CN1898158A - Aei型沸石、其合成及其在含氧化合物转化成烯烃中的应用 - Google Patents

Aei型沸石、其合成及其在含氧化合物转化成烯烃中的应用 Download PDF

Info

Publication number
CN1898158A
CN1898158A CNA2004800384824A CN200480038482A CN1898158A CN 1898158 A CN1898158 A CN 1898158A CN A2004800384824 A CNA2004800384824 A CN A2004800384824A CN 200480038482 A CN200480038482 A CN 200480038482A CN 1898158 A CN1898158 A CN 1898158A
Authority
CN
China
Prior art keywords
crystalline material
arbitrary
reaction mixture
compound
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800384824A
Other languages
English (en)
Other versions
CN100475699C (zh
Inventor
曹光
K·G·斯特罗迈耶
李海连
A·S·古拉姆
R·J·萨克斯顿
M·T·穆拉卡
J·C·约德
K·亚卡图
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Chemical Patents Inc
Original Assignee
Exxon Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Chemical Patents Inc filed Critical Exxon Chemical Patents Inc
Publication of CN1898158A publication Critical patent/CN1898158A/zh
Application granted granted Critical
Publication of CN100475699C publication Critical patent/CN100475699C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/45Catalytic treatment characterised by the catalyst used containing iron group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/42Catalytic treatment
    • C10G3/44Catalytic treatment characterised by the catalyst used
    • C10G3/48Catalytic treatment characterised by the catalyst used further characterised by the catalyst support
    • C10G3/49Catalytic treatment characterised by the catalyst used further characterised by the catalyst support containing crystalline aluminosilicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/62Catalyst regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/035Microporous crystalline materials not having base exchange properties, such as silica polymorphs, e.g. silicalites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

描述了一种有AEI骨架类型的结晶材料,其中所述材料在其焙烧、无水形式的组成包括以下摩尔关系:(n)X2O3:YO2,其中X为三价元素;Y为四价元素;和n为0至小于0.01。该材料通常在卤化物尤其是氟化物介质中合成,在甲醇转化成低级烯烃特别是乙烯和丙烯中表现出活性和选择性。

Description

AEI型沸石、其合成及其在含氧化合物 转化成烯烃中的应用
发明领域
本发明涉及有AEI骨架类型的沸石、其合成及其在含氧化合物特别是甲醇转化成烯烃特别是乙烯和丙烯中的应用。
发明背景
含氧化合物至烯烃的转化(OTO)是目前加紧研究的主题,因为它有可能代替目前作为生产世界规模产量乙烯和丙烯的工业标准的经久不衰的蒸汽裂化技术。所涉及的庞大的体积表明可以成本有效的方式输出大量轻烯烃的替代技术存在相当大的经济上的驱动力。与蒸汽裂化依靠石脑油范围的烃在极高温度下进行的非选择性热反应不同,OTO在较温和温度条件下利用酸性分子筛的催化和微观结构特性由甲醇生产高收率的乙烯和丙烯。
目前对OTO反应的了解表明该反应是复杂的序列反应,其中三个主要步骤可以确定:(1)诱导期,导致生成活性炭池(烷基-芳族化合物),(2)这些活性中间体的烷基化-脱烷基化反应,生成产物,和(3)稠环芳族化合物的逐渐积累。因而,OTO是一种固有地瞬时化学转变,其中催化剂处于连续变化状态。催化剂长期保持高烯烃收率的能力依赖于发生上述过程的相对速率之间精细的平衡。生成焦炭状分子产生非常严重的后果,因为其积聚以多种方式干扰所需要的反应序列。具体地,焦炭使碳池钝化、降低反应物和产物的扩散速率、使不受欢迎的副反应的可能性提高而且限制催化剂寿命。
近二十年已确定许多催化材料适用于进行OTO反应。结晶分子筛是目前优选的催化剂,因为它们同时解决了该反应所需酸性和形态要求。特别优选的材料是八元环硅铝酸盐,如具有菱沸石(CHA)骨架类型的那些,以及CHA结构的硅铝磷酸盐,如SAPO-34。这些分子筛具有大得足以容纳芳族中间体、与此同时仍允许反应物和产物通过规则互连的窗孔扩散迁移进出晶体的笼。通过用适度的酸强度和酸密度补充此形态特征,产生工作催化剂。该领域的广泛研究显示硅铝磷酸盐是目前比硅铝酸盐更有效的OTO催化剂。具体地,硅铝摩尔比的控制是硅铝酸盐用于OTO反应的关键要求。不过,仍在继续探索硅铝酸盐沸石用于OTO而且似乎有尚未发现的潜能。
国际沸石协会结构委员会按IUPAC委员会的沸石命名规则对分子筛进行分类。根据此分类,给结构确定的骨架类型沸石和其它结晶微孔分子筛指定三个字母代码,描述在Atlas of Zeolite FrameworkTypes,5thedition,Elsevier,London,England(2001)中。
一种结晶已确定的已知分子筛是表示为AEI的材料,它是这样的一种分子筛,具有由两组各自横截面尺寸约3.8埃的大体垂直的孔道限定的孔。自然界不存在AEI骨架类型的分子筛,但已合成出许多有AEI骨架类型的磷铝酸盐和磷酸硅铝,包括SAPO-18、ALPO-18和RUW-18。此外,由于其孔径小,已报道AEI类型分子筛是适用于各种重要化学过程包括含氧化合物至烯烃转化过程的催化剂。参见例如US5,095,163,引入本文供参考。
Zones等的US 5,958,370(引入本文供参考)公开一种命名为SSZ-39的硅铝酸盐沸石,其硅铝摩尔比大于10,例如10至100。SSZ-39是在作为模板剂的某些环状或多环状季铵阳离子如N,N-二甲基-2,6-二甲基哌啶阳离子存在下使包含三价元素如铝和四价元素如硅的活性源的含水混合物结晶生产的。该合成可在SSZ-39晶种存在下进行,但未公开在合成混合物中存在氟离子。
该Zones等的专利中为SSZ-39列举的最高硅铝比是51。此外,在第5栏56-61行,Zones等教导可仅以硅铝酸盐形式直接合成SSZ-39,尽管暗示可利用标准的酸沥滤或螯合处理提高硅铝摩尔比,可能产生基本上不含铝的材料。但如后面对比例13中所示,利用酸沥滤或螯合使SSZ-39脱铝的尝试仅获得有限的成功,未能产生硅铝比大于100的材料。
在文章“Guest/Host Relationships in the Synthesis of theNovel Cage-Based Zeolites SSZ-35,SSZ-36and SSZ-39”,J.Am.Chem.Soc.,2000,122,p263-273中,Zone s和US 5,958,370的一些共同发明人论述了分子筛SSZ-35、SSZ-36和SSZ-39的合成和结构。根据该文章,SSZ-39与AEI骨架类型磷铝酸盐分子筛SAPO-18是同晶型的,并且它是用环状和多环状季化胺结构导向剂的氧化铝含量高的合成中常观察到的产物。具体地,该文章报道:虽然在用各种导向剂包括N,N-二甲基-2,6-二甲基哌啶化合物在硅铝摩尔比为30的情况下产生SSZ-39,但硅铝摩尔比增至40或更高时,产生其它结晶相如SSZ-35及MFI和MTW骨架类型材料。
迄今尚未报道过有AEI骨架类型的硅铝比大于100的硅铝酸盐和全硅分子筛。
本发明涉及一种新的有AEI骨架类型的高硅沸石的组合物和合成,其中的硅部分地或全部地被其它四价元素替代的其同系物及其各种应用,包括在含氧化合物至烯烃的转化中的应用。
发明内容
一方面,本发明在于一种有AEI骨架类型的结晶材料,其中所述材料在其焙烧、无水形式的组成包括以下摩尔关系:
            (n)X2O3∶YO2
其中X为三价元素如铝、硼、铁、铟、和/或镓;Y为四价元素如硅、锡、钛和/或锗;和n为0至小于0.01、如约0.001至小于0.01、例如约0.0025至约0.008、典型地为约0.003至约0.007。
适宜地,焙烧过的结晶材料含有约1至约100ppm、例如约5至约50ppm、如约10至约20ppm(重)的卤化物、优选氟化物。
另一实施方案中,所述结晶材料基本上不含骨架磷。
另一方面,本发明在于一种结晶材料的合成方法,所述结晶材料有AE I骨架类型而且包含YO2和非必需的X2O3,其中X为三价元素,Y为四价元素,该方法包括:
(a)制备能形成所述材料的反应混合物,所述混合物包含水源、四价元素Y的氧化物源、非必需的三价元素X的氧化物源和用于引导形成所述结晶材料的有机导向剂;
(b)使所述反应混合物保持在足以形成所述结晶材料的晶体的条件下,所述材料的组成包括以下摩尔关系:
            (n)X2O3∶YO2
其中n为0至小于0.01;和
(c)由(b)回收所述结晶材料。
适宜地,所述反应混合物还包含卤化物或含卤离子的化合物、如氟化物或含氟离子的化合物。
一种实施方案中,所述有机导向剂包括环状的胺或铵化合物,如N-取代的哌啶化合物,例如四烷基哌啶化合物,典型地N,N-二乙基-2,6-二甲基哌啶化合物。
适宜地,所述反应混合物还包含晶种,如包含有AEI、CHA、OFF或LEV骨架类型的微孔结晶硅铝酸盐的晶种。
再另一方面,本发明在于一种烯烃生产方法,包括使有机含氧化合物在含氧化合物转化条件下与有AEI骨架类型的结晶材料的催化剂接触的步骤,其中所述材料在其焙烧、无水形式的组成包括以下摩尔关系:
           (n)X2O3∶YO2
其中X为三价元素;Y为四价元素;和n为0至小于0.01、如约0.001至小于0.01、例如约0.0025至约0.008、典型地为约0.003至约0.007。
应理解术语“其焙烧、无水形式”在本文中用于意指已经在空气中于超过400℃的温度加热0.1至10小时而且未使之再水合的材料。
附图简述
图1为实施例1的合成时产物的X-射线衍射图。
图2为实施例1的焙烧时产物的X-射线衍射图。
具体实施方式
本发明涉及一种具有AEI骨架类型的新型结晶材料及其合成,特别是在氟化物介质中。此外,本发明还涉及该新型结晶材料的应用,例如在含氧化合物特别是甲醇至烯烃特别是乙烯和丙烯的转化过程中的应用。
本发明的AEI骨架类型结晶材料在其焙烧和无水形式是多孔的而且其组成包括以下摩尔关系:
            (n)X2O3∶YO2
其中X(如果存在的话)为三价元素如铝、硼、铁、铟、镓或其组合,典型地为铝;Y为四价元素如硅、锡、钛、锗或其组合,典型地为硅;和n为0至小于0.01、例如约0.001至小于0.01、如约0.0025至约0.008、典型地约0.003至约0.007。合成该材料中使用含卤离子的化合物的情况下,发现本发明AEI骨架类型结晶材料的焙烧形式通常含有痕量、典型地约1至约100ppm、例如约5至约50ppm、如约10至约20ppm(重)的卤化物(优选氟化物)。
一种实施方案中,本发明的AEI骨架类型结晶材料基本上不含有骨架磷。
按其合成时的形式,本发明AEI骨架类型结晶材料的组成包括以下摩尔关系:
            (n)X2O3∶YO2∶(m)R∶(x)F∶zH2O,
其中X、Y和n如前面所定义,R为至少一种有机导向剂,并且其中m在约0.01至约2、例如约0.1至约1的范围内,z在约0.5至约100、例如约2至约20的范围内,和x在约0至约2、例如约0.01至约1的范围内。因其在结晶过程中存在而与该材料结合的R和F组分通过后面更详细描述的后结晶方法至少部分地除去。典型地,合成时的本发明AEI骨架类型结晶材料仅含有少量的碱金属,一般使任何钾和钠的总量低于X2O3的50%(以摩尔计)。因此,除去有机导向剂(R)之后,在无事先的离子交换步骤除去碱金属阳离子的情况下该材料通常表现出催化活性。
在所期望的程度上而且取决于该材料的X2O3/YO2摩尔比,合成时的AEI骨架类型材料中的任何阳离子都可按本领域公知的技术通过与其它阳离子进行离子交换至少部分地被取代。优选的取代阳离子包括金属离子、氢离子、氢前体例如铵离子、及其混合物。特别优选的阳离子是使催化活性适合一定的烃转化反应的那些阳离子。这些包括氢、稀土金属和元素周期表第IIA、IIIA、IVA、VA、IB、IIB、IIIB、IVB、VB、VIB、VIIB和VIII族的金属。
本发明AEI骨架类型结晶材料可由含有水源、四价元素Y的氧化物源、非必需的三价元素X的氧化物源、如后面所述的至少一种有机导向剂(R)、和典型地卤化物或含卤离子的化合物如氟化物或含氟离子的化合物的反应混合物制备,所述反应混合物的组成按氧化物的摩尔比计在以下范围内:
  反应物   适用的   典型的
  H2O/YO2   0.1至20   2至10
  卤化物/YO2   0至2   0.01至1
  R/YO2   0.01至2   0.1至1
  X2O3/YO2   0至0.5   0至0.1
在四价元素Y为硅的情况下,适合的硅源包括硅酸酯例如原硅酸四烷基酯、煅制氧化硅如Aerosil(来自Degussa)、和氧化硅的胶体状态水性悬浮液例如E.I.du Pont de Nemours以商品名Ludox出售的。在三价元素X为铝的情况下,适合的铝源包括铝盐、尤其是水溶性盐如硝酸铝、以及水合氧化铝如勃姆石和假勃姆石。在卤化物为氟化物的情况下,适合的氟化物源包括氟化氢,虽然例如碱金属氟化物和有机导向剂的氟化物盐的更温和的氟化物源是优选的。
本文所用有机导向剂R适宜包括环胺或铵化合物,如N-取代的哌啶化合物,例如四烷基哌啶化合物,典型地N,N-二乙基-2,6-二甲基哌啶化合物。适合的化合物包括氢氧化物和盐如卤化物。
适宜地,该反应混合物的pH为约4至约14、如约4至约10、例如约6至约8。
结晶可在静止或搅拌状态下在适合的反应容器例如聚丙烯罐或Teflon衬里的或不锈钢的高压釜中在约50至约300℃例如约135至约175℃的温度下进行足以发生结晶的时间。形成结晶产物可能在任何场合下需要约30分钟至长达2周、如约45分钟至约240小时、例如约1.0至约120小时。持续时间取决于所用温度,通常温度越高所需水热处理时间越短。
存在基于反应混合物总重至少0.1ppm、如至少10ppm、例如至少100ppm、适宜至少500ppm的晶种可促进所述新沸石的合成。该晶种可以是与本发明结晶材料同质结构的,例如在先合成的产物,或者可以是异质结构的结晶材料,如LEV、CHA或OFF骨架类型分子筛。晶种可以在液体介质如水中的胶体状态悬浮液形式加入反应混合物中。胶体状态晶种悬浮液的生产及其在分子筛合成中的应用公开在例如2000年2月10日公开的WO 00/06493和WO 00/06494中,引入本文供参考。
典型地,该结晶产物在溶液中形成,可通过标准方法如离心分离或过滤进行回收。分离出的产物还可进行清洗,通过离心分离或过滤回收,然后干燥。
该结晶过程的结果是回收的结晶产物在其孔内含有至少一部分的在合成中所用的有机导向剂。因而,典型地以这样的方式处理合成时的材料以从分子筛中除去有机导向剂、在分子筛用于与原料接触的开放的微孔通道内留下活性催化部位。典型地在约200至约800℃的温度下在含氧气体存在下通过焙烧、或者实质上是加热包含模板剂的分子筛而完成。某些情况下,可能期望在低或零氧浓度的环境中加热该分子筛。此类过程可用于部分或完全除去晶体内孔体系中的有机导向剂。其它情况下,特别是有机导向剂较小的情况下,可通过常规的解吸过程实现从分子筛中完全或部分除去有机导向剂。
一旦合成出本发明的AEI骨架类型材料,则可通过与给成品催化剂提供附加硬度或催化活性的其它材料如粘合剂和/或基体材料组合将其配制入催化剂组合物。
可与本发明AEI骨架类型材料配混的材料可为各种惰性或催化活性材料。这些材料包括例如高岭土和其它粘土的组合物、各种形式的稀土金属、其它非沸石催化剂组分、沸石催化剂组分、氧化铝或氧化铝溶胶、氧化钛、氧化锆、石英、氧化硅或氧化硅溶胶、及其混合物。这些组分还有效地降低催化剂的总成本、起受热器的作用以有助于在再生过程中为催化剂屏蔽热、使催化剂致密和提高催化剂强度。与这些组分配混时,最终催化剂产品中所含沸石材料的量在总催化剂的10至90%(重)、优选总催化剂的20至70%(重)的范围内。
本文所述AEI骨架类型结晶材料可用于使气体和液体干燥;用于基于尺寸和极性进行选择性分子分离;用作离子交换剂;用作化学载体;用于气相色谱分析;和在有机转化反应中用作催化剂。本文所述AE I骨架类型结晶材料的适合催化应用的例子包括:(a)重质残油进料、循环油(cyclic stocks)和其它加氢裂化产物进料的加氢裂化,通常在选自元素周期表第6和8至10族的氢化组分存在下;(b)脱蜡(包括异构化脱蜡),以选择性地从沸点通常在大于177℃的烃类原料(包括提余油和润滑油基础油料)中除去直链烷烃;(c)烃类原料如石脑油、瓦斯油和渣油的催化裂化,通常在大孔裂化催化剂如Y沸石存在下;(d)有约2至21、优选2至5个碳原子的直链和支链烯烃低聚,生产适用于燃料即汽油或汽油调合物和化学品两者的中至重烯烃;(e)烯烃,特别是有4至6个碳原子的烯烃,尤其是正丁烯的异构化,生产异烯烃;(f)低级烷烃如甲烷改质成高级烃如乙烯和苯;(g)烷基芳烃如甲苯的歧化,生产二烷基芳烃如二甲苯;(h)用烯烃如乙烯和丙烯使芳烃如苯烷基化,生产乙苯和枯烯;(i)二烷基芳烃如二甲苯的异构化;(j)氮氧化物的催化还原和(k)单烷基胺和二烷基胺的合成。
特别地,本文所述AEI骨架类型结晶材料适用于含氧化合物至一或多种烯烃尤其是乙烯和丙烯的催化转化过程。本文所用术语“含氧化合物”定义为包括但不必限于脂族醇、醚、羰基化合物(醛、酮、羧酸、和碳酸酯等)、以及含有杂原子的化合物例如卤化物、硫醇、硫醚、胺、及其混合物。该脂族结构部分通常含有约1至约10个碳原子、如约1至约4个碳原子。
代表性的含氧化合物包括低级直链或支链脂族醇、其不饱和对应物、及其氮、卤素和硫类似物。适合的含氧化合物的例子包括甲醇;乙醇;正丙醇;异丙醇;C4-C10醇;甲乙醚;二甲醚;二乙醚;二异丙醚;甲硫醇;二甲硫醚;甲胺;乙硫醇;二乙硫醚;二乙胺;乙基氯;甲醛;碳酸二甲酯;二甲酮;乙酸;有包含约3至约10个碳原子的正烷基的正烷基胺、正烷基卤化物、正烷基硫醚;及其混合物。特别适合的含氧化合物是甲醇、二甲醚、或其混合物,最优选甲醇。本文所用术语“含氧化合物”仅指用作原料的有机物。加载至反应区的总进料可含有其它化合物如稀释剂。
本发明含氧化合物转化过程中,非必须地有一或多种稀释剂的包含有机含氧化合物的进料在反应区内于气相与包含本发明分子筛的催化剂在有效的工艺条件下接触以产生所要烯烃。或者,该过程也可在液相或气/液混合相进行。在该过程在液相或气/液混合相进行时,取决于催化剂和反应条件可以产生不同的原料至产物的转化速率和选择性。
存在稀释剂时,该稀释剂通常不与原料或分子筛催化剂组合物反应,并且一般用于降低原料中含氧化合物的浓度。适合稀释剂的非限制性实例包括氦气、氩气、氮气、一氧化碳、二氧化碳、水、基本不反应的烷烃(尤其是如甲烷、乙烷、和丙烷的烷烃)、基本不反应的芳族化合物、及其混合物。最优选的稀释剂是水和氮气,水是特别优选的。稀释剂可占总进料混合物的约1至约99%(摩尔)。
含氧化合物转化过程中所用温度可在宽范围内改变,如约200至约1000℃、例如约250至约800℃、包括约250至约750℃、适宜为约300至约650℃、典型地为约350至约600℃、特别是约400至约600℃。
可在很宽的压力范围内形成轻烯烃产品,尽管未必以最佳数值,包括但不限于自生压力和在约0.1kPa至约10MPa范围内的压力。适宜地,该压力在约7kPa至约5MPa的范围内、例如在约50kPa至约1MPa的范围内。上述压力是不计稀释剂(如果存在的话)在内的,并且意指涉及含氧化合物和/或其混合物的原料的分压。压力的下限和上限可能不利地影响选择性、转化率、结焦速率、和/或反应速率。
该过程应持续足够长时间以产生所要烯烃产品。该反应时间可在十分之几秒至数小时内改变。该反应时间主要取决于反应温度、压力、所选催化剂、重时空速、相(液相或气相)和所选工艺设计特性。
该过程可在很宽的原料重时空速(WHSV)范围内操作。WHSV定义为原料的重量(不包括稀释剂)/(小时·全部反应体积的分子筛催化剂(不包括惰性物和/或填料)的重量)。WHSV一般应在约0.01至约500hr-1的范围内、如在约0.5至约300hr-1的范围内、例如在约0.1至约200hr-1的范围内。
用于含氧化合物转化过程的反应器系统的一种实用的实施方案是连续再生的循环流化床反应器,类似于当今的流化催化裂化器。固定床一般不优选用于该过程,因为含氧化合物至烯烃的转化是高度放热的过程,需要备有中间冷却器或其它冷却装置的数级。该反应还因产生低压、低密度气体而导致高压降。
因为该催化剂必须频繁地再生,所以该反应器应能很容易地取出一部分催化剂送入再生器,在再生器内使催化剂经历再生介质如含氧气体例如空气以烧掉催化剂中的焦炭而恢复催化活性。应选择再生器内的温度、氧气分压、和停留时间的条件使再生催化剂上的焦炭含量达到低于约0.5%(重)。至少一部分再生催化剂应返回反应器。
一种实施方案中,在该催化剂用于使含氧化合物转化成烯烃之前,用二甲醚、C2-C4醛组合物和/或C4-C7烯烃组合物对催化剂进行预处理以在AEI骨架类型分子筛的多孔骨架内形成一体化烃类助催化剂。期望的是,该预处理在比含氧化合物反应区所用温度高至少10℃、如至少25℃、例如至少50℃的温度下进行,计划产生基于分子筛总重至少0.1%(重)、如至少1%(重)、例如至少约5%(重)的一体化烃类助催化剂。这种提高分子筛碳含量的事先处理称为“预合并(pre-pooling)”,进一步描述在2003年11月12日申请的美国专利申请序列号No.10/712668、10/712952和10/712953中,引入本文供参考。
下面结合以下实施例和附图更具体地描述本发明。
实施例中,X-射线衍射数据是用配备具有石墨单色仪的闪烁检测器的菲利普粉末X-射线衍射仪采用铜K-α辐射收集的。以0.02度的2θ(其中θ为布喇格角)和每步1秒的计数时间进行步进扫描记录衍射数据。晶面间距d以埃为单位进行计算,背景上各线的相对强度I/I0(其中I0为最强线的强度)通过峰强度积分确定。
实施例1
将Al(NO3)3·9H2O的23.5mg/ml水溶液0.143ml加入氢氧化N,N-二乙基-2,6-二甲基哌啶(DEDMP+OH-)的0.7236摩尔水溶液3.717ml中,然后加入1.200ml原硅酸四乙酯。所得混合物在室温下于密封容器内连续搅拌2小时直至所有原硅酸四乙酯都完全水解。向所得透明溶液中加入48wt%氢氟酸的水溶液0.117ml,立即产生浆液。通过搅拌并暴露于空气中使水和乙醇蒸发使该浆液进一步均质化直至得到稠浆混合物。在静止状态下使浆液混合物中多余的水进一步蒸发得到1317mg有以下摩尔组成的干凝胶固体:
SiO2∶0.00083Al2O3∶0.5DEDMP∶0.6F∶4.9H2O
在机械混合下向该固体中加入5mg(0.38wt%,基于干凝胶固体)Si/Al原子比为8.9且Si/Na原子比为26.4的晶种材料AEI。将所得固体混合物移至Teflon衬里5ml压力反应器中,在缓慢旋转(约60rpm)下于150℃结晶65小时。冷却后,通过离心分离回收所得固体,用蒸馏水清洗,和于100℃下干燥,得到373mg白色微晶固体(基于干凝胶重量收率为28.3%或基于SiO2收率为91.4%)。
合成时产物有图1中所示和下表1中所列X-射线衍射图。将一部分(100mg)合成时产物放在马弗炉内,在空气中于600℃加热15小时。焙烧后的材料外观是白色的。焙烧后材料的X-射线衍射图示于图2和表2中。X-射线数据证明该材料具有AEI骨架类型。
表1实施例1的合成时产物的X-射线衍射图
  2θ   d()   100I/I0
  9.7710.9013.1314.3515.1616.3717.3617.5919.4520.0620.5120.9721.7922.5123.5624.3924.5625.6326.3426.92   9.0498.1126.7366.1655.8415.4125.1055.0394.5604.4234.3264.2344.0763.9463.7733.6473.6213.4733.3813.309   100.06.73.83.610.839.332.544.61.415.915.534.218.44.11.327.614.17.012.216.7
  27.6228.4328.7730.0530.4631.0431.3931.6532.3932.8433.2533.4334.2035.0536.7937.0040.0341.9242.2243.7444.1544.59   3.2273.1373.1012.9712.9322.8792.8472.8252.7612.7252.6922.6782.6202.5582.4412.4282.2512.1532.1392.0682.0502.030   0.713.11.95.98.211.74.014.82.412.43.35.52.21.42.22.32.72.41.81.62.41.6
表2实施例1的焙烧时产物的X-射线衍射图
  2θ   d()   100I/I0
  9.6510.7813.1113.6614.1216.3017.1317.4319.2819.8920.2820.9221.6122.2223.4424.2225.5426.1626.3226.6227.4428.1729.6429.9830.3730.82   9.1578.1976.7506.4786.2665.4355.1725.0834.5994.4614.3754.2434.1083.9973.7923.6723.4853.4043.3833.3453.2483.1653.0122.9782.9412.899   100.021.811.34.41.210.816.315.63.03.35.610.46.30.40.59.61.12.02.85.30.64.50.81.23.12.7
  31.1631.5532.0132.5932.8933.1233.4334.1934.7135.2036.3336.9739.5539.9041.6641.9243.75   2.8682.8332.7942.7462.7212.7022.6792.6212.5832.5472.4712.4302.2772.2582.1662.1532.068   1.76.91.34.01.42.81.00.60.40.60.60.60.60.71.00.71.2
SEM分析显示出粒子有厚板形态,尺寸为约1.5μm厚、约2.5μm宽和约2.5μm长。EDS分析证明合成时材料含有不能测出(<5000ppm)量的氧化铝,Si/F原子比为14.8。对Si、Al、F进行元素分析得到合成时产物中Al:0.13%;Si:35.94%;和F:1.54%,相当于Si/Al比为266(硅铝摩尔比为532),Si/F比为15.8。
实施例2
将来自实施例1的合成时材料在30000psig(2.07×105kPa)下压成丸粒,然后研磨和筛分成在80和125μm之间。在21和22mg之间称取该筛分材料的两个分开试样,分别与90mg的100μm碳化硅混合。将这些混合物装入分开的底部用石英玻璃料密封的内径1.9mm的管中。将这两个管密封入加热的反应器区域(blocks)中,然后将该催化剂在流动空气中于540℃焙烧2小时除去有机模板剂。然后使焙烧过的催化剂在下述各种条件下与甲醇接触。
条件1:使催化剂与85%甲醇在N2中的混合物在540℃、约100重时空速(WHSV)、和40psia(276kPa)甲醇分压条件下接触。甲醇反应过程中,以定时的时间间隔收集和储存反应器流出物用于气相色谱分析。甲醇反应后,使催化剂经历在氮气中的50%氧气流,于550℃保持约90分钟以烧掉沉积的焦炭。通过红外光谱法定量分析反应器流出物中一氧化碳和二氧化碳的量以确定焦炭沉积量。
条件2:使催化剂与73%甲醇在N2中的混合物在540℃、约50重时空速(WHSV)、和40psia(276kPa)甲醇分压条件下接触。甲醇反应过程中,以定时的时间间隔收集和储存反应器流出物用于气相色谱分析。总反应时间为50分钟。甲醇反应后,使催化剂经历在氮气中的50%氧气流,于550℃保持约90分钟以烧掉沉积的焦炭。通过红外光谱法定量分析反应器流出物中一氧化碳和二氧化碳的量以确定焦炭沉积量。
条件3:使催化剂与95%甲醇在N2中的混合物在450℃、约400重时空速(WHSV)、和40psia(276kPa)甲醇分压条件下接触。总反应时间为70分钟。甲醇反应过程中,以定时的时间间隔收集和储存反应器流出物用于气相色谱分析。甲醇反应后,使催化剂经历在氮气中的50%氧气流,于550℃保持约90分钟以烧掉沉积的焦炭。通过红外光谱法定量分析反应器流出物中一氧化碳和二氧化碳的量以确定焦炭沉积量。
对这些反应计算各种烃类产物的选择性,结果示于表3中。以下所给值是整个反应中各单独产物的选择性的平均值。每个值都代表两个重复实验所得选择性的平均值。
表3
  条件1   条件2   条件3
  C1   1.3   2   0.6
  C2 0   0.2   0.3   0.1
  C2   26.5   27.3   18.5
  C3 0   0.2   0.2   0.2
  C3   48.6   47.5   51.1
  C4   17.6   17.4   22.7
  C5 +   5.1   4.8   6.4
  焦炭   0.4   0.6   0.7
实施例3
重复实施例1的方法,但制备规模是实施例1中的10倍,其它所有参数基本相同。第一次制备中,原硅酸四乙酯在氢氧化N,N-二乙基-2,6-二甲基哌啶中的水解进行2小时,而第二次制备中该水解进行16小时。第一次制备中所得产物是AEI和SFF骨架类型材料的混合物,而第二次制备中产生基本上纯的有AEI骨架类型的相。通过化学分析确定该纯AEI相的Si/Al比为233,有厚板形态,尺寸为约0.8μm厚、约1.0μm宽和约1.0μm长。
实施例4
将Al(NO3)3·9H2O的23.5mg/ml水溶液0.429ml加入氢氧化N,N-二乙基-2,6-二甲基哌啶(DEDMP+OH-)的0.7199摩尔水溶液3.737ml中,然后加入1.200ml原硅酸四乙酯。所得混合物在室温下于密封容器内连续搅拌2小时直至所有原硅酸四乙酯都完全水解。向所得透明溶液中加入48wt%氢氟酸的水溶液0.117ml,立即产生浆液。通过搅拌并暴露于空气中使水和乙醇蒸发使该浆液均质化直至得到稠浆混合物。在机械混合下向所得稠浆中以10%在水中的混合物形式加入2mg(0.15wt%,基于干凝胶固体)AEI晶种。该AEI晶种的Si/Al原子比为8.9且Si/Na原子比为26.4。在静止状态下使浆液混合物中多余的水进一步蒸发,考虑到晶种得到1141mg有以下摩尔组成的干凝胶固体:
SiO2∶0.00276Al2O3∶0.5DEDMP∶0.6F∶3.0H2O
将所得固体混合物移至Teflon衬里5ml压力反应器中,在缓慢旋转(约60rpm)下于150℃结晶65小时。冷却后,通过离心分离回收所得固体,用蒸馏水清洗,和于100℃下干燥,得到372mg白色微晶固体(基于干凝胶重量收率为32.6%或基于SiO2收率为91.2%)。X-射线分析证明该材料是基本上纯的有AEI骨架类型的相。
实施例5至11
重复实施例4的步骤,但改变Al(NO3)3·9H2O的23.5mg/ml水溶液的量生产有表4中所列SiO2/Al2O3摩尔组成(考虑到AEI晶种的存在)的干凝胶固体。
实施例12
将来自实施例4至11的合成时材料如实施例2中进行焙烧,然后使产物与80%甲醇在N2中的混合物在400℃、40psia(276kPa)的甲醇分压和约50的重时空速(WHSV)下接触。结果示于表4中,表中还包括US5,958,370的实施例21中用SSZ-39催化剂于400℃使甲醇转化成烯烃时所得结果。
                                             表4
  实施例   SiO2/Al2O3凝胶   C2=收率,wt%   C3=收率,wt%
  4   362   13.33   50.35
  5   518   13.66   51.15
  6   660   13.91   51.06
  7   790   14.19   51.65
  8   1020   13.89   51.51
  9   1122   14.23   51.93
  10   1218   13.74   51.73
  11   1306   14.30   51.85
  US5,958,370的实施例21   20.76   35.15
可见实施例4至11的结晶材料均获得比US5,958,370的实施例21中SSZ-39材料明显更高的丙烯收率与乙烯收率之比。
实施例13
按US5,958,370用氢氧化N,N-二乙基-2,6-二甲基哌啶作有机模板剂制备SSZ-39。化学分析显示SSZ-39试样含有2.53wt%Al、32.2wt%Si、和0.28wt%Na。因而Si/Al比为12.2。
将SSZ-39试样在空气中于600℃焙烧3小时除去有机模板剂。使焙烧后的试样在10%NH4NO3水溶液中悬浮两遍进行铵离子交换。然后使离子交换后的试样经过汽蒸(常压下在100%水蒸汽中700℃保持5小时)试图实现骨架脱铝。将0.5g此汽蒸后的试样再用60℃的25ml 1N盐酸处理3小时。滤出固体,用去离子水彻底洗涤,干燥,然后进行元素分析。化学分析显示经过汽蒸和酸沥滤的试样含有2.92wt%Al、36.0wt%Si、和0.00wt%Na。因而Si/Al比为11.8,与原试样相比基本上无变化。
因此,该实施例说明常规的汽蒸和酸沥滤技术不能有效提高有AEI骨架类型的硅铝酸盐的Si/Al比。
虽然已结合具体实施方案对本发明进行了描述和举例说明,但本发明本身产生本文中没有必要举例说明的改变对于本领域普通技术人员来说是能理解的。为此,要确定本发明的真实范围应仅以所附权利要求书为基准。

Claims (33)

1.一种有AEI骨架类型的结晶材料,其中所述材料在其焙烧、无水形式的组成包括以下摩尔关系:
            (n)X2O3∶YO2
其中X为三价元素;Y为四价元素;和n为0至小于0.01。
2.权利要求1的结晶材料,其中所述材料基本上不含骨架磷。
3.权利要求1或2的结晶材料,其中n为约0.001至小于0.01。
4.上述任一权利要求的结晶材料,其中n为约0.0025至约0.008。
5.上述任一权利要求的结晶材料,其中n为约0.003至约0.007。
6.上述任一权利要求的结晶材料,其中所述材料在其焙烧形式含有约1至约100ppm重量的卤化物。
7.上述任一权利要求的结晶材料,其中所述材料在其焙烧形式含有约5至约50ppm重量的卤化物。
8.上述任一权利要求的结晶材料,其中所述材料在其焙烧形式含有约10至约20ppm重量的卤化物。
9.权利要求6至8之任一的结晶材料,其中所述卤化物包括氟化物。
10.上述任一权利要求的结晶材料,其中X为铝、硼、铁、铟、镓或其组合。
11.上述任一权利要求的结晶材料,其中Y为硅、锡、钛、锗或其组合。
12.上述任一权利要求的结晶材料,其中Y为硅。
13.上述任一权利要求的结晶材料,其中X为铝。
14.权利要求12的结晶材料,其中n为0。
15.一种结晶材料的合成方法,所述结晶材料有AEI骨架类型而且包含YO2和非必需的X2O3,其中X为三价元素,Y为四价元素,该方法包括:
(a)制备能形成所述材料的反应混合物,所述混合物包含水源、四价元素Y的氧化物源、非必需的三价元素X的氧化物源和用于引导形成所述结晶材料的有机导向剂;
(b)使所述反应混合物保持在足以形成所述结晶材料的晶体的条件下,所述材料的组成包括以下摩尔关系:
                    (n)X2O3∶YO2
其中n为0至小于0.01;和
(c)由(b)回收所述结晶材料。
16.权利要求15的方法,其中所述反应混合物还包含卤化物或含卤离子的化合物。
17.权利要求15或16的方法,其中所述反应混合物还包含氟化物或含氟离子的化合物。
18.权利要求15至17之任一的方法,其中所述有机导向剂包括环胺或铵化合物。
19.权利要求15至18之任一的方法,其中所述有机导向剂包括取代的哌啶化合物。
20.权利要求15至19之任一的方法,其中所述有机导向剂包括四烷基哌啶化合物。
21.权利要求15至20之任一的方法,其中所述有机导向剂包括N,N-二乙基-2,6-二甲基哌啶化合物。
22.权利要求15至21之任一的方法,其中所述反应混合物的pH为约4至约10。
23.权利要求15至22之任一的方法,其中所述反应混合物有以下摩尔组成:
         H2O/YO2                      0.1-20
          卤化物/YO2                      0-2
          R/YO2                           0.01-2
         X2O3/YO2                    0-0.5
其中R为有机导向剂。
24.权利要求15至23之任一的方法,其中所述反应混合物有以下摩尔组成:
H2O/YO2        2-10
卤化物/YO2       0.01-1
R/YO2            0.1-1
X2O3/YO2      0-0.1
其中R为有机导向剂。
25.权利要求15至24之任一的方法,其中X为铝,和Y为硅。
26.权利要求15至25之任一的方法,其中所述反应混合物还包含晶种。
27.权利要求15至26之任一的方法,其中所述晶种以在液体介质中的胶体状态悬浮液形式加入所述反应混合物中。
28.权利要求15至27之任一的方法,其中所述晶种包含有AEI、LEV、CHA、或OFF骨架类型的结晶材料。
29.权利要求15至28之任一的方法,其中(b)中的条件包括温度为约50至约300℃。
30.权利要求15至29之任一的方法,其中(b)中的条件包括温度为约135至约185℃。
31.一种有机转化方法,包括使有机原料与权利要求1至14之任一的催化剂接触。
32.权利要求31的方法,其中所述原料包括含氧化合物,所述方法包括使所述含氧化合物转化成烯烃产品。
33.权利要求32的方法,其中所述有机含氧化合物包括甲醇、二甲醚或其混合物。
CNB2004800384824A 2003-12-23 2004-12-20 Aei型沸石、其合成及其在含氧化合物转化成烯烃中的应用 Active CN100475699C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US53259603P 2003-12-23 2003-12-23
US60/532,596 2003-12-23

Publications (2)

Publication Number Publication Date
CN1898158A true CN1898158A (zh) 2007-01-17
CN100475699C CN100475699C (zh) 2009-04-08

Family

ID=34738813

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800384824A Active CN100475699C (zh) 2003-12-23 2004-12-20 Aei型沸石、其合成及其在含氧化合物转化成烯烃中的应用

Country Status (7)

Country Link
US (1) US7008610B2 (zh)
EP (1) EP1701915B1 (zh)
CN (1) CN100475699C (zh)
EA (1) EA011395B1 (zh)
ES (1) ES2396233T3 (zh)
WO (1) WO2005063624A1 (zh)
ZA (1) ZA200603856B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591204A (zh) * 2013-10-31 2015-05-06 庄信万丰股份有限公司 Aei沸石合成
CN106745031A (zh) * 2016-11-28 2017-05-31 中海亚环保材料有限公司 一种高硅铝比ssz‑39沸石及其合成和应用
CN107635920A (zh) * 2015-04-16 2018-01-26 康斯乔最高科学研究公司 Aei沸石结构的硅铝酸盐形式的高产率制备方法,以及其在催化中的应用
CN107922206A (zh) * 2015-09-01 2018-04-17 东曹株式会社 Aei型沸石的制造方法
CN109071245A (zh) * 2016-02-01 2018-12-21 优美科股份公司及两合公司 用于直接合成含铁的aei-沸石催化剂的方法
CN109701618A (zh) * 2017-10-26 2019-05-03 中国石油化工股份有限公司 Aei复合分子筛及其合成方法
WO2019100947A1 (en) * 2017-11-22 2019-05-31 Basf Se A process for preparing an iron containing zeolitic material having an aei framework structure using a quaternary phosphonium cation
WO2019242618A1 (en) * 2018-06-20 2019-12-26 Basf Se Process for the production of a zeolitic material via interzeolitic conversion
CN110621622A (zh) * 2017-05-15 2019-12-27 巴斯夫公司 制备包含金属m并具有aei骨架类型的沸石材料的方法
CN111372676A (zh) * 2017-11-22 2020-07-03 巴斯夫欧洲公司 在具有受控速度分布的反应器中的沸石合成
CN113039157A (zh) * 2018-09-11 2021-06-25 巴斯夫公司 制备具有骨架类型aei的沸石材料的方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3981502A1 (en) 2007-04-26 2022-04-13 Johnson Matthey Public Limited Company Transition metal/zeolite scr catalysts
US7622417B2 (en) * 2008-03-21 2009-11-24 Exxonmobil Chemical Patents Inc. Synthesis and use of AEI structure-type molecular sieves
US8415519B2 (en) * 2008-12-17 2013-04-09 Exxonmobil Chemical Patents Inc. Methods for determining efficacy of metal oxide co-catalysts for oxygenates-to-olefins reactions
US7772335B1 (en) 2009-03-27 2010-08-10 Exxonmobil Chemical Patents Inc. Light olefin selective oxygenate conversion process using CHA framework type aluminosilicate
US20100331597A1 (en) * 2009-06-29 2010-12-30 Guang Cao Catalyst And Once-Through Reactor-Regenerator Process For Oxygenate To Olefins Production
US9334171B2 (en) 2010-06-18 2016-05-10 Basf Se Alkali-free synthesis of zeolitic materials of the LEV-type structure
JP5898187B2 (ja) * 2010-06-18 2016-04-06 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Lev型構造ゼオライト系材料とその製造方法
EP2582625B1 (en) 2010-06-18 2017-03-22 Basf Se Organotemplate-free synthetic process for the production of a zeolitic material of the lev-type structure, zeolitic material thus obtained and use thereof
KR102173965B1 (ko) * 2013-03-15 2020-11-04 존슨 맛쎄이 퍼블릭 리미티드 컴파니 배기 가스 처리를 위한 촉매
JP6278561B2 (ja) 2013-07-10 2018-02-14 国立大学法人広島大学 結晶性アルミノシリケート及びその製造方法
GB2556291B (en) * 2013-10-31 2018-11-07 Johnson Matthey Plc Composition comprising AEI zeolite crystals
KR102288100B1 (ko) * 2013-12-02 2021-08-11 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Aei 제올라이트의 합성
US9790145B2 (en) * 2013-12-06 2017-10-17 Exxonmobil Chemical Patents Inc. Production of C2+ olefins
JP6641705B2 (ja) * 2014-03-20 2020-02-05 三菱ケミカル株式会社 プロピレン及び直鎖ブテンの製造方法
JP6350160B2 (ja) * 2014-09-17 2018-07-04 東ソー株式会社 ゼオライトの製造方法
WO2016073329A1 (en) * 2014-11-03 2016-05-12 California Institute Of Technology Producing zeolite ssz-39 using isomeric mixtures of organic structure directing agents
WO2016080547A1 (ja) 2014-11-21 2016-05-26 三菱化学株式会社 Aei型ゼオライト、その製造方法及びその用途
JP2016098149A (ja) * 2014-11-21 2016-05-30 三菱化学株式会社 Aei型ゼオライトの製造方法
US9901909B2 (en) 2015-02-24 2018-02-27 California Institute Of Technology Processes for preparing zincoaluminosilicates with AEI, CHA, and GME topologies and compositions derived therefrom
BR112017019736A2 (pt) * 2015-03-15 2018-05-22 Sachem Inc método de preparação de um material cristalino que compreende óxidos de silício e de alumínio
ES2586770B1 (es) 2015-04-16 2017-08-14 Consejo Superior De Investigaciones Científicas (Csic) Método de síntesis directa del material cu-silicoaluminato con la estructura zeolítica aei, y sus aplicaciones catalíticas
KR20180004274A (ko) 2015-06-01 2018-01-10 캘리포니아 인스티튜트 오브 테크놀로지 신규한 cit-13 토폴로지의 결정질 게르마노실리케이트 물질 및 이를 제조하는 방법
US10828625B2 (en) 2015-06-01 2020-11-10 California Institute Of Technology Crystalline germanosilicate materials of new CIT-13 topology and methods of preparing the same
EP3336060B1 (en) * 2015-08-13 2020-01-29 Tosoh Corporation Method for producing aei zeolite
JP6759833B2 (ja) * 2015-08-19 2020-09-23 東ソー株式会社 Aei型ゼオライトの製造方法
JP6915259B2 (ja) * 2015-11-04 2021-08-04 三菱ケミカル株式会社 プロピレン及び直鎖ブテンの製造方法
GB2546365B (en) * 2015-11-11 2020-05-13 Johnson Matthey Plc Aluminosilicate AEI zeolite preparation
EP3411131B1 (en) * 2016-02-01 2020-03-11 Umicore AG & Co. KG Method for the removal of nitrogen oxides from exhaust gas by selective catalytic reduction in presence of an scr catalyst comprising a fe-aei zeolithic material essentially free of alkali metal
US10913053B2 (en) 2016-03-04 2021-02-09 California Institute Of Technology Germanosilicate compositions and methods of preparing the same
GB2603420B (en) * 2016-09-30 2022-11-02 Johnson Matthey Plc Synthesis of AEI and Cu-AEI zeolites
EP3625171B1 (en) 2017-05-15 2024-03-13 BASF Corporation A process for preparing a zeolitic material having framework type aei
RU2734633C1 (ru) * 2017-06-19 2020-10-21 Сачем, Инк. Четвертичный катион аммония на основе морфолиния и полученный с его использованием цеолит типа aei
CN111137903B (zh) * 2019-12-26 2022-11-01 华东师范大学 一种ecnu-25分子筛及其制备方法和应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095163A (en) 1991-02-28 1992-03-10 Uop Methanol conversion process using SAPO catalysts
NO304108B1 (no) * 1996-10-09 1998-10-26 Polymers Holding As En mikroporos silikoaluminofosfat-sammensetning, katalytisk materiale som omfatter denne sammensetningen og fremgangsmate for fremstilling derav, og bruken av disse for a fremstille olefiner fra metanol
TWI234556B (en) * 1997-07-23 2005-06-21 Mitsubishi Gas Chemical Co Catalysts for methanol conversion reactions
US5958370A (en) 1997-12-11 1999-09-28 Chevron U.S.A. Inc. Zeolite SSZ-39
US6812372B2 (en) * 2001-03-01 2004-11-02 Exxonmobil Chemical Patents Inc. Silicoaluminophosphate molecular sieve

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591204A (zh) * 2013-10-31 2015-05-06 庄信万丰股份有限公司 Aei沸石合成
CN107635920A (zh) * 2015-04-16 2018-01-26 康斯乔最高科学研究公司 Aei沸石结构的硅铝酸盐形式的高产率制备方法,以及其在催化中的应用
CN107922206A (zh) * 2015-09-01 2018-04-17 东曹株式会社 Aei型沸石的制造方法
US10556802B2 (en) 2015-09-01 2020-02-11 Tosoh Corporation Method for producing AEI zeolite
CN107922206B (zh) * 2015-09-01 2021-07-20 东曹株式会社 Aei型沸石的制造方法
CN109071245B (zh) * 2016-02-01 2022-03-04 优美科股份公司及两合公司 用于直接合成含铁的aei-沸石催化剂的方法
CN109071245A (zh) * 2016-02-01 2018-12-21 优美科股份公司及两合公司 用于直接合成含铁的aei-沸石催化剂的方法
CN106745031B (zh) * 2016-11-28 2019-05-10 中海亚环保材料有限公司 一种高硅铝比ssz-39沸石及其合成和应用
CN106745031A (zh) * 2016-11-28 2017-05-31 中海亚环保材料有限公司 一种高硅铝比ssz‑39沸石及其合成和应用
CN110621622A (zh) * 2017-05-15 2019-12-27 巴斯夫公司 制备包含金属m并具有aei骨架类型的沸石材料的方法
CN109701618A (zh) * 2017-10-26 2019-05-03 中国石油化工股份有限公司 Aei复合分子筛及其合成方法
CN109701618B (zh) * 2017-10-26 2021-08-03 中国石油化工股份有限公司 Aei复合分子筛及其合成方法
WO2019100947A1 (en) * 2017-11-22 2019-05-31 Basf Se A process for preparing an iron containing zeolitic material having an aei framework structure using a quaternary phosphonium cation
CN111372676A (zh) * 2017-11-22 2020-07-03 巴斯夫欧洲公司 在具有受控速度分布的反应器中的沸石合成
WO2019242618A1 (en) * 2018-06-20 2019-12-26 Basf Se Process for the production of a zeolitic material via interzeolitic conversion
CN112292348A (zh) * 2018-06-20 2021-01-29 巴斯夫欧洲公司 通过沸石间转化生产沸石材料的方法
US11529620B2 (en) 2018-06-20 2022-12-20 Basf Corporation Process for the production of a zeolitic material via interzeolitic conversion
CN113039157A (zh) * 2018-09-11 2021-06-25 巴斯夫公司 制备具有骨架类型aei的沸石材料的方法

Also Published As

Publication number Publication date
WO2005063624A1 (en) 2005-07-14
US20050197519A1 (en) 2005-09-08
CN100475699C (zh) 2009-04-08
EA200601199A1 (ru) 2006-12-29
US7008610B2 (en) 2006-03-07
EP1701915B1 (en) 2012-10-17
ZA200603856B (en) 2007-11-28
EP1701915A1 (en) 2006-09-20
ES2396233T3 (es) 2013-02-20
EA011395B1 (ru) 2009-02-27

Similar Documents

Publication Publication Date Title
CN100475699C (zh) Aei型沸石、其合成及其在含氧化合物转化成烯烃中的应用
CN1890178B (zh) 菱沸石型分子筛、其合成及其在含氧化合物转化成烯烃中的应用
CN100418881C (zh) 高二氧化硅菱沸石,它的合成和它在含氧化合物向烯烃转化中的应用
CN100577564C (zh) 菱沸石型分子筛、其合成及其在含氧化合物转化成烯烃中的应用
KR100935047B1 (ko) 결정질 알루미노실리케이트 제올라이트 조성물 : uzm-9
CN101056708A (zh) 合成硅铝磷酸盐分子筛的方法
CN1239930A (zh) 微孔结晶硅铝磷酸盐组合物,含它的催化材料及其应用
JP6988111B2 (ja) 酸素8員環ゼオライトの製造方法
JP6699336B2 (ja) Aei型アルミノケイ酸塩の製造方法、該aei型アルミノケイ酸塩を用いたプロピレン及び直鎖ブテンの製造方法
CN103842081B (zh) 用于将含氧化合物转化成烯烃的催化剂和制备所述催化剂的方法
KR20110044237A (ko) Izm-2 제올라이트 및 적어도 하나의 금속을 포함하는 촉매 및 탄화수소 전환시의 그 사용
CN101489674B (zh) Cha型分子筛的处理及其在含氧物转化成烯烃中的用途
JP7087636B2 (ja) ゼオライト触媒の処理方法及び低級オレフィンの製造方法
JP2021165226A (ja) プロピレン及び直鎖ブテンの製造方法
CN1011689B (zh) 结晶状镓磷酸盐组合物的制备方法
CN1027632C (zh) 含稀土五元环结构高硅沸石的制备方法
JP6798282B2 (ja) Aei型ゼオライトの製造方法
JP6977251B2 (ja) Aei型メタロケイ酸塩、その製造方法、及びそれを用いたプロピレン及び直鎖ブテンの製造方法
CN1016678B (zh) 结晶硅酸盐zsm-11之合成
CN101031361A (zh) 铝磷酸盐分子筛、其合成及用途
CN101076401A (zh) 结晶共生材料及其合成和在含氧化合物-烯烃转化中的用途
JPH05201721A (ja) ゼオライト型物質
JP2021147310A (ja) Con型ゼオライト、con型ゼオライトの製造方法、及び低級オレフィンの製造方法
JP2019136702A (ja) ゼオライト触媒及び該ゼオライト触媒を用いた低級オレフィンの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant