CN1957428A - 用于稀土-钡-铜-氧化物薄膜生长的高产量异位方法 - Google Patents

用于稀土-钡-铜-氧化物薄膜生长的高产量异位方法 Download PDF

Info

Publication number
CN1957428A
CN1957428A CNA2004800370183A CN200480037018A CN1957428A CN 1957428 A CN1957428 A CN 1957428A CN A2004800370183 A CNA2004800370183 A CN A2004800370183A CN 200480037018 A CN200480037018 A CN 200480037018A CN 1957428 A CN1957428 A CN 1957428A
Authority
CN
China
Prior art keywords
film
band
process chamber
substrate
growth zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004800370183A
Other languages
English (en)
Inventor
V·塞尔瓦曼尼克姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SuperPower Inc
Original Assignee
SuperPower Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SuperPower Inc filed Critical SuperPower Inc
Publication of CN1957428A publication Critical patent/CN1957428A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0548Processes for depositing or forming copper oxide superconductor layers by deposition and subsequent treatment, e.g. oxidation of pre-deposited material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/73Vacuum treating or coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/739Molding, coating, shaping, or casting of superconducting material
    • Y10S505/74To form wire or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • Y10S505/742Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49014Superconductor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

本发明提供了一种高产量的系统,它通过加热涂覆了REBCO前体的有缓冲层的金属衬底带,从而在连续长度的有缓冲层的金属衬底带上面异位地形成诸如稀土-钡-铜的氧化物(REBCO)等超导薄膜。当在工艺室内对这些前体进行加热并引入水蒸汽时,它们发生分解,从而在缓冲层外沿形成功能性的超导薄膜。带有为产生一个很长且很宽的沉积区域而设计的喷头和衬底加热器组件的反应器,如有机金属化学蒸汽沉积(MOCVD)反应器,很适用于本系统的这一工艺。该工艺室在不加热炉壁的场合中可以是冷壁型的,而在加热炉壁的场合中可以是热壁型的。

Description

用于稀土-钡-铜-氧化物薄膜生长的高产量异位方法
技术领域
本发明涉及高温超导(HTS)薄膜如稀土-钡-铜-氧化物(REBCO)的高产量异位薄膜生长。
背景技术
在过去三十年中,电能占美国终端能源消费的比例从25%上涨到40%。伴随着这种电力需求的增长而来的是对于高度可靠的高质量电力的日益苛刻的要求。随着电力需求继续增长,特别是较老的城区的电力系统正被推向运行性能的极限,需要新的解决方案。
导线构成了世界电力系统的基本结构单元,包括变压器、输配电系统和电动机。1986年革命性的高温超导(HTS)化合物的发现导致了一种用于电力工业的全新型导线的发展;这一发现是一个多世纪中导线技术的最重大的进步。
HTS涂覆导线提供了超乎寻常的性能,承载电流超过相同物理尺度的常规铜和铝导体一百倍。HTS涂覆导线出众的功率密度将使新一代电力工业技术成为可能。它产生了重大的尺寸、重量和效率方面的优势。HTS技术将以多种方式降低电力系统的成本并增加其负载量和可靠性。例如,HTS涂覆导线能通过现有的线路走廊多传输二到五倍的电力。这种新型电缆将在减少环境覆盖区域的同时提供强大的工具来改善电网的性能。然而,迄今为止只有少数几例在下一代HTS涂覆导线制造中使用的HTS涂覆带是在高性能的水平上制作的。
为了使HTS技术在发电和配电工业中的使用在商业可行,有必要开发连续地、高产量地生产HTS涂覆带的技术。
HTS涂覆带的结构包括抛光的金属衬底,它提供支撑由例如稀土-钡-铜-氧化物(REBCO)等形成的HTS薄膜的强度和柔韧性。一层或多层缓冲层被置于抛光的金属衬底和HTS薄膜之间以防止衬底和HTS薄膜间的反应,以及提供了薄膜外延生长的模板。例如,这种缓冲层可以由钇稳定的氧化锆(YSZ)和/或氧化铈构成。
现有的REBCO涂覆带生产技术可被分类为原位或异位工艺。原位工艺包括薄膜生长完全发生于一个部位的工艺,诸如在含稀土、钡和铜前体的蒸汽与氧气在加热衬底的表面反应形成REBCO薄膜时等。原位技术包括溅镀、电子束(e-beam)蒸发和脉冲激光沉积(PLD)工艺,其中每种工艺均在诸如真空室等单一的低压氧气气氛中发生。
另一方面,异位技术包括在一个以上步骤里发生的沉积工艺,这些步骤在时间上是分立的,并且在空间上也往往是分立的,因为前体被沉积在衬底物上面,随后经历一个分立的将前体转化为REBCO薄膜的后置反应。这些前体可先通过一些本领域公知的工艺被沉积在带有缓冲层的衬底上面,这些工艺包括电子束蒸发,诸如有机金属沉积(MOD)中的浸渍等涂覆步骤,和喷射热解。
在异位工艺里所使用的电子束蒸发中,蒸发发生于三个分别盛有稀土、氟化钡和铜金属的坩埚。在MOD工艺中,稀土、钡和铜的三氟乙酸(TFA)络合物与诸如甲醇等溶剂混和在一起,在环境条件下用所得溶液的浸渍涂覆有缓冲层的衬底,浸渍过的衬底随后经历一道烘干工序,其间通过烘干去除衬底中的有机物。然后浸渍涂覆和烘干步骤被重复数次直到达到所需薄膜厚度为止。
在喷射热解中,稀土、钡和铜的硝酸盐形成前体水溶液,此溶液被雾化并喷射于加热的有缓冲层的衬底上面。在喷射热解中,通过在如500℃等不足以高到形成超导REBCO相的适中的温度下加热衬底,喷射和烘干步骤可同时进行。
在1995年5月16日授权给Gross等的题为“Method of Producing a LayerofSuperconductive Oxide(生产超导氧化物层的方法)”的美国专利第5,416,063号中提供了一种在带有缓冲层的衬底上形成超导层的方法,其中前体溶液被涂覆于衬底以在其表面上形成含金属的层。美国专利第5,416,063号中所描述的前体溶液是通过将含稀土、钡和铜的化合物溶解在乙酸和水中形成的。但是,正如所有异位HTS薄膜生长技术一样,需要一道后续工艺来将带有缓冲层的衬底上面的含金属的层转化为超导薄膜。
这样的后续工艺可以是水蒸汽反应,其中衬底被加热,施加水蒸汽并使其与衬底上所含的稀土、氟化钡和铜金属反应以形成REBCO薄膜。但是,该后续工艺进行得很慢,薄膜生长速度仅仅近似于1埃/秒,相比之下在原位REBCO薄膜生长技术中,薄膜形成仅在一步中进行且速度高达1-5微米/分钟,正如PLD的情况。提供一种异位REBCO薄膜生长系统,以使其很好地满足实现成本效益的生产所必需的高产量,由此使HTS材料在输/配电工业中普遍适用仍然是一个难题。因此美国专利第5,416,063号并不十分适用于大长度HTS带的制造。
现有技术的局限性之一是随着试图使REBCO薄膜生长得越来越厚,迫使水蒸汽渗透由稀土、钡和铜前体构成的致密沉积层也变得越来越难。
要获得高品质的HTS带关键在于水蒸汽能深入渗透到沉积的前体层中以使薄膜生长从沉积的前体层的底部向上进行,从而REBCO薄膜是从缓冲层向外沿生长并可获得期望的织构。当REBCO薄膜生长是从沉积的前体层顶部自上而下进行时,构成REBCO薄膜的多晶颗粒的成核及随后的生长无规则地进行,产生了高度的晶粒边界错位,这将严重损害HTS薄膜的载流能力,相反,双轴织构(biaxial texture)可确保很高的载流能力。
有效地排放掉REBCO薄膜生产工艺中限制反应动力以及抑制REBCO薄膜生长的反应副产物也是一个难题。
因此,本发明的一个目的是提供一种生产厚的高品质REBCO薄膜的方法。
本发明的一个目的是提供一种排除限制反应动力以及抑制REBCO薄膜生长的反应副产物的方法。
本发明的另一个目标是提供一种高产量的异位REBCO薄膜生长系统。
附图说明
当参考附图阅读如下详细描述时,本发明的这些及其他特征、方面和优点将更易于理解,在所有附图中相同的标记代表相同的部分,其中:
图1示出了依照本发明的用于REBCO涂覆带的高产量异位制造的系统。
图2示出了本发明的系统中喷头的仰视图。
发明内容
本发明提供了一种用于在连续长度的有缓冲层的金属衬底带上面异位形成诸如REBCO等超导薄膜的高产量系统。借助如电子束蒸发和MOD等一些技术中的任何一种,稀土、钡和铜前体被沉积在有缓冲层的金属衬底带上面。当在工艺室内对这些前体进行加热并引入水蒸汽时,它们发生分解,从而在缓冲层外延形成功能性的超导薄膜。带有为产生很长且很宽的沉积区域而设计的喷头和衬底加热器组件的工艺室,如有机金属化学蒸汽沉积(MOCVD)反应器,很适用于该工艺。该工艺室包括安置于便于有效抽出反应副产物的方位的排气口。这样的工艺室在不加热炉壁的场合中可以是冷壁型的,而在加热炉壁的场合中可以是热壁型的。
具体实施方式
图1示出了依照本发明的用于REBCO涂覆带的高产量异位制造的系统100。本系统100包括一个机动的对卷式的卷绕系统,用于将多个条带112从多个释放卷轴110穿过工艺室114移动到多个接受卷轴116上。这种对卷式的卷绕系统在本领域中是公知的,它包括功能上被连接到每个释放卷轴110和每个接受卷轴116的驱动电动机(未示出),以及与每根条带112接触、以将条带112关于系统100的适当元件精确定位的一连串惰轮(未示出)。在另一实施例中,条带112可以是单根宽带。
条带112是用诸如不锈钢或如铬镍铁合金等镍合金等各种金属制成的多根长条柔性衬底,其上借助诸如离子束辅助沉积(IBAD)等沉积技术预先沉积了诸如YSZ和/或CeO2等缓冲层。条带112也可以通过本领域中公知称为轧制辅助双轴织构衬底(RABiTS)等工艺来双轴织构化地生产。这种情形下,运用-但不限-溅镀、蒸发、MOD、有机金属化学蒸汽沉积(MOCVD)和PLD等来使缓冲层外延生长。此外,在缓冲层上面,稀土、钡和铜前体借助诸如离子束蒸发、MOD(金属有机沉积)或喷射热解等本领域公知的工艺预先被沉积。
条带112具有为满足所需成品和系统限制的要求而变化的尺寸。例如,条带112可以有25-100微米厚,1-50厘米宽及100-1000米长。工艺室114是一个真空密封的沉积工艺室,诸如压力维持在约0.1托至约760托之间的冷壁反应器,优选是流速范围在1slm至100slm(标准升/分钟)之间的气流条件下压力在约1到约760托之间。
工艺室114内有喷头120和衬底加热器122,二者被相对安置,以直接在其间的空间区域里形成薄膜生长区。如图2中更加详细示出的喷头120能使含有氧气和水蒸汽的惰性载气在给定区域上均匀分布,并且喷头120在形式上可以采用由用多个螺栓夹在一起的上下不锈钢法兰盘构成,在其中有垫圈组成的密封。整个下法兰盘被加工成有多个孔,并这些孔被排列成一系列均匀分布的细孔。
由喷头120和衬底加热器122的尺寸限定的薄膜生长区可以长达10米,并能使例如十至二十条均匀分布的间距约为2毫米的移动条带上的一层由稀土、钡和铜前体构成的薄膜同时转化为REBCO薄膜。在一个替代的实施例中,可在宽度高达50厘米的单条宽带上预先沉积的前体上执行该转换过程。
衬底加热器122是公知的单区域或多区域衬底加热器,它借助诸如灯泡等辐射加热元件来给条带112提供通常在约700℃至约850℃范围内的加热。或者,衬底加热器114是使用如坎萨尔斯铬铝电热丝(Kanthal)或MoSi2(硅化钼)等加热元件的电阻型加热器。或者,衬底加热器114可能是通过工艺室壁来加热衬底的窑炉。
一根采用管道或导管形式的水蒸汽管线118连到喷头120上,并向其提供环境温度的水蒸汽。水蒸汽被引导至喷头120以借助含有约10ppm(0.001%)至10%之间的少量氧气的惰性载气如氩气或氮气等,使水蒸汽的露点(DP)在约40℃至约80℃范围内,或者水压P(H2O)介于约1托至约50托之间。
为达到这一露点(DP),使从约1至约100标准升/分钟(slm)的含有约10ppm与10%之间范围氧气量的惰性气体通过水瓶(未示出)瓶内装有维持在控制该目标露点的温度的一定量的水,例如5升。水瓶内水量通过诸如连接了水位计(未示)的水泵等常规方法来保持恒定。
或者,抽吸适量的水流经保持在100℃或以上的水蒸发器128,选择抽取速度以使含有约10ppm至10%氧气的惰性气体产生约40℃至约80℃范围内的露点(DP)或介于约1托至50托之间的P(H2O)。在这时段内,含氧的惰性气体以约1至100slm(标准升/分钟)的流速经过水蒸发器128。
本工艺中的一个重要因素是抽吸系统的位置。泵124在功能上通过一根或多根泵管线126连接到工艺室114,这些管线终止于布置成直接穿过工艺室114底部的一个或多个泵端口(未示出)。抽吸系统的这一位置可通过本发明中所揭示的反应器类型设计来实现。此抽吸系统被安置在很接近前体转化和薄膜生长区的地方。这样就能有效去除反应副产物。
此外,抽吸系统的这一位置使得能更好地处理用于转化过程中的高气体负载量。本工艺中增加效能的第二个重要因素是使用大尺寸的喷头。使用大尺寸喷头来喷射水蒸汽和氧气与在薄膜生长区附近使用抽吸系统相结合使水蒸气和氧气的均匀流动模式成为可能,这一流动模式导致了其他方法无法获得的在大面积上均匀的薄膜生长。
现有技术使用限定排气口位置远离前体转化和薄膜生长区的常规窑炉来进行转化过程。这导致无法有效除去反应副产物。此外,现有技术的设计不大适于处理高气体负载量和在大面积上获得水蒸气和氧气的均匀分布。
可任选地,可将增压泵(未示出)与泵124结合使用。泵124经工艺室114底部将会妨碍REBCO生长速率的反应副产物如氢氟酸等从薄膜生长区排掉。在一个实施例中,泵124包括常规真空抽吸设备,如爱德华兹型号EH500(Edwards model EH500)。
另外,本领域技术人员会意识到系统100还包括各种传感和控制装置,如压力计和热电偶,为简便起见这些未在图1中示意。
操作中,条带112从释放卷轴110绕下,移动经过位于工艺室114室壁上的一组窄缝(未示),在喷头120和衬底加热器122之间前进,移动经过位于工艺室114对面室壁上的另一组窄缝,并绕上那些接受卷轴116。当条带112移动经过由喷头120和衬底加热器122的尺寸限定出的前体分解和薄膜生长区时,衬底加热器122将条带112的温度提升到约700℃至约850℃之间的范围,这时条带上所包含的由含由稀土、钡和铜前体构成的薄膜暴露于经水蒸汽管线118和水蒸发器128传送、从喷头120均匀放出的含有氧气和水蒸汽的惰性载气中。由衬底加热器122提供的热量和从喷头120放出的水蒸汽,结合工艺室114的低压氧气气氛,致使由稀土、钡和铜前体构成的薄膜分解并与氧气反应形成REBCO薄膜。含有恒定汽压(P(H2O)和P(O2))的氧气和水蒸气的载气在由喷头120规定的整个前体分解和薄膜生长区上的均匀分布,以及由衬底加热器122输送给条带112的恒定热量,对于高度均匀的REBCO薄膜的生长是关的。
由喷头120和衬底加热器122规定的前体分解和薄膜生长区的大尺寸使REBCO薄膜生长能在大面积上进行。尽管在大气压力下REBCO的生长以1埃/秒的相对较慢的速度进行,但是当与多个条带112进行REBCO薄膜生长相配合时,薄膜生长区的长度能使条带112的移动速度适合于HTS涂覆带的高产量异位制造。或者,可均匀地处理单条宽带,并将其切成较窄的条带。取决于一微米厚的含有稀土、钡和铜前体的薄膜转化为REBCO的转化速率和衬底加热器的长度,在大气压力下条带112可能以约1至10米/小时的速度移动通过系统100。在减压状态下,条带112可能以约10至400米/小时的速度移动通过系统100。此外,通过在条带112一旦已移动通过系统100时就在其上再沉积一层稀土、氟化钡和铜的薄膜,随即再移动条带重新穿过系统100,就可使前体至稀土、钡和铜薄膜至REBCO的转化过程重复多次。

Claims (15)

1.一种生产大长度的层状超导体的方法,其特征在于,包括下列步骤:
a.提供用REBa2Cu3O7的前体涂覆的带缓冲的金属衬底条带,其中RE是稀土;
b.移动所述条带穿过工艺室内的前体转化和薄膜生长区;
c.通过喷头将氧气和水蒸汽引入到所述前体转化和薄膜生长区;以及
d.将被涂覆的衬底加热到范围在约700℃至约850℃之间的温度。其中所述工艺室内的压力介于约1托至约760托之间的范围,并且所述衬底在所述加工区内停留的时间足以将所述前体转化为外延于所述缓冲层的超导涂覆层。
2.如权利要求1所述的工艺,其特征在于,所述衬底选自不锈钢和镍合金。
3.如权利要求1所述的方法,其特征在于,所述衬底是双轴织构的。
4.如权利要求1所述的方法,其特征在于,所述金属衬底条带上的缓冲层选自YSZ、CeO2、MgO、SrTiO3,LaMnO3、SrRuO3、Y2O3、Gd2O3、LaSrMnO3、及其组合。
5.如权利要求1所述的方法,其特征在于,所述工艺室内的压力介于约10托至约760托之间的范围。
6.如权利要求1所述的方法,其特征在于,所述涂覆步骤期间的温度在约24℃至约500℃之间的范围内。
7.如权利要求1所述的方法,其特征在于,所述工艺室内的气氛的露点在约40℃至约80℃之间的范围内。
8.如权利要求1所述的方法,其特征在于,所述工艺室内的水蒸汽的分压在约1托至约50托之间的范围内。
9.如权利要求1所述的方法,其特征在于,所述载气中所含氧气的部分在约10ppm至10%之间。
10.如权利要求1所述的方法,其特征在于,所述氧气和水蒸汽的分压在整个所述前体转化和薄膜生长区内基本一致。
11.如权利要求1所述的方法,其特征在于,含有氧气和水蒸汽的载气在整个所述前体转化和薄膜生长区内的分布是均匀的。
12.如权利要求1所述的方法,其特征在于,所述将氧气和水蒸气引入到所述前体转化和薄膜生长区中的喷头的宽度至少与移动条带的宽度总和加上每根所述条带之间的间距的总和一样宽,并且所述喷头的长度至少与所述宽度一样大。
13.如权利要求1所述的方法,其特征在于,反应副产物被位于所述前体转化和薄膜生长区附近的抽吸系统从所述工艺室中除去。
14.如权利要求1所述的方法,所述工艺室是冷壁室。
15.如权利要求1所述方法的产品。
CNA2004800370183A 2003-12-15 2004-12-14 用于稀土-钡-铜-氧化物薄膜生长的高产量异位方法 Pending CN1957428A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/736,223 US8227019B2 (en) 2003-12-15 2003-12-15 High-throughput ex-situ method for rare-earth-barium-copper-oxide (REBCO) film growth
US10/736,223 2003-12-15

Publications (1)

Publication Number Publication Date
CN1957428A true CN1957428A (zh) 2007-05-02

Family

ID=34653835

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800370183A Pending CN1957428A (zh) 2003-12-15 2004-12-14 用于稀土-钡-铜-氧化物薄膜生长的高产量异位方法

Country Status (7)

Country Link
US (1) US8227019B2 (zh)
EP (1) EP1694432B1 (zh)
JP (1) JP2007515053A (zh)
KR (1) KR101200360B1 (zh)
CN (1) CN1957428A (zh)
CA (1) CA2546839C (zh)
WO (1) WO2005060632A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135377A (zh) * 2011-03-02 2011-07-27 西南交通大学 无氟化学溶液沉积法动态连续制备高温超导带材热处理炉
CN102449189A (zh) * 2009-05-26 2012-05-09 Beneq有限公司 用来处理基质的装置和基质载体
CN104947084A (zh) * 2015-07-09 2015-09-30 成都点石创想科技有限公司 一种在导电金属基底上制备超导材料的方法
CN105420684A (zh) * 2015-12-21 2016-03-23 东北大学 一种基于mocvd技术制备rebco超导材料的装置
CN110158062A (zh) * 2018-02-12 2019-08-23 宝山钢铁股份有限公司 带钢用化学气相沉积炉
CN114262881A (zh) * 2021-12-24 2022-04-01 苏州新材料研究所有限公司 一种用于提升mocvd沉积效率的生产工艺

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529602B1 (ko) * 2003-07-18 2005-11-17 한국산업기술대학교 희토류원소계 초전도 산화물을 이용하는 유기금속증착용 전구용액 제조방법 및 유기금속증착법에 의한 박막형 초전도체 제조방법
KR20090031610A (ko) * 2006-07-17 2009-03-26 메사츄세츠 인스티튜트 어브 테크놀로지 고-jc 초전도성 필름을 만들기 위한 방법 및 이를 위해 사용되는 폴리머-나이트레이트 용액
DE102007007567B4 (de) * 2007-02-15 2009-07-30 Zenergy Power Gmbh Verfahren zum Herstellen eines HTSL-Bandes
DE102007024166B4 (de) * 2007-05-24 2011-01-05 Zenergy Power Gmbh Verfahren zum Bearbeiten eines Metallsubstrats und Verwendung dessen für einen Hochtemperatur-Supraleiter
US20100212591A1 (en) * 2008-05-30 2010-08-26 Alta Devices, Inc. Reactor lid assembly for vapor deposition
JP2010165502A (ja) * 2009-01-14 2010-07-29 Sumitomo Electric Ind Ltd Re123超電導薄膜テープ線材の製造方法およびre123超電導薄膜テープ線材
JP5273561B2 (ja) * 2009-12-09 2013-08-28 独立行政法人産業技術総合研究所 超電導膜の製造方法
US8486864B2 (en) * 2009-12-29 2013-07-16 Ut-Battelle, Llc Method for producing microstructured templates and their use in providing pinning enhancements in superconducting films deposited thereon
JP2012003966A (ja) * 2010-06-17 2012-01-05 Sumitomo Electric Ind Ltd 酸化物超電導薄膜の製造方法
US8921276B2 (en) 2010-11-02 2014-12-30 Furukawa Electric Co., Ltd. Substrate for superconducting wire rod, superconducting wire rod, and method for producing superconducting wire rod
RU2578255C2 (ru) * 2011-01-18 2016-03-27 Тейджин Арамид Б.В. Пуленепробиваемое изделие, включающее сополимер стирола и бутадиена, и способ изготовления указанного изделия
CN102134712B (zh) * 2011-02-28 2012-06-27 西北有色金属研究院 一种化学溶液沉积快速制备GdBCO薄膜的方法
JP2012212571A (ja) * 2011-03-31 2012-11-01 Fujikura Ltd 酸化物超電導導体
JP2012033504A (ja) * 2011-10-28 2012-02-16 Sumitomo Electric Ind Ltd Re123超電導薄膜テープ線材の製造方法およびre123超電導薄膜テープ線材
KR101323249B1 (ko) 2011-12-06 2013-11-06 한국전기연구원 초전도 선재 제조장치 및 제조방법
JP5804936B2 (ja) * 2011-12-27 2015-11-04 古河電気工業株式会社 超電導線の製造方法
KR102028779B1 (ko) * 2012-02-13 2019-10-04 어플라이드 머티어리얼스, 인코포레이티드 기판의 선택적 산화를 위한 방법 및 장치
JP2014167941A (ja) * 2014-06-04 2014-09-11 Sumitomo Electric Ind Ltd 酸化物超電導薄膜の製造方法
CN104795180B (zh) * 2015-04-07 2017-08-11 上海大学 极低氟mod法快速制备rebco超导膜的方法
CN108588648A (zh) * 2017-12-29 2018-09-28 上海大学 异位多元金属氧化物薄膜外延生长及其连续化制备的方法
CN108677145A (zh) * 2018-04-17 2018-10-19 上海大学 异位多元金属氧化物薄膜外延生长及其连续化制备的方法
CN114351118A (zh) * 2020-10-13 2022-04-15 东部超导科技(苏州)有限公司 Mocvd反应系统及rebco高温超导带材的制法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5416063A (en) 1987-04-10 1995-05-16 At&T Corp. Method of producing a layer of superconductive oxide
US4962085A (en) * 1988-04-12 1990-10-09 Inco Alloys International, Inc. Production of oxidic superconductors by zone oxidation of a precursor alloy
US5081102A (en) 1988-11-09 1992-01-14 Rockwell International Corporation Preparation of precursor superconductor metal oxide powders by spray calcination from atomized nitrate solution
US5142074A (en) 1989-02-03 1992-08-25 General Atomics High purity copper alkoxides
US5006508A (en) 1989-02-03 1991-04-09 General Atomics Preparation of copper alkoxides and sol/gel precursors of superconducting ceramics
US5021399A (en) 1989-03-10 1991-06-04 Microelectronics & Computer Technology Corp. Spray pyrolysis process for preparing superconductive films
JP2822447B2 (ja) * 1989-05-19 1998-11-11 住友電気工業株式会社 酸化物超電導線材の製造方法および装置
US5278138A (en) * 1990-04-16 1994-01-11 Ott Kevin C Aerosol chemical vapor deposition of metal oxide films
US5231074A (en) * 1990-04-17 1993-07-27 Massachusetts Institute Of Technology Preparation of highly textured oxide superconducting films from mod precursor solutions
US5378594A (en) * 1990-09-18 1995-01-03 Fuji Photo Film Co., Ltd. Silver halide color photographic material
US5114911A (en) 1991-02-20 1992-05-19 Industrail Technology Research Institute Homogeneous coprecipitation method for preparing YBaCuO superconducting powder
EP0646974B1 (en) 1993-07-30 1997-09-24 PIRELLI CAVI S.p.A. Method of preparing precursors for oxide superconductors
US5376594A (en) 1993-08-02 1994-12-27 The United States Of America As Represented By The Secretary Of The Navy Low temperature synthesis of YBA2CU308-X and other crystalline oxides
US5484766A (en) 1994-02-14 1996-01-16 Electric Power Research Institute, Inc. Preparation of Bi-Pb-Sr-Ca-Cu-O (2223) superconductors
US5653806A (en) * 1995-03-10 1997-08-05 Advanced Technology Materials, Inc. Showerhead-type discharge assembly for delivery of source reagent vapor to a substrate, and CVD process utilizing same
US6083885A (en) * 1997-01-14 2000-07-04 Weinstein; Roy Method of forming textured high-temperature superconductors
WO1998058415A1 (en) * 1997-06-18 1998-12-23 Massachusetts Institute Of Technology Controlled conversion of metal oxyfluorides into superconducting oxides
US5972847A (en) 1998-01-28 1999-10-26 Lockheed Martin Energy Method for making high-critical-current-density YBa2 Cu3 O7 superconducting layers on metallic substrates
JP3741860B2 (ja) * 1998-05-13 2006-02-01 株式会社フジクラ 酸化物超電導導体の製造装置および製造方法
JP3741861B2 (ja) * 1998-05-13 2006-02-01 株式会社フジクラ Cvd反応装置
JP3548801B2 (ja) * 2001-03-27 2004-07-28 独立行政法人産業技術総合研究所 特定の金属種に特定の配位子を配位させた金属錯体を含む溶液組成物、希土類超電導膜製造用溶液組成物、特定金属錯体の非結晶固形物、特定の金属種に特定の配位子を配位させた金属錯体を含む溶液の製造方法、希土類超電導膜製造用溶液の製造方法、及び超電導薄膜の形成方法。
JP2003300726A (ja) * 2002-04-08 2003-10-21 Internatl Superconductivity Technology Center テープ状酸化物超電導体及びその製造方法
US20030130129A1 (en) 2001-07-13 2003-07-10 Massachusetts Institute Of Technology Vacuum processing for fabrication of superconducting films fabricated by metal-organic processing
KR100719612B1 (ko) 2001-07-31 2007-05-17 아메리칸 수퍼컨덕터 코포레이션 초전도체 형성 방법 및 반응기
US6794339B2 (en) 2001-09-12 2004-09-21 Brookhaven Science Associates Synthesis of YBa2CU3O7 using sub-atmospheric processing
JP4020623B2 (ja) * 2001-11-07 2007-12-12 昭和電線ケーブルシステム株式会社 酸化物超電導原料溶液の塗布装置及びその塗布方法
JP3851948B2 (ja) * 2002-05-10 2006-11-29 独立行政法人産業技術総合研究所 超電導体の製造方法
JP2004260174A (ja) * 2003-02-25 2004-09-16 Samsung Electronics Co Ltd 半導体素子製造装置
US20050065035A1 (en) * 2003-06-10 2005-03-24 Rupich Martin W. Superconductor methods and reactors
US20050014653A1 (en) * 2003-07-16 2005-01-20 Superpower, Inc. Methods for forming superconductor articles and XRD methods for characterizing same
US7361377B2 (en) * 2003-07-18 2008-04-22 Brookhaven Science Associates, Llc Fluorinated precursors of superconducting ceramics, and methods of making the same
US7015420B2 (en) * 2003-12-08 2006-03-21 Kenford Industrial Company Ltd. Hair brushing appliance

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102449189A (zh) * 2009-05-26 2012-05-09 Beneq有限公司 用来处理基质的装置和基质载体
CN102135377A (zh) * 2011-03-02 2011-07-27 西南交通大学 无氟化学溶液沉积法动态连续制备高温超导带材热处理炉
CN104947084A (zh) * 2015-07-09 2015-09-30 成都点石创想科技有限公司 一种在导电金属基底上制备超导材料的方法
CN105420684A (zh) * 2015-12-21 2016-03-23 东北大学 一种基于mocvd技术制备rebco超导材料的装置
CN105420684B (zh) * 2015-12-21 2017-11-10 东北大学 一种基于mocvd技术制备rebco超导材料的装置
CN110158062A (zh) * 2018-02-12 2019-08-23 宝山钢铁股份有限公司 带钢用化学气相沉积炉
CN114262881A (zh) * 2021-12-24 2022-04-01 苏州新材料研究所有限公司 一种用于提升mocvd沉积效率的生产工艺

Also Published As

Publication number Publication date
EP1694432A2 (en) 2006-08-30
CA2546839A1 (en) 2005-07-07
US8227019B2 (en) 2012-07-24
JP2007515053A (ja) 2007-06-07
EP1694432A4 (en) 2010-01-13
US20050127133A1 (en) 2005-06-16
KR20060128889A (ko) 2006-12-14
CA2546839C (en) 2012-12-11
WO2005060632A2 (en) 2005-07-07
WO2005060632A3 (en) 2006-07-06
KR101200360B1 (ko) 2012-11-13
EP1694432B1 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
CN1957428A (zh) 用于稀土-钡-铜-氧化物薄膜生长的高产量异位方法
US8653005B2 (en) Fluorinated precursors of superconducting ceramics, and methods of making the same
KR101183158B1 (ko) 세라믹 선재 형성 방법, 세라믹 선재 형성 시스템, 및 이를 이용한 초전도 선재
US20120258863A1 (en) Metalorganic chemical vapor deposition (mocvd) process and apparatus to produce multi-layer high-temperature superconducting (hts) coated tape
RU2000101289A (ru) Способ получения пленки оксидного сверхпроводника (варианты), оксидное сверхпроводниковое изделие (варианты), проводниковое изделие с покрытием
KR20020035837A (ko) 코팅된 전도체 후막 전구체
WO2006004579A2 (en) A chemical vapor deposition apparatus
KR20130084639A (ko) 초전도 선재 및 초전도 선재 형성방법
Dawley et al. Thick Sol-gel Derived YBaCuO, 5 Films
US20110312500A1 (en) Method for depositing oxide films on textured metal pipes
US5185317A (en) Method of forming superconducting Tl-Ba-Ca-Cu-O films
US5296460A (en) CVD method for forming Bi -containing oxide superconducting films
US20040178175A1 (en) Atomic layer deposition for high temperature superconductor material synthesis
US7622426B2 (en) Methods of controlling hydrogen fluoride pressure during chemical fabrication processes
US8182862B2 (en) Ion beam-assisted high-temperature superconductor (HTS) deposition for thick film tape
Stadel et al. MOCVD techniques for the production of coated conductors
EP0660427B1 (en) Method for growing superconductive film
Kim et al. Effects of deposition conditions on the phase formation of YBCO films prepared by spray pyrolysis method
KR100336940B1 (ko) (100)<001>집합조직을 갖는 니켈판 위에화학증착법으로 에피택시알(epitaxial)하게NiO박막을 제조한 Ni/NiO 복합체 및 이의제조방법과 장치
JP4490049B2 (ja) 超電導導体およびその製造方法
Jun et al. Fabrication of YBCO superconducting tape by metal organic chemical vapor deposition method
JP2003036744A (ja) 酸化物超電導導体及び酸化物超電導導体の製造方法
Lee et al. New chemical route for YBCO thin films
Aoki et al. Rapid Synthesis of the Y-Ba-Cu-O Tape on Metal Substrate by CVD Technique
Kim et al. Preparation of YBa/sub 2/Cu/sub 3/O/sub x/film deposited on various substrates by MOCVD Processing

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20070502