or lipases such as Lipolase ®, Lipomax ®
  • the enzymes used can, such as. B. in the international Patent Applications WO 92/11347 or WO 94/23005 be adsorbed to carriers and / or embedded in encapsulating substances to protect against premature inactivation. They are preferably present in detergents and cleaners according to the invention in amounts of up to 10% by weight, in particular from 0.05% by weight to 5% by weight, enzymes which are particularly preferably stabilized against oxidative degradation, as described, for example, in US Pat. B. from the international Patent Applications WO 94/02597 . WO 94/02618 . WO 94/18314 . WO 94/23053 or WO 95/07350 are known to be used.
  • compositions may also contain components that positively affect oil and grease washability from fabrics. This effect is particularly evident when a textile is dirty, which has been previously washed several times with a detergent according to the invention, which contains this oil and fat dissolving component.
  • the preferred oil and fat dissolving components include, for example, nonionic cellulose ethers such as methylcellulose and methylhydroxypropylcellulose with a proportion of methoxy groups of 15 to 30 wt .-% and to hydroxypropoxyl groups of 1 to 15 wt .-%, each based on the nonionic Cellulose ethers, as well as the known from the prior art polymers of phthalic acid and / or terephthalic acid or derivatives thereof, in particular polymers of ethylene terephthalates and / or polyethylene glycol terephthalates or anionic and / or nonionic modified derivatives of these. Particularly preferred of these are the sulfonated derivatives of phthalic and terephthalic acid polymers.
  • foam inhibitors are, for example, soaps of natural or synthetic origin, which have a high proportion of C 18 -C 24 fatty acids.
  • Suitable non-surfactant foam inhibitors are, for example, organopolysiloxanes and mixtures thereof with microfine, optionally silanized silica and paraffins, waxes, microcrystalline waxes and mixtures thereof with silanated silica or bistearylethylenediamide.
  • mixtures of different foam inhibitors are used, for. As those of silicones, paraffins or waxes.
  • foam inhibitors in particular silicone- and / or paraffin-containing foam inhibitors, are preferably bound to a granular, water-soluble or dispersible carrier substance.
  • a granular, water-soluble or dispersible carrier substance In particular, mixtures of paraffins and bistearylethylenediamides are preferred.
  • Grayness inhibitors have the task of keeping the dirt detached from the fiber suspended in the liquor and thus preventing the dirt from being rebuilt.
  • Water-soluble colloids of mostly organic nature are suitable for this purpose, for example the water-soluble salts of polymeric carboxylic acids, glue, gelatin, salts of ether carboxylic acids or ether sulfonic acids of starch or of cellulose or salts of acidic sulfuric acid esters of cellulose or starch.
  • water-soluble polyamides containing acidic groups are suitable for this purpose.
  • soluble starch preparations and other than the above-mentioned starch products can be used, for. As degraded starch, aldehyde levels, etc .. Graying inhibitors are usually used in amounts of 0.1 to 5 wt .-%, based on the means.
  • the textile detergent formulation according to the invention may comprise customary color transfer inhibitors in the quantities customary for this purpose (about 0.1 to 2% by weight).
  • color transfer inhibitors for example, homopolymers and copolymers of vinylpyrrolidone, of vinylimidazole, of vinyl oxazolidone and of 4-vinylpyridine N-oxide having molecular weights of from 15,000 to 100,000 and crosslinked finely divided polymers based on these monomers are used.
  • the use of such polymers mentioned here is known, cf. DE-B 22 32 353 .
  • DE-A 28 14 329 and DE-A 43 16 023 is known, cf. DE-B 22 32 353 .
  • polyvinylpyrrolidone in particular in the form of PVP granules, is preferred in the agents according to the invention.
  • cellulose ethers such as carboxymethyl cellulose (Na salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers such as methylhydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof.
  • the agents may contain as optical brighteners derivatives of Diaminostilbendisulfonklare or their alkali metal salts.
  • brighteners of the type of substituted Diphenylstyryle be present, for.
  • Example the alkali salts of 4,4'-bis (4-chloro-3-sulfostyryl) diphenyl, or 4- (4-chlorostyryl) -4 '- (2-sulfostyryl) diphenyl. Mixtures of the aforementioned brightener can be used.
  • compositions may also comprise other known additives customarily used in detergents, dishwashing detergents or cleaners, for example small amounts of neutral filler salts and also colorings and perfumes and opacifiers.
  • the other washing, cleaning and other ingredients of the detergent can be used as a powder, granules or cogranules, wherein the particle size is in a range of 1 to 2500 .mu.m, preferably from 5 to 1000 microns, or they can be added as a liquid component.
  • the washing or cleaning agent according to the invention may be present as a powder, as a granulate or as a compactate, moreover, the washing or cleaning agent may be provided in the form of a pressed molding.
  • a water-soluble builder / cobuilder selected from amorphous alkali metal silicates with a certain particle size distribution has the advantage that no precipitate or low detergent residues are found on the laundry after completion of the washing process. This is especially the case when the wash liquor has a pH below pH 10.
  • a preferred pH range for the use of the builders having the particle size distribution described herein is a range of pH 8 to pH 12.
  • Detergent formulations composition Various detergent formulations focusing on builders of any grain size and sieved builders. ingredients 1.1 1.2 1.3 1.4 1.5 Amorphous silicate 30 - "-: ⁇ 0.2 mm 30 - "-: 0,2 - 0,4 mm 30 - “-: 0.4 - 1.0 mm 30 - “-:> 1.0 mm 30 soda 5 5 5 5 5 5 sesquicarbonate citric acid 10 10 10 10 10 sulfate 25 25 25 25 25 25 25 25 25 25 25 25 25 25 alcohol ethoxylate 6 6 6 6 6 6 6 6 Fatty alcohol sulfate 14 14 14 14 14 14 14 14 14 polycarboxylate 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
  • the washing powder is sewn in a dark terry bag (20 * 20cm / blue / black).
  • the following dosage is used: HBII / normally dirty, then the bag with 3.7 kg ballast wash in the normal program at 30 ° C is washed.
  • the water hardness of the tap water is 15 ° dH.
  • the terry bag is cut open, turned to the left and the amount of residue visually inspected.
  • protease is more effective the more effectively the Ca2 + and Mg2 + ions are removed from the wash liquor. The better a builder works, the more effectively these ions are removed from the wash liquor.
  • the wool pulp is one of the so - called keratins, which are essentially cross - linked proteins through cysteine disulfide bridges.
  • the basic building blocks of wool are amino acids that are linked together via peptide bonds.
  • the wool can be considered as a substrate for the protease.
  • the degradation efficiency of the peptide-cleaving enzymes is determined gravimetrically and indirectly reflects the activity of the protease. Protease activity is strongly influenced by builder performance. The better the builder works, the faster and stronger the wool will be decomposed by the protease.
  • the bleach inhibits protease activity, resulting in the test taking too long.
  • the test is carried out in the Linitest (laboratory tester), which is equipped with eight sample containers.
  • the product that causes the highest weight loss shows the best builder performance.
  • Detergent Formulations Compositions Various Detergent Formulations Focusing on: Different Concentrations of the Other Ingredients. ingredients 4.1 4.2 4.3 4.4 4.5 4.6 4.7 Amorphous silicate 30 30 30 25 20 15 25 sesquicarbonate 10 15 20 20 20 20 30 citric acid 10 10 10 10 10 10 sulfate 20 15 10 15 20 25 5 alcohol ethoxylate 6 6 6 6 6 6 6 6 Fatty alcohol sulfate 14 14 14 14 14 14 14 14 14 14 14 14 polycarboxylate 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Wasch- oder Reinigungsmittel, das einen wasserlöslichen Builder enthält, wobei der Builder eine bestimmte Korngrößenverteilung aufweist, bei der Korngrößen von 0,2 mm bis unter 0,4 mm ausgenommen sind.
  • Builder oder Cobuildersysteme gehören zu den wichtigsten Stoffklassen für den Aufbau von Wasch- oder Reinigungsmitteln. Sie erfüllen in den Wasch- oder Reinigungsmitteln verschiedene Aufgaben, die unter anderem die Wasserenthärtung, die Verstärkung der Waschwirkung, eine Vergrauungsinhibierung und die Schmutzdispergierung sind. Darüber hinaus sollen die Builder zu der für den Waschprozess notwendigen Alkalität beitragen, ein hohes Aufnahmevermögen für Tenside und/oder andere Waschmittelzusätze zeigen, die Wirksamkeit von Tensiden verbessern, außerdem können sie einen Beitrag zu positiven Eigenschaften von Feststoffprodukten in Pulverform liefern, zum Beispiel Strukturbildung und Kontrolle der Staubproblematik. In manchen Fällen lassen sich die unterschiedlichen Anforderungen mit nur einer Builderkomponente allein nicht erfüllen, so dass in diesen Fällen auf ein System von Buildern und Cobuildern zurückgegriffen wird.
  • Frühere wasserlösliche Builder auf Basis von Phosphor und/oder Stickstoff sind aus ökologischen Gründen in die Kritik geraten, woraufhin ein Wandel zu dreidimensional vernetzten, wasserunlöslichen Buildern, z. B. Zeolithen, erfolgte. Bei wasserunlöslichen Buildern tritt jedoch in erhöhtem Maße das Phänomen der unerwünschten Inkrustation auf, die die Mitverwendung von Cobuildern erforderte. Beispielsweise werden heute zusammen mit Zeolithen häufig polymere Polycarboxylate, insbesondere Copolymere auf Basis von (Meth)acrylsäure und Maleinsäure gemeinsam mit Soda eingesetzt. Außerdem werden häufig Komplexbildner verwendet.
  • Zeitgleich mit der Entwicklung des Zeolith NaA als Builder wurde vorgeschlagen, ausgewählte wasserlösliche amorphe Natriumsilicatverbindungen als Buildersubstanzen in Wasch- oder Reinigungsmitteln einzusetzen. Beispielhaft können hier die US-Patentschriften 3,912,649, 3,956,467 , 3,838,193 und 3,879,527 genannt werden. Hierin sind amorphe Natriumsilicatverbindungen als Buildersubstanzen beschrieben, die durch Sprühtrocknung wässriger Wasserglaslösungen, anschließendes Mahlen und Verdichten unter zusätzlichem Wasserentzug des Mahlgutes hergestellt werden.
  • Die EP-A-0 444 415 beschreibt ein Waschmittel mit 0,5 bis 60 Gew.-% eines Gerüststoffes, 5 bis 50 Gew.-% eines Tensides und weiteren üblichen Waschhilfsstoffen, wobei der Gerüststoff ein amorphes wasserarmes Natriumdisilicat mit einem Wassergehalt von 0,3 bis 6 Gew.-% darstellt. Die Herstellung dieser hochentwässerten amorphen Disilicate erfolgt in einem Mehrstufenverfahren, das zunächst die Herstellung eines pulverförmigen amorphen Natriumsilicats mit einem Wassergehalt von 15 bis 23 Gew.-% vorsieht. Dieses Material wird in einem Drehrohrofen mit Rauchgas bei Temperaturen von 250 bis 500°C behandelt. Das aus dem Drehrohrofen austretende Natriumdisilicat wird mit Hilfe eines mechanischen Brechers auf Korngrößen von 0,1 bis 12 mm zerkleinert und anschließend auf Korngrößen von 2 bis 400 µm zermahlen.
  • Die Patentanmeldungen WO 96/20269 und WO 97/34977 beschreiben beide amorphe Alkalisilicate, die mit Inhaltsstoffen von Wasch- oder Reinigungsmitteln beaufschlagt sind, insbesondere Inhaltsstoffe (z. B. Tenside) in flüssiger Form. In beiden Anmeldungen wird durch das Beaufschlagen und ein Granulieren der Silicate eine relativ hohe Schüttdichte erreicht.
  • Die Anmeldung WO 00/37595 beschreibt ein Verfahren zur gemeinsamen Verarbeitung von amorphen Natriumsilicaten mit anderen Inhaltsstoffen aus Wasch- oder Reinigungsmitteln, bei dem wässrige Zubereitungen von amorphem Natriumsilicat und einem polymeren Carboxylat gemeinsam mit anderen Wasch- und/oder Reinigungsmitteln Inhaltsstoffen in einer Trockeneinrichtung versprüht werden, wobei gleichzeitig mit der Trocknung eine Granulation stattfinden kann, und das sich ergebende basische Waschmittel wird anschließend, ggf. nach Zumischung weiterer Inhaltsstoffe, kompaktiert. Die so hergestellten Waschmittel weisen bei vergleichbarem Primärwaschverhalten ein verbessertes sekundäres Waschvermögen auf.
  • Das sich aus verschiedenen Waschmittelzusammensetzungen ergebende Problem der Inkrustation oder das Problem verbleibender Waschmittelrückstände auf gewaschenen Textilien wurde bisher aus verschiedenen Richtungen angegangen. So spielt beispielsweise der pH der Waschflotte für das Ausfallen von Silicaten eine wesentliche Rolle, so dass bei herkömmlichen Waschmitteln eine gewisse Alkalität für ein gutes Waschergebnis notwendig ist. Bevorzugt liegt der pH-Bereich in herkömmlichen Waschflotten bei Vollwaschmitteln über pH 10, bei Fein- und Colorwaschmitteln zwischen pH 9 und 10. Ein anderer Ansatz, dem Ausfallen der Builderstoffe entgegenzuwirken, war bisher der Einsatz einer größeren Menge von Cobuildern, z. B. polymere Polycarboxylate.
  • Die Aufgabe der vorliegenden Erfindung war es, ein Waschmittel bereitzustellen, das auf ökologisch und ökonomisch verbesserte Weise eine geringere Inkrustation, bzw. verminderte Waschmittelrückstände aufweist.
  • Diese Aufgabe wird gelöst durch ein Wasch- oder Reinigungsmittel, enthaltend einen wasserlöslichen Builder, der aus amorphen Alkalisilicaten ausgewählt ist, dadurch gekennzeichnet, dass der Builder eine Korngrößenverteilung aufweist, die Korngrößen von 0,4 bis 3 mm um jedoch Korngrößen von 0,2 bis unter 0,4 mm ausschließt.
  • In bisherigen Waschmitteln wurden wasserlösliche Builder in einer Korngrößenverteilung eingesetzt, wie sie durch den Herstellungsprozess des Builders vorgegeben war. Die Korngrößenverteilung des eingesetzten Builders wurde im bisherigen Stand der Technik nicht weiter betrachtet, insbesondere wurde die Korngröße nicht mit der immer wieder festgestellten Ausfällung von Silicaten in der Waschflotte, und damit einhergehenden Waschmittelrückständen auf dem Waschgut in Zusammenhang gebracht.
  • Es wurde jedoch überraschenderweise festgestellt, dass ein sehr viel besseres Waschmittelergebnis erzielt werden kann, wenn ein bestimmter Korngrößenbereich, der zwischen 0,2 und 0,4 mm Korngröße liegt, aus dem in das Waschmittel eingesetzten Builderpulver oder Buildergranulat entfernt wird. Ohne an die folgende Theorie gebunden werden zu wollen, kann das Phänomen, dass die Staubanteile (0,2 mm Partikelgröße und kleiner), bzw. die gröberen Partikel (0,4 mm und größer) einen wesentlich geringeren Niederschlag auf dem Waschgut erzeugen damit erklärt werden, dass die Auflösekinetik dieser Partikel zu einer geringeren lokalen Builderkonzentration führt, als die Auflösekinetik der mittleren Partikelgröße (0,2 bis unter 0,4 mm). Durch die geringere lokale Konzentration des gelösten wasserlöslichen Builders neigt dieser weniger dazu, in Form unlöslichen Niederschlages auszufallen.
  • Ein bevorzugter Korngrößenbereich für den Einsatz des Builders im Waschmittel ist 0.4 bis 3 mm.
  • Für den Einsatz als wasserlösliche Builder ist grundsätzlich jede Art von bisher beschriebenem wasserlöslichen Builder geeignet, insbesondere amorphe Alkalisilicate, Schichtsilicate, Cogranulate aus Silicaten mit polymeren Polycarboxylaten, Carbonat/Silicat-Compounds, Cogranulate aus Schichtsilikaten / nicht neutralisierten Polycarboxylaten, wobei nur erst-genannte (amorphe Alkalisilicate) erfindungsgemäß als wasserlösliche Builder mit bestimmter Korngrößenverteilung beansprucht werden.
  • Die wasserlöslichen Builder können allein, oder zusammen mit anderen Builder-/Cobuilderstoffen eingesetzt werden, wobei die Builderstoffe in der Weise optimiert sein können, dass sie eine hohe Bindekapazität für zweiwertige Ionen aufweisen, wie z.B. Calciumionen und Magnesiumionen.
  • Da Builderstoffe einerseits als Komplexbildner, andererseits in Form eines Ionenaustauschers wirken, kann die Calciumionen-Konzentration, wie auch die Magnesiumionen-Konzentration in der Waschflotte durch den Einsatz geeigneter Builderstoffe verringert werden. Löst sich der wasserlösliche Builder, z. B. Silicat, in der Waschflotte bei niedrigem pH allzu schnell auf, so kann es zu Niederschlägen von unlöslichem Calcium- oder Magnesiumsilicat kommen, das sich auf dem Waschgut absetzt. Aus diesem Grund wurde bisher - wie schon oben erwähnt - der pH in der Waschflotte im deutlich alkalischen Bereich gehalten, außerdem wurde bisher eine hohe Builder/Cobuilder-Konzentration im Waschmittel eingesetzt.
  • Als geeignete Cobuilder, die ggf. auch als Compounds mit den wasserlöslichen Builderstoffen eingesetzt werden können, sind beispielsweise polymere Polycarboxylate aus Polyacrylsäure oder Poly(meth)acrylsäure, bzw. Copolymere dieser beiden mit beliebigen Molmassen, insbesondere jedoch mit Molmassen über 10.000 g/mol, bevorzugt Molmassen von 20.000 bis 120.000 g/mol, besonders bevorzugt mit 30.000 bis 80.000 g/mol. Außerdem geeignete copolymere Carboxylate sind solche der Acrylsäure oder (Meth)acrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säuren, beträgt im Allgemeinen 2.000 bis 70.000 g/mol, vorzugsweise 20.000 bis 55.000 g/mol und insbesondere 30.000 bis 40.000 g/mol (gemessen gegen Polyacrylsäurestandard). Die Anwesenheit von polymeren Polycarboxylaten ist entsprechend der Erfindung nicht zwingend notwendig, jedoch liegt in einer Ausführungsform der Builder als Partikel vor, der Silicat und polymeres Polycarboxylat umfasst. Ein solcher Builder wird durch gemeinsames Versprühen einer wässrigen Lösung von Wasserglas/Soda mit polymerem Polycarboxylat in einem Sprühturm und anschließendes Trocknen erhalten. In einer anderen Verfahrensvariante kann auch wasserlösliches Alkalisilicat zusammen mit dem Polymer versprüht und getrocknet werden. Der Builder und der Cobuilder können jedoch auch einzeln vorliegen, also nicht als Compound, werden jedoch gemäß einer weiteren Ausführungsform der Erfindung nebeneinander in das Wasch- oder Reinigungsmittel eingesetzt. Das aus dem Sprühturm erhaltene Primärgut (Builder oder Builder/Cobuilder-Compound) kann entweder direkt weiterverarbeitet werden, oder ggf. z.B. in einem Kompaktor granuliert und anschließend z.B. in einer Hammermühle auf die gewünschte Korngröße gemahlen werden, wobei anschließend an das Herstellungsverfahren eine Korngröße von 0,2 bis unter 0,4 mm aus dem so hergestellten Produkt ausgesiebt wird, bevor dieses in das Wasch- oder Reinigungsmittel eingesetzt wird.
  • Der Zusatz von Polymer verbessert das Schmutztragevermögen des Wasch- oder Reinigungsmittels, außerdem trägt dieses zusätzlich zur Verringerung von Niederschlägen auf dem Waschgut bei. Als weitere Cobuilder können in das Waschmittel beispielsweise Copolymere aus α-Olefinen und Maleinsäure, Polyasparaginsäure, Iminodisuccinate oder Carboxymethylinuline eingesetzt werden.
  • Als zusätzliche anorganische Builder können feinkristalliner, synthetischer und gebundenes Wasser enthaltender Zeolith, vorzugsweise Zeolith A, X, Y und/oder P, sowie kristalline Schichtsilicate eingesetzt werden, die bevorzugt ebenfalls nur in geringen Mengen vorliegen. Geeignete Zeolithe sind auch Mischungen aus A, X, Y und/oder P. Als Zeolith P wird beispielsweise MAP (z. B. Doucil A24®, Handelsprodukt der Firma Ineos) besonders bevorzugt. Von besonderem Interesse ist auch ein cokristallisiertes Natrium/Kalium-Aluminiumsilicat aus Zeolith A und Zeolith X, welches als VEGOBOND AX® (Handelsprodukt der Firma Condea Augusta S.p.A.) im Handels erhältlich ist. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, dass der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 µm (Volumenverteilung; Messmethode: Coulter Counter) auf und enthalten vorzugsweise 10 bis 22 Gew.-% an gebundenem Wasser.
  • Neben den Zeolithen können auch kristalline, schichtförmige Natriumsilicate entsprechend der allgemeinen Formel NaMSixO2x+1·yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind, in den Mitteln enthalten sein. Derartige kristalline Schichtsilicate werden beispielsweise in der europäischen Patentanmeldung EP-A-0 164 514 beschrieben. Bevorzugte kristalline Schichtsilicate der angegebenen Formel sind solche, in denen M für Natrium steht6 und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch δ-Natriumdisiliate Na2Si2O5·yH2O bevorzugt.
  • Außerdem können auch phosphathaltige Builder eingesetzt werden,
  • Sowohl Zeolithe als auch kristalline Schichtsilicate und phosphathaltige Builder sind in den erfindungsgemäßen Mitteln jedoch nur von untergeordneter Bedeutung. In bevorzugten Ausführungsformen der Erfindung sind von diesen Substanzen insgesamt weniger als 5 Gew.-% enthalten. Dabei kann es sogar bevorzugt sein, wenn sie ganz fehlen, wobei insbesondere Zeolithe häufig auch als Abpuderungsmittel auf zugemischten Granulaten verwendet werden, und so in den Mitteln zu einem geringen Anteil enthalten sein können, obwohl ihr Einsatz als Builder nicht beabsichtigt wurde.
  • Weiterhin enthalten die erfindungsgemäßen Mittel in bevorzugten Ausführungsformen auch Alkalicarbonate, insbesondere Natriumcarbonat, sowie Alkalihydrogencarbonate und deren Mischsalze (Sesquicarbonat). Dabei ist es für die Ausführung der Erfindung vorteilhaft, wenn das Gewichtsverhältnis von Alkalicarbonat zu amorphem Natriumsilicat im Bereich 1:100 bis 10:1, bevorzugt 1:50 bis 5:1, liegt. In erfindungsgemäßen Ausführungsformen kann es dabei besonders vorteilhaft sein, wenn das Gewichtsverhältnis von Alkalicarbonat zu amorphem Natriumsilicat kleiner 1 ist.
  • Neben den polymeren Polycarboxylaten können in den erfindungsgemäßen Mitteln weitere organische Buildersubstanzen enthalten sein. Brauchbare organische Gerüstsubstanzen sind beispielsweise die in Form ihrer Natriumsalze einsetzbaren Polycarbonsäuren, wobei unter Polycarbonsäuren solche Carbonsäuren verstanden werden, die mehr als eine Säurefunktion tragen. Beispielsweise sind dies Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Äpfelsäure, Weinsäure, Maleinsäure, Fumarsäure, Zuckersäuren, Aminocarbonsäuren, Nitrilotriessigsäure (NTA), Methylglycindiacetat(MGDA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Auch die Säuren an sich können eingesetzt werden. Die Säuren besitzen neben ihrer Builderwirkung typischerweise auch die Eigenschaft einer Säuerungskomponente und dienen somit auch zur Einstellung eines niedrigeren und milderen pH-Wertes von Wasch- oder Reinigungsmitteln. Insbesondere sind hierbei Citronensäure, Bernsteinsäure, Glutarsäure, Adipinsäure, Gluconsäure und beliebige Mischungen aus diesen zu nennen. Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 C-Atome und mindestens 3 Hydroxylgruppen aufweisen, beispielsweise wie in der europäischen Patentanmeldung EP-A-0 280 223 beschrieben, erhalten werden können. Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten. Weitere geeignete organische Buildersubstanzen sind Dextrine, beispielsweise Oligomere bzw. Polymere von Kohlenhydraten, die durch partielle Hydrolyse von Stärken erhalten werden können, Die Hydrolyse kann nach üblichen, beispielsweise säure- oder enzymkatalysierten Verfahren durchgeführt werden. Vorzugsweise handelt es sich um Hydrolyseprodukte mit mittleren Molmassen im Bereich von 400 bis 500.000 g/mol. Dabei ist ein Polysaccharid mit einem Dextrose-Äquivalent (DE) im Bereich von 0,5 bis 40, insbesondere von 2 bis 30 bevorzugt, wobei DE ein gebräuchliches Maß für die reduzierende Wirkung eines Polysaccharids im Vergleich zu Dextrose, welche ein DE von 100 besitzt, ist. Brauchbar sind sowohl Maltodextrine mit einem DE zwischen 3 und 20 und Trockenglucosesirupe mit einem DE zwischen 20 und 37 als auch sogenannten Gelbdextrine und Weißdextrine mit höheren Molmassen im Bereich von 2.000 bis 30.000 g/mol. Ein bevorzugtes Dextrin ist in der britischen Patentanmeldung 94 19 091 beschrieben. Bei den oxidierten Derivaten derartiger Dextrine handelt es sich um deren Umsetzungsprodukte mit Oxidationsmitteln, welche in der Lage sind, mindestens eine Alkohol funktion des Saccharidrings zur Carbonsäurefunktion zu oxidieren. Derartige oxidierte Dextrine und Verfahren ihrer Herstellung sind beispielsweise aus den europäischen Patentanmeldungen EP-A-0 232 202 , EP-A-0 427 349 , EPO-A-0 472 042 und EP-A-0 542 496 sowie den internationalen Patentanmeldungen WO 92/18542 , WO 93/08251 , WO 93/16110 , WO 94/28030 , WO 95/07303 . WO 95/12619 und WO 95/20608 bekannt. Ebenfalls geeignet ist ein oxidiertes Oligosaccharid gemäß der deutschen Patentanmeldung DE-A-196 00 018 . Ein an C6 des Saccharidrings oxidiertes Produkt kann besonders vorteilhaft sein. Auch Oxydisuccinate und andere Derivate von Disuccinaten, vorzugsweise Ethylendiamindisuccinat, sind weitere geeignete Cobuilder. Dabei wird Ehtylendiamin-N,N'-disuccinat (EDDS), dessen Synthese beispielsweise in US 3,158,615 beschrieben wird, bevorzugt in Form seiner Natrium- oder Magnesiumsalze verwendet. Weiterhin bevorzugt sind in diesem Zusammenhang auch Glycerindisuccinate und Glycerintrisuccinate, wie sie beispielsweise in den US-amerikanischen Patenschriften US 4,524,009 , US 4,639,325 , in der europäischen Patentanmeldung EP-A-0 150 930 und der japanischen Patentanmeldung JP 93/339896 beschrieben werden. Geeignete Einsatzmengen liegen in zeolithhaltigen und/oder silicathaltigen Formulierungen bei 3 bis 15 Gew.-%. Weitere brauchbare organische Cobuilder sind beispielsweise acetylierte Hydroxycarbonsäuren bzw. deren Salze, welche ggf. auch in Lactonform vorliegen können und welche mindestens 4 Kohlenstoffatome und mindestens eine Hydroxygruppe sowie maximal zwei Säuregruppen enthalten. Derartige Cobuilder werden beispielsweise in der internationalen Patentanmeldung WO 95/20029 beschrieben.
  • Eine weitere Substanzklasse mit Cobuildereigenschaften stellen die Phosphonate dar. Dabei handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoalkanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1,1-diphosphonat (HEDP) von besonderer Bedeutung als Cobuilder. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethylenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Als Builder wird dabei aus der Klasse der Phosphonate bevorzugt HEDP verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schmermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden. Darüber hinaus können alle Verbindungen, die in der Lage sind, Komplexe mit Erdalkaliionen auszubilden, als Cobuilder eingesetzt werden. Derartige organische Cobuilder können in den erfindungsgemäßen Mitteln insgesamt mit einem Anteil von bis zu 10 Gew.-%, bevorzugt jedoch zu maximal 5 Gew.-%, enthalten sein.
  • Die erfindungsgemäßen Wasch- und Reinigungsmittel können außer den genannten Buildersubstanzen im Prinzip alle bekannten und in derartigen Mitteln üblichen Inhaltsstoffe enthalten. Insbesondere enthalten die Mittel 10 bis 50 Gew.-%, bevorzugt 15 bis 35 Gew.-%, Tenside, wobei diese Tenside aus den folgenden Gruppen ausgewählt sind.
  • Eine erste Gruppe stellen die Anionentenside dar, die wenigstens in Mengen von 0,5 Gew.-% in den erfindungsgemäßen Mitteln bzw. erfindungsgemäß hergestellten Mitteln enthalten sein sollten. Hierzu zählen insbesondere Sulfonate und Sulfate, aber auch Seifen.
  • Als Tenside vom Sulfonat-Typ kommen vorzugsweise C9-C13-Akylbenzolsulfonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12- bis C18-Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht.
  • Geeignet sind auch Alkansulfonate, die aus C10-C18-Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden.
  • Geeignet sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), z. B. die α-sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Talgfettsäuren, die durch α-Sulfonierung der Methylester von Fettsäuren pflanzlichen und/oder tierischen Ursprungs mit 8 bis 20 C-Atomen im Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen Mono-Salzen hergestellt werden, in Betracht. Vorzugsweise handelt es sich hierbei um die α-sulfonierten Ester der hydrierten Kokos-, Palm-, Palmkern- oder Talgfettsäuren, wobei auch Sulfonierungsprodukte von ungesättigten Fettsäuren, beispielsweise Ölsäure, in geringen Mengen, vorzugsweise in Mengen nicht oberhalb etwa 2 bis 3 Gew.-%, vorhanden sein können. Insbesondere sind α-Sulfofettsäurealkylester bevorzugt, die eine Alkylkette mit nicht mehr als 4 C-Atomen in der Estergruppe aufweisen, beispielsweise Methylester, Ethylester, Propylester und Butylester. Mit besonderem Vorteil werden die Methylester der α-Sulfofettsäuren (MES), aber auch deren verseifte Disalze eingesetzt.
  • Weitere geeignete Anionentenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 mol Glycerin erhalten werden.
  • Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C10-C18-Fettalkohole beispielsweise aus Kokosfettalkohol, Talgfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C10-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind C10-C16-Alkylsulfate und C10-C15-Alkylsulfate sowie C12-C15-Alkylsulfate insbesondere bevorzugt. Auch 2,3-Alkylsulfate, welche beispielsweise gemäß den US-Patentschriften 3,234,258 oder 5,075,041 hergestellt werden und als Handelsprodukte der Shell Oil Company unter dem Namen DAN® erhalten werden können, sind geeignete Aniontenside.
  • Auch die Schwefelsäuremonoester der mit 1 bis 6 mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C21-Alkohole, wie 2-Methylverzweigte C9-C11-Alkohole mit im Durchschnitt 3,5 mol Ethylenoxid (E0) oder C12-C18-Fettalkohole mit 1 bis 4 E0, sind geeignet. Sie werden in Waschmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-% eingesetzt.
  • Bevorzugte Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8- bis C18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten).
  • Dabei sind wiederum Sulfosuccinate, deren Fettalkoholreste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen, sowie Ethersulfate (Alkylenoxidsulfate) mit C10-18 und 1-7E0.
  • Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylclycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside bzw. die Sarkosinate und hier vor allem Sarkosinate von höheren und ggf. einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat.
  • Als weitere anionische Tenside kommen insbesondere Seifen, vorzugsweise in Mengen von 0,2 bis 5 Gew.-% in Betracht. Geeignet sind insbesondere gesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, hydrierten Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, z. B. Kokos-, Palmkern- oder Talgfettsäuren, abgeleitete Seifengemische. Zusammen mit diesen Seifen oder als Ersatzmittel für Seifen können auch die bekannten Alkenylbernsteinsäuresalze eingesetzt werden.
  • Die anionischen Tenside (und Seifen) können in Form ihrer Natrium-, Kalium- oder Ammoniumslaze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen anionische Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form ihrer Natriumsalze vor.
  • Die anionischen Tenside sind in den erfindungsgemäßen Mitteln bzw. werden in dem erfindungsgemäßen Verfahren vorzugsweise in Mengen von 1 bis 30 Gew.-% und insbesondere in Mengen von 5 bis 25 Gew.-% eingesetzt.
  • Neben den anionischen Tensiden und den kationischen, zwitterionischen und amphoteren Tensiden sind vor allem nichtionische Tenside bevorzugt.
  • Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 mol Ethylenoxid (E0) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Akoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 10 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Talgfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 E0 pro mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-C14-Alkohole mit 3 E0 oder 4 E0, C9-C11-Alkohole mit 7 E0, C13-C15.Alkohole mit 3 E0, 5 E0, 7 E0 oder 8 E0, C12-C18-Alkohole mit 3 E0, 5 E0 oder 7 E0 und Mischungen aus diesen, wie Mischungen aus C12-C14-Alkohol mit 3 E0 und C12-C18-Alkohol mit 7 E0. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow range ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können - wie oben beschrieben - auch Fettalkohole mit mehr als 12 E0 eingesetzt werden. Beispiele hierfür sind (Talg-) Fettalkohole mit 14 E0, 16 E0, 20 E0, 25 E0, 30 E0 oder 40 E0.
  • Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)x, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann - zwischen 1 und 10; vorzugsweise liegt x bei 1,2 bis 1,4.
  • Ebenfalls geeignet sind Polyhydroxyfettsäureamide der Formel (I), in der R1CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R2 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht:
    Figure imgb0001
  • Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (II),
    Figure imgb0002
    in der R3 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R4 für einen linearen, verzweigten oder cylcischen Alkylenrest oder einen Arylenrest mit 2 bis 8 Kohlenstoffatomen und R5 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht; wobei C1-C4-Alkyl- oder Phenylreste bevorzugt sind, und [Z] für einen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. [Z] wird auch hier vorzugsweise durch reduktive Aminierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Aryloxy-substituierten Verbindungen können dann beispielsweise nach der Lehre der internationalen Patentanmeldung WO 95/07331 durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
  • Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind oder die vorzugsweise nach dem in der internationalen Patentanmeldung WO-A-90/13533 beschriebenen Verfahren hergestellt wurden. Als Niotenside sind C12-C18-Fettsäuremethylester mit durchschnittlich 3 bis 15 E0, insbesondere mit durchschnittlich 5 bis 12 E0 bevorzugt, während als Bindemittel - wie oben beschrieben - vor allem höher ethoxylierte Fettsäuremethylester vorteilhaft sind. Insbesondere C12-C18-Fettsäuremethylester mit 10 bis 12 E0 können sowohl als Tenside als auch als Bindemittel eingesetzt werden.
  • Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N-dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanol-amide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
  • Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im Allgemeinen solche Verbindungen verstanden, die zwei hydrophobe Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannen "Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, dass die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können. Derartige Tenside zeichnen sich im Allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden jedoch unter dem Ausdruck Gemini-Tenside nicht nur dimere, sondern auch trimere Tenside verstanden.
  • Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether gemäß der deutschen Patentanmeldung DE-A-43 21 022 oder Dimeralkohol-bis- und Trimeralkohl-tris-sulfate und -ethersulfate gemäß der deutschen Patentanmeldung DE-A-195 03 061 . Endgruppenverschlossene dimere oder trimere Mischether gemäß der deutschen Patentanmeldung DE-A-195 13 391 zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die genannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so dass sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen.
  • Eingesetzt werden können aber auch Gemini-Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide, wie sie in den internationalen Patentanmeldungen WO-A-95/19953, WO-A-95/19954 und WO-A-95/19955 beschrieben werden.
  • Neben Tensiden und Buildern können in den erfindungsgemäßen Mitteln alle in Wasch- oder Reinigungsmitteln üblichen Inhaltsstoffe vorkommen.
  • Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben Natriumperboratmonohydrat bzw. -tetrahydrat und Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Peroxophthalate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure, Phthalimidoperoxohexansäure (PAP), oder Diperdodecandisäure. Auch Salze der Persäuren, wie z.B. Peroxomonosulfat können eingesetzt werden. Der Gehalt der Mittel an Bleichmitteln beträgt 0 bis 30 Gew.-% und insbesondere 5 bis 25 Gew.-%, wobei vorteilhafterweise Perboratmonohydrat, -tetrahydrat, Percarbonat oder PAP eingesetzt wird.
  • Um beim Waschen bei Temperaturen von 60°C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Präparate eingearbeitet werden. Beispiele hierfür sind mit H2O2 organische Persäuren bildende N-Acyl- bzw. O-Acyl-Verbindungen, vorzugsweise mehrfach acylierte Alkylendiamine wie N,N'-tetraacylierte Diamine, acylierte Glukolurile, insbesondere Tetraacetylglykoluril, N-acylierte Hydantoine, Hydrazide, Triazole, Triazine, Urazole, Diketopiperazine, Sulfurylamide und Cyanurate, außerdem Carbonsäureester wie p-(Alkanoyl)-benzolsulfonat, insbesondere Natriumisononanoyloxybenzolsulfonat, und der p-(Alkenoyloxy)benzolsulfonate, ferner Caprolactam-Derivate, Carbonsäureanhydride wie Phthalsäureanhydrid und Ester von Polyolen wie Glucosepentaacetat. Weitere bekannte Bleichaktivatoren sind acetylierte Mischungen aus Sorbitol und Mannitol, wie sie beispielsweise in der europäischen Patentanmeldung EP-A-0 525 239 beschrieben werden, und acetyliertes Pentaerythrit. Der Gehalt der bleichmittelhaltigen Mittel an Bleichaktivatoren liegt in dem üblichen Bereich, vorzugsweise zwischen 1 und 10 Gew.-% und insbesondere zwischen 3 und 8 Gew.-%.
  • Besonders bevorzugte Bleichaktivatorne sind N,N,N',N'-Tetraacetylethylendiamin (TAED), 1,5-Diacetyl-2,4-dioxo-hexahydro-1,3,5-triazin (DADHT) und actylierte Sorbitol-Mannitol-Mischungen (SORMAN). Der Bleichaktivator kann in bekannter Weise mit Hüllsubstanzen überzogen oder, ggf. unter Einsatz von Hilfsmitteln, insbesondere Methylcellulosen und/oder Carboxymethylcellulosen, granuliert oder extrudiert / pelletiert worden sein und gewünschtenfalls weitere Zusatzstoffe, beispielsweise Farbstoff, enthalten. Vorzugsweise enthält ein derartiges Granulat über 70 Gew.-%, insbesondere von 80 bis 99 Gew.-% Bleichaktivator. Vorzugsweise wird ein Bleichaktivator eingesetzt, der unter Waschbedingungen Peressigsäure bildet. Auch quarternisierte Aminoalkylnitrile, bzw. Acetonitrilderivate können als Bleichaktivatoren eingesetzt werden. Ein weiterer bevorzugter Bleichaktivator ist ein Morpholinonitrilquat, bzw. ein quarterniertes Glycinnitril, wie es in der EP 0 941 299 beschrieben ist.
  • Zusätzlich zu den oben aufgeführten konventionellen Bleichaktivatoren oder an deren Stelle können auch die aus den europäischen Patentschriften EP 0 446 982 und EP 0 453 003 bekannten Sulfonimine und/oder bleichverstärkende Übergangsmetallsalze bzw. Übergangsmetallkomplexe als sogenannte Bleichkatalysatoren enthalten sein. Zu den in Frage kommenden Übergangsmetallverbindungen gehören insbesondere die aus der deutschen Patentanmeldung DE 195 29 082 bekannten Mangan-, Eisen-, Cobalt-, Ruthenium- oder Molybdän-Salenkomplexe und deren aus der deutschen Patentanmeldung DE 196 20 267 bekannte N-Analogverbindungen, die aus der deutschen Patentanmeldung DE 195 36 082 bekannten Mangan-, Eisen, Cobalt-, Ruthenium- oder Molybdän-Carbonylkomplexe, die in der deutschen Patentanmeldung DE 196 05 688 beschriebenen Mangan-, Eisen-, Cobalt-, Ruthenium-, Molybdän-, Titan-, Vanadium- und Kupfer-Komplexe mit stickstoffhaltigen Tripod-Liganden, die aus der deutschen Patentanmeldung DE 196 20 411 bekannten Cobalt-, Eisen-, Kupfer- und Ruthenium-Amminkomplexe, die in der deutschen Patentanmeldung DE 44 16 438 beschriebenen Mangan-, Kupfer- und Cobalt-Komplexe, die in der europäischen Patentanmeldung EP 0 272 030 beschriebenen Cobalt-Komplexe, die aus der europäischen Patentanmeldung EP 0 693 550 bekannten Mangan-Komplexe, die aus der europäischen Patentschrift EP 0 392 592 bekannten Mangan-, Eisen-, Cobalt- und Kupfer-Komplexe und/oder die in der europäischen Patentschrift EP 0 443 651 oder den europäischen Patentanmeldungen EP 0 458 397 , EP 0 458 398 , EP 0 549 271 , EP 0 549 272 , EP 0 544 490 und EP 0 544 519 beschriebenen Mangan-Komplexe, Kombinationen aus Bleichaktivatoren sind beispielsweise aus der deutschen Patentanmeldung DE 196 13 103 und der internationalen Patentanmeldung WO 95/27775 bekannt. Bleichverstärkende Übergangsmetallkomplexe, insbesondere mit den Zentralatomen Mn, Fe, Co, Cu, Mo, V, Ti und/oder Ru, werden in üblichen Mengen, vorzugsweise in einer Menge bis zu 1 Gew.-%, insbesondere von 0,0025 Gew.-% bis 0,25 Gew.-% und besonders bevorzugt von 0,01 Gew.-% bis 0,1 Gew.-%, jeweils bezogen auf gesamtes Mittel, eingesetzt.
  • Zu den in erfindungsgemäßen Mitteln ggf. enthaltenen Enzymen gehören Proteasen, Amylasen, Pullulanasen, Cellulasen, Cutinasen und/oder Lipasen, beispielweise Proteasen wie Properase®, Alcalase®, BLAP®, Optimase®, Opticlean®, Maxacal®, Maxapem®, Durazym®, Purafect® OxP, Esperase® und/oder Savinase®, Amylasen wie Termamyl®, Amylase-LT®, Maxamyl®, Duramyl®, Purastar®, Kenzym®, Purastar® Ox Am, Cellulasen wie Celluzyme®, Carezyme®, KAC® und/oder die aus den internationalen Patentanmeldungen WO 96/34108 und WO 96/34092 bekannten Cellulasen und/oder Lipasen wie Lipolase®, Lipomax®, Lumafast®, Lipoprime®, Lipex® und/oder Lipozym®. Die verwendeten Enzyme können, wie z. B. in den internationalen Patentanmeldungen WO 92/11347 oder WO 94/23005 beschrieben, an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Inaktivierung zu schützen. Sie sind in erfindungsgemäßen Wasch- und Reinigungsmitteln vorzugsweise in Mengen bis zu 10 Gew.-%, insbesondere von 0,05 Gew.-% bis 5 Gew.-% enthalten, wobei besonders bevorzugt gegen oxidativen Abbau stabilisierte Enzyme, wie sie z. B. aus den internationalen Patentanmeldungen WO 94/02597 , WO 94/02618 , WO 94/18314 , WO 94/23053 oder WO 95/07350 bekannt sind, eingesetzt werden.
  • Zusätzlich können die Mittel auch Komponenten enthalten, welche die Öl- und Fett-Auswaschbarkeit aus Textilien positiv beeinflussen. Dieser Effekt wird besonders deutlich, wenn ein Textil verschmutzt wird, das bereits vorher mehrfach mit einem erfindungsgemäßen Waschmittel, das diese öl- und fettlösende Komponente enthält, gewaschen wurde. Zu den bevorzugten öl- und fettlösenden Komponenten zählen beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxy-Gruppen von 15 bis 30 Gew.-% und an Hydroxypropoxyl-Gruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether, sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder der Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Besonders bevorzugt von diesen sind die sulfonierten Derivate der Phthalsäure- und der Terephthalsäure-Polymere.
  • Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Als Schauminhibitoren eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z. B. solche aus Siliconen, Paraffinen oder Wachsen.
  • Vorzugsweise sind die Schauminhibitoren, insbesondere silicon- und/oder paraffinhaltige Schauminhibitoren, an eine granulare, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
  • Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise die wasserlöslichen Salze polymerer Carbonsäuren, Leim, Gelatine, Salze von Ethercarbonsäuren oder Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die oben genannten Stärkeprodukte verwenden, z. B. abgebaute Stärke, Aldehydstärken usw.. Vergrauungsinhibitoren, werden üblicherweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Mittel, eingesetzt.
  • Als weiteren zusätzlichen Bestandteil kann die erfindungsgemäße Textilwaschmittelformulierung übliche Farbübertragungsinhibitoren in den hierfür üblichen Mengen (etwa 0,1 bis 2 Gew.-%) enthalten.
  • Als Farbübertragungsinhibitoren werden beispielsweise Homo- und Copolymere des Vinylpyrrolidons, des Vinylimidazols, des Vinyloxazolidons und des 4-Vinylpyridin-N-oxids mit Molmassen von 15.000 bis 100.000 sowie vernetzte feinteilige Polymere auf Basis dieser Monomeren eingesetzt. Die hier genannte Verwendung solcher Polymere ist bekannt, vgl. DE-B 22 32 353 , DE-A 28 14 287 , DE-A 28 14 329 und DE-A 43 16 023 .
  • Bevorzugt ist in den erfindungsgemäßen Mitteln der Einsatz von Polyvinylpyrrolidon, insbesondere in Form von PVP-Granulaten. Weiterhin bevorzugt werden Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische.
  • Die Mittel können als optische Aufheller Derivate der Diaminostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2-anilino-4-morpholino-1,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanolaminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylaminogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(4-chlor-3-sulfostyryl)diphenyls, oder 4-(4-Chlorstyryl)-4'-(2-sulfostyryl)diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden.
  • Außer den genannten Inhaltsstoffen können die Mittel auch andere bekannte, in Wasch-, Spül- oder Reinigungsmitteln üblicherweise eingesetzten Zusatzstoffe, beispielsweise geringe Mengen an neutralen Füllsalzen sowie Farb- und Duftstoffe und Trübungsmittel enthalten.
  • Die übrigen Wasch-, Reinigungs- und weiteren Inhaltsstoffe des Waschmittels können als Pulver, Granulat oder Cogranulat eingesetzt werden, wobei deren Partikelgröße in einem Bereich von 1 bis 2500 µm, bevorzugt von 5 bis 1000 µm liegt, oder sie können als Flüssigkomponente zudosiert werden.
  • Das erfindungsgemäße Wasch- oder Reinigungsmittel kann als Pulver, als Granulat oder als Kompaktat vorliegen, außerdem kann das Wasch- oder Reinigungsmittel in Form eines gepressten Formkörpers bereitgestellt werden.
  • Die Verwendung eines wasserlöslichen Builder-/Cobuilderstoffes ausgewählt aus amorphen Alkalisilicaten mit einer bestimmten Partikelgrößenverteilung, wie sie in der vorliegenden Anmeldung beschrieben ist, hat den Vorteil, dass kein Niederschlag, bzw. geringe Waschmittelrückstände auf dem Waschgut nach Beendigung des Waschvorgangs zu finden sind. Dies ist auch insbesondere dann der Fall, wenn die Waschflotte einen pH unter pH 10 aufweist. Ein bevorzugter pH-Bereich für den Einsatz der Builder mit der hier beschriebenen Korngrößenverteilung ist ein Bereich von pH 8 bis pH 12.
  • Darüber hinaus wird durch ein besseres "Abfangen" von zweiwertigen Ionen, insbesondere Ca2+ und Mg2+, durch die genannten Builder der erfindungsgemäßen Korngrößenverteilung die Enzymleistung der eingesetzten Proteasen deutlich verbessert, so dass auch diesbezüglich eine Verbesserung des Waschergebnisses erzielt wird.
  • Daher hat der Einsatz von genannten wasserlöslichen Builderstoffen mit der in dieser Anmeldung aufgezeigten Korngrößenverteilung einen wesentlich breiteren Einsatzbereich, als es bisher möglich war. Auch kann eine wesentlich breitere Bandbreite verschiedener Waschmittelzusammensetzungen verwendet werden, z. B. führte ein zu hoher Gehalt an Hydrogencarbonat bisher zu Niederschlägen von SiO2, während der Einsatz der Builderstoffe in Korngrößenbereichen, wie sie in der vorliegenden Anmeldung angegeben sind, weitgehend unabhängig von der Hydrogencarbonat (CH2CO3)-Zugabe zu erwünschten Waschergebnissen führen.
  • Die folgenden Beispiele sollen die Erfindung und deren Wirkung näher erläutern, ohne dass sich die Erfindung lediglich auf die hier dargestellten Zusammensetzungen beschränkt.
  • Beispiele Beispiel 1:
  • Waschmittelformulierungen: Zusammensetzung
    Verschiedene Waschmittelformulierungen mit Schwerpunkt Builder beliebiger Korngröße und ausgesiebte Builder.
    Inhaltsstoffe 1.1 1.2 1.3 1.4 1.5
    Amorphes Silikat 30
    -"-: < 0,2 mm 30
    -"-: 0,2 - 0,4 mm 30
    -"-:0,4 - 1,0 mm 30
    -"-: > 1,0 mm 30
    Soda 5 5 5 5 5
    Sesquicarbonat
    Zitronensäure 10 10 10 10 10
    Sulfat 25 25 25 25 25
    Alkoholethoxylat 6 6 6 6 6
    Fettalkoholsulfat 14 14 14 14 14
    Polycarboxylat 3 3 3 3 3
    Sonstige Additive * ad 100 7 7 7 7 7
    Ihhaltsstoffe 1.6 1.7 1.8 1.9 1.10
    Amorphes Silikat / Polymercompound 35
    -"- : < 0,2 mm 35
    -"- : 0,2 - 0,4 mm 35
    -"- : 0,4-1,0 mm 35
    -"- : > 1,0 mm 35
    Soda 5 5 5 5 5
    Sesquicarbonat
    Zitronensäure 10 10 10 10 10
    Sulfat 25 25 25 25 25
    Alkoholethoxylat 6 6 6 6 6
    Fettalkoholsulfat 14 14 14 14 14
    Polycarboxylat
    Sonstige Additive * ad 100 5 5 5 5 5
    Inhaltsstoffe 1.11 1.12 1.13 1.14 1.15
    Amorphes Silikat 30
    -"-: < 0,2 mm 30
    -"-: 0,2 - 0,4 mm 30
    -"- : 0,4 - 1,0 mm 30
    -"- : > 1,0 mm 30
    Soda
    Sesquicarbonat 15 15 15 15 15
    Zitronensäure 10 10 10 10 10
    Sulfat 15 15 15 15 15
    Alkoholethoxylat 6 6 6 6 6
    Fettalkoholsulfat 14 14 14 14 14
    Polycarboxylat 3 3 3 3 3
    Sonstige Additive * ad 100 7 7 7 7 7
    Inhaltsstoffe 1.16 1.17 1.18 1.19 1.20
    Amorphes Silikat 30
    -"- : < 0,2 mm 30
    -"- : 0,2 - 0,4 mm 30
    -"-:0,4 - 1,0 mm 30
    -"- : > 1,0 mm 30
    Soda / Sulfat 5 5 5 5 5
    Sesquicarbonat
    Zitronensäure 10 10 10 10 10
    Percarbonat / Bleichaktivator 25 25 25 25 25
    Alkoholethoxylat 6 6 6 6 6
    Fettalkoholsulfat 14 14 14 14 14
    Polycarboxylat 3 3 3 3 3
    Sonstige Additive * ad 100 7 7 7 7 7
    * z.B. Enzyme, Sulfat, Entschäumer, optische Aufheller, Öllösepolymere, Farbübertragungsinhibitoren, CMC, Parfum, Phosphonate
  • Beispiel 2
  • Säckchentest mit Waschmittelformulierungen, enthaltend unterschiedliche Builderfraktionen gemäß Beispiel 1
  • Beschreibung des Säckchentestes:
  • In einem dunklen Frotteesäckchen (20*20cm / blau / schwarz) wird das Waschpulver eingenäht. Folgende Dosierung wird eingesetzt: HBII / normal verschmutzt, anschließend wird das Säckchen mit 3,7 kg Ballastwäsche im Normalprogramm bei 30°C gewaschen. Die Wasserhärte des Leitungswasser beträgt 15°dH. Nach dem Waschen wird das Frotteesäckchen aufgeschnitten, auf links gedreht und die Menge der Rückstände visuell betrachtet.
  • Anhand der Rückstandsmenge kann die Löslichkeit einer Waschmittelformulierung beurteilt werden. Eine gute Referenz weist keinerlei Rückstände auf.
    Figure imgb0003
  • Beispiel 3
  • Wolltest: Proteolytische Wirksamkeit in Abhängigkeit der Builderleistung: Eine Protease ist um so wirksamer, je effektiver die Ca2+ und Mg2+ - Ionen aus der Waschflotte entfernt sind. Je besser ein Builder wirkt, desto effektiver werden diese Ionen aus der Waschflotte entfernt.
  • Prinzip:
  • Bei dieser Methode wird sich der molekulare Aufbau der Wolle zunutze gemacht. Der Faserstoff Wolle zählt zu den sogenannten - Keratinen, die im wesentlichen durch Cystein - Disulfidbrücken vernetzte Proteine darstellen. Die Grundbausteine der Wolle sind Aminosäuren, die über Peptidbindungen miteinander verbunden sind. Somit kann die Wolle als Substrat für die Protease angesehen werden. Die Abbauleistung der peptidspaltenden Enzyme wird gravimetrisch bestimmt und spiegelt indirekt die Aktivität der Protease wieder. Die Proteaseaktivität wird stark durch die Builderleistung beeinflusst. Je besser der Builder wirkt, umso schneller und stärker wird die Wolle von der Protease zersetzt.
  • Reagenzien: 10*10cm IWS- Wolle
  • Produkte mit definierter Proteasekonzentration ohne Bleichmittel.
  • Das Bleichmittel hemmt die Proteasewirksamkeit, was dazu führt, dass der Test zu lange dauern würde.
  • Geräte:
  • Der Test wird im Linitest (Labortester) durchgeführt, der mit acht Probenbehältern ausgestattet ist.
  • Durchführung:
  • Je Produkt wird ein 10*10cm Wollgewebe geschnitten und beschriftet. Die Beschriftung der Wolle erfolgt mit einem aufgenähten proteasestabilen Baumwollgewebestück. Die Wolle wird mit 200ml Wasser (HBII) und 1g Testprodukt gewaschen. Dieser Vorgang wird so oft wiederholt, bis in der Wolle Löcher zu erkennen sind. Zudem wird die Wolle nach der 5, 10, 15 und 20. Wäsche im trockenen Zustand gewogen, und der Masseverlust im Vergleich zum jeweiligen Ausgangswert in % bestimmt. Sobald eine gute Differenzierung möglich ist, kann aufgehört werden zu waschen. In diesem Test wurde bei allen Testprodukten 1% Everlase 12.0 T von Novo zugesetzt.
  • Auswertung:
  • Das Produkt, das den höchsten Masseverlust bewirkt, zeigt die beste Builderleistung.
  • Kommentar & Fazit:
  • Die Formulierungen mit den bevorzugten Builderfraktionen zeigen eine höhere proteolytische Wirksamkeit und damit die effektivere Entfernung von Ca/Mg 2+ - Ionen im Waschvorgang (siehe Tabelle).
    Beispiel 3.1 3.2 3.3 3.4
    Waschmittel-Formulierung 1.1 1.4 1.6 1.9
    Masseverlust 33% 34% 36% 39%
  • Beispiel 4
  • Waschmittelformulierungen: Zusammensetzungen Verschiedene Waschmittelformulierungen mit dem Schwerpunkt: unterschiedliche Konzentrationen der übrigen Ingredienzien.
    Inhaltsstoffe 4.1 4.2 4.3 4.4 4.5 4.6 4.7
    Amorphes Silikat 30 30 30 25 20 15 25
    Sesquicarbonat 10 15 20 20 20 20 30
    Zitronensäure 10 10 10 10 10 10 10
    Sulfat 20 15 10 15 20 25 5
    Alkoholethoxylat 6 6 6 6 6 6 6
    Fettalkoholsulfat 14 14 14 14 14 14 14
    Polycarboxylat 3 3 3 3 3 3 3
    Sonstige Additive * ad 100 7 7 7 7 7 7 7
    Inhaltsstoffe 4.8 4.9 4.10 4.11 4.12 4.13 4.14
    Amorphes Silikat >0,4mm 30 30 30 25 20 15 25
    Sesquicarbonat 10 15 20 20 20 20 30
    Zitronensäure 10 10 10 10 10 10 10
    Sulfat 20 15 10 15 20 25 5
    Alkoholethoxylat 6 6 6 6 6 6 6
    Fettalkoholsulfat 14 14 14 14 14 14 14
    Polycarboxylat 3 3 3 3 3 3 3
    Sonstige Additive * ad 100 7 7 7 7 7 7 7
    * z.B. Enzyme, Sulfat, Entschäumer, optische Aufheller, Öllösepolymere. Farbübertragungsinhibitoren, CMC, Parfum, Phosphonate
  • Beispiel 5
  • Säckchentest mit Waschmittelformulierungen gemäß Beispiel 4
    Beispiel Waschmittel-Formulierung Rückstände
    5.1 4.1 Starke Rückstände
    5.2 4.2 Starke Rückstände
    5.3 4.3 Starke Rückstände
    5.4 4.4 Starke Rückstände
    5.5 4.5 Starke Rückstände
    5.6 4.6 Starke Rückstände
    5.7 4.7 Starke Rückstände
    5.8 4.8 Keine Rückstände
    5.9 4.9 Keine Rückstände
    5.10 4.10 Keine Rückstände
    5.11 4.11 Keine Rückstände
    5.12 4.12 Sichtbare Rückstände
    5.13 4.13 Sichtbare Rückstände
    5.14 4.14 Keine Rückstände

Claims (11)

  1. Wasch- oder Reinigungsmittel, enthaltend einen wasserlöslichen Builder, der aus amorphen Alkalisilicaten ausgewählt ist, dadurch gekennzeichnet, dass der Builder eine Korngrößenverteilung aufweist, die Korngrößen von 0,4 bis 3 mm umfasst, jedoch Korngrößen von 0,2 bis unter 0,4 mm ausschließt.
  2. Wasch- oder Reinigungsmittel nach Anspruch 1, dadurch gekennzeichnet, dass der Builder eine Korngrößenverteilung von 0,4 bis 3 mm aufweist.
  3. Wasch- oder Reinigungsmittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass neben dem wasserlöslichen Builder noch weitere Builder- und/oder Cobuilder in dem Wasch- oder Reinigungsmittel vorliegen.
  4. Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die übrigen Wasch- und Reinigungsstoffe eine Partikelgröße von bis zu 2500 µm aufweisen und als Pulver, Granulat oder Cogranulat vorliegen.
  5. Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Wasch- oder Reinigungsmittel als Kompaktat vorliegt.
  6. Wasch- oder Reinigungsmittel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Wasch- oder Reinigungsmittel in Form eines gepressten Formkörpers vorliegt.
  7. Verwendung eines wasserlöslichen Builders in einem Wasch- oder Reinigungsmittel, wobei der wasserlösliche Builder aus amorphen Alkalisilicaten ausgewählt ist, dadurch gekennzeichnet, dass der Builder in das Wasch- oder Reinigungsmittel in einer Korngrößenverteilung eingesetzt wird, die Korngrößen von 0,4 bis 3 mm umfasst, jedoch Korngrößen von 0,2 bis unter 0,4 mm ausschließt.
  8. Verwendung nach Anspruch 8, dadurch gekennzeichnet, dass der Builder mit einer Korngrößenverteilung von 0,4 mm bis 3 mm eingesetzt wird.
  9. Verwendung nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass neben dem wasserlöslichen Builder noch weitere Builder/Cobuilder verwendet werden, gegebenenfalls auch als Cogranulat mit dem wasserlösliche Builder.
  10. Verfahren zur Herstellung eines Wasch- oder Reinigungsmittels, dadurch gekennzeichnet, dass in das Wasch- oder Reinigungsmittel wasserlösliche Builder ausgewählt aus amorphen Alkalisilicaten mit einer Korngrößenverteilung von 0,4 bis 3 mm eingesetzt werden, jedoch Korngrößen von 0,2 bis unter 0,4 mm ausgeschlossen werden.
  11. Verwendung eines Wasch- oder Reinigungsmittels gemäß einem der Ansprüche 1 bis 6 in einem pH-Bereich für die Waschflotte von pH 8 bis pH 12.
EP02024319A 2002-11-02 2002-11-02 Wasserlösliche Builder von bestimmter Korngrösse in Wasch-und Reinigungsmitteln Expired - Lifetime EP1416040B2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP02024319A EP1416040B2 (de) 2002-11-02 2002-11-02 Wasserlösliche Builder von bestimmter Korngrösse in Wasch-und Reinigungsmitteln
AT02024319T ATE372373T1 (de) 2002-11-02 2002-11-02 Wasserlösliche builder von bestimmter korngrösse in wasch-und reinigungsmitteln
DE50210858T DE50210858D1 (de) 2002-11-02 2002-11-02 Wasserlösliche Builder von bestimmter Korngrösse in Wasch-und Reinigungsmitteln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02024319A EP1416040B2 (de) 2002-11-02 2002-11-02 Wasserlösliche Builder von bestimmter Korngrösse in Wasch-und Reinigungsmitteln

Publications (3)

Publication Number Publication Date
EP1416040A1 EP1416040A1 (de) 2004-05-06
EP1416040B1 EP1416040B1 (de) 2007-09-05
EP1416040B2 true EP1416040B2 (de) 2013-03-13

Family

ID=32087992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02024319A Expired - Lifetime EP1416040B2 (de) 2002-11-02 2002-11-02 Wasserlösliche Builder von bestimmter Korngrösse in Wasch-und Reinigungsmitteln

Country Status (3)

Country Link
EP (1) EP1416040B2 (de)
AT (1) ATE372373T1 (de)
DE (1) DE50210858D1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602006020586D1 (de) 2006-10-16 2011-04-21 Procter & Gamble Verfahren zur Sprühtrocknung zur Herstellung von sprühgetrocknete stark wasserlösliche Waschmittel mit geringer Dichte und niedrigem Buildergehalt.
EP1918362A1 (de) 2006-10-16 2008-05-07 The Procter & Gamble Company Builderarmes, gut wasserlösliches und festes Waschmittel mit geringer Schüttdichte

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473485A (en) * 1982-11-05 1984-09-25 Lever Brothers Company Free-flowing detergent powders
DE4004626A1 (de) * 1990-02-15 1991-08-22 Hoechst Ag Waschmittel
EP0456315B1 (de) * 1990-05-08 1996-08-21 The Procter & Gamble Company Niedrig-pH-Waschmittelgranulate enthaltend Aluminiumsilikat, Zitronensäure und Carbonatbuilder
JP2958506B2 (ja) * 1994-06-15 1999-10-06 花王株式会社 微粒子固体ビルダーの製造方法
JP3312816B2 (ja) * 1994-07-14 2002-08-12 株式会社トクヤマ 非晶質珪酸ナトリウム粉末及びその製造方法
US5658867A (en) * 1995-05-31 1997-08-19 The Procter & Gamble Company Cleaning compositions containing a crystalline builder material in selected particle size ranges for improved performance
DE19700775A1 (de) * 1997-01-13 1998-07-16 Henkel Kgaa Verfahren zur Herstellung aniontensidhaltiger wasch- und reinigungsaktiver Tensidgranulate
ES2209286T3 (es) * 1998-07-08 2004-06-16 Clariant Gmbh Disilicato de sodio cristalino y finamente dividido.
GB2339194A (en) * 1998-07-08 2000-01-19 Procter & Gamble Layered crystalline silicate as detergent builder component
DE10061897A1 (de) * 2000-12-12 2002-06-13 Clariant Gmbh Wasch- und Reinigungsmittel, enthaltend mikrodisperse silikathaltige Partikel
DE10062007B4 (de) * 2000-12-13 2010-03-18 Henkel Ag & Co. Kgaa Feste waschaktive Zubereitung mit verbessertem Einspülverhalten

Also Published As

Publication number Publication date
ATE372373T1 (de) 2007-09-15
EP1416040A1 (de) 2004-05-06
EP1416040B1 (de) 2007-09-05
DE50210858D1 (de) 2007-10-18

Similar Documents

Publication Publication Date Title
EP0738237B1 (de) Silikatische builder und ihre verwendung in wasch- oder reinigungsmitteln sowie mehrstoffgemische für den einsatz auf diesem sachgebiet
DE4344215A1 (de) Silberkorrosionsschutzmittelhaltige Enzymzubereitung
DE10142124A1 (de) Umhüllte Wirkstoffzubereitung für den Einsatz in teilchenförmigen Wasch- und Reinigungsmitteln
EP3625319B1 (de) Beschichtete granulate, deren verwendung und wasch- und reinigungsmittel enthaltend diese
WO2005105973A1 (de) Verfahren zur herstellung von granulaten und deren einsatz in wasch- und/oder reinigugsmitteln
DE102020001458A1 (de) Wasch- und Reinigungsmittel, Verfahren zum Desinfizieren und deren Verwendung
DE102005041967A1 (de) Granulare Bleichaktivator-Mischungen
DE102016015660A1 (de) Granulate, deren Verwendung und Wasch- und Reinigungsmittel enthaltend diese
EP1416040B2 (de) Wasserlösliche Builder von bestimmter Korngrösse in Wasch-und Reinigungsmitteln
EP0986629B2 (de) Granulares waschmittel
EP1416039B1 (de) Verwendung wasserlöslicher Builder von bestimmter Korngrösse in bleichefreien Waschmitteln
EP1685224B1 (de) Lösliches buildersystem
EP0846758B1 (de) Additiv für Wasch- oder Reinigungsmittel
DE4344490A1 (de) Pulverförmiges Wasch- und Reinigungsmittel
DE4325882A1 (de) Enzymatischer Vergrauungsinhibitor
DE19936614B4 (de) Verfahren zur Herstellung eines Waschmittels
EP0888450B1 (de) Wasch- oder reinigungsmitteladditiv sowie ein verfahren zu seiner herstellung
DE202023001670U1 (de) Co-Granulate, Wasch- und Reinigungsmittel enthaltend diese und deren Verwendung
EP1113067B1 (de) Tensidhaltige Zubereitung
WO1998055568A1 (de) Wasch- oder reinigungsmittel mit erhöhter reinigungsleistung
WO2000055289A1 (de) Aniontensid-granulate
EP0976817A1 (de) Alkylpolyglycoside als Cobuilder
WO2001010994A1 (de) Verfahren zur herstellung cobuilder-haltiger zubereitungen
WO1995023763A1 (de) Silikatische builder und ihre verwendung in wasch- und reinigungsmitteln sowie mehrstoffgemische für den einsatz auf diesem sachgebiet
DE102004020010A1 (de) Verfahren zur Herstellung von Polymer-Granulaten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DALLI-WERKE GMBH & CO. KG

17P Request for examination filed

Effective date: 20041008

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20060213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50210858

Country of ref document: DE

Date of ref document: 20071018

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071216

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071206

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

BERE Be: lapsed

Owner name: DALLI-WERKE G.M.B.H. & CO. KG

Effective date: 20071130

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

26 Opposition filed

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20080527

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20080527

Opponent name: UNILEVER N.V.

Effective date: 20080605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

R26 Opposition filed (corrected)

Opponent name: UNILEVER N.V. / UNILEVER PLC

Effective date: 20080605

Opponent name: HENKEL AG & CO. KGAA

Effective date: 20080527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080502

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071102

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070905

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLAT Information related to reply to examination report in opposition deleted

Free format text: ORIGINAL CODE: EPIDOSDORE3

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

RIC2 Information provided on ipc code assigned after grant

Ipc: C11D 3/12 20060101ALI20121126BHEP

Ipc: C11D 17/00 20060101AFI20121126BHEP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20130313

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 50210858

Country of ref document: DE

Effective date: 20130313

REG Reference to a national code

Ref country code: SK

Ref legal event code: T5

Ref document number: E 2858

Country of ref document: SK

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50210858

Country of ref document: DE

Representative=s name: FLEISCHER, ENGELS & PARTNER MBB, PATENTANWAELT, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20161101

Year of fee payment: 15

Ref country code: DE

Payment date: 20161027

Year of fee payment: 15

Ref country code: SK

Payment date: 20161031

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20161121

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50210858

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 372373

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171102

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171102

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2858

Country of ref document: SK

Effective date: 20171102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180602