CN1985397B - 固体氧化物燃料电池 - Google Patents

固体氧化物燃料电池 Download PDF

Info

Publication number
CN1985397B
CN1985397B CN2005800191120A CN200580019112A CN1985397B CN 1985397 B CN1985397 B CN 1985397B CN 2005800191120 A CN2005800191120 A CN 2005800191120A CN 200580019112 A CN200580019112 A CN 200580019112A CN 1985397 B CN1985397 B CN 1985397B
Authority
CN
China
Prior art keywords
layer
sofc battery
alloy
doping
cerium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800191120A
Other languages
English (en)
Other versions
CN1985397A (zh
Inventor
皮特·哈尔沃·拉森
莫根斯·别戈·莫根森
索伦·林德罗特
肯特·卡莫·汉森
王蔚国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNICAL UNIVERSITY OF DENMAR
Danmarks Tekniskie Universitet
Original Assignee
TECHNICAL UNIVERSITY OF DENMAR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNICAL UNIVERSITY OF DENMAR filed Critical TECHNICAL UNIVERSITY OF DENMAR
Publication of CN1985397A publication Critical patent/CN1985397A/zh
Application granted granted Critical
Publication of CN1985397B publication Critical patent/CN1985397B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0243Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0215Glass; Ceramic materials
    • H01M8/0217Complex oxides, optionally doped, of the type AMO3, A being an alkaline earth metal or rare earth metal and M being a metal, e.g. perovskites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

SOFC电池,包括:金属支撑(1),其终止于基本纯净的电子导电氧化物;活性阳极层(2),其由基于氧离子导体的共掺杂氧化锆构成;活性阴极层(5);以及LSM和铁素体的混合物层,其作为到单相LSM的阴极集电器(7)的过渡层(6)。使用金属支撑而不是Ni-YSZ阳极支撑,增加了支撑的机械强度并确保了支撑的氧化还原稳定性。多孔铁素体不锈钢终止于纯净的电子导电氧化物,以阻止倾向于溶解到铁素体不锈钢中而导致从铁素体到奥氏体结构的有害相移的活性阳极中金属之间的反应。

Description

固体氧化物燃料电池
技术领域
本发明涉及包括金属支撑的固体氧化物燃料电池(SOFC)。 
背景技术
US 2002/0048 699涉及一种包括铁素体不锈钢基板的固体氧化物燃料电池,所述铁素体不锈钢基板包括多孔区域和束缚该多孔区域的非多孔区域。铁素体不锈钢双极板位于所述基板的多孔区域的一个表面之下,并密封连接到所述基板的多孔区域之上的非多孔区域。第一电极层位于所述基板的多孔区域的另一表面之上,并且电解质层位于第一电极层之上,而第二电极层位于该电解质层之上。这样的固体氧化物燃料电池相对便宜。但是其不够鲁棒(robust)。 
发明内容
本发明的目的是提供一种固体氧化物燃料电池,其相对便宜,并且同时比之前已知的固体氧化物燃料电池更加鲁棒。 
根据本发明一方面的SOFC电池包括: 
金属支撑材料, 
活性阳极层,由良好的碳氢化合物裂解(crack)催化剂构成, 
电解质层, 
活性阴极层,和 
到阴极集电器的过渡层,由LSM和铁素体的混合物构成,或者由单相LSM构成, 
提供用于阻止所述金属支撑和活性阳极之间扩散的装置, 
其中,通过渐变的、终止于基本纯净的电子导电氧化物的金属支撑阻止了金属支撑和活性阳极之间的扩散。 
根据本发明另一方面的SOFC电池包括: 
金属支撑材料, 
活性阳极层,由良好的碳氢化合物裂解催化剂构成, 
电解质层, 
活性阴极层,和 
到阴极集电器的过渡层,由LSM和铁素体的混合物构成,或者由单相LSM构成, 
到阴极集电器的过渡层,由LSM和铁素体的混合物构成,或者由单相LSM构成, 
提供用于阻止所述金属支撑和活性阳极之间扩散的装置, 
其中,由阳极层阻止所述金属支撑和活性阳极之间的扩散,所述阳极层由多孔材料构成,所述多孔材料是在烧结之后渗透的。 
使用金属支撑而不是Ni-YSZ(氧化钇稳定氧化锆)阳极支撑,增加了支撑的机械强度并确保了支撑的氧化还原稳定性。 
使用金属支撑时的问题是,在烧结(其在相对高的温度进行)期间,来自活性阳极层的电极材料与金属支撑互相扩散,造成例如从铁素体到奥氏体相的有害的支撑相变。 
根据本发明,这可以通过以下方法避免,将金属支撑形成为终止于(end in)电子导电氧化物(electron conducting oxide)的渐变(graded)金属陶瓷结构,或者将活性阳极层形成为多孔层,在烧结之后向其中渗透活性阳极材料。 
在根据本发明的具体实施方案中,该电池包括:铁素体金属支撑,其由渐变的、终止于基本纯净的电子导电氧化物的层状金属陶瓷结构构成, 
活性阳极层,其由良好的碳氢化合物催化剂构成,例如掺杂的氧化铈和Ni-Fe合金的混合物, 
电解质层, 
活性阴极层, 
过渡层,其优选由LSM(LaxSr1-xMnO3)和铁素体的混合物构成,并终止于 
阴极集电器,其优选由单相LSM构成。 
FeCr多孔支撑在所有内和外表面上具有氧化物层,该氧化物层可通过Fe-Cr合金本身在适当气氛中氧化或通过涂敷该合金来形成。该涂层的目的是阻止碳和焦油的沉积。涂层的成分可基于例如Cr2O3,CeO2,LaCrO3,SrTiO3。在任何情况中,基础氧化物应当适当地掺杂。 
根据本发明的SOFC电池可在电解质层和活性阴极层之间设有掺杂的氧化铈的反应阻挡层,所述反应阻挡层具有0.1~1μm的厚度。该阻挡层阻止了阳离子从阴极到电解质的扩散。结果可以增加使用寿命。 
根据本发明,活性阴极可由以下复合物构成,该复合物一种材料选自氧化钪和氧化钇稳定氧化锆(ScYSZ)或掺杂的氧化铈,一种材料选自LSM,锰酸锶镧(LnSrMn)或氧化钴铁锶镧(LnSrFeCo),(Y1-xCax)Fe1-yCoyO3,(Gd1-xSrx)sFe1-yCoyO3或(Gd1-xCax)sFe1-yCoyO3。这种阴极材料比其他阴极材料表现更好。 
根据本发明,电解质层可由共掺杂的氧化锆基氧离子导体构成。这种电解质具有比YSZ更高的氧离子导电性,以及比ScSZ更好的长时间稳定性。作为替换,可使用掺杂的氧化铈。 
根据本发明,SOFC电池可包括:铁素体不锈钢支撑;活性复合物阳极层,其由良好的碳氢化合物裂解催化剂(例如Ni合金)和适当的离子导体(例如掺杂的氧化铈或ScYSZ)构成;电解质层;和活性阴极层以及到阴极集电器的过渡层,该过渡层优选地由LSM和铁素体的混合物构成,该阴极集电器优选由单相LSM构成。 
在具体实施方案中,金属支撑可由FeCrMx合金构成。Mx是诸如Ni,Ti,Ce,Mn,Mo,W,Co,La,Y或Al的合金元素。浓度保持在相关的奥氏体形成的水平之下。 
在另一具体实施方案中,活性阳极可由8YSZ、共掺杂的氧化锆或共掺杂的氧化铈的多孔层构成。可添加0~50%的金属合金。 
附图说明
下面参考附图来说明本发明,其中: 
图1示出根据本发明的鲁棒的中等温度SOFC电池。 
图2示出多种阴极材料的面积电阻率(area specific resistance),包括在根据本发明的SOFC电池中使用的阴极材料。 
图3示出具有阳极渗透层的SOFC电池。 
图4示出具有阳极渗透层和阻挡层的SOFC电池。 
图5示出具有双电极渗透层的SOFC电池。 
具体实施方式
图1示出了根据本发明的固体氧化物燃料电池SOFC。该电池包括:金属支撑1,其终止于基本纯净的电子导电氧化物;活性阳极层2,其由掺杂的氧化铈或ScYSZ、Ni-Fe合金构成;电解质层3,其由共掺杂的氧化锆或氧化铈基氧离子导体构成;活性阴极层5;以及LSM和铁素体层的混合物层,其作为到优选由单相LSM或LnSrMnCo构成的阴极集电器7(或多孔金属集电器)的过渡层6。 
由七个功能层构成的完整的固体氧化物燃料电池的主干是功能渐变的多孔金属陶瓷结构1,其由多孔铁素体不锈钢和电子导电氧化物构成,所述电子导电氧化物如(Sr1-xLax)sTi1-yNbyO3(LSTN),其中0≤x≤0.4,0.5≤s≤1,0≤y≤1。这种氧化物的另一例子为(La1-xSrx)CrO3 (LSC)。另一例子为Sr(La)Ti(Nb)O3(LSTN)+FSS(例如,Fe22Cr)。通常,可以使用热膨胀系数与金属的热膨胀系数大致匹配的电子导电氧化物(n型或p型导体)。合金表面(内与外)涂有电子导电氧化物层,以便阻止多孔阳极支撑1中碳氢化合物的裂解。由于多孔支撑中碳氢化合物裂解可能会使碳沉淀,导致孔隙堵塞,因此碳氢化合物的裂解应当仅在活性阳极中发生。 
使用金属支撑1而不是Ni-YSZ阳极支撑,增加了支撑的机械强度,并确保了该支撑的氧化还原稳定性。多孔铁素体不锈钢1终止于纯净的电子导电氧化物,例如LSC或LSTN(Sr(La)Ti(Nb)O3),以便阻止活性阳极2中金属之间的反应,尤其是Ni或NiO,其易于溶解到铁素体不锈钢中,造成可能有害的从铁素体到奥氏体结构的相移。还可在相反方向发生扩散,因为来自金属支撑的元素可扩散到阳极中。 
活性阳极层2是掺杂的氧化铈+ScYSZ+Ni-Fe合金的渐变结构,其仅包含少量百分比的纳米粒度的金属催化剂,该催化剂为良好的碳  氢化合物裂解催化剂。该层的厚度为1~50μm。 
活性阳极2由NiO和FeOx或其混合物在ScYSZ和LSTN中的固溶体来制造。这种制品保证了在操作燃料电池中还原之后有少量百分比的纳米粒度的Ni-Fe催化剂。这实现了催化剂的高表面积,并且由于催化剂颗粒彼此保持一定的距离,阻止了催化剂的聚集。少量高表面积的镍和铁能够实现碳氢化合物的转换和裂解的快速动力学,以及氢的高效电化学转换。仅通过使催化剂细微地分散,避免了当使用碳氢化合物作为燃料时碳纳米管的形成。当活性阳极还原时形成细微分散的催化剂。由于阳极仅包含少量百分比的催化剂,因此它将是氧化还原稳定的(由于仅阳极的一小部分显示出氧化还原活性)。氧化还原循环可最终使Ni-Fe催化剂的纳米结构复苏(revive)。阳极2包含大量的氧化铈,其具有催化碳的电化学氧化的能力,碳可作为裂解过程的结果而形成。 
电解质层3由共掺杂的氧化锆基氧离子导体(Y,Sc)Sz(氧化钇,氧化钪稳定氧化锆)构成。该类型的电解质具有比YSZ更高的氧离子导电性以及比ScSZ更好的长期稳定性。替代的,可使用掺杂的氧化铈。 
具有550℃操作温度的电池的活性阴极5可由以下复合物制造,该复合物一种材料选自可能掺杂有Ce的ScYSZ或掺杂的氧化铈(例如,氧化钆掺杂氧化铈,CGO),一种材料选自(Y1-xCax)Fe1-yCoyO3,(Gd1-xSrx)sFe1-yCoyO3,(Gd1-xCax)sFe1-yCoyO3。另一例子为渐变复合物(Y,Ca)FeCoO3和掺杂氧化锆或氧化铈。这样的阴极5显示了优于LSM和其他阴极材料的性能,参见图2。在A部位上替换为Y和Ca,而不是通常所用的阳离子La和Sr,提高了阴极的性能和稳定性。稳定性提高是由于当使用Y和Ca而不是La和Sr时避免了非导电锆酸盐(La2Zr2O7和SrZrO3)的形成。为了获得足够长的使用寿命,掺杂的氧化铈的反应阻挡层4(阻止阳离子从阴极向ScYSZ电解质扩散)可能是必需的。对于在700℃以上的温度范围操作的燃料电池,可以使用  LSM-YSZ或(Y,Sc)SZ复合物阴极,并且在这种情况下,氧化铈阻挡层4是不需要的。 
在活性阴极层5之上,放置由LSM和铁素体的混合物或LSM+(Y,Ca)FeCoO3构成的渐变层6,作为到单相LSM(La(Sr)MnO3)或LSFCo(La1-xSrxFe1-yCoyO3-δ)的阴极集电器7的过渡,因为这具有最高的电子导电性。过渡层6的功能是阻止由于LSM和铁素体之间热膨胀系数的小差异导致的高的局部热应力。当LSM/YSZ用作阴极时可以取消该层。 
图2示出了作为面积电阻率(ASR)给出的多种阴极性能的阿列纽斯(Arrhenius)曲线。其显示出GSFCo-铁素体像含有贵金属催化剂的阴极一样好。 
作为替换,SOFC可用多孔电极渗透层制造,以忽略金属支撑和活性阳极之间的扩散,参见图3,层11~13。 
层11:金属支撑(200~2000μm),FeCrMx合金,具有0~50Vol%的氧化物(例如掺杂的氧化锆,掺杂的氧化铈或其他氧化物,如Al2O3,TiO2,MgO,CaO,Cr2O3或其组合,但不限于这种材料)。添加氧化物起到以下几种作用:1)增强阳极层和金属支撑之间的化学键合;2)调整热膨胀系数;以及3)控制烧结能力和晶粒生长。 
层12:用于阳极渗透的多孔层(20~100μm),Sc-Y-Ga-Ce掺杂氧化锆/Sm-Gd-Y或任意Ln元素或CaO掺杂氧化铈,添加有或未添加金属合金(FeCrMx)。在添加金属支撑材料的情况中,层将具有氧离子导电性(掺杂的氧化锆/氧化铈)以及电子导电性(金属)。在掺杂的氧化铈的情况中,层还将具有一些电催化效应。在烧结之后通过渗透电催化成分(Ni,具有或不具有掺杂氧化铈或任何其他电催化剂)来完成阳极。 
层13:标准电解质(~10μm)类似于层12的离子导电材料或LaGaO3基电解质。 
层14:全电池;具有两种不同选择,如下面图3和5列出的。 
图3:普通的阴极喷涂或丝网印刷。 
图5:具有阴极的第二多孔层14的渗透。 
通过应用渗透获得了以下优点: 
1.简单,不需要阳极/金属支撑阻挡层。 
2.廉价的处理:在双渗透层的情况下仅需要一次烧结。 
3.在不存在Ni的情况下进行烧结,因此烧结期间晶粒长大(coarsening)不是问题。 
4.渗透提供了获得具有高表面积的电极的可能性。 
5.因为操作温度低于烧结温度,阻止/减弱了电极材料和另一电池材料之间的化学反应。 
6.渗透层的复合结构确保了电解质和金属支撑之间良好的机械结合,以及良好的跨越界面的导电性。 
以下给出实施例。 
实施例1
第一步是用成分为Fe-22%Cr的铁素体不锈钢的浆料流延成型(tape cast)为1mm的厚度。 
第二步是在Fe-Cr铁素体钢的上部流延成型由80wt%(Sr0.8La0.2)0.95Ti0.9Nb0.1O3和20wt%Fe-22%Cr浆料构成的复合物,厚度为5~50μm。 
第三步是喷涂厚度为5~50μm的(Sr0.8La0.2)0.95Ti0.9Nb0.1O3。 
第四步是喷涂活性阳极浆液,厚度为10μm。该浆液的成分为50wt%的Y0.04Sc0.16Zr0.8O2和50wt%的Sr0.84Ni0.05Fe0.1TiO3。 
第五步是喷涂成分为Y0.04Sc0.16Zr0.8O2的电解质,厚度为5μm。 
第六步是将得到的半电池在9%H2+91%Ar的还原气氛中在1300℃共烧结。 
第七步是喷涂由Ce0.9Gd0.1O1.95构成的阻挡层,厚度为0.2μm,然后在700℃烧结。 
第八步是涂覆Fe-Cr合金。 
第九步是喷涂由50wt%的(Gd0.6Sr0.4)0.99Co0.2Fe0.8O3和50wt%的Y0.04Sc0.16Zr0.8O2构成的阴极,厚度为20μm。 
第十步是喷涂50wt%的(La0.85Sr0.15)0.95MnO3和50wt%的(Gd0.8Sr0.4)0.99Co0.2Fe0.8O3,厚度为1~30μm。 
第十一步是丝网印刷由(La0.85Sr0.15)0.95MnO3构成的集电器,厚度为50μm。 
阴极和阴极集电器在堆叠中现场烧结。 
得到的固体氧化物燃料电池是鲁棒的,并且是灵活的,因为碳氢化合物和氢都能够在阳极转换。燃料电池通过裂解转换碳氢化合物,随后电化学氧化裂解产品。空气或纯氧气都可用作氧化剂。 
实施例2
第一步是用成分为Fe-22%Cr的铁素体不锈钢的浆料流延成型为1mm的厚度。 
第二步是在Fe-Cr铁素体钢的上部流延成型由80wt%(Sr0.8La0.2)0.95Ti0.9Nb0.1O3和20wt%Fe-22%Cr浆料构成的复合物,厚度为5~50μm。 
第三步是喷涂厚度为5~30μm的(Sr0.8La0.2)0.95Ti0.9Nb0.1O03。 
第四步是喷涂活性阳极浆液,厚度为10μm。该浆液的成分为50wt%的Y0.04Sc0.16Zr0.8O2-δ和50wt%的Sr0.84Ni0.05Fe0.1TiO3。 
第五步是喷涂成分为Y0.04Sc0.16Zr0.8O2-δ的电解质,厚度为5μm。 
第六步是将得到的半电池在9%H2+91%Ar的还原气氛中在1300℃共烧结。 
第七步是喷涂由Ce0.9Gd0.1O1.95构成的阻挡层,厚度为0.2μm,然后在700℃烧结。 
第八步是涂覆Fe-Cr合金。 
第九步是喷涂由50wt%的(Gd0.6Sr0.4)0.99Co0.2Fe0.8O3-δ和50wt%的CGO10构成的阴极,厚度为20μm。 
第十步是喷涂50wt%的(La0.85Sr0.15)0.95MnO3和50wt%的(Gd0.6Sr0.4)0.99Co0.2Fe0.8O3,厚度为1~30μm。 
第十一步是丝网印刷由(La0.85Sr0.15)0.95MnO3构成的集电器,厚度为50μm。阴极在堆叠中现场烧结。 
得到的固体氧化物燃料电池是鲁棒的,并且是灵活的,因为碳氢化合物和氢都能够在阳极转换。燃料电池通过裂解转换碳氢化合物,随后电化学氧化裂解产品。空气或纯氧气都可用作氧化剂。 
实施例3
第一步是用成分为Fe-22%Cr的铁素体不锈钢的浆料流延成型为1mm的厚度。 
第二步是在Fe-Cr铁素体钢的上部流延成型由80wt%(Sr0.8La0.2)0.95Ti0.9Nb0.1O3和20wt%Fe-22%Cr浆料构成的复合物,厚度为5~50μm。 
第三步是喷涂厚度为1~30μm的(Sr0.8La0.2)0.95Ti0.9Nb0.1O3。 
第四步是喷涂活性阳极浆液,厚度为10μm。该浆液的成分为50wt%的Y0.04Sc0.16Zr0.8O2-δ和50wt%的Sr0.84Ni0.05Fe0.1TiO3。 
第五步是喷涂成分为Y0.04Sc0.16Zr0.8O2-δ的电解质,厚度为5μm。 
第六步是喷涂由Ce0.9Gd0.1O1.95构成的阻挡层,厚度为0.5μm。 
第七步是将得到的半电池在9%H2+91%Ar的还原气氛中在1350℃共烧结。 
第八步是涂覆Fe-Cr合金。 
第九步是喷涂由50wt%的(Gd0.6Ca0.4)0.99Co0.2Fe0.8O3和50wt%的  CGO10构成的阴极,厚度为20μm。 
第十步是喷涂50wt%的(La0.85Sr0.15)0.95MnO3和50wt%的(Gd0.6Sr0.4)0.99Co0.2Fe0.8O3,厚度为1~30μm。 
第十一步是丝网印刷由(La0.85Sr0.15)0.95MnO3构成的集电器,厚度为50μm。阴极在堆叠中现场烧结。 
得到的固体氧化物燃料电池是鲁棒的,并且是灵活的,因为碳氢化合物和氢都能够在阳极转换。燃料电池通过裂解转换碳氢化合物,随后电化学氧化裂解产品。空气或纯氧气都可用作氧化剂。 
实施例4
第一步是用成分为Fe-22%Cr的铁素体不锈钢的浆料流延成型为1mm的厚度。 
第二步是在Fe-Cr铁素体钢的上部流延成型由80wt%(Sr0.8La0.2)0.95Ti0.9Nb0.1O3和20wt%Fe-22%Cr浆料构成的复合物,厚度为5~50μm。 
第三步是喷涂厚度为1~30μm的(Sr0.8La0.2)0.95Ti0.9Nb0.1O3。 
第四步是喷涂活性阳极浆液,厚度为10μm。该浆液的成分为50wt%的Y0.04Sc0.16Zr0.8O2-δ和50wt%的Sr0.84Ni0.05Fe0.1TiO3。 
第五步是喷涂成分为Y0.04Sc0.16Zr0.8O2-δ的电解质,厚度为5μm。 
第六步是将得到的半电池在9%H2+91%Ar的还原气氛中在1350℃共烧结。 
第七步是喷涂由50wt%的LSM和50wt%的Y0.04Sc0.16Zr0.8O2-δ构成的阴极,厚度为20μm。 
第八步是丝网印刷由(La0.85Sr0.15)0.95MnO3构成的集电器,厚度为50μm。阴极在堆叠中现场烧结。 
得到的固体氧化物燃料电池是鲁棒的,并且是灵活的,因为碳氢化合物和氢都能够在阳极转换。燃料电池通过裂解转换碳氢化合物,随后电化学氧化裂解产品。空气或纯氧气都可用作氧化剂。 
实施例5
第一步是用成分为Fe-22%Cr的铁素体不锈钢的浆料流延成型为1mm的厚度。 
第二步是在Fe-Cr铁素体钢的上部流延成型由80wt%(Sr0.8La0.2)0.95Ti0.9Nb0.1O3和20wt%Fe-22%Cr浆料构成的复合物,厚度为5~50μm。 
第三步是喷涂厚度为1~30μm的(Sr0.8La0.2)0.95Ti0.9Nb0.1O3。 
第四步是喷涂活性阳极浆液,厚度为10μm。该浆液的成分为50wt%的Y0.04Sc0.16Zr0.8O2-δ和50wt%的Sr0.84Ni0.05Fe0.1TiO3。 
第五步是喷涂成分为Y0.04Sc0.16Zr0.8O2-δ的电解质,厚度为5μm。 
第六步是将得到的半电池在9%H2+91%Ar的还原气氛中在1350℃共烧结。 
第七步是喷涂由50wt%的LSM和50wt%的Y0.04Sc0.16Zr0.8O2-δ构成的阴极,厚度为20μm。 
第八步是丝网印刷由(La0.85Sr0.15)0.95MnO3构成的集电器,厚度为50μm。 
阴极在堆叠中现场烧结。 
得到的固体氧化物燃料电池是鲁棒的,并且是灵活的,因为碳氢化合物和氢都能够在阳极转换。燃料电池通过裂解转换碳氢化合物,随后电化学氧化裂解产品。空气或纯氧气都可用作氧化剂。 
实施例6
通过流延成型Fe22Cr合金(+少量组分,如Mn)粉末悬浮液来制造厚度在200~2000μm范围的支撑片,参见图3。在干燥支撑11后,通过喷涂法沉积用于阳极渗透的层(层12,50μm)和最终的电解质层(层13,10μm)。这两层的成分都为Zr0.78Sc0.20Y0.02O2-δ。制造用于喷涂的悬浮液,使得渗透层12具有至少40%的孔隙率,平均孔隙尺寸为3μm,并且在烧结后电解质为致密的。随后将样品冲压成期望的尺寸,并在受控的还原条件下烧结所谓的半电池。Ni-,Ce-,Gd-硝酸盐的溶液通过真空浸入而渗透到多孔氧化锆层12中。得到的阳极具有40%Ni和60%(Gd0.1Ce0.9)O2-δ的体积浓度。在干燥和清洁电解质表面之后,通过喷涂法沉积(Gd0.6Sr0.4)0.99(Co0.2Fe0.8)O3-δ阴极(层14,40μm)。 
实施例7
通过流延成型Fe22Cr合金(带有少量附加组分)粉末悬浮液来制造厚度在200~2000μm范围的支撑片,参见图3。在干燥支撑11后,通过丝网印刷包括体积比为1∶1的Zr0.78Sc0.20Y0.02O2-δ和FeCr合金的混合物的墨水,来沉积用于阳极渗透的层(层12,50μm)。向渗透层添加金属确保了金属支撑和渗透层之间的良好结合。最后,通过喷涂法沉积电解质层(层13,10~15μm)。如实施例6所述完成电池。 
实施例8
通过流延成型与2~10Vol%的Zr0.94Y0.06O2-δ混和的Fe22Cr合金(带有少量组分)粉末悬浮液来制造厚度在200~2000μm范围的支撑片,参见图3。如实施例7所述完成电池。 
实施例9
通过流延成型Fe22Cr合金(带有少量附加组分)粉末悬浮液来制造厚度在200~2000μm范围的支撑片,参见图3。由一个或多个包括电解质材料和金属合金(FeCrMx)混合物的薄片制造渐变渗透层。通过流延成型粉末悬浮液制造厚度为30~70μm的薄片,其具有变化的颗粒尺寸和由此所产生的孔隙尺寸。通过压延和压制,层压金属支撑片和1~4个渗透层片来制造电池结构。所得到的渗透层在成分方面渐变,孔隙尺寸和颗粒尺寸在5~10μm范围变化,相对金属支撑在电解质界面处降至~1μm。如实施例6所述完成电池。 
实施例10
如实施例9,但是添加孔隙形成剂来控制渗透层和金属支撑的最终孔隙率。 
实施例11
如实施例10,但是添加烧结添加剂(15)来控制层的收缩。其例子包括(但不限于)Al2O3,MgO,CaO,SrO,CoOx,MnOx,B2O3,CuOx,ZnO2,VOx,Cr2O3,FeOx,NiO,MoOx,WO3,Ga2O3或其组合。 
实施例12
制造如前面实施例中所述的半电池。通过旋涂Gd-Ce硝酸盐溶液在电解质表面上沉积阴极/电解质阻挡层14(图4)(0.5μm)。在700℃烧结阻挡层之后,将Ni-(Gd0.1Ce0.9)O2-δ阳极渗透到层12中,如实施例6所述。在干燥和清洁电解质表面之后,通过丝网印刷沉积  (La0.6Sr0.4)0.99(Co0.2Fe0.8)O3-δ阴极(层15,40μm)。 
实施例13
通过压延Fe22Cr合金浆料来制造约800μm厚的支撑片,图3中的层11。在干燥支撑之后,通过丝网印刷来沉积用于阳极渗透的层(层12)和电解质层。这两层的成分都为(Sm0.1Ce0.9)O2-δ。制造用于丝网印刷的墨水使得渗透层具有>50%的孔隙率,平均孔隙尺寸为1~2μm,并且电解质是致密的。随后将样品冲压成期望的尺寸,并且在受控的还原条件下烧结所谓的半电池。 
制备Ni硝酸盐的溶液并且通过浸渍渗透到多孔(Sm0.1Ce0.9)O2-δ层(层12)中。在干燥和清洁电解质表面之后,通过喷涂法沉积(La0.6Sr0.4)0.99(Co0.2Fe0.8)O3-δ阴极(层14)。 
实施例14
通过流延成型含有5vol%(Gd0.1Ce0.9)O2-δ的Fe22Cr合金粉末悬浮液来制造约500μm厚的支撑片,以增强与渗透层的结合,参见图3。通过喷涂法来沉积用于阳极渗透的层(30μm)和最终的电解质层(10μm)。这两层的成分都为(Gd0.1Ce0.9)O2-δ。在烧结之后,通过真空浸入来将Ni,Gd和Ce的硝酸盐渗透到多孔氧化铈层中。在干燥和清洁电解质表面之后,通过丝网印刷沉积LSCF阴极。 
实施例15
如实施例8所述制造支撑。通过喷涂法来沉积用于阳极渗透的层(30μm)和(Gd0.1Ce0.9)O2-δ电解质层(10μm),所述用于阳极渗透的层包括Fe-Cr合金粉末和(Gd0.1Ce0.9)O2-δ,体积比为1∶1。如实施例6所述完成电池。 
实施例16
如实施例6所述制造支撑(图3中的层11)。在干燥该支撑之后,  通过喷涂法沉积用于电极渗透的层(层12,70μm)、Zr0.78Sc0.20Y0.02O2-δ 电解质层(层13,10μm)、以及最终的另一用于电极渗透的层(层14,30μm)。两个渗透层的成分都为Zr0.78Sc0.20Y0.02O2-δ与40vol%的FeCr粉末,具有~60%孔隙率的大致孔隙率。 
随后将样品冲压成期望的尺寸,并在受控的还原条件下烧结样品。遮蔽层14,并通过真空浸入将Ni-,Ce-,Gd-硝酸盐的溶液渗透到多孔层12中。得到的阳极将具有体积浓度为40%的Ni和60%的(Gd0.1Ce0.9)O2-δ 。在干燥之后,去除层14上的遮蔽物,遮蔽层12并在硝酸盐溶液中通过真空浸入来渗透活性阴极材料(得到的阴极成分): 
(Gd0.6Sr0.4)0.99(Co0.2Fe0.8)O3-δ。 
实施例17
如实施例6所述制造电池结构。通过压力渗透纳米尺寸的NiO和(Gd0.1Ce0.9)O2-δ的悬浮液来制造阳极层。 
实施例18
如实施例7,但是特征在于使用烧结添加剂(选自(但不限于)实施例12中给出的列表中的一种或多种),其使得能够在低于1100℃的温度在氧化条件下适当烧结各种成分。 

Claims (25)

1.SOFC电池,其包括:
金属支撑材料,
活性阳极层,由良好的碳氢化合物裂解催化剂构成,
电解质层,
活性阴极层,和
到阴极集电器的过渡层,所述过渡层由LSM和铁素体的混合物构成,或者由单相LSM构成,以及
提供用于阻止所述金属支撑和活性阳极之间扩散的装置,
其特征在于,通过渐变的、终止于基本纯净的电子导电氧化物的金属支撑阻止了金属支撑和活性阳极之间的扩散。
2.根据权利要求1的SOFC电池,其特征在于,所述金属支撑由FeCrMx类型的金属合金构成,Mx为Ni,Ti,Ce,Mn,Mo,W,Co,La,Y或Al。
3.根据权利要求1的SOFC电池,其特征在于,所述活性阳极层由良好的碳氢化合物裂解催化剂构成。
4.根据权利要求1的SOFC电池,其特征在于,在电解质层和活性阴极层之间具有掺杂的氧化铈的反应阻挡层。
5.根据权利要求4的SOFC电池,其特征在于,所述反应阻挡层具有0.1至1μm的厚度。
6.根据权利要求1的SOFC电池,其特征在于,所述活性阴极层由以下复合物构成,该复合物一种材料选自ScYSZ和掺杂的氧化铈,另一种材料选自LSM,LnSrMn,LnSrFeCo(Y1-xCax)Fe1-yCoyO3,(Gd1-xSrx)Fe1-yCoyO3和(Gd1-xCax)sFe1-yCoyO3
7.根据权利要求1的SOFC电池,其特征在于,所述电解质层由共掺杂的氧化锆或共掺杂的氧化铈基氧离子导体构成。
8.根据权利要求7的SOFC电池,其特征在于,所述电解质层具有0.1至20μm的厚度。
9.根据权利要求1的SOFC电池,其特征在于,活性阳极(2)具有1至50μm的厚度。
10.根据权利要求1的SOFC电池,其特征在于,过渡层(6)由单相LSM构成。
11.根据权利要求1的SOFC电池,其特征在于,多孔Fe-Cr Mx金属支撑的内和外表面具有涂层。
12.根据权利要求1的SOFC电池,其特征在于,所述金属支撑由含Fe-Cr的合金与0至50%金属氧化物的添加剂制造。
13.根据权利要求1的SOFC电池,其特征在于,所述活性阴极层由掺杂的氧化锆或氧化铈与(La,Gd,Sr)(Fe,Co)O3-δ的混合物构成,其中掺杂物是Sc,Y,Ce,Ga,Sm,Gd,Ca,任意Ln元素或其组合。
14.SOFC电池,其包括:
金属支撑材料,
活性阳极层,由良好的碳氢化合物裂解催化剂构成,
电解质层,
活性阴极层,和
到阴极集电器的过渡层,所述过渡层由LSM和铁素体的混合物构成,或者由单相LSM构成,以及
提供用于阻止所述金属支撑和活性阳极之间扩散的装置,
其特征在于,由阳极层阻止所述金属支撑和活性阳极之间的扩散,所述阳极层由多孔材料构成,所述多孔材料是在烧结之后渗透的。
15.根据权利要求14的SOFC电池,其特征在于,添加到支撑材料中的金属氧化物从由掺杂的氧化锆、掺杂的氧化铈、Al2O3、TiO2、MgO、CaO、Cr2O3、FeOx或其组合构成的组中选择。
16.根据权利要求14的SOFC电池,其特征在于,所述活性阳极层由掺杂的氧化锆或掺杂的氧化铈构成,其中掺杂物是Sc,Y,Ce,Ga,Sm,Gd,Ca,任意Ln元素或其组合。
17.根据权利要求16的SOFC电池,其特征在于,所述活性阳极层由混合有金属合金的掺杂的氧化锆或氧化铈构成,其中掺杂物是Sc,Y,Ce,Ga,Sm,Gd,Ca,任意Ln元素或其组合。
18.根据权利要求14的SOFC电池,其特征在于,所述电解质由掺杂的氧化锆或掺杂的氧化铈构成,其中掺杂物是Sc,Y,Ce,Ga,Sm,Gd,Ca或其任意组合。
19.根据权利要求14的SOFC电池,其特征在于,所述活性阳极由带有金属催化剂的掺杂的氧化锆或掺杂的氧化铈的多孔层构成,其中掺杂物是Sc,Y,Ce,Ga,Sm,Gd,Ca,任意Ln元素或其组合。
20.根据权利要求14的SOFC电池,其特征在于,所述活性阴极层由多孔层构成,在烧结之后向其中渗透活性阴极。
21.根据权利要求20的SOFC电池,其特征在于,所述活性阴极层由掺杂的氧化锆或掺杂的氧化铈构成,其中掺杂物是Sr,Y,Ce,Ga,Sm,Gd,Ca,任意Ln元素或其组合。
22.根据权利要求21的SOFC电池,其特征在于,所述活性阴极层由混合有金属合金的掺杂的氧化锆或掺杂的氧化铈构成,其中掺杂物是Sr,Y,Ce,Ga,Sm,Gd,Ca,任意Ln元素或其组合。
23.根据权利要求20的SOFC电池,其特征在于,所述电解质由掺杂的氧化锆或氧化铈构成,其中掺杂物是Sc,Y,Ce,Ga,Sm,Gd,Ca或其任意组合。
24.根据权利要求20的SOFC电池,其特征在于,所述活性阳极由带有金属催化剂的掺杂的氧化锆或掺杂的氧化铈的多孔层构成,其中掺杂物是Sc,Y,Ce,Ga,Sm,Gd,Ca,任意Ln元素或其组合。
25.根据权利要求20的SOFC电池,其特征在于,所述活性阴极由掺杂的氧化锆或掺杂的氧化铈与(La,Gd,Sr)(Fe,Co)O3-δ的混合物构成,其中掺杂物是Sc,Y,Ce,Ga,Sm,Gd,Ca,任意Ln元素或其组合。
CN2005800191120A 2004-06-10 2005-06-09 固体氧化物燃料电池 Expired - Fee Related CN1985397B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DKPA200400904 2004-06-10
DKPA200400904 2004-06-10
DKPA200500159 2005-02-02
DKPA200500159 2005-02-02
PCT/DK2005/000379 WO2005122300A2 (en) 2004-06-10 2005-06-09 Solid oxide fuel cell

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2010105435139A Division CN102013507A (zh) 2004-06-10 2005-06-09 固体氧化物燃料电池

Publications (2)

Publication Number Publication Date
CN1985397A CN1985397A (zh) 2007-06-20
CN1985397B true CN1985397B (zh) 2012-07-04

Family

ID=34982243

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010105435139A Pending CN102013507A (zh) 2004-06-10 2005-06-09 固体氧化物燃料电池
CN2005800191120A Expired - Fee Related CN1985397B (zh) 2004-06-10 2005-06-09 固体氧化物燃料电池

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2010105435139A Pending CN102013507A (zh) 2004-06-10 2005-06-09 固体氧化物燃料电池

Country Status (10)

Country Link
US (1) US7745031B2 (zh)
EP (2) EP1784888A2 (zh)
JP (2) JP5260052B2 (zh)
KR (2) KR100909120B1 (zh)
CN (2) CN102013507A (zh)
AU (1) AU2005253203B2 (zh)
CA (1) CA2569866C (zh)
NO (1) NO20070151L (zh)
RU (2) RU2356132C2 (zh)
WO (1) WO2005122300A2 (zh)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069753A1 (en) * 2004-12-28 2006-07-06 Technical University Of Denmark Method of producing metal to glass, metal to metal or metal to ceramic connections
ATE434500T1 (de) * 2005-01-12 2009-07-15 Univ Denmark Tech Dtu Verfahren zum schrumpfen und zur porositätsreglung von mehrlagigen strukturen während des sinterns
CA2595854C (en) * 2005-01-31 2015-04-14 Technical University Of Denmark Redox stable anode
US7601183B2 (en) 2005-02-02 2009-10-13 Technical University Of Denmark Method for producing a reversible solid oxide fuel cell
DK1760817T3 (da) * 2005-08-31 2013-10-14 Univ Denmark Tech Dtu Reversibel fastoxidbrændselscellestak og fremgangsmåde til fremstilling af samme
ES2292313B1 (es) 2005-09-27 2009-02-16 Ikerlan, S. Coop. Celda de combustible de oxido solido con soporte ferritico.
US8153318B2 (en) 2006-11-08 2012-04-10 Alan Devoe Method of making a fuel cell device
DE102005058128A1 (de) 2005-11-30 2007-06-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Hochtemperatur-Brennstoffzelle und Verfahren zur Herstellung einer Hochtemperatur-Brennstoffzelle
DE102006001552B8 (de) 2006-01-06 2008-06-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kathode-Elektrolyt-Anode-Einheit für Festoxid-Brennstoffzellen und Verfahren zu deren Herstellung
US8293415B2 (en) 2006-05-11 2012-10-23 Alan Devoe Solid oxide fuel cell device and system
EP1928049A1 (en) * 2006-11-23 2008-06-04 Technical University of Denmark Thin solid oxide cell
ATE550802T1 (de) * 2006-11-23 2012-04-15 Univ Denmark Tech Dtu Methode zur herstellung von reversiblen festoxid- zellen
EP2267826A1 (en) 2007-01-09 2010-12-29 Technical University of Denmark A method of producing a multilayer barrier structure for a solid oxide fuel cell
US20080176113A1 (en) * 2007-01-22 2008-07-24 Jian Wu Systems and method for solid oxide fuel cell cathode processing and testing
ATE519241T1 (de) * 2007-08-31 2011-08-15 Univ Denmark Tech Dtu Auf ceroxid und edelstahl basierende elektroden
EP2662918A1 (en) * 2007-08-31 2013-11-13 Technical University of Denmark Anode supported solid oxide fuel cell
ES2375407T3 (es) * 2007-08-31 2012-02-29 Technical University Of Denmark Separación de fases de impurezas de dispositivos electroquímicos.
EP2254180A1 (en) 2007-08-31 2010-11-24 Technical University of Denmark Ceria and strontium titanate based electrodes
US20090169958A1 (en) * 2007-12-21 2009-07-02 Saint-Gobain Ceramics & Plastics, Inc. Ceramic interconnect for fuel cell stacks
JP4960903B2 (ja) * 2008-02-27 2012-06-27 本田技研工業株式会社 積層体の検査方法、検査装置及び検査プログラム
EP2104165A1 (en) 2008-03-18 2009-09-23 The Technical University of Denmark An all ceramics solid oxide fuel cell
CN101359746B (zh) * 2008-09-19 2012-04-11 中国科学院上海硅酸盐研究所 一种大尺寸管式固体氧化物燃料电池及其制备方法
US9276267B2 (en) 2008-09-23 2016-03-01 Delphi Technologies, Inc. Low-temperature bonding of refractory ceramic layers
WO2010040182A1 (en) * 2008-10-09 2010-04-15 Ceramic Fuel Cells Limited A solid oxide fuel cell or solid oxide fuel cell sub-component and methods of preparing same
KR20100050687A (ko) * 2008-11-06 2010-05-14 한국과학기술원 금속지지체형 고체산화물 연료전지의 제조방법
EP2194597B1 (en) * 2008-12-03 2014-03-05 Technical University of Denmark Solid oxide cell and solid oxide cell stack
ES1069849Y (es) 2008-12-19 2009-09-14 Coprecitec Sl "valvula de regulacion para un aparato de coccion a gas"
CN102265441B (zh) * 2008-12-31 2014-09-03 圣戈本陶瓷及塑料股份有限公司 sofc阴极以及用于共烧制的电池以及堆叠体的方法
JP5383232B2 (ja) * 2009-01-30 2014-01-08 三菱重工業株式会社 固体電解質型燃料電池の発電膜及びこれを備える固体電解質型燃料電池
DE102009015794B3 (de) 2009-03-26 2010-07-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Kontaktelement für eine elektrisch leitende Verbindung zwischen einer Anode und einem Interkonnektor einer Hochtemperaturbrennstoffzelle
US8802316B1 (en) * 2009-07-16 2014-08-12 U.S. Department Of Energy Solid oxide fuel cells having porous cathodes infiltrated with oxygen-reducing catalysts
FR2948821B1 (fr) * 2009-08-03 2011-12-09 Commissariat Energie Atomique Cellule electrochimique a metal support et son procede de fabrication
KR101698210B1 (ko) * 2009-10-07 2017-01-20 한양대학교 에리카산학협력단 고체산화물 전해질, 이를 포함하는 고체산화물 연료전지 및 이의 제조방법
EP2325931A1 (de) * 2009-11-18 2011-05-25 Plansee Se Anordnung für eine Brennstoffzelle sowie Verfahren zu deren Herstellungen
WO2011094098A2 (en) 2010-01-26 2011-08-04 Bloom Energy Corporation Phase stable doped zirconia electrolyte compositions with low degradation
WO2012091446A2 (ko) * 2010-12-28 2012-07-05 주식회사 포스코 금속 지지체형 고체 산화물 연료전지 단위전지 및 그 제조방법과 이를 이용한 고체 산화물 연료전지 스택
KR20120085488A (ko) * 2011-01-24 2012-08-01 삼성전자주식회사 고체산화물 연료전지용 고체 전해질, 및 상기 고체전해질을 포함하는 고체산화물 연료전지
EP2503631A1 (en) * 2011-03-24 2012-09-26 Technical University of Denmark Method for producing ceramic devices by sintering in a low pO2 atmosphere and using sintering additives comprising a transition metal
RU2460178C1 (ru) * 2011-07-06 2012-08-27 Федеральное государственное бюджетное учреждение науки Институт высокотемпературной электрохимии Уральского отделения Российской Академии наук Материал для кислородного электрода электрохимических устройств
JP6166272B2 (ja) * 2011-11-30 2017-07-19 アラン・デヴォー 燃料電池デバイス
JP2013229311A (ja) * 2012-03-30 2013-11-07 Nippon Shokubai Co Ltd 固体酸化物形燃料電池
CN102683721B (zh) * 2012-05-23 2015-12-09 江苏超洁绿色能源科技有限公司 一种固体氧化物燃料电池、功能梯度复合阴极及制备方法
KR101331689B1 (ko) * 2012-08-09 2013-11-20 삼성전기주식회사 연료전지 및 그 제조방법
CN102881929B (zh) * 2012-10-26 2015-06-03 中国科学院上海硅酸盐研究所 一种浸渍电极用平板式金属支撑型固体氧化物燃料电池结构
WO2014081716A1 (en) 2012-11-20 2014-05-30 Bloom Energy Corporation Doped scandia stabilized zirconia electrolyte compositions
WO2014143957A1 (en) 2013-03-15 2014-09-18 Lg Fuel Cell Systems, Inc. Fuel cell system configured to capture chromium
DE102013008472A1 (de) * 2013-05-21 2014-11-27 Plansee Composite Materials Gmbh Mehrlagige Schichtanordnung für einen Festkörperelektrolyt
WO2014203066A2 (en) * 2013-06-19 2014-12-24 Nonferrous Materials Technology Development Centre A method and apparatus for manufacturing of solid oxide fuel cell
EP2830127A1 (en) 2013-07-26 2015-01-28 Topsøe Fuel Cell A/S Air electrode sintering of temporarily sealed metal-supported solid oxide cells
ITVR20130200A1 (it) * 2013-08-13 2015-02-14 Sofcpower S P A Metodo di deposizione di uno strato di materiale su un supporto metallico per celle a combustibile o celle per elettrolisi
WO2015059166A1 (en) * 2013-10-22 2015-04-30 Danmarks Tekniske Universitet Planar half-cell shaped precursor body
WO2015068223A1 (ja) * 2013-11-06 2015-05-14 日産自動車株式会社 集電体及び集電体の製造方法、集電体付き固体電解質型燃料電池用電極、固体電解質型燃料電池単セル、固体電解質型燃料電池スタック構造体
CN103928693B (zh) * 2014-03-21 2016-09-28 上海交通大学 固体氧化物燃料电池的金属支撑半电池及其制备方法
RU2550816C1 (ru) * 2014-05-16 2015-05-20 Открытое акционерное общество "ТВЭЛ" (ОАО "ТВЭЛ") Катодный материал для тотэ на основе медь-содержащих слоистых перовскитоподобных оксидов
WO2016014578A1 (en) 2014-07-21 2016-01-28 Lg Fuel Cell Systems, Inc. Composition for fuel cell electrode
WO2016019327A1 (en) * 2014-08-01 2016-02-04 The Penn State Research Foundation Transparent conducting films including complex oxides
JP2016115506A (ja) * 2014-12-15 2016-06-23 株式会社村田製作所 メタルサポートsofc
CN104916857B (zh) * 2015-06-16 2017-12-22 华中科技大学 一种平板式固体氧化物燃料电池
US10115973B2 (en) 2015-10-28 2018-10-30 Lg Fuel Cell Systems Inc. Composition of a nickelate composite cathode for a fuel cell
CN107305953B (zh) * 2016-04-18 2019-10-25 汕头大学 一种固体氧化物燃料电池复合基板及其制备工艺
WO2019159276A1 (ja) * 2018-02-15 2019-08-22 日産自動車株式会社 メタルサポートセル
CN109904497B (zh) * 2019-01-09 2020-07-10 华中科技大学 一种抗积碳金属支撑固体氧化物燃料电池及其制备方法
JP7170559B2 (ja) * 2019-02-25 2022-11-14 太陽誘電株式会社 燃料電池およびその製造方法
US20220145480A1 (en) * 2019-05-10 2022-05-12 The Regents Of The University Of California Methods to improve the durability of metal-supported solid oxide electrochemical devices
GB2591462B (en) 2020-01-27 2022-04-20 Ceres Ip Co Ltd Interlayer for solid oxide cell
JP7484048B2 (ja) 2020-03-10 2024-05-16 太陽誘電株式会社 固体酸化物型燃料電池およびその製造方法
JP7429568B2 (ja) * 2020-03-10 2024-02-08 太陽誘電株式会社 固体酸化物型燃料電池およびその製造方法
CN112048735B (zh) * 2020-09-14 2022-04-19 湖北大学 一种固体氧化物电解池及其制备方法
JP2022145222A (ja) * 2021-03-19 2022-10-03 太陽誘電株式会社 固体酸化物型燃料電池およびその製造方法
JP2022145221A (ja) * 2021-03-19 2022-10-03 太陽誘電株式会社 固体酸化物型燃料電池およびその製造方法
US20230067972A1 (en) * 2021-08-26 2023-03-02 Proof Energy Inc. Solid oxide fuel cells and methods of forming thereof
CN118648145A (zh) * 2022-02-03 2024-09-13 日产自动车株式会社 电化学单元电池
CN114634164B (zh) * 2022-03-31 2024-04-30 合肥氢成科技有限公司 陶瓷氧泵及氢氧燃料电池的氧气提纯装置
CN114583226B (zh) * 2022-03-31 2024-07-12 电堆科技(合肥)有限公司 一种金属支撑质子导体固体氧化物电池及其制备方法
KR20220093053A (ko) * 2022-06-16 2022-07-05 한국세라믹기술원 초음파 스프레이법을 이용 미세구조 제어를 통한 고활성 전극, 이의 제조방법 및 이를 포함하는 고체산화물 연료전지
GB202213357D0 (en) 2022-09-13 2022-10-26 Ceres Ip Co Ltd Electrochemical cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064734A (en) * 1989-10-27 1991-11-12 Asea Brown Boveri Ltd. Current-transmitting components for stacked high-temperature fuel cells and method of producing them
CN1211088A (zh) * 1997-09-11 1999-03-17 苏舍赫克希斯公司 用于高温燃料电池的电化学活性元件
US6017647A (en) * 1995-11-16 2000-01-25 The Dow Chemical Company Electrode structure for solid state electrochemical devices
US6280868B1 (en) * 1996-03-18 2001-08-28 Ceramic Fuel Cells Limited Electrical interconnect for a planar fuel cell
CN1476647A (zh) * 2000-10-25 2004-02-18 燃料电池

Family Cites Families (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2045478A5 (zh) 1969-04-21 1971-02-26 Minnesota Mining & Mfg
US4218985A (en) 1972-08-10 1980-08-26 Jones Allen Jr Steering and stabilization apparatus for torpedo
US4702971A (en) 1986-05-28 1987-10-27 Westinghouse Electric Corp. Sulfur tolerant composite cermet electrodes for solid oxide electrochemical cells
US4957673A (en) 1988-02-01 1990-09-18 California Institute Of Technology Multilayer ceramic oxide solid electrolyte for fuel cells and electrolysis cells and method for fabrication thereof
US5021304A (en) 1989-03-22 1991-06-04 Westinghouse Electric Corp. Modified cermet fuel electrodes for solid oxide electrochemical cells
EP0446680A1 (de) 1990-03-15 1991-09-18 Asea Brown Boveri Ag Stromkollektor zur Stromführung zwischen benachbarten stapelförmig angeordneten Hochtemperatur-Brennstoffzellen
DK167163B1 (da) 1991-02-13 1993-09-06 Risoe Forskningscenter Fastoxidbraendselscelle til oxidation af ch4
JPH05135787A (ja) 1991-03-28 1993-06-01 Ngk Insulators Ltd 固体電解質膜の製造方法及び固体電解質型燃料電池の製造方法
DE4237602A1 (de) 1992-11-06 1994-05-11 Siemens Ag Hochtemperatur-Brennstoffzellen-Stapel und Verfahren zu seiner Herstellung
US5368667A (en) 1993-01-29 1994-11-29 Alliedsignal Inc. Preparation of devices that include a thin ceramic layer
DK94393D0 (da) 1993-08-18 1993-08-18 Risoe Forskningscenter Fremgangsmaade til fremstilling af calciumdoteret lanthanchromit
JPH07245107A (ja) * 1994-03-03 1995-09-19 Fujikura Ltd 固体電解質燃料電池
US5592686A (en) 1995-07-25 1997-01-07 Third; Christine E. Porous metal structures and processes for their production
DE19547700C2 (de) 1995-12-20 1998-09-17 Forschungszentrum Juelich Gmbh Elektrodensubstrat für eine Brennstoffzelle
WO1998021769A1 (fr) * 1996-11-11 1998-05-22 Gorina, Liliya Fedorovna Mode de fabrication d'une pile isolee a combustible haute temperature et de ses composants: cathode, anode, passage de courant, couches d'isolation electrique et d'interface, et de l'electrolyte
DE19650704C2 (de) 1996-12-06 2000-09-14 Forschungszentrum Juelich Gmbh Verbindungselement für Brennstoffzellen
DE19710345C1 (de) 1997-03-13 1999-01-21 Forschungszentrum Juelich Gmbh Werkstoff für elektrische Kontaktschichten zwischen einer Elektrode einer Hochtemperatur-Brennstoffzelle und einem Verbindungselement
US6210612B1 (en) 1997-03-31 2001-04-03 Pouvair Corporation Method for the manufacture of porous ceramic articles
WO1998049738A1 (en) 1997-04-30 1998-11-05 The Dow Chemical Company Electrode structure for solid state electrochemical devices
US6099985A (en) 1997-07-03 2000-08-08 Gas Research Institute SOFC anode for enhanced performance stability and method for manufacturing same
US5908713A (en) 1997-09-22 1999-06-01 Siemens Westinghouse Power Corporation Sintered electrode for solid oxide fuel cells
US6410160B1 (en) 1998-05-04 2002-06-25 Colorado School Of Mines Porous metal-containing materials, method of manufacture and products incorporating or made from the materials
DE19836132B4 (de) 1998-08-10 2006-11-23 Siemens Ag Hochtemperatur-Festelektrolyt-Brennstoffzelle (SOFC) für einen weiten Betriebstemperaturbereich
JP2000133280A (ja) * 1998-10-19 2000-05-12 Sof Co 高性能固体酸化物燃料電池用アノ―ド
US6458170B1 (en) 1998-12-03 2002-10-01 The Regents Of The University Of California Method for making thin, flat, dense membranes on porous substrates
US6248468B1 (en) 1998-12-31 2001-06-19 Siemens Westinghouse Power Corporation Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell
US6589680B1 (en) * 1999-03-03 2003-07-08 The Trustees Of The University Of Pennsylvania Method for solid oxide fuel cell anode preparation
JP4207218B2 (ja) 1999-06-29 2009-01-14 住友電気工業株式会社 金属多孔体とその製造方法及びそれを用いた金属複合材
US6605316B1 (en) 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US6682842B1 (en) 1999-07-31 2004-01-27 The Regents Of The University Of California Composite electrode/electrolyte structure
AUPQ223499A0 (en) * 1999-08-16 1999-09-09 Ceramic Fuel Cells Limited Fuel cell system
DK174654B1 (da) 2000-02-02 2003-08-11 Topsoe Haldor As Faststofoxid brændselscelle og anvendelser heraf
CA2308092C (en) 2000-05-10 2008-10-21 Partho Sarkar Production of hollow ceramic membranes by electrophoretic deposition
DE10025108A1 (de) 2000-05-20 2001-11-29 Forschungszentrum Juelich Gmbh Hochtemperaturwerkstoff
JP2001351646A (ja) * 2000-06-07 2001-12-21 Tokyo Gas Co Ltd LaGaO3系固体電解質型燃料電池
WO2002009115A1 (en) 2000-07-25 2002-01-31 Bae Systems Cmos sram cell with prescribed power-on data state
WO2002058169A2 (en) * 2000-11-09 2002-07-25 Trustees Of The University Of Pennsylvania The use of sulfur-containing fuels for direct oxidation fuel cells
US8007954B2 (en) 2000-11-09 2011-08-30 The Trustees Of The University Of Pennsylvania Use of sulfur-containing fuels for direct oxidation fuel cells
FR2817860B1 (fr) 2000-12-07 2003-09-12 Air Liquide Procede de preparation d'un materiau ceramique de faible epaisseur a gradient de porosite superficielle controle, materiau ceramique obtenu, cellule electrochimique et membrane ceramique le comprenant
US20020127455A1 (en) 2001-03-08 2002-09-12 The Regents Of The University Of California Ceria-based solid oxide fuel cells
US7709124B2 (en) 2001-04-10 2010-05-04 Northwestern University Direct hydrocarbon fuel cells
US6677070B2 (en) * 2001-04-19 2004-01-13 Hewlett-Packard Development Company, L.P. Hybrid thin film/thick film solid oxide fuel cell and method of manufacturing the same
JP3841148B2 (ja) * 2001-04-23 2006-11-01 日産自動車株式会社 固体電解質型燃料電池用セル板及びスタック
JP3841149B2 (ja) 2001-05-01 2006-11-01 日産自動車株式会社 固体電解質型燃料電池用単セル
JP2002358980A (ja) * 2001-05-30 2002-12-13 Mitsubishi Materials Corp 固体電解質型燃料電池
AT4810U1 (de) 2001-05-31 2001-11-26 Plansee Ag Stromsammler für sofc-brennstoffzellen
FR2826956B1 (fr) 2001-07-04 2004-05-28 Air Liquide Procede de preparation d'une composition ceramique de faible epaisseur a deux materiaux, composition obtenue, cellule electrochimique et membrane la comprenant
US6772501B2 (en) 2001-07-23 2004-08-10 Itn Energy Systems, Inc. Apparatus and method for the design and manufacture of thin-film electrochemical devices
CN1409427A (zh) 2001-09-18 2003-04-09 中国科学技术大学 一种中温固体氧化物燃料电池pen多层膜及其制造方法
US6653009B2 (en) 2001-10-19 2003-11-25 Sarnoff Corporation Solid oxide fuel cells and interconnectors
JP2003132906A (ja) 2001-10-24 2003-05-09 Nissan Motor Co Ltd 燃料電池用単セル及び固体電解質型燃料電池
DE10161538B4 (de) 2001-12-10 2004-09-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. Träger für eine elektrochemische Funktionseinheit einer Hochtemperatur-Brennstoffzelle und Hochtemperatur-Brennstoffzelle
JP3827209B2 (ja) * 2001-12-19 2006-09-27 日本電信電話株式会社 固体電解質型燃料電池用複合型空気極の作製方法
US6824907B2 (en) 2002-01-16 2004-11-30 Alberta Reasearch Council, Inc. Tubular solid oxide fuel cell stack
US6893762B2 (en) 2002-01-16 2005-05-17 Alberta Research Council, Inc. Metal-supported tubular micro-fuel cell
US8114551B2 (en) 2002-03-04 2012-02-14 Sulzer Hexis Ag Porous structured body for a fuel cell anode
GB2386126B (en) 2002-03-06 2006-03-08 Ceres Power Ltd Forming an impermeable sintered ceramic electrolyte layer on a metallic foil substrate for solid oxide fuel cell
DE60300904T2 (de) 2002-03-27 2005-12-22 Haldor Topsoe A/S Festoxid-Brennstoffzelle in Dünnschichttechnik (SOFC) und Verfahren zu ihrer Herstellung
US7232626B2 (en) 2002-04-24 2007-06-19 The Regents Of The University Of California Planar electrochemical device assembly
JP3940946B2 (ja) * 2002-05-01 2007-07-04 日産自動車株式会社 燃料電池用セル体およびその製造方法
CA2429899A1 (en) * 2002-05-29 2003-11-29 Sanyo Electric Co., Ltd. Solid oxide fuel cell
JP2005529464A (ja) 2002-06-06 2005-09-29 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア セラミックアノード及びそれを生産する方法
US20030232230A1 (en) 2002-06-12 2003-12-18 Carter John David Solid oxide fuel cell with enhanced mechanical and electrical properties
US6843960B2 (en) 2002-06-12 2005-01-18 The University Of Chicago Compositionally graded metallic plates for planar solid oxide fuel cells
US20030235752A1 (en) 2002-06-24 2003-12-25 England Diane M. Oxygen getters for anode protection in a solid-oxide fuel cell stack
JP3976181B2 (ja) * 2002-07-19 2007-09-12 東邦瓦斯株式会社 固体酸化物燃料電池単セル及びこれを用いた固体酸化物燃料電池
GB0217794D0 (en) 2002-08-01 2002-09-11 Univ St Andrews Fuel cell electrodes
CA2440288A1 (en) * 2002-09-10 2004-03-10 Alberta Research Council Inc. Crack-resistant anode-supported fuel cell
NL1021547C2 (nl) 2002-09-27 2004-04-20 Stichting Energie Elektrode gedragen brandstofcel.
US7285350B2 (en) 2002-09-27 2007-10-23 Questair Technologies Inc. Enhanced solid oxide fuel cell systems
US6843406B2 (en) 2002-09-27 2005-01-18 Battelle Memorial Institute Gas-tight metal/ceramic or metal/metal seals for applications in high temperature electrochemical devices and method of making
DE10302122A1 (de) 2003-01-21 2004-07-29 Elringklinger Ag Dichtungsaufbau für eine Brennstoffzelle bzw. einen Elektrolyseur sowie Verfahren zu dessen Herstellung und Brennstoffzelle bzw. Elektrolyseur aufweisend den Dichtungsaufbau
US6958196B2 (en) 2003-02-21 2005-10-25 Trustees Of The University Of Pennsylvania Porous electrode, solid oxide fuel cell, and method of producing the same
DE10309968A1 (de) 2003-03-07 2004-09-23 Forschungszentrum Jülich GmbH Verfahren zur Herstellung eines Schichtsystems umfassend einen metallischen Träger und eine Anodenfunktionsschicht
GB2400723B (en) 2003-04-15 2006-06-21 Ceres Power Ltd Solid oxide fuel cell with a novel substrate and a method for fabricating the same
JP4027836B2 (ja) 2003-04-16 2007-12-26 東京瓦斯株式会社 固体酸化物形燃料電池の作製方法
CA2538224C (en) 2003-09-10 2012-01-24 Btu International, Inc. Process for manufacturing a fuel cell having solid oxide electrolyte
UA83400C2 (uk) 2003-12-02 2008-07-10 Нанодайнемікс, Інк. Твердооксидні паливні елементи з керметним електролітом та спосіб їх одержання
US20060024547A1 (en) 2004-07-27 2006-02-02 David Waldbillig Anode supported sofc with an electrode multifunctional layer
WO2006069753A1 (en) 2004-12-28 2006-07-06 Technical University Of Denmark Method of producing metal to glass, metal to metal or metal to ceramic connections
ATE434500T1 (de) 2005-01-12 2009-07-15 Univ Denmark Tech Dtu Verfahren zum schrumpfen und zur porositätsreglung von mehrlagigen strukturen während des sinterns
CA2595854C (en) 2005-01-31 2015-04-14 Technical University Of Denmark Redox stable anode
US7601183B2 (en) 2005-02-02 2009-10-13 Technical University Of Denmark Method for producing a reversible solid oxide fuel cell
DK1760817T3 (da) 2005-08-31 2013-10-14 Univ Denmark Tech Dtu Reversibel fastoxidbrændselscellestak og fremgangsmåde til fremstilling af samme
ATE550802T1 (de) 2006-11-23 2012-04-15 Univ Denmark Tech Dtu Methode zur herstellung von reversiblen festoxid- zellen
CN100512500C (zh) 2006-11-27 2009-07-08 华为技术有限公司 处理呼叫的方法和业务控制设备及呼叫处理系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064734A (en) * 1989-10-27 1991-11-12 Asea Brown Boveri Ltd. Current-transmitting components for stacked high-temperature fuel cells and method of producing them
US6017647A (en) * 1995-11-16 2000-01-25 The Dow Chemical Company Electrode structure for solid state electrochemical devices
US6280868B1 (en) * 1996-03-18 2001-08-28 Ceramic Fuel Cells Limited Electrical interconnect for a planar fuel cell
CN1211088A (zh) * 1997-09-11 1999-03-17 苏舍赫克希斯公司 用于高温燃料电池的电化学活性元件
CN1476647A (zh) * 2000-10-25 2004-02-18 燃料电池

Also Published As

Publication number Publication date
RU2356132C2 (ru) 2009-05-20
RU2399996C1 (ru) 2010-09-20
US7745031B2 (en) 2010-06-29
KR20070038511A (ko) 2007-04-10
RU2006144071A (ru) 2008-07-20
RU2008152447A (ru) 2010-07-10
KR100909120B1 (ko) 2009-07-23
US20070269701A1 (en) 2007-11-22
JP5260052B2 (ja) 2013-08-14
JP2012069533A (ja) 2012-04-05
JP2008502113A (ja) 2008-01-24
EP2259373A1 (en) 2010-12-08
NO20070151L (no) 2007-03-08
KR20080105182A (ko) 2008-12-03
EP1784888A2 (en) 2007-05-16
AU2005253203A1 (en) 2005-12-22
CN102013507A (zh) 2011-04-13
CN1985397A (zh) 2007-06-20
WO2005122300A3 (en) 2006-03-02
WO2005122300A2 (en) 2005-12-22
CA2569866C (en) 2011-05-17
AU2005253203B2 (en) 2009-05-28
CA2569866A1 (en) 2005-12-22

Similar Documents

Publication Publication Date Title
CN1985397B (zh) 固体氧化物燃料电池
JP5208518B2 (ja) 可逆式固体酸化物型燃料電池を製造する方法
KR101663083B1 (ko) 금속 지지체형 고체 산화물 연료 전지
Yoo et al. LST–GDC composite anode on LaGaO3-based solid oxide fuel cell
JP2011514931A (ja) 高温電気化学用のCu系サーメット
CN107112564B (zh) 电池结构体及其制造方法以及燃料电池
Pesaran et al. Bilayer electrolytes for low temperature and intermediate temperature solid oxide fuel cells–a review
JP2017084509A (ja) 燃料電池セルスタック
JP2023147070A (ja) サーメット層、及び、水蒸気電解用水素極
Jiang Nano‐structured Electrodes of Solid Oxide Fuel Cells by Infiltration
Satardekar Materials Development for the Fabrication of Metal-Supported Solid Oxide Fuel Cells by Co-sintering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20180609

CF01 Termination of patent right due to non-payment of annual fee