CN1822083A - 半导体器件、显示设备和电子装置 - Google Patents

半导体器件、显示设备和电子装置 Download PDF

Info

Publication number
CN1822083A
CN1822083A CNA2006100592230A CN200610059223A CN1822083A CN 1822083 A CN1822083 A CN 1822083A CN A2006100592230 A CNA2006100592230 A CN A2006100592230A CN 200610059223 A CN200610059223 A CN 200610059223A CN 1822083 A CN1822083 A CN 1822083A
Authority
CN
China
Prior art keywords
transistor
signal
pixel
current potential
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100592230A
Other languages
English (en)
Other versions
CN100565645C (zh
Inventor
木村肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of CN1822083A publication Critical patent/CN1822083A/zh
Application granted granted Critical
Publication of CN100565645C publication Critical patent/CN100565645C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2014Display of intermediate tones by modulation of the duration of a single pulse during which the logic level remains constant
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • G09G2300/0866Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • G09G2310/066Waveforms comprising a gently increasing or decreasing portion, e.g. ramp
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/861Repairing

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

当电阻负载反相器用于控制像素的发光/不发光时,随着形成电阻负载反相器的晶体管的性能变化,每个像素的发光也发生变化。作为像素中的反相器,N沟道晶体管和P沟道晶体管用于形成CMOS反相器。即使当形成CMOS反相器的晶体管性能变化并且反相器传输性能变化时,对控制像素的发光/不发光几乎没有影响,因此,可以消除每个像素的发光变化。而且,扫描线的信号电位用作反相器电位的一个电源,因此,可以提高像素的孔径比。

Description

半导体器件、显示设备和电子装置
技术领域
本发明涉及一种具有通过晶体管控制提供给负载的电流的功能的半导体器件,尤其涉及一种包括由亮度随电流变化的电流驱动型发光元件形成的像素的显示设备,及其信号线驱动电路。此外,本发明涉及一种该显示设备的驱动方法和一种在显示部分具有该显示设备的电子装置。
背景技术
近年来,其中像素由发光元件例如发光二极管(LED)形成的所谓自发光显示设备已经引起关注。作为用于这种自发光显示设备的发光元件,有机发光二极管(OLED)、有机EL元件、电致发光(EL)元件等等已经引起关注,而且已经被用于EL显示等等。发光元件例如OLED是自发光的发光元件,因此,该发光元件与液晶显示设备相比具有像素清晰度高、不需要背光以及响应速度快的优点。注意:发光元件的亮度是通过流过其中的电流值控制的。
作为表示这种显示设备灰度的驱动方法,存在数字法和模拟法。数字法通过数字控制来导通/关断发光元件从而表示灰度。在数字法的情况下,仅仅存在发光和不发光这两种状态,因此,仅仅可以表示两个灰度。因此,结合另一个方法,完成许多灰度。作为多个灰度的方法,经常使用时间灰度级法。数字的时间灰度法在每一个像素中的亮度均匀性优良,但是需要提高频率并且使功耗增加。另一方面,在模拟法的情况下,以模拟的方式来控制发光元件的光强度,或者以模拟的方式来控制发光元件的发光时间。控制光强度的模拟法容易受每个像素中薄膜晶体管的特性变化的影响,并且在每个像素中的发光也发生变化。另一方面,在非专利文献1中所述的是模拟时间灰度法的显示设备,其中以模拟方式控制发光时间,而且在每个像素中发光的均匀性优良(参见非专利文献1:SID 04 DIGEST第1394页到第1397页)。
非专利文献1中所述显示设备的像素包括由发光元件和用于驱动该发光元件的晶体管形成的反相器。驱动晶体管的栅极端是该反相器的输入端,驱动晶体管的漏极端是该反相器的输出端。然后,该反相器的输出输入到发光元件的阳极。当视频信号电压写入到像素中时,该反相器设置在导通和关断的中间。然后,在发光周期中,将三角波电压输入到该像素中,以控制该反相器的输出。也就是说,控制该反相器的输出,由此控制发光元件的发光/不发光,其中该反相器的输出是输入到发光元件阳极的电位。
这里,图10B示出电阻负载反相器,图10A示出电阻负载反相器的反相器传输特性。在图10A中的横坐标表示到电阻负载反相器输入端的输入电位Vin,纵座标表示电阻负载反相器输出端的输出电位Vout。该电阻负载反相器包括晶体管和电阻器,并且大功率电源电位Vdd输入到晶体管的源极端,其漏极端连接该电阻器的一个端。此外,低功率电源电位Vss输入到该电阻器的另一端。注意,这里Vss=0V。晶体管的栅极端是该电阻负载反相器的输入端,而晶体管的漏极端是该电阻负载反相器的输出端。
图10A所示的曲线1002显示电阻负载反相器的反相器传输特性,曲线1001显示在反相器中晶体管的供电容量高时电阻负载反相器的反相器传输特性,曲线1003显示在晶体管的供电容量低时电阻负载反相器的反相器传输特性。
也就是说,当输入电位足够高并且晶体管处于关断状态时,电阻负载反相器输出端的电位变为0V的电位,而当晶体管完全处于导通状态时,电阻负载反相器输出端的电位变为Vdd。
这里,通过使用电源电位Vdd、电阻器的电阻R和晶体管的源极-漏极电流Id将电阻负载反相器的输出Vout表示如下。
Vout=R×Id
此外,当操作处于饱和区时晶体管的源极-漏极电流Id表示如下。注意μ是晶体管的载流子迁移率,Cox是栅极绝缘膜的电容,W/L是晶体管的沟道宽度W和沟道长度L的比,并且Vth是晶体管的阈值电压。
Id = 1 2 × μ × Cox × W L × ( Vdd - Vin - | Vth | ) 2
因此,晶体管的供电容量随着μ、Cox、W/L、Vth等等的值而变化。因此,电阻负载反相器的反相器传输特性随着晶体管这些值的变化而变化。
电阻负载反相器的反相器传输特性的这种变化在使用发光元件作为电阻器的情况下也会发生。然后,即使在具有非专利文献1所述的像素的显示设备中,也存在如曲线1001、曲线1002或者曲线1003的电阻负载反相器的传输特性的像素。因此,从晶体管在饱和区导通到晶体管关断并且电阻负载反相器的输出电位变为Vx的时间,以及从输入端和输出端之间的部分变为传导到偏移消除(offset-cancelled)的电阻负载反相器的输入电位Vinv1、Vinv2和Vinv3在电阻负载反相器的输出电位变为Vx时分别变为输入电位Va1、Va2和Va3的时间,每个像素的电阻负载反相器传输特性变化不同。
因此,在用于在模拟时间内表示灰度的驱动方法的显示设备中,即使同样的灰度显示在像素之间也不同,并且无法实现清晰显示。
此外,在传统结构中,存在像素中的晶体管或者导线数目大、孔径比减小等等的问题。在高孔径比的像素中和低孔径比的像素中获得同样亮度的情况下,低孔径比的像素与高孔径比的像素相比更需要提高其发光元件的亮度。因此,在低孔径比的像素中,发光元件的退化发生得更快。此外,由于亮度提高,所以功耗也同样提高。
此外,当像素中晶体管或者导线的数目增加时,产量也会降低,而且显示面板的成本上升。
发明内容
考虑到上述原因,本发明的目的是提供模拟时间灰度法的显示设备,其中即使当电阻负载反相器的传输特性由于晶体管的特性变化而变化时,也可以抑制这些效果,并且可以显示清楚的灰度。此外,本发明的目的是提供具有高孔径比的像素的显示设备,并且提供发光元件的可靠性得以提高并且可以抑制显示面板成本增加的显示设备。
此外,本发明的目的是提供一种在显示部分具有上述显示设备的电子装置。
根据本发明,具有互补地导通/关断的N沟道晶体管和P沟道晶体管的CMOS反相器应用在像素中,用于控制选择另一行像素的信号电位用作CMOS反相器的一个电源电位。
本发明的半导体器件具有其栅极端连接到扫描线的第一晶体管;其中其源极端或漏极端之一连接到电源线的第二晶体管;其中其源极端或漏极端之一连接到不同于上述扫描线的另一扫描线的第三晶体管;和其中其一个电极连接到第二晶体管的栅极端和第三晶体管的栅极端而其另一个电极连接到信号线、并且第二晶体管的源极端或漏极端中的另一个以及第三晶体管的源极端或漏极端中的另一个连接到像素电极的电容器;第一晶体管的源极端或漏极端之一连接到第二晶体管的源极端或漏极端中的另一个以及第三晶体管的源极端或漏极端中的另一个;并且第一晶体管的源极端或漏极端中的另一个连接到第二晶体管的栅极端和第三晶体管的栅极端。
此外,根据本发明的半导体器件,在上述结构中,第一晶体管和第三晶体管是N沟道晶体管,第二晶体管是P沟道晶体管。
本发明的显示设备具有布置成矩阵的多个像素,至少一个像素提供具有P沟道晶体管和N沟道晶体管的CMOS反相器;连接在CMOS反相器输入端和输出端之间的开关;输入模拟电位的信号线;用于保持CMOS反相器输入端和信号线之间的电位差的电容器;以及发光元件,其中由CMOS反相器的输出来控制发光/不发光,并且用于控制至少另一个像素的开关的导通/关断的信号电位被用作CMOS反相器的一个电源电位。
根据本发明显示设备的另一种结构,N沟道晶体管用于上述结构中的开关。
根据本发明显示设备的另一种结构,P沟道晶体管用于上述结构中的开关。
本发明的显示设备具有其栅极端连接到扫描线的第一晶体管;其中其源极端或漏极端之一连接到电源线的第二晶体管;其中其源极端或漏极端之一连接到不同于上述扫描线的另一扫描线的第三晶体管;和其中其一个电极连接到第二晶体管的栅极端和第三晶体管的栅极端而其另一个电极连接到信号线的电容器;和其中像素电极连接到第二晶体管的源极端或漏极端中的另一个以及第三晶体管的源极端或漏极端中的另一个、并且第一晶体管的源极端或漏极端之一连接到第二晶体管的源极端或漏极端中的另一个以及第三晶体管的源极端或漏极端中的另一个的发光元件;并且第一晶体管的源极端或漏极端中的另一个连接到第二晶体管的栅极端和第三晶体管的栅极端。
此外,根据本发明的显示设备,在上述结构中,第一晶体管和第三晶体管是N沟道晶体管,第二晶体管是P沟道晶体管。
注意,本说明书中所述的开关可以用电子开关或机械开关。可以使用任何开关,只要可以控制电流。晶体管、二极管或者逻辑电路可以和它们一起使用。因此,在使用晶体管作为开关的情况下,晶体管仅仅作为开关来操作,因此对晶体管的极性(传导的类型)没有特别限制。然而,在希望截止电流小的情况下,希望使用具有小的截止电流的极性的晶体管。作为小截止电流的晶体管,具有带LDD区域的晶体管、具有多栅极结构的晶体管等等。此外,在作为开关的晶体管源极端的电位接近低电位侧电源电位(Vss、GND、0V等等)的情况下,希望使用N沟道晶体管。另一方面,在源极端操作时的电位接近高电位侧的电源电位(Vdd等等)的情况下,希望使用P沟道晶体管。这是因为可以提高栅极-源极电压的绝对值,因此容易地用作开关。注意,N沟道晶体管和P沟道晶体管都可以用于CMOS开关。
注意,在本发明中,连接的意思和电连接相同。因此,可以在其间设置另一个元件、开关等等。
注意,可以使用任何发光元件。可以使用任何显示元件例如EL元件(有机EL元件、无机EL元件或者包含有机物和无机物的EL元件)、用于场致发射显示(FED)的元件、是一种FED的SED(表面传导子发射体显示)、液晶显示设备(LCD)、等离子体显示设备(PDP)、电子文件显示设备、数字微镜装置(DMD)、或者压电陶瓷显示设备。
在本发明中,对可应用的晶体管的种类没有限制,并且可以应用使用以非晶硅和多晶硅为代表的非单晶半导体膜的薄膜晶体管(TFT)、用半导体基板或者SOI基板形成的MOS晶体管、结型晶体管、双极晶体管、使用有机半导体或者碳纳米管的晶体管及其它晶体管。此外,对在其上布置有晶体管的基板的种类没有限制,并且晶体管可以布置在单晶基板、SOI基板、玻璃基板、塑料基板等等之上。
在本说明书中,一个像素意味着色素(color element)的一个像素元件。因此,在由R(红色)、G(绿色)和B(蓝色)形成的全色显示设备的情况下,一个像素意味着是R色素像素、G色素像素和B色素像素中的任何一个。
注意,在本说明书中,布置成矩阵的像素包括像素布置成条纹的情况,其中纵条纹和横条纹一起组合布置成所谓的点阵形式,还包括在通过三种色素(例如RGB)完成全色显示的情况下、表示一个图像的最小元的三种色素的像素布置成所谓的三角形的情况。
注意,在本说明书中,半导体器件是指具有包括半导体元件(晶体管、二极管等等)的电路的器件。
注意,在本说明书中,发光元件的阳极和阴极是指当正向电压施加于发光元件时的电极。
本发明可以提供一种显示设备,其中即使当每个像素中像素反相器中的晶体管特性不同时,也可以减小该效果,并且可以显示清楚的灰度。
此外,像素中的孔径比提高,而且抑制发光元件退化的进展,因而可以提高可靠性。此外,产量提高,从而可以降低成本。
附图说明
图1是显示本发明像素结构的示图;
图2是说明具有本发明像素结构的显示设备的示图;
图3是显示具有本发明像素结构的显示设备的时序图的示图;
图4是显示本发明像素结构的示图;
图5是显示具有本发明像素结构的显示设备的时序图的示图;
图6是显示本发明像素结构的示图;
图7是显示具有本发明像素结构的显示设备的时序图的示图;
图8是显示本发明像素结构的示图;
图9是显示具有本发明像素结构的显示设备的时序图的示图;
图10A和10B都是显示本发明像素结构的示图;
图11A和11B都是显示本发明显示设备的像素结构的示图;
图12是说明周期性变化的波形的示图。
图13是说明具有发明像素结构的显示设备的示图;
图14是说明信号的上升和下降沿的延迟的示图。
图15A到15D都是显示适用于具有本发明像素结构的显示设备的缓冲器的示图。
图16A和16B都是显示适用于具有本发明像素结构的显示设备的缓冲器的示图。
图17示出适用于具有本发明像素结构的显示设备的D/A转换器电路的一个示例。
图18是显示适用于具有本发明像素结构的显示设备的D/A转换器电路的一个例子的示图;
图19A和19B是说明具有发明像素结构的显示面板的示图;
图20A和20B都是显示适用于具有本发明像素结构的显示设备的发光元件的例子的示图;
图21A到21C都是说明发光元件的发光结构的示图。
图22是利用滤色器执行全色显示的显示面板的横截面图。
图23A和23B是各个显示面板的局部横截面图。
图24A和24B是各个显示面板的局部横截面图。
图25A和25B是本发明各个显示设备的图案示图;
图26A和26B都是说明具有本发明像素结构的显示面板的示图;
图27A和27B是各个显示面板的局部横截面图。
图28A和28B是各个显示面板的局部横截面图。
图29A和29B是各个显示面板的局部横截面图。
图30A和30B是各个显示面板的局部横截面图。
图31A和31B是适用于本发明显示设备的信号线驱动电路的例子。
图32A和32B是适用于本发明显示设备的信号线驱动电路的例子。
图33是适用于本发明显示设备的信号线驱动电路的例子。
图34是适用于本发明显示设备的信号线驱动电路的例子。
图35A和35B是适用于本发明显示设备的信号线驱动电路的例子。
图36A和36B是适用于本发明显示设备的信号线驱动电路的例子。
图37是适用于本发明显示设备的信号线驱动电路的例子。
图38是适用于本发明显示设备的信号线驱动电路的例子。
图39是适用于本发明显示设备的信号线驱动电路的例子。
图40是适用于本发明显示设备的信号线驱动电路的例子。
图41A和41B是适用于本发明显示设备的信号线驱动电路的例子。
图42A和42B都是说明具有本发明像素结构的显示面板的示图;
图43是说明具有发明像素结构的显示设备的示图;
图44A到44H都是显示适用于具有本发明像素结构显示设备像素部分的电子装置的例子的视图;
图45是EL模块的例子;
图46是显示EL电视接收机主要结构的方框图;
图47是本发明适用的移动电话设备的例子。
图48是显示本发明像素结构的示图;
图49是显示具有本发明像素结构的显示设备的时序图的示图;
图50是显示本发明像素结构的示图;
图51是说明具有本发明像素结构的显示设备的示图;
图52是说明具有本发明像素结构的显示设备的示图;
图53是显示具有本发明像素结构的显示设备的时序图的示图;
图54是显示具有本发明像素结构的显示设备的时序图的示图;
图55是显示本发明像素结构的示图;
图56是说明具有本发明像素结构的显示设备的示图;
图57是显示本发明像素结构的示图;
图58是显示本发明像素结构的示图;
图59是显示本发明像素结构的示图;
图60是显示本发明像素结构的示图;
图61是显示本发明像素结构的示图;
图62A是显示本发明像素结构的示图;和
图62B是显示三角波形电位的示图。
图63是说明在写入周期内提供给信号线的信号和在发光周期内提供给信号线的电位之间关系的示图。
图64是说明在写入周期内提供给信号线的信号和在发光周期内提供给信号线的电位之间关系的示图。
具体实施方式
虽然将参考附图通过实施例模型和实施例充分地说明本发明,但是应当理解各种变化和改良对于本领域技术人员都将是显而易见的。因此,除非这种变化和改良脱离本发明的范围,否则它们都应该看作是包括在该范围内。
[实施例模型1]
在这个实施例模型中,说明本发明显示设备的像素结构及其操作原理。
首先,参考图1详细说明本发明显示设备的像素结构。这里,虽然仅仅示出布置在列方向上的两个像素,但是实际上多个像素在显示设备像素部分中的行方向和列方向上布置成矩阵。
像素具有驱动晶体管(第二晶体管)101、互补晶体管(第三晶体管)102、电容器103、开关晶体管(第一晶体管)104、发光元件105、扫描线(选择线)106、信号线(数据线)107和电源线108。注意,P沟道晶体管用于该驱动晶体管101,而N沟道晶体管用于互补晶体管102和开关晶体管104。
驱动晶体管101的第一端(源极端或漏极端之一)连接到电源线108,其第二端(源极端或漏极端中的另一个)连接到互补晶体管102的第二端(源极端或漏极端之一),并且驱动晶体管101的栅极端连接到互补晶体管102的栅极端。而且,驱动晶体管101和互补晶体管102的栅极端通过电容器103连接到信号线107,并且通过开关晶体管104连接到驱动晶体管101和互补晶体管102的第二端(源极端或漏极端中的每一个)。也就是说,开关晶体管104的第一端(源极端或漏极端之一)连接到驱动晶体管101和互补晶体管102的第二端(源极端或漏极端中的每一个),并且开关晶体管104的第二端(源极端或漏极端中的另一个)连接到驱动晶体管101和互补晶体管102的栅极端。因此,导通/关断开关晶体管104可以使得在每个驱动晶体管101和互补晶体管102的栅极端和第二端(源极端或漏极端之一)之间的部分传导/不传导。然后,信号输入到开关晶体管104栅极端连接的扫描线106,从而控制开关晶体管104的导通/关断。而且,驱动晶体管101和互补晶体管102的第二端(源极端或漏极端中的每一个)连接到发光元件105的阳极。而且,发光元件105的阴极连接到供应低电源电位Vss的导线(阴极)109。注意,以提供给电源线108的电源电位Vdd为基础,Vss是满足Vss<Vdd的电位。例如,可以使用Vss=GND(地电位)。
而且,互补晶体管102的第一端(源极端或漏极端中的另一个)连接到另一行像素中的扫描线106A。这里,驱动晶体管101是用于驱动发光元件105的晶体管,而互补晶体管102是极性相对于驱动晶体管101反相的晶体管。也就是说,当扫描线106A的信号是L电平时,驱动晶体管101和互补晶体管102形成反相器从而互补地导通/关断。
然后,详细说明图1中的像素结构的操作原理。
在信号写入到像素的周期中,模拟信号电位提供给信号线107。模拟信号电位对应于视频信号。然后,当视频信号写入到像素时,H电平信号输入到扫描线106,以导通开关晶体管104。注意,这时,L电平信号提供给扫描线106A,用于选择另一行像素。因此,当信号写入到像素时,驱动晶体管101和互补晶体管102作为反相器操作。注意,当作为反相器操作时,驱动晶体管101和互补晶体管102的栅极端之间的连接点变为反相器的输入端110,而驱动晶体管101和互补晶体管102的第二端之间的连接点变为反相器的输出端111。而且,当作为反相器操作时,驱动晶体管101和互补晶体管102的第一端是源极端,而其第二端是漏极端。
这样,当开关晶体管104导通时,反相器的输入端110和输出端111之间的部分变为传导的,而且电流流向驱动晶体管101、互补晶体管102和发光元件105,而电容器103释放或者积聚电荷。
因此,反相器是偏移消除的。注意,偏移消除是指使输入端110和输出端111之间的部分传导,从而使输入电位和输出电位一致,而且输入端110的电位变为反相器的逻辑阈值电位Vinv。因此,逻辑阈值电位Vinv理论上是反相器的L电平和N电平输出的中间电位。
注意,反相器输出的H电平电位是电源线108的电源电位Vdd,而反相器的L电平电位是提供给扫描线106A的L电平电位。而且,基于导线109的电位,设置将作为反相器的H电平输出的电源电位Vdd以及将作为反相器的L电平输出的提供给扫描线106和扫描线106A的信号的L电平电位。然后,当反相器的输出是H电平时,发光元件105发光,并且当反相器的输出是L电平时,发光元件105不发光。
也就是说,在发光元件105开始发光时电压是VEL的情况下,反相器的L电平电位(提供给扫描线106或者扫描线106A的信号的L电平电位)要求低于Vss+VEL。而且,反相器的H电平要求高于Vss+VEL
注意,当反相器的L电平电位低于导线109的电位时,反向偏压施加于发光元件105。因此,可以按期望地抑制发光元件105的退化。
注意,电容器103中的电荷释放或者积聚决于电容器103中最初积聚的电荷和提供给信号线107的电位之间的关系。在电容器103完全放电或者电荷积聚后,在电容器103中积聚相应于信号线107和逻辑阈值电位Vinv之间的电位差(电压Vp)的电荷。然后,扫描线106的信号为L电平,以关断开关晶体管104,并且在电容器103中保持电压Vp。
注意,在写入周期中,导线(阴极)109的电位可以设置为Vss2。Vss2是满足Vss<Vss2的电位,当反相器是偏移消除型时,施加给发光元件105的电压设置为小于发光元件105的正向阈值电压VEL,也就是说,设定为Vinv-Vss2<VEL。这样,在写入周期中,可以防止产生由于发光元件105发光引起的显示缺陷。而且,在写入周期中几乎没有电流可以流向发光元件,因此,可以减小功耗。
此外,Vss2可以提高到给发光元件105施加反相偏压。通过施加反相偏压,可以提高发光元件105的可靠性,而且可以烘焙和切割在发光元件105中的故障部分。
注意,如果电流不流向导线109,也可以使用其它的方法。例如,导线109可以是浮置状态。结果,电流不流向发光元件105。可选择地,可以在反相器的输出端111和导线109之间设置开关。通过控制开关,电流不能流向发光元件105。
例如,如图55所示,驱动晶体管101的第一端(源极端或漏极端之一)可以通过开关5501连接到电源线108。然后,在对像素写入信号的周期中,仅仅在将信号写入该行像素的周期中,开关5501导通。因此,不进行写入的像素行在信号写入另一行像素的周期中不会发光,从而防止有缺陷的图像,而且还减小功耗。注意在这种结构中,在发光周期中,开关5501处于导通状态。
这样,完成将视频信号写入像素中。
注意,在将视频信号写入像素之后,以在将视频信号写入像素时提供给信号线107的模拟信号电位为基础,根据信号线107的电位变化来控制反相器的输出电平。也就是说,如果在将信号写入像素的周期中,信号线107的电位比d将视频信号写入像素时的模拟信号电位更高,则反相器的输出为L电平,而如果信号线107的电位比将视频信号写入像素时的模拟信号电位更低,则反相器的输出为H电平。
这是因为当将视频信号写入像素时,电容器103保持电位差(Vp),因此,信号线107的电位比将视频信号写入像素时的模拟信号电位更高,反相器输入端110的电位也比将视频信号写入像素时的输入端110的电位更高,因此,驱动晶体管101关断,互补晶体管102导通,反相器的输出为L电平。另一方面,如果在将信号写入像素的周期中信号线107的电位比将视频信号写入像素时的模拟信号电位更低,则反相器的输入端110的电位也比将视频信号写入像素时输入端110的电位更低,因此驱动晶体管101导通,互补晶体管102关断,反相器的输出为H电平。
因此,在像素的发光周期中,在扫描线(扫描线106、扫描线106A等等)为L电平时,提供给信号线107的电位以模拟的方式变化,从而控制像素中反相器的输出电平。因此,以模拟方式控制电流流向发光元件105期间的时间,以表示灰度。
而且,互补晶体管102的第一端(源极端或漏极端之一)连接到扫描线106A,因此,可以减少导线数目,从而提高孔径比。因此,可以提高发光元件105的可靠性。而且,产量提高,从而可以抑制显示面板的成本。
随后,对在像素的发光周期中施加给信号线107的电位进行说明。施加给信号线107的电位可以和具有周期性变化的波形的模拟电位一起使用。
例如,在发光周期中,以模拟方式从低电位变到高电位的电位施加给信号线107。例如,如图12所示的波形1201,电位可以线性地提高。注意,这种波形还被称为锯齿波。
此外,也可以提供以模拟方式从高电位变到低电位的电位。例如,如波形1202,电位可以线性地降低。
此外,还可以使用结合上述波形的波形。也就是说,例如,作为波形1203,可以提供从低电位线性地升高到高电位并从高电位降低到低电位的电位。注意,这种波形1203以下称为三角波电位。此外,作为波形1204,可以提供从高电位线性地降低到低电位并从低电位线性地升高到高电位的三角波电位。
此外,施加给信号线107的电位可以不线性变化。作为波形1205,可以提供相应于全波整流电路一个周期的输出波形的波形1205的电位,或可以提供其中垂直翻转波形1205的波形1206的电位。此外,还可以提供波形1208或者波形1209的电位。
通过这种波形,可以自由地设置对视频信号的发光时间。因此,还可以进行伽马校正等等。
此外,在像素的发光周期中,可以连续地提供波形1201、波形1202、波形1203、波形1204、波形1205、波形1206、波形1208或者波形1209的多个脉冲。例如,如波形1207所示,可以在像素的发光时间内连续提供两次波形1201的脉冲。
这样,发光时间可以分成一个帧。结果,看起来提高了帧频率,因此可以防止屏幕闪烁。
因此,通过在像素中写入模拟信号时施加给信号线107的模拟信号电位,可以进行像素的模拟时间灰度显示。注意,随着灰度的数量变得更小,模拟信号电位降低,而随着灰度变得更高,模拟信号电位提高。
这是因为在像素发光周期中提供的三角波电位和在将信号写入像素的周期中输入到像素中的模拟信号电位之间的高低关系决定了由驱动晶体管101和互补晶体管102形成的反相器的输出电平。当在像素发光周期中提供的三角波电位比在将信号写入像素的周期中输入到像素中的模拟信号电位更低时,反相器的输出变为H电平,从而发光。因此,随着在将信号写入像素的周期中输入到像素的模拟信号电位变得更高,模拟信号电位高于在像素发光周期中提供的三角波电位的周期变长。因此,发光周期同样变长。因此,灰度的数量同样增加。另一方面,在将信号写入像素的周期中输入像素的模拟信号电位变低时,模拟信号电位高于在像素发光周期中提供的三角波电位的周期变短。因此,发光周期同样变短。因此,灰度的数量同样减少。
注意,在本实施例模型中所述的像素不局限于图1的结构,互补晶体管102的第一端(源极端或漏极端之一)可以连接到任意另一行的像素的扫描线。例如,如图60所示,互补晶体管102的第一端(源极端或漏极端之一)可以连接到扫描线106B,用于控制相邻两行像素中开关晶体管的导通/关断。
参考图2对在像素部分中具有图1中的像素结构的显示设备进行说明。在图2中的显示设备具有信号线驱动电路201、扫描线驱动电路202和具有多个像素204的像素部分203。像素204设置成对应于布置在行方向上的扫描线(选择线)S1到Sm和布置在列方向上的信号线(数据线)D1到Dn的矩阵。
像素204具有驱动晶体管(第二晶体管)205、互补晶体管(第三晶体管)206、电容器207、开关晶体管(第一晶体管)208、发光元件209、扫描线Si(S1到Sm之一)、信号线Dj(D1到Dn之一)和电源线Vj(V1到Vn之一)。注意,P沟道晶体管用于驱动晶体管205,而N沟道晶体管用于互补晶体管206和开关晶体管208。注意,像素204显示了布置在像素部分203中的多个像素中的一个像素。
驱动晶体管205的第一端(源极端或漏极端之一)连接到电源线Vj,其第二端(源极端或漏极端中的另一个)连接到互补晶体管206的第二端(源极端或漏极端之一),并且驱动晶体管205的栅极端连接到互补晶体管206的栅极端。此外,驱动晶体管205和互补晶体管206的栅极端通过电容器207连接到信号线Dj,并且通过开关晶体管208连接到驱动晶体管205和互补晶体管206的第二端(源极端或漏极端中的每一个)。也就是说,开关晶体管208的第一端(源极端或漏极端之一)连接到驱动晶体管205和互补晶体管206的第二端(源极端或漏极端中的每一个),并且开关晶体管208的第二端连接到驱动晶体管205和互补晶体管206的栅极端。因此,导通/关断开关晶体管208可以使得在驱动晶体管205和互补晶体管206的栅极端和第二端(源极端或漏极端中的每一个)之间的部分传导/不传导。然后,将信号输入到开关晶体管208的栅极端连接的扫描线Si,由此控制开关晶体管208的导通/关断。此外,驱动晶体管205和互补晶体管206的第二端(源极端或漏极端中的每一个)连接到发光元件209的阳极。此外,发光元件209的阴极连接到被提供以低电源电位Vss的导线(阴极)210。注意,Vss是根据施加给电源线Vj的电源电位Vdd满足Vss<Vdd的电位。例如,可以使用Vss=GND(地电位)。
此外,互补晶体管206的第一端连接到另一行像素的扫描线S(i+1)。注意,在将互补晶体管206的第一端连接到扫描线用于选择后续行像素的情况下,如图2所示的显示设备,除了扫描线S1到Sm之外,仅仅还可以提供向最末行像素的互补晶体管第一端提供电位的导线Sx。
此外,施加给电源线V1到Vn的电源电位不局限于Vdd,并且,例如在由RGB色素形成的全色显示的情况下,也可以改变施加给各个像素用于显示RGB的每个色素的电源电位。
这里,参考图43对具有向其提供不同于R、G和B色素的每个像素列的电源电位的电源线的情况进行说明。
图43是显示图2中一部分像素部分203的示图。除了电源线之外,图43所示像素结构与图2中的像素204结构相同,因此,省略驱动晶体管(第二晶体管)、互补晶体管(第三晶体管)、电容器、开关晶体管(第一晶体管)和形成每个像素的发光元件的附图标记。因此,关于形成像素的这些元件的附图标记,参见图2及其说明。在图43中,第i行(1到m行之一)像素具有电源线Vr、Vg和Vb。然后,在R色素的像素列中,驱动晶体管205的第一端连接到Vr,在G色素的像素列中,驱动晶体管205的第一端连接到Vg,在B色素的像素列中,驱动晶体管205的第一端连接到Vb。在发光周期中,将用于向R色素的像素列的发光元件209提供所需电流的电位Vdd1施加给电源线Vr。在发光周期中,将用于向G色素的像素列的发光元件209提供所需电流的电位Vdd2施加给电源线Vg。在发光周期中,将用于向B色素的像素列的发光元件209提供所需电流的电位Vdd3施加给电源线Vb。因此,可以为每个色素设置施加于发光元件209的电压。结果,可以应用不同于发光元件的每个发光颜色的电压。因此,可以单独控制发光元件每个发光颜色的亮度。注意,色素不局限于RGB,也可以使用R(红)、G(绿)、B(蓝)和W(白)四种色素来进行全色显示。在这种情况下,可以类似地为每种颜色改变施加于发光元件的电压。
然后,参考图2和3对本发明显示设备的操作原理进行说明。图3是显示图2中显示设备的像素部分203中的像素列(第j列)的时序图的示图。注意,布置在像素部分203中的多个像素具有和像素204相类似的结构,因此,用和像素204相同的附图标记来说明每个像素的驱动晶体管、互补晶体管、电容器、开关晶体管和发光元件。
如图3所示,在写入周期中,模拟信号电位输入到第j列像素的数据线(信号线Dj)。然后,在将信号写入第i行像素的周期Ti中,当将脉冲信号(H电平)输入到第i行选择线(扫描线Si)时,第i行像素的开关晶体管208导通,并且电流流向驱动晶体管205、互补晶体管206和发光元件209。注意,这时,第(i+1)行的选择线(扫描线S(i+1))保持为L电平。
然后,进行第i行像素的电容器207的电荷积聚或者释放。也就是说,根据最初积聚在电容器207中的电荷与施加给数据线(信号线Dj)的电位(Va)之间的关系,进行电荷的积聚或者释放。
然后,完成电荷在电容器207中的积聚或者释放,然后,流到驱动晶体管205、互补晶体管206和发光元件209的电流变为恒定的。这时,可能不能完全达到稳定状态。需要获得用于控制由驱动晶体管205和互补晶体管206(驱动晶体管205和互补晶体管206的第二端电位)形成的反相器的输出电平所要求的输入电位(驱动晶体管205和互补晶体管206的栅极电位)。优选地,在这时候,驱动晶体管205和互补晶体管206可以在饱和区域内工作。
然后,选择线(扫描线Si)为L电平,以关断开关晶体管208。然后,电容器207保持在控制反相器的输出电平(驱动晶体管205和互补晶体管206的第二端电位)所需的反相器输入电位(驱动晶体管205和互补晶体管206的栅极电位)与在关断开关晶体管208的时刻施加给数据线(信号线Dj)的模拟信号电位之间的电位差。
这样,在将信号写入第i行像素的周期Ti中,将模拟信号电位Va从数据线(信号线Dj)提供给第i行和第j列像素,从而写入视频信号。然后,在将信号写入第i行像素的周期Ti中,各个模拟信号电位从数据线(信号线D1到Dn))提供给每列像素,从而在每列的第i行的每个像素中写入视频信号。
然后,在将信号写入第(i+1)行像素的周期(Ti+1)中,将脉冲信号(H电平)施加给选择线(信号线S(i+1)),将电位(Vb)施加给第(i+1)行和第j列像素的数据线(信号线Di),并且将视频信号写入第(i+1)行和第j列的像素。注意,这时,将各个模拟信号电位从数据线(信号线D1到Dn)提供给每个像素列,以将视频信号写入到每列的第(i+1)行的每个像素。在这时候,第(i+2)像素行的选择线(扫描线S(i+2))为L电平。
这样,当脉冲信号(H电平)输入到各个像素行的选择线(扫描线S1到Sm)、而且视频信号写入每个像素时,在一帧周期中将信号写入像素部分203的周期结束。
注意,在图3中,将脉冲信号依次从S1、S2、S3...到Sm施加给选择线(扫描线S1到Sm),而且从第一行、第二行、第三行...到第m行中选择像素。然而,本发明并不局限于此。可以依次从Sm、Sm-1、Sm-2...到S1施加脉冲信号给选择线(扫描线S1到Sm),因此可以从第m行、第(m-1)行、第(m-2)行...到第一行中选择像素。如果这样进行扫描,就可以防止由于施加给选择线(扫描线S到Sm)的信号迟钝而引起写入到像素的信号的缺陷。
这里,图53显示在图3中施加给第i行选择线(扫描线Si)和第(i+1)行选择线(扫描线S(i+1))的脉冲信号发生迟钝的情况下的时序图。在脉冲信号中发生迟钝时,信号的上升和下降沿延迟。因此,甚至经过了将信号写入第i行像素的周期Ti,选择线(扫描线Si)电位也不下降到用于关断开关晶体管208的L电平电位。因此,第(i+1)行选择线(扫描线S(i+1))的信号开始上升,而开关晶体管208仍然导通。然后,作为反相器的L电平输出电位标准的电位改变,因此反相器特征改变。因此,将信号写入像素不能正常进行。
然后,图54显示在像素的扫描方向反向时施加给第i行选择线(扫描线Si)和第(i+1)行选择线(扫描线S(i+1))的脉冲信号中发生迟钝的情况下的时序图。在这种情况下,从第m行将信号写入像素,因此,在将信号写入第(i+1)行像素以后,进行第i行像素的写入。也就是说,在将脉冲脉冲信号施加给第(i+1)行选择线(扫描线S(i+1))之后,将脉冲信号施加给第i行选择线(扫描线Si)。这里,施加给第(i+1)行选择线(扫描线S(i+1))的脉冲信号的下降延迟,在将信号写入第i行像素的周期Ti的前一半中,作为反相器的L电平输出电位的标准的电位改变,因此反相器特征改变。然而,在周期Ti的后一半,作为反相器输出电位的标准的L电平电位变为正常。因此,可以正常地进行将信号写入像素。
随后,在发光周期中,将三角波电位施加给数据线(信号线D1到Dn)。然后,在第i行和第j列像素中,当数据线(信号线Dj)为比Va更高的电位时,发光元件209保持不发光状态,而在数据线(信号线Dj)的电位是比Va更低的电位的周期(Ta)中,发光元件209发光。此外,在第(i+1)行和第j列像素中,发光元件209在周期(Tb)中类似地发光。
注意,在完成将信号写入像素的周期以后,在将高于写入模拟信号时的模拟信号电位的电位施加给数据线(信号线D1到Dn之一)的周期中,发光元件209不发光,并且当电位变为低于写入信号时的模拟信号电位时,发光元件209发光。其详细原理与参考图1的像素结构所作的说明相同。因此,这里省略说明。
注意,在将信号写入像素的周期和像素的发光周期之间,施加给阴极(导线210)的低电源电位可以不同。如图3所示,在将信号写入像素的周期中的阴极(导线210)电位可以优选高于在发光周期中阴极(导线210)的电位。也就是说,在将信号写入像素的周期中的阴极(导线210)的电位是Vss2,而在发光周期中的阴极(导线210)的电位是Vss。那么,这时,Vss2>Vss。例如,可以使用Vss=GND(地电位)。
这样,通过在将信号写入像素的周期中设定更高的阴极(导线210)电位,可以防止发生由于发光元件209发光所引起的显示缺陷。此外,可以减小在将信号写入像素的周期中的功耗。
此外,通过任意设置阴极(导线210)的电位,在将信号写入像素的周期中,电流不会流向发光元件209。防止了在信号写入周期中发光元件209的发光,因此可以获得图像的正确灰度,而且还可以进一步减小功耗。例如,设定施加给电源线V1到Vn的电位和施加给扫描线S1到Sm或者冗余导线Sx的电位之间的中间电位。也就是说,该电位是由驱动晶体管205和互补晶体管206形成的反相器的理想逻辑阈值电位。当阴极(导线210)的电位设置为反相器的理想逻辑阈值电位时,即使对于每个像素反相器传输特性变化一定的程度,也存在发光元件209的正向阈值电压VEL。因此,电流不流向发光元件209,并且阴极(导线210)电位的幅度小,因此功耗没有这么大。
此外,连接到发光元件209的阴极的导线在信号写入周期内可以连接到另一导线。例如,如图52所示,发光元件209的阴极可以通过第一开关5201连接到阴极(导线210)和通过第二开关5202连接到第二导线5203。然后,用于控制第一开关5201和第二开关5202导通/关断的各个控制信号是彼此反相的信号。在图52的结构中,在控制信号通过反相器5204输入到第一开关5201的同时,控制信号直接输入到第二开关5202。也就是说,控制信号的电平被反相以便输入到第一开关5201。这样,发光元件209的阴极可以连接导线210或第二导线5203。因此,在信号写入周期中,发光元件209的阴极可以连接到第二导线5203,对该第二导线5203供应比提供给导线210的电位Vss更高的电位,从而防止有缺陷的图像,而且功耗可以减小。
而且,通过使发光元件209的阴极为浮置状态,而不是改变阴极(导线210)的电位,可以获得图像的正确灰度,而且可以减小在信号写入周期中的功耗。例如,如图51所示,发光元件209的阴极通过开关5101连接到阴极(导线210),开关5101导通,从而向发光元件209的阴极提供低电源电位Vss,并且开关5101关断,从而使发光元件209的阴极可以为浮置状态。注意,除发光元件209的阴极通过开关5101连接到导线210以外,像素的其它结构与图2中的相同,因此,参见图2中的详细说明。
这样,在发光周期中,将三角波电位提供给所有像素的信号线D1到Dn,根据在写入周期中写入模拟信号时每个模拟信号的电位来设定发光元件209的发光时间。这样,可以实现模拟时间灰度显示。因为以模拟的形式控制发光时间,所以不会像以数字模式控制发光时间那样出现假轮廓。因此,可以实现没有图像质量缺陷的清晰显示。
注意,用于控制发光元件209发光/不发光的反相器输出电平取决于在写入周期中提供给数据线(信号线D1到Dn)的模拟信号电位是高于还是低于在上述发光周期中输入到数据线(信号线D1到Dn)的三角波电位,由此以数字方式控制。因此,可以在驱动晶体管205和互补晶体管206的很小效应的性能变化的情况下来控制发光元件209的发光/不发光。也就是说,可以改善每个像素的发光变化。
特别地,像素中的反相器由为P沟道晶体管的驱动晶体管205和为N沟道晶体管的互补晶体管206形成,因此,即使当每个像素中的驱动晶体管205和互补晶体管206的晶体管特性改变和反相器传输特性改变一定的程度时,本实施例模型中所述的像素结构也可以在具有这些很小效应的情况下来控制发光元件209的发光/不发光。
这里,图11B显示为P沟道晶体管和N沟道晶体管的CMOS反相器,而图11A显示其性能。图11A中的横坐标表示输入到CMOS反相器输入端的输入电位Vin,纵座标表示来自CMOS反相器输出端的输出电位Vout。CMOS反相器包括P沟道晶体管和N沟道晶体管,并且在将低电源电位Vss提供给N沟道晶体管的源极端时,将高电源电位Vdd提供给P沟道晶体管的源极端。注意,这里,Vss=0V。而且,P沟道晶体管和N沟道晶体管的栅极端彼此连接,并且其漏极端彼此连接,在漏极端是CMOS反相器的输出端时栅极端是CMOS反相器的输入端。
图11A所示的曲线1101显示在P沟道晶体管的电流源容量比N沟道晶体管更高的情况下CMOS反相器的传输特性,曲线1103显示在P沟道晶体管的电流源容量比N沟道晶体管更低的情况下CMOS反相器的传输特性,并且曲线1102显示在P沟道晶体管的电流源容量等于N沟道晶体管的情况下CMOS反相器的传输特性。
也就是说,当输入电位足够高并且晶体管处于关断状态时,CMOS反相器输出端的电位变为0V的电位。这时,N沟道晶体管在线性区域内导通,而P沟道晶体管关断。然后,随着输入电位逐渐变低,P沟道晶体管在饱和区域内导通。这时,当P沟道晶体管和N沟道晶体管的电流源容量相等时,显示类似于曲线1102的CMOS反相器传输特性,并且当P沟道晶体管的电流源容量高于N沟道晶体管时,CMOS反相器传输特性平移到曲线1101侧。另一方面,当P沟道晶体管的电流源容量低于N沟道晶体管时,CMOS反相器传输特性平移曲线1103侧。
这样,即使反相器传输特性改变,在CMOS反相器的情况下,输出电位变化的比例高。因此,在CMOS反相器传输特性不同的每个像素中,在从P沟道晶体管在饱和区域导通的时间到P沟道晶体管关断并且CMOS反相器的输出电位变为Vx的时间的周期,以及从在输入端和输出端之间的部分变为传导的并且偏移消除的CMOS反相器的各个输入电位Vinv1、Vinv2和Vinv3到CMOS反相器的输出电位变为Vx时的各个输入电位Vb1、Vb2和Vb3的周期几乎不变。
因此,当应用本实施例模型所示的像素结构时,可以减小像素之间的晶体管的性能变化效应,并且可以进行清晰显示。而且,可以提高像素的孔径比,从而适于应用于高清晰度显示。
注意,在发光周期中,如图12所示,可以连续地给数据线(信号线D1到Dn)提供电位,例如波形1201、波形1202、波形1203、波形1204、波形1205、波形1206、波形1208、波形1209或者多个这些波形。
通过连续地提供,发光定时可以分成一帧。结果,看起来提高了帧频率,因此可以防止屏幕闪烁。
此外,在发光周期中,色素的每个像素中提供给数据线(信号线D1到Dn)的电位波形可以变化。例如,在具有不同色素的像素的显示设备中,在即使施加相同电压时从发光元件获得的亮度在每种颜色中不同的情况下,可以不同地设定三角波电位的电位变化。这里,例如,对图62A所示具有RGB色素的像素的显示设备进行说明。在发光周期中,从信号线Dr向R色素的像素提供三角波电位,从信号线Dg向G色素的像素提供三角波电位,从信号线Db向B色素的像素提供三角波电位。这时,在各个颜色的像素中,适当地设置图62B所示的三角波电位6201、三角波电位6202或者三角波电位6203中的任何一个。也就是说,三角波电位6201可以被设定为在一帧中长的全显示周期,因此,这种三角波电位可以提供给其中从发光元件获得的亮度低的像素的信号线。另一方面,三角波电位6203设定为在一帧中短的全显示周期,因此,这种三角波电位可以提供给其中从发光元件获得的亮度高的像素的信号线。
这样,根据每个颜色的像素而提供不同的三角波,因此,根据各个颜色发光元件的亮度特性,可以控制发光时间。所以,可以进行清晰的全色显示。
参考图63对发光元件的亮度特性和输入到信号线的三角波之间的关系进行说明。例如,根据作为R色素的像素发光元件的亮度特性,对从G色素的像素发光元件获得的亮度低而从B色素的像素发光元件获得的亮度高的情况进行说明。
在这种情况下,以输入到信号线Dr(数据线R像素)的三角波电位为基础,将具有陡峭梯度的三角波电位输入到信号线Dg(数据线G像素)。也就是说,三角波电位的幅度增大。另一方面,将具有小梯度的三角波电位输入到信号线Db(数据线B像素)。也就是说,三角波电位的幅度减小。
这样,即使在相同灰度的情况下,发光时间也可以根据像素的每个色素而变化。例如,在R像素中一帧周期中最大灰度的显示周期是Tmax(R),在G像素中一帧周期中最大灰度的显示周期是Tmax(G),在B像素中一帧周期中最大灰度的显示周期是Tmax(B)。
而且,如其它结构一样,可以在每个颜色像素中改变视频信号的电位宽度。也就是说,如图64所示,以R色素的像素为基础,在从G色素的像素发光元件获得的亮度高的情况下,G视频信号的电位宽度减小。而且,在从B色素的像素发光元件获得的亮度低的情况下,B视频信号的电位宽度增加。这样,即使在相同灰度的情况下,发光时间也可以根据像素的每个色素而变化。例如,在R像素中一帧周期中最大灰度的显示周期是Tmax(R),在G像素中一帧周期中最大灰度的显示周期是Tmax(G),在B像素中一帧周期中最大灰度的显示周期是Tmax(B)。
而且,如其它的结构一样,可以组合其中相应于各个视频信号灰度的电位对于每个色素都变化的结构和其中三角波电位的幅度对于每个色素都变化的结构。这样,幅度可以小,而且功耗可以减小。
此外,在全色显示的情况下,为各个色素的每个像素提供电源线(供应线),而且为每个色素设置各个电源线电位,因此,可以调整每种颜色的发光元件亮度。因此,即使各个颜色的发光元件亮度特性不同,也可以调整颜色。例如,在具有如图2所示的像素的情况下,在电源线V1到Vn之中,可以给以下电源线设置与各个颜色亮度特性相对应的电位,这些电源线即被提供了输入到R(红)色素的像素发光元件阳极的电位的电源线、被提供了输入到G(绿)色素的像素发光元件阳极的电位的电源线、被提供了输入到B(蓝)色素的像素发光元件阳极的电位的电源线以及被提供了W(白)色素的像素发光元件阳极的电位的电源线。
而且,如其它结构一样,例如白(W)发光元件应用于像素的发光元件,而且滤色器用于进行全色显示,因此从各个色素获得的亮度可以大约相等。
此外,本发明的像素结构并不局限于图1中的结构。也就是说,在图1的结构中,对于形成反相器的P沟道晶体管和N沟道晶体管,使用另一行扫描线代替向N沟道晶体管源极端提供电位的导线。但是,如图4所示,可以使用另一行扫描线代替向P沟道晶体管源极端提供电位的导线。
图4所示的像素具有互补晶体管(第三晶体管)401、驱动晶体管(第二晶体管)402、电容器403、开关晶体管(第一晶体管)404、发光元件405、扫描线(选择线)406、信号线(数据线)407和电源线408。注意,N沟道晶体管用于互补晶体管401,而P沟道晶体管用于驱动晶体管402和开关晶体管404。
互补晶体管401的第一端(源极端或漏极端之一)连接到电源线408,其第二端(源极端或漏极端中的另一个)连接到驱动晶体管402的第二端(源极端或漏极端之一),并且互补晶体管401的栅极端连接到驱动晶体管402的栅极端。而且,互补晶体管401和驱动晶体管402的栅极端通过电容器403连接到信号线407,并且通过开关晶体管404连接到互补晶体管401和驱动晶体管402的第二端(源极端或漏极端中的每一个)。也就是说,开关晶体管404的第一端(源极端或漏极端之一)连接到互补晶体管401和驱动晶体管402的第二端(源极端或漏极端中的每一个),并且开关晶体管404的第二端(源极端或漏极端中的另一个)连接到互补晶体管401和驱动晶体管402的栅极端。因此,导通/关断开关晶体管404可以使得在每个互补晶体管401和驱动晶体管402的栅极端和第二端(源极端或漏极端中的每一个)之间的部分导通/关断。然后,信号输入到开关晶体管404的栅极端连接的扫描线406,从而控制开关晶体管404的导通/关断。而且,互补晶体管401和驱动晶体管402的第二端(源极端或漏极端中的每一个)连接到发光元件405的阳极。而且,发光元件405的阴极连接到供应低电源电位Vss的导线(阴极)409。注意,以作为扫描线406A的H电平电位的电源电位Vdd为基础,Vss是满足Vss<Vdd的电位。例如,可以使用Vss=GND(地电位)。
而且,驱动晶体管402的第一端连接到另一行像素中的扫描线406A。这里,驱动晶体管402是用于驱动发光元件405的晶体管,而互补晶体管401是其极性相对于驱动晶体管402反相的晶体管。也就是说,互补晶体管401和驱动晶体管402形成反相器从而在扫描线406A信号为H电平时互补地导通/关断。
然后,详细说明图4中的像素结构的操作原理。这里,扫描线406所选择的像素是第i行像素,并且扫描线406A所选择的像素是第(i+1)行像素,下面将参考图5中的时序图进行说明。
在将信号写入像素的周期中,将模拟信号电位提供给信号线407。模拟信号电位相应于视频信号。然后,当将视频信号写入像素时,L电平信号输入到扫描线406(第i行选择线),从而导通开关晶体管404。注意,这时,将H电平信号提供给扫描线406A(第(i+1)行选择线),用于选择另一行的像素。因此,当将信号写入像素时,互补晶体管401和驱动晶体管402作为反相器来操作。注意,当作为反相器操作时,互补晶体管401和驱动晶体管402的栅极端之间的连接点是反相器的输入端410,而互补晶体管401和驱动晶体管402的第二端之间的连接点是反相器的输出端411。而且,当作为反相器操作时,互补晶体管401和驱动晶体管402的第一端是源极端,而其第二端是漏极端。
这样,当开关晶体管404导通时,反相器的输入端410和输出端411之间的部分变为传导的,而且电流流向互补晶体管401、驱动晶体管402和发光元件405,而电容器403释放或者积聚电荷。
因此,反相器是偏移消除的。注意,偏移消除是指使输入端410和输出端411之间的部分传导,从而使输入电位和输出电位一致,而且输入端410的电位变为反相器的逻辑阈值电位Vinv。因此,逻辑阈值电位Vinv理论上是反相器的L电平和H电平输出的中间电位。
注意,电容器403中的释放或者积聚电荷取决于电容器403中最初积聚的电荷和提供给信号线407的电位之间的关系。在电容器403完全释放或者积聚电荷后,在电容器403中积聚相应于信号线407和逻辑阈值电位Vinv之间的电位差的电荷。然后,扫描线406的信号为H电平,以关断开关晶体管404,并且在电容器403中保持电压Vp。
注意,在写入周期中,可以将施加给导线(阴极)409的电位设置为Vss2。Vss2是满足Vss<Vss2的电位,当反相器是偏移消除型时,施加给发光元件405的电压设置为小于发光元件405的正向阈值电压VEL,也就是说,设定为Vinv-Vss2<VEL。这样,在写入周期中几乎没有电流可以流向发光元件405,因此,可以减小功耗。
此外,Vss2可以提高,从而给发光元件405施加反相偏压。通过施加反相偏压,可以提高发光元件405的可靠性,而且可以烘焙和切割在发光元件405中的故障部分。
注意,如果电流不流向导线409,也可以使用其它的方法。例如,导线409可以是浮置状态。结果,电流不流向发光元件405。可选择地,可以在反相器输出端411和导线409之间设置开关。通过控制开关,电流不能流向发光元件405。
这样,完成将视频信号写入像素。
注意,在将视频信号写入像素之后,以在将视频信号写入像素时提供给信号线407的模拟信号电位为基础,根据信号线407的电位变化来控制反相器的输出电平。也就是说,如果在将信号写入像素的周期中,当将视频信号写入像素时信号线407的电位比模拟信号电位更低,反相器的输出为H电平,而如果当将视频信号写入像素时信号线407的电位比模拟信号电位更高,则反相器的输出为L电平。
这是因为当将视频信号写入像素时,电容器403保持电位差(Vp),因此,信号线407的电位比将视频信号写入像素时的模拟信号电位更低,反相器输入端410的电位也比将视频信号写入像素时的输入端410的电位更低,因此,互补晶体管401关断,驱动晶体管402导通,反相器的输出为H电平。另一方面,如果在将信号写入像素的周期中信号线407的电位比将模拟信号写入像素时的模拟信号电位更高,则反相器输入端410的电位也比将模拟信号写入像素时输入端410的电位更高,因此,互补晶体管102导通,驱动晶体管402关断,反相器的输出为L电平。
因此,在像素的发光周期中,在扫描线(扫描线406、扫描线406A等等)为L电平时,提供给信号线407的电位以模拟的方式变化,从而控制像素中反相器的输出电平。因此,以模拟方式控制电流流向发光元件405的时间,以表示灰度。
而且,互补晶体管401的第一端(源极端或漏极端之一)连接到扫描线406A,因此,可以减少导线数目,从而提高孔径比。因此,可提高发光元件405的可靠性。而且,产量提高,从而可以降低显示面板的成本。
随后,在像素的发光周期中,对提供给信号线407的电位进行说明。作为提供给信号线407的电位,可以使用具有周期变化的波形的模拟电位。因此,如图12所示,可以提供波形1201、波形1202、波形1203、波形1204、波形1205、波形1206、波形1208、波形1209或者多个连续的这些波形。
通过连续地提供,可以将发光时间分成一帧。结果,帧频率似乎提高了,因此可以防止屏幕闪烁。
因此,通过在将模拟信号写入像素时提供给信号线407的模拟信号电位,可以进行像素的模拟时间灰度显示。注意,随着灰度数目变小,模拟信号电位提高。
这是因为在像素发光周期中提供的三角波电位和在将信号写入像素的周期中输入到像素中的模拟信号电位之间的高-低关系可以确定由互补晶体管401和驱动晶体管402形成的反相器的输出电平。当在将信号写入像素的周期中输入到像素中的模拟信号电位低于在像素发光周期中提供的三角波电位时,反相器的输出变为H电平并且像素发光。因此,随着在将信号写入像素的周期中输入到像素中的模拟信号电位变低,模拟信号电位低于像素发光周期中提供的三角波电位的周期变长。因此,发光周期也变长。因此,灰度数目也增加。另一方面,随着在将信号写入像素的周期中输入到像素中的模拟信号电位变高时,模拟信号电位低于像素发光周期中提供的三角波电位的周期变短。因此,发光周期也变短。因此,灰度数目也减少。
[实施例模型2]
在本实施例模型中,说明与实施例模型1中的像素结构不同的另一个像素结构。该实施例模型所示的像素结构是其中通过不同的导线向像素提供在将模拟信号写入像素时所提供的模拟信号电位以及控制像素发光/不发光的模拟电位的结构。
如图6所示,像素具有驱动晶体管(第二晶体管)601、互补晶体管(第三晶体管)602、电容器603、开关晶体管(第一晶体管)604、发光元件605、扫描线(选择线)606、第一开关607、第二开关608、第一信号线(数据线1)609、第二信号线(数据线2)610和电源线611。注意,P沟道晶体管用于该驱动晶体管601,而N沟道晶体管用于互补晶体管602和开关晶体管604。
驱动晶体管601的第一端(源极端或漏极端之一)连接到电源线611,其第二端(源极端或漏极端中的另一个)连接到互补晶体管602的第二端(源极端或漏极端之一),并且驱动晶体管601的栅极端连接到互补晶体管602的栅极端。而且,驱动晶体管601和互补晶体管602的栅极端连接到电容器603的一个电极,并且通过开关晶体管604连接到驱动晶体管601和互补晶体管602的第二端(源极端或漏极端中的每一个)。也就是说,开关晶体管604的第一端(源极端或漏极端之一)连接到驱动晶体管601和互补晶体管602的第二端(源极端或漏极端中的每一个),并且开关晶体管604的第二端(源极端或漏极端中的另一个)连接到驱动晶体管601和互补晶体管602的栅极端。因此,导通/关断开关晶体管604可以使得在驱动晶体管601和互补晶体管602的栅极端和第二端(源极端或漏极端中的每一个)之间的部分传导/不传导。然后,信号输入到开关晶体管604的栅极端所连接的扫描线606,从而控制开关晶体管604的导通/关断。注意,电容器603的另一个电极通过第一开关607连接到第一信号线609并通过第二开关608连接到第二信号线610。而且,驱动晶体管601和互补晶体管602的第二端(源极端或漏极端中的每一个)连接到发光元件605的阳极。而且,发光元件605的阴极连接到供应低电源电位Vss的导线(阴极)612。注意,以提供给电源线611的电源电位Vdd为基础,Vss是满足Vss<Vdd的电位。例如,可以使用Vss=GND(地电位)。注意,电源线611的电位不限于此。对于各个色素的像素,可以改变电源电位值。也就是说,在由RGB色素的像素形成的全色显示设备的情况下,可以将电源线电位提供给RGB色素的各个像素,在由RGBW色素的像素形成的全色显示设备的情况下,可以将电源线电位提供给RGBW色素的各个像素。
而且,互补晶体管602的第一端连接到另一行像素中的扫描线606A。这里,驱动晶体管601是用于驱动发光元件605的晶体管,而互补晶体管602是其极性相对于驱动晶体管601反相的晶体管。也就是说,当扫描线606A的信号是L电平时,驱动晶体管601和互补晶体管602形成反相器,从而互补地导通/关断。
然后,详细说明图6中的像素结构的操作原理。这里,扫描线606所选择的像素是第i行像素,并且扫描线606A所选择的像素是第(i+1)行像素,因此,参考图7中的时序图进行说明。
在图6的像素中,将用于确定每个像素发光时间的模拟信号电位提供给第一信号线(数据线1)609,而将用于控制每个像素发光时间的模拟电位提供给第二信号线(数据线2)610。
注意,如在实施例模型1中所述的图12所示,可以给第二信号线(数据线2)610提供电位例如波形1201、波形1202、波形1203、波形1204、波形1205、波形1206、波形1208、波形1209或者多个连续的这些波形。
通过连续地提供,发光定时可以分成一帧。结果,帧频率似乎提高了,因此可以防止屏幕闪烁。
注意,在具有本实施例模型中的像素结构的显示设备中,为像素部分中的每行设置信号写入周期和发光周期。
这里,对将信号写入第i行像素的周期进行说明。图7所示周期Ti是指信号写入第i行像素的周期。然后,除了周期Ti之外的周期是第i行像素的发光时间。
首先,在将信号写入第i行像素的周期Ti中,第一开关607导通,而第二开关608关断。这时,L电平电位提供给扫描线(第(i+1)行选择线)606A。因此,驱动晶体管601和互补晶体管602用作反相器。因此,驱动晶体管601和互补晶体管602的栅极端之间的连接点是反相器的输入端613,驱动晶体管601和互补晶体管602的第二端之间的连接点是反相器的输出端614。
而且,将H电平信号输入到扫描线(第i行选择线)606,从而导通开关晶体管604。因此,反相器输入端613和输出端614之间的部分变为导通,以进行偏移消除。也就是说,反相器输入端613的电位变为反相器的逻辑阈值电位Vinv。因此,这时,反相器输入端613的电位变为控制反相器输出电平所需的电位。
然后,在电容器603中积聚相应于反相器逻辑阈值电位Vinv和在写入周期Ti中提供给第一信号线609的电位Va之间的电位差(电压Vp)的电荷。
随后,第一开关607关断,而第二开关608导通。然后,将L电平信号输入到扫描线(第i行选择线)606。然后,开关晶体管604关断,因此在电容器603中保持电压Vp。这样,周期Ti结束,然后,将模拟信号从数据线1(第一信号线609)写入到第i行和第j列像素。注意,这时,从像素列的各个数据线1(第一信号线609)提供各个模拟信号电位,从而在各列的第i行像素中写入模拟信号。
这样,当将信号写入第i行像素的周期Ti结束时,将信号写入第(i+1)行像素的周期Ti+1开始,然后,第i行像素的发光周期开始。在将信号写入第(i+1)行像素的周期Ti+1中,将H电平信号输入到扫描线606A,并且与第i行像素的信号写入操作类似地写入信号。
注意,如图7所示,将三角波电位提供给数据线2(第二信号线610)。然后,在第i行和第j列像素中,当数据线2(第二信号线610)的电位高于在将信号写入第i行像素的周期Ti中提供给数据线1(第一信号线609)的模拟信号电位时,发光元件605保持不发光状态,在数据线2(第二信号线610)的电位低于在将信号写入第i行像素的周期Ti中提供给数据线1(第一信号线609)的模拟信号电位时,发光元件605发光。因此,根据在将信号写入每个像素中的周期中写入模拟信号时的模拟信号电位,控制发光元件605的发光时间。这样,可以实现模拟时间灰度显示。
注意,当将信号写入第i行像素的时间结束并且将信号写入第(i+1)行像素的周期开始时,将H电平信号输入到第i行每个像素的互补晶体管602的第一端(源极端或漏极端之一)所连接的扫描线606A。这里,在提供给第二信号线610的三角波电位高于在将信号写入第i行像素的周期中由第一信号线609写入的模拟信号电位时,互补晶体管602导通。因此,反相器的输出可以输出扫描线606A的H电平电位。
因此,需要处于不发光状态的像素发光。如果需要处于不发光状态的像素发光,存在人眼看得见的问题。因此,如图50所示,P沟道晶体管5001可以设置在反相器输出端614和发光元件605阳极之间。也就是说,P沟道晶体管5001的第一端(源极端或漏极端之一)连接到反相器的输出端614,其第二端(源极端或者漏极端中的另一个)连接到发光元件605的阳极,并且其栅极端连接到扫描线606A。这样,当将H电平信号输入到扫描线606A并且选择第(i+1)行像素时,第i行每个像素的P沟道晶体管5001关断。因此,需要处于不发光状态的像素不发光。
这样,在具有该实施例模型的像素结构的显示设备中,每个像素行的信号写入周期连续地开始,并且在结束信号写入周期之后开始每个像素行的发光周期。因此,作为这种实施例模型,在将信号以行连续的方式写入像素的情况下,写入周期可以是一个像素的时间,因此,可以延长发光周期。也就是说,占空率(一个帧周期中发光周期的比例)高,因此,可以减小发光元件的瞬间亮度。因此,可以提高发光元件的可靠性。
而且,对每行像素的信号写入周期可以延长,因此,可以减小将模拟信号电位输入到数据线1(第一信号线609)的信号线驱动电路频率。因此,可以减小功耗。
这样,根据在每个写入周期中写入模拟信号时的模拟信号电位给信号线610提供三角波电位,从而设定发光元件605的发光时间。这样,可以实现模拟时间灰度显示。因为以模拟的形式控制发光时间,所以不像以数字模式控制发光时间那样出现假轮廓。因此,可以实现没有图像质量缺陷的清晰显示。
注意,用于控制发光元件605发光/不发光的反相器输出电平取决于在写入周期中提供给数据线1(信号线609)的模拟信号电位是高于还是低于在上述发光周期中输入数据线2(信号线610)的三角波电位,由此以数字形式进行控制。因此,可以在驱动晶体管601和互补晶体管602小的性能变化效果的情况下控制发光元件605的发光/不发光。也就是说,可以改善每个像素的发光变化。
特别地,像素中的反相器由为P沟道晶体管的驱动晶体管601和为N沟道晶体管的互补晶体管602形成,因此,即使当每个像素中的驱动晶体管601和互补晶体管602的晶体管特性改变并且反相器传输特性改变一定的程度时,本实施例模型中所述的像素结构也可以在小的这些效果的情况下控制发光元件605的发光/不发光。
此外,该实施例模型的像素结构不局限于图6中的结构。也就是说,在图6的结构中,对于形成反相器的P沟道晶体管和N沟道晶体管,使用另一行扫描线代替向N沟道晶体管源极端提供电位的导线。但是,如图8所示,可以使用另一行扫描线代替向P沟道晶体管源极端提供电位的导线。
图8所示像素具有互补晶体管(第三晶体管)801、驱动晶体管(第二晶体管)802、电容器803、开关晶体管(第一晶体管)804、发光元件805、扫描线(选择线)806、第一开关807、第二开关808、第一信号线(数据线1)809、第二信号线(数据线2)810和电源线811。注意,N沟道晶体管用于互补晶体管801,而P沟道晶体管用于驱动晶体管802和开关晶体管804。
互补晶体管801的第一端(源极端或漏极端之一)连接到电源线811,其第二端(源极端或漏极端中的另一个)连接到驱动晶体管802的第二端(源极端或漏极端之一),并且互补晶体管801的栅极端连接到驱动晶体管802的栅极端。而且,互补晶体管801和驱动晶体管802的栅极端连接到电容器803的一个电极,并且通过开关晶体管804连接到互补晶体管801和驱动晶体管802的第二端(源极端或漏极端中的每一个)。也就是说,开关晶体管804的第一端(源极端或漏极端之一)连接到互补晶体管801和驱动晶体管802的第二端(源极端或漏极端中的每一个),并且开关晶体管804的第二端(源极端或漏极端中的另一个)连接到互补晶体管801和驱动晶体管802的栅极端。因此,导通/关断开关晶体管804可以使得在互补晶体管801和驱动晶体管802的栅极端和第二端(源极端或漏极端中的每一个)之间的部分传导/不传导。然后,将信号输入到开关晶体管804的栅极端所连接的扫描线806,从而控制开关晶体管804的导通/关断。注意,电容器803的另一个电极通过第一开关807连接到第一信号线809并通过第二开关808连接到第二信号线810。而且,互补晶体管801和驱动晶体管802的第二端(源极端或漏极端中的每一个)连接到发光元件805的阳极。而且,发光元件805的阴极连接到供应低电源电位Vss的导线(阴极)812。注意,以提供给扫描线806A的H电平电位的电源电位Vdd为基础,Vss是满足Vss<Vdd的电位。例如,可以使用Vss=GND(地电位)。而且,提供给电源线811的电位设置为它和导线(阴极)812之间的电位差为小于或等于发光元件805的正向阈值电压。也就是说,当将提供给电源线811的电位提供给发光元件805的第一电极并且将低电源电位Vss提供给发光元件805的第二电极时,施加给发光元件805的电压可以小于或等于正向阈值电压VEL。注意,这时,发光元件805的第一电极是阳极,而其第二电极是阴极。另一方面,提供给电源线811的电位可以是更低的电位,也就是说,比低电源电位Vss更低的电位,并且施加给发光元件805的电压可以是反相偏压。通过施加反相偏压,可以提高发光元件805的可靠性,而且可以烘焙和切割在发光元件805中的故障部分。
此外,驱动晶体管802的第一端连接到另一行像素中的扫描线806A。这里,驱动晶体管802是用于驱动发光元件805的晶体管,而互补晶体管801是其极性相对于驱动晶体管802反相的晶体管。也就是说,互补晶体管801和驱动晶体管802形成反相器从而在扫描线806A的信号为H电平时互补地导通/关断。
下面,详细说明图8中的像素结构的操作原理。这里,扫描线806所选择的像素是第i行像素,并且扫描线806A所选择的像素是第(i+1)行像素,然后,参考图9中的时序图进行说明。
在图8的像素中,将用于确定每个像素发光时间的模拟信号电位提供给第一信号线(数据线1)809,而将用于控制每个像素发光时间的模拟电位提供给第二信号线(数据线2)810。
注意,如在实施例模型1中所述的图12所示,可以给第二信号线(数据线2)810提供电位例如波形1201、波形1202、波形1203、波形1204、波形1205、波形1206、波形1208、波形1209或者多个连续的这些波形。
通过连续地提供,发光时间可以分成一帧。结果,帧频率似乎提高了,因此可以防止屏幕闪烁。
注意,在具有本实施例模型中的像素结构的显示设备中,为像素部分中的每行设置信号写入周期和发光周期。
这里,对将信号写入第i行像素的周期进行说明。图9所示的周期Ti是指将信号写入第i行像素的周期。然后,除了周期Ti之外的周期是第i行像素的发光时间。
首先,在将信号写入第i行像素的周期Ti中,第一开关807导通,而第二开关808关断。这时,将H电平电位提供给扫描线(第(i+1)行选择线)806A。因此,互补晶体管801和驱动晶体管802用作反相器。因此,互补晶体管801和驱动晶体管802的栅极端之间的连接点是反相器的输入端813,互补晶体管801和驱动晶体管802的第二端之间的连接点是反相器的输出端814。
而且,将L电平信号输入到扫描线(第i行选择线)806,从而导通开关晶体管804。因此,反相器输入端813和输出端814之间的部分变为传导,以进行偏移消除。也就是说,反相器输入端813的电位变为反相器的逻辑阈值电位Vinv。因此,这时,反相器输入端813的电位变为控制反相器输出电平所需的电位。
然后,在电容器803中积聚相应于反相器逻辑阈值电位Vinv和在写入周期Ti中提供给第一信号线809的电位Va之间的电位差(电压Vp)的电荷。
随后,第一开关807关断,而第二开关808导通。然后,将H电平信号输入到扫描线(第i行选择线)806。然后,开关晶体管804关断,因此在电容器803中保持电压Vp。这样,周期Ti结束,然后,模拟信号从数据线1(第一信号线809)写入到第i行和第j列像素。注意,这时,从像素列的各个数据线1(第一信号线809)提供各个模拟信号电位,从而在各列的第i行像素中写入模拟信号。
这样,当将信号写入第i行像素的周期Ti结束时,将信号写入第(i+1)行像素的周期Ti+1开始,然后,第i行像素的发光周期开始。在将信号写入第(i+1)行像素的周期Ti+1中,将L电平信号输入到扫描线806A,并且与第i行像素的信号写入操作类似地写入信号。
注意,如图7所示,将三角波电位提供给数据线2(第二信号线810)。然后,在第i行和第j列像素中,当数据线2(第二信号线810)的电位高于在将信号写入第i行像素的周期Ti中提供给数据线1(第一信号线809)的模拟信号电位时,发光元件805保持不发光状态,在数据线2(第二信号线810)的电位低于在将信号写入第i行像素的周期Ti中提供给数据线1(第一信号线809)的模拟信号电位时,发光元件805发光。因此,根据在将信号写入每个像素中的周期中写入模拟信号时的模拟信号电位,控制发光元件805的发光时间。这样,可以实现模拟时间灰度显示。
这样,在具有该实施例模型的像素结构的显示设备中,每个像素行的信号写入周期连续地开始,然后在结束信号写入周期之后转换到每个像素行的发光周期。因此,作为这种实施例模型,在将信号以行连续的方式写入像素的情况下,写入周期可以是一个像素的时间,因此,发光周期可以延长。也就是说,占空率(一帧周期中发光周期的比例)高,因此,可以减小发光元件的瞬间亮度。因此,可以提高发光元件的可靠性。
而且,可以延长每行像素的信号写入周期,因此,可以减小将模拟信号电位输入到数据线1(第一信号线809)的信号线驱动电路频率。因此,可以减小功耗。
这样,根据在每个写入周期中写入模拟信号时的模拟信号电位给信号线810提供三角波电位,从而设定发光元件805的发光时间。这样,可以实现模拟时间灰度显示。因为以模拟的形式控制发光时间,所以不像以数字模式控制发光时间那样出现假轮廓。因此,可以实现没有图像质量缺陷的清晰显示。
注意,用于控制发光元件805发光/不发光的反相器输出电平取决于在写入周期中提供给数据线1(信号线809)的模拟信号电位是高于还是低于在上述发光周期中输入到数据线2(信号线810)的三角波电位,由此以数字形式进行控制。因此,可以在互补晶体管801和驱动晶体管802小的性能变化效果的情况下来控制发光元件805的发光/不发光。也就是说,可以改善每个像素的发光变化。
特别地,像素中的反相器由为P沟道晶体管的驱动晶体管802和为N沟道晶体管的互补晶体管801形成,因此,即使当每个像素中的互补晶体管801和驱动晶体管802的晶体管特性改变并且反相器传输特性改变一定的程度时,本实施例模型中所述的像素结构也可以在小的这些效果的情况下来控制发光元件805的发光/不发光。
注意,晶体管可以用作图6所示结构中的第一开关607和第二开关608,以及图8中的第一开关807和第二开关808。
例如,图57显示其中将N沟道晶体管应用于图6结构中的第一开关607和第二开关608的结构。使用写入选择晶体管5701代替第一开关607,使用发光选择晶体管5702代替第二开关608。写入选择晶体管5701输入信号到第二扫描线5703,以控制导通/关断,而发光选择晶体管5702输入信号到第三扫描线5704,以控制导通/关断。
这里,用于代替开关的晶体管具有其中有少量漏电流(截止电流和栅漏电流)的理想结构。注意,该截止电流是在晶体管为关断状态时源极和漏极之间的电流,而栅漏电流是在栅极和源极/漏极之间流动、流过栅极绝缘膜的电流。
因此,用于选择晶体管5701、发光选择晶体管5702和开关晶体管604的N沟道晶体管具有带低浓度杂质区域(轻掺杂漏极:也称为LDD区域)的优选结构。这是因为具有带LDD区域的结构的晶体管可以减小截止电流。当截止电流流向写入选择晶体管5701、发光选择晶体管5702和开关晶体管604时,电容器603不能保持电压。
而且,通过使栅绝缘膜的厚度减小,因此也可以减小截止电流。因此,写入选择晶体管5701、发光选择晶体管5702和开关晶体管604的厚度可以比驱动晶体管601的厚度更薄。
此外,多栅极晶体管用于写入选择晶体管5701、发光选择晶体管5702和开关晶体管604,因此可以减小栅漏电流。
而且,可以同时控制写入选择晶体管5701和开关晶体管604的导通/关断。因此,在图57的结构中,可以应用省略第二扫描线5703并且写入选择晶体管5701的栅极端连接到扫描线606的结构。
这里,在N沟道晶体管中,可以容易地形成LDD区域。因此,如果N沟道晶体管用作开关,可以减小截止电流。而且,如果晶体管具有多栅极结构,可以进一步减小栅漏电流。因此,可以改善晶体管作为开关的功能。
而且,图58示出其中将用N沟道晶体管代替第一开关607并用P沟道晶体管代替第二开关608的结构应用于图6所示的结构的情况。
使用写入选择晶体管5801代替第一开关607,使用发光选择晶体管5802代替第二开关608。当写入选择晶体管5801或发光选择晶体管5702中任何一个导通时,其另一个关断,因此,写入选择晶体管5801和发光选择晶体管5802的栅极端连接到第二扫描线5803,并且信号输入到第二扫描线5803,以控制写入选择晶体管5801和发光选择晶体管5802的导通/关断。注意,如图59所示,写入选择晶体管5801和发光选择晶体管5802的栅极端可以连接到扫描线606,以控制其导通/关断。
这样,如果应用N沟道晶体管以代替第一开关607,应用P沟道晶体管代替第二开关608,就可以减小用于控制它们的导线的数量。也就是说,可以改善每个像素的孔径比。因此,可以提高发光元件的可靠性。
【实施例模型3】
在该实施例模型中,对在使用可以通过信号来控制电位电平的电位控制线代替具有固定电位的电源线的情况下的本发明的像素结构和显示设备以及其驱动方法进行描述。
图48表示在应用电源线4808代替图1所示的像素结构中的电源线108的情况下的像素结构。
像素具有驱动晶体管(第二晶体管)4801、互补晶体管(第三晶体管)4802、电容器4803、开关晶体管(第一晶体管)4804、发光元件4805、扫描线(选择线)4806、信号线(数据线)4807和电源线(照明线)4808。注意:P沟道晶体管用作驱动晶体管4801,而N沟道晶体管用作互补晶体管4802和开关晶体管4804。
驱动晶体管4801的第一端(源极端或漏极端之一)连接电源线4808,其第二端(源极端或漏极端中另一个)连接互补晶体管4802的第二端(源极端或漏极端之一),并且驱动晶体管4801的栅极端连接到互补晶体管4802的栅极端。此外,驱动晶体管4801和互补晶体管4802的栅极端通过电容器4803连接信号线4807,并且通过开关晶体管4804连接到驱动晶体管4801和互补晶体管4802的第二端(源极端或漏极端中的每一个)。也就是说,开关晶体管4804的第一端(源极端或漏极端之一)连接驱动晶体管4801和互补晶体管4802的第二端(源极端或漏极端中的每一个),并且开关晶体管4804的第二端(源极端或漏极端中的另一个)连接到驱动晶体管4801和互补晶体管4802的栅极端。因此,导通/关断开关晶体管4804可以使得在每个驱动晶体管4801和互补晶体管4802的栅极端和第二端(源极端或漏极端中的每一个)之间的部分传导/不传导。然后,信号输入到开关晶体管4804栅极端连接的扫描线4806,从而控制开关晶体管4804的导/关断。而且,驱动晶体管4801和互补晶体管4802的第二端(源极端或漏极端中的每一个)连接到发光元件4805的阳极。而且,发光元件4805的阴极连接供应低电源电位Vss的导线(阴极)4809。注意:以提供给电源线4808的H电平电位Vdd为基础,Vss是满足Vss<Vdd的电位。例如,可以使用Vss=GND(地电位)。
此外,互补晶体管4802的第一端连接另一行像素中的扫描线4806A。这里,驱动晶体管4801是用于驱动发光元件4805的晶体管,而互补晶体管4802是其极性相对于驱动晶体管4801反相的晶体管。也就是说,当电源线4808的信号处于H电平而扫描线4806A的信号是L电平时,驱动晶体管4801和互补晶体管4802形成反相器,从而互补地导通/关断。
在将信号写入像素中的周期中,将模拟信号电位提供给信号线4807。模拟信号电位与视频信号相对应。然后,当将视频信号写入像素中时,输入到电源线4808的信号处于H电平,以给驱动晶体管4801的第一端(源极端或漏极端之一)提供Vdd。另外,将H电平信号输入扫描线4806,以导通开关晶体管4804。注意:这时,L电平信号提供给扫描线4806A,用于选择另一行像素。因此,当将信号写入到像素中时,驱动晶体管4801和互补晶体管4802作为反相器操作。注意,当作为反相器操作时,驱动晶体管4801和互补晶体管4802的栅极端之间的连接点变为反相器的输入端4810,而驱动晶体管4801和互补晶体管4802的第二端之间的连接点变为反相器的输出端4811。而且,当作为反相器操作时,驱动晶体管4801和互补晶体管4802的第一端是源极端,而其第二端是漏极端。
注意:反相器的H电平输出是作为电源线4808的H电平输出的电源电位Vdd,而反相器的L电平输出是扫描线4806A的L电平电位。另外,基于导线4809的电位来设定电源电位Vdd为反相器的H电平输出,以及设定扫描线4806和扫描线4806A的L电平电位为反相器的L电平输出。然后,当反相器的输出处于H电平时,发光元件4805发光,当反相器的输出为L电平时,发光元件4805不发光。
也就是说,在当发光元件4805开始发光时电压为VEL的情况下,L电平电位必须低于VSS+VEL的导线4809的电位。此外,H电平电位必须高于VSS+VEL的导线4809的电位。
注意:当L电平电位低于导线4809的电位时,将反相状态的电压施加给发光元件4805。因此,将理想地抑制发光元件4805的损坏。
接下来,对图48的像素结构的操作原理进行描述。由扫描线4806所选择的像素是第i行像素,由扫描线4806A所选择的像素是第(i+1)行像素,然后,参考图49的时序图进行描述。
在此,对将信号写入第i行像素的周期进行描述。图49所示的周期Ti意为第i行像素的信号写入时间。
首先,在将信号写入像素中的周期Ti中,将H电平信号提供给扫描线(第i行选择线)4806,以导通开关晶体管4804。注意:将L电平电位提供给扫描线(第(i+1)行选择线)4806A。然后,将H电平信号输入到电源线4808,而将电位Vdd提供给驱动晶体管4801的第一端(源极和漏极端之一)。因此,驱动晶体管4801和互补晶体管4802作为反相器。相应地,驱动晶体管4801和互补晶体管4802的栅极端之间的连接点变成反相器的输入端4810,而驱动晶体管4801和互补晶体管4802的第二端之间的连接点变成反相器的输出端4811。
因此,反相器的输入端4810和输出端4811之间的部分导通,以进行偏移抵消。也就是说,反相器输入端4810的电位变成反相器的逻辑阈值电位Vinv。因此,这时反相器的输入端4810的电位变成用于控制反相器的输出电平所必须的电位。
然后,与反相器的逻辑阈值电位Vinv和在写入周期Ti中提供给信号线4807的电位Va之间的电位差(电压Vp)相对应的电荷聚集在电容器4803中。
随后,扫描线(第i行选择线)4806变成L电平。然后,开关晶体管4804关断,使得电容器4803中保持电压Vp。此外,电源线4808处于L电平。以这种方式,完成周期Ti,然后,逻辑信号从数据线(信号线4807)写入第i行和第j列的像素。注意:这时,模拟信号电位分别从数据线(信号线4807)提供给像素列,以将模拟信号写入每列的第i行像素。
注意:这时,电源线4808不可以是L电平电位。例如,电源线4808可以是浮置状态。图56表示具有图48所示的像素的显示设备的示意图。该显示设备具有信号线驱动电路5601、像素部分5602、电源线驱动电路5603、扫描线驱动电路5604以及浮置开关5605。因此,在将信号写入像素的周期中或发光周期中,浮置开关5605导通,并且在将信号写入另一行等等像素的周期中,浮置开关5605可以关断。也就是说,在图49中的时序图中,在L电平照明线的情况下,可以使用浮置。
以这种方式,当将信号写入第i行像素的周期Ti结束时,将信号写入第(i+1)行像素的周期Ti+1开始,然后,与第i行的信号写入像素操作相似,H电平信号输入扫描线4806A,并且信号写入第(i+1)行像素。
以这种方式,当信号写入所有行并且该写入周期结束时,给信号线4807提供三角波电位。也就是说,当第i行和第j列像素的三角波电位高于在信号写入第i行像素的周期Ti中提供给数据线(信号线4807)的模拟信号电位时,发光元件4805保持非发光状态,当数据线(信号线4807)电位低于在信号写入第i行像素的周期Ti中提供给数据线(信号线4807)的模拟信号电位时,发光元件4805发光。因此,根据在信号写入每个像素的周期中写入模拟信号时的模拟信号电位,控制发光元件4805的发光时间。以这种方式,可以进行模拟时间灰度显示。由于以模拟方式控制发光时间,因此不像以数字方式控制发光时间这种情况,不会发生假轮廓。相应地,可以进行没有图像质量缺陷的清楚的显示。
注意:用于控制发光元件4805的发光/不发光的反相器的输出电平取决于在写入周期中提供给数据线(信号线4807)的模拟信号电位是高于还是低于在上述发光周期中输入至数据线(信号线4807)的三角波电平,由此以数字方式控制。因此可以在对驱动晶体管4801和互补晶体管4802的特性变化带来很小影响的情况下控制发光元件4805的发光/不发光。也就是说,可以改进每个像素中的发光变化。
特别是像素中的反相器由为P沟道晶体管的驱动晶体管4801和为N沟道晶体管的互补晶体管4802构成,因此即使当驱动晶体管4801和互补晶体管4802的晶体管特征改变并且反相器传输特性在每个像素中改变到某种程度,在该实施例模型中所描述的像素结构也可以在对其带来较小影响的情况下控制发光元件4805的发光/不发光。
注意:正如在实施例模型1中所描述的图12所示,可以向信号线(数据线)4807提供诸如波形1201、波形1202、波形1203、波形1204、波形1205、波形1206、波形1208、波形1209或连续多个这些波形这样的电位。
通过连续提供,可以将发光时间分成一帧。结果,帧频率好像被改进,从而可以防止屏幕闪烁。
另外,互补晶体管4802的第一端(源极端或漏极端之一)连接扫描线4806A,因此可以减少导线的数量,从而提高孔径比。相应地可以提高发光元件4805的可靠性。另外,生产量增加,使得成本降低。
注意:设定电源线(照明线)4808的L电平电位使得该L电平电位和提供给导线(阴极)4809的低电源电位Vss之间的电位差小于或等于发光元件4805的正向阈值电压。也就是说,当将电源线4808的L电平电位提供给发光元件4805的第一电极,并且将低电源电位Vss提供给发光元件4805的第二电极时,施加给发光元件4805的电压可以小于或等于正向阈值电压VEL。注意:这时,发光元件4805的第一电极是阳极,而其第二电极是阴极。另一方面,电源线4808的L电平电位可以是更低的电位,也就是说,是低于低电源电位的电位,并且施加给发光元件4805的电压可以被反相偏压。通过施加反相偏压电压,可以提高发光元件4805的可靠性,并且可以烘焙和切割发光元件4805中的故障部分。因此,根据该实施例模型的像素结构,发光元件4805的阴极电位可以是固定电位。
此外,当信号写入像素时,电源线4808处于L电平和浮置状态,因此可以防止电流流向发光元件4805,并且可以避免有缺陷图像。
注意:在该实施例模型的机构中,施加给发光元件的电压可以在色素的每个像素中改变。图61显示了一种结构,在该结构中在色素的每个像素中设置图48所示的像素结构中所显示的像素中的电源线4808。在此,尽管对作为色素的色素RGB进行了描述,但是也可以应用例如色素RGBW的情况。
如图61所示,在色素R的像素列中,驱动晶体管的第一端(源极端或漏极端其中之一)连接电源线Ir,在色素G的像素列中,驱动晶体管的第一端(源极端或漏极端其中之一)连接电源线Ig,在色素B的像素列中,驱动晶体管的第一端(源极端或漏极端其中之一)连接电源线Ib。因此,可以合理地控制施加给发光元件的每个颜色的电压。
【实施例模型4】
在该实施例模型中,对具有实施例模型1、实施例模型2、实施例模型3中所描述的像素结构的显示设备中的优选的显示设备结构进行描述。
该实施例模型的显示设备在扫描线、信号线和电源线上设置有缓冲器。也就是说,来自扫描线驱动电路的信号输入缓冲器,并且信号从该缓冲器输出到扫描线。来自信号线驱动电路的信号输入缓冲器,并且信号从该缓冲器输出到信号线。来自电源线驱动电路的信号输入缓冲器,并且信号从该缓冲器输出到电源线。由此,进行来自扫描线驱动电路、信号线驱动电路和电源线驱动电路的输出信号的阻抗变换,从而提高了电流源容量。
注意:不在扫描线、信号线和电源线上设置缓冲器,可以在扫描线驱动电路、信号线驱动电路以及电源驱动电路上设置缓冲器,然后也可以同样增加这些驱动电路的输出的供电容量。
参考图13对该实施例模型中所描述的显示设备的基本结构进行描述。注意,在实施例模型1中,通用的附图标记用于参考图2所描述的显示设备的通用的部分。
扫描线S1至Sm的每条扫描线控制一行像素的开关。例如,在使用用于开关的晶体管的情况下,一行像素的开关晶体管的栅极端分别连接扫描线Si至Sm。然后,要求一行开关晶体管都立刻导通。特别是随着分辨率提高,必须立刻都导通的晶体管数量也增加。因此,具有高供电容量的缓冲器优选用于该实施例模型中的缓冲器。
此外,如图13所示的显示设备的扫描线Si至Sm的每条具有配线电阻,在与信号线D1至Dn相交处形成寄生电容(交叉电容)。因此,通过图14中所示的使用电阻器1401和电容器1402的等效电路可以对每条扫描线Si至Sm进行描述。
当向等效电路输入矩形输入脉冲1403时,响应波变成具有像输出脉冲1404的钝度的波。也就是脉冲延迟的上升和下降沿。然后,开关晶体管208在正常时间不会导通,使得视频信号不会正好写入像素中。因此,在该实施例模型的显示设备中,从扫描线输出的信号的供电容量通过缓冲器得以提高,因此可以降低从扫描线输出的信号的迟钝发生率。
另外,在信号线D1至Dn的情况下,当形成寄生电容时,提供与视频信号相对应的模拟信号电位,使得视频信号不会正好写入像素中。因此,在该实施例模型的显示设备中,也可以通过缓冲器提高从信号线输出的信号的供电容量。
在图13所示的显示设备中,从扫描线驱动电路202中输出的信号通过在扫描线S1至Sm上设置的各个缓冲器1302输入到扫描线S1至Sm。也就是说,通过嵌入缓冲器1302使从扫描线驱动电路202输出的信号的供电容量得以增加。相似的是缓冲器1301也可以设置在每条信号线D1至Dn上。注意:模拟缓冲器用作缓冲器1301。
相应地,从每个驱动电路输出的信号具有高供电容量,因此可以降低脉冲信号中的上述钝度。因此,一行像素的开关晶体管迅速导通,使得可以迅速写视频信号。相应地,可以缩短将信号写入像素中的周期。
在此,对在该实施例模型中使用的缓冲器的例子进行描述。此后,对于缓冲器,输入输入电位Vin的端被称为输入端,而输出输出电位Vout的端被称为输出端。
例如,如图15A所示,电压跟随电路1501的输入端连接信号线驱动电路的输出端,而电压跟随电路1501的输出端连接信号线。在使用用于缓冲器的电压跟随电路的情况下,电压跟随电路可以在IC芯片上形成,该IC芯片可以形成具有小特性变化的晶体管。注意:在该说明书中,IC芯片是集成电路在衬底上形成然后分开的芯片。特别是适于用这样一种IC芯片,在该IC芯片通过使用单晶硅晶片作为衬底并且该单晶硅晶片分隔成任意形状的元件隔离等等而形成电路。
相应地,在采用电压跟随电路1501作为缓冲器的情况下,其上设置有扫描线驱动电路、信号线驱动电路的IC芯片以及缓冲器可以通过COG(玻璃上芯片)等安装在显示面板上。注意:在图13的显示设备中,尽管电压跟随电路可以应用于缓冲器1301和缓冲器1302,但是该电压跟随电路起模拟缓冲器的作用,因此该电压跟随电路尤其适于缓冲器1301。
此外,如图15B所示,为N沟道晶体管1502和P沟道晶体管1503的反相器可以被用作缓冲器。N沟道晶体管1502的栅极端和P沟道晶体管1503的栅极端连接输入端,以输入电位Vin。另外,N沟道晶体管1502的源极端连接低电源电位VSS,而N沟道晶体管1502的漏极端和P沟道晶体管1503的漏极端连接输出输出电位Vout的输出端。串联连接的多个反相器可以被用作缓冲器。这时,输入端输入从反相器输出的输出电位Vout的下一级反相器可以有效地提高供电容量,使其具有三倍的供电容量。也就是说,当将从首先输入电位的反相器输出的电位输入下一级反相器时,具有大约三倍供电容量的反相器串联连接。以这种方式,偶数个连接的反相器可以被用作缓冲器。注意:在N沟道晶体管1502和P沟道晶体管1503的设计中,调整沟道宽W和沟道长L的比:W/L,由此调整供电容量。注意:可以将使用如图15B所示的反相器的缓冲器应用于如图13所示的显示设备中的缓冲器1302。注意:使用这种反相器的缓冲器的结构简单,因此在形成具有扫描线驱动电路和信号线驱动电路以及像素整体形成在衬底上的薄膜晶体管的显示面板时,可以整体地形成缓冲器。整体形成缓冲器,由此可以缩减成本。进一步地,如图15B所示,对于包括N沟道晶体管1502和P沟道晶体管1503的CMOS反相器,当将接近反相器逻辑阈值电位Vinv的电位输入输入端时,电流流到N沟道晶体管1502和P沟道晶体管1503。可是,当将H电平电位或L电平电位输入至输入端时,其中任意一个晶体管关断,因此浪费了电力。相应地,通过使用图15B中所描述的CMOS反相器,可以实现低电力损耗。
另外,如图15C所示,源极跟随电路也可以用来形成缓冲器。该源极跟随电路由源极跟随晶体管1504和电流源1505构成,源极跟随晶体管1504的栅极端连接输入端,其漏极端连接向其供给电源电位Vdd的导线,其源极端连接电流源1505的一个端以及输出端。电流源1505的另一端连接向其供给电源电位Vdd的导线。在此,使用源极跟随晶体管1504的栅极-源极电压Vgs,输出电位Vout可以通过下列公式来表述:Vout=Vin-Vgs…(1)
在此,Vgs是源极跟随晶体管1504流动电流I0所要求的电压。
相应地,输出电位Vout是比输入电位Vin低Vgs的电位。可是,在输入至输入电位Vin的信号是数字信号的情况下,即使当源极跟随晶体管1504的栅极-源极电压Vgs变化到某种程度,源极跟随电路也可以用作缓冲器。因此,在图13的显示设备中,源极跟随电路可以用作缓冲器1302。
此外,图15C所示的源极跟随电路的结构简单,因此该结构可以很容易地通过使用薄膜晶体管而形成。相应地,在形成具有扫描线驱动电路和信号线驱动电路以及像素整体形成在衬底上的薄膜晶体管的显示面板时,也可以整体地形成缓冲器。
另外,如图15C所示,N沟道晶体管用作源极跟随晶体管1504,因此在整体形成像素、扫描线驱动电路、信号线驱动电路以及缓冲器的显示面板中,可以形成仅由N沟道晶体管构成的单极显示面板。
此外,在使用源极跟随电路作为缓冲器的情况下,通过形成源极跟随晶体管1506以具有如图15D所示的双栅极,可以制造具有低阈值电压的晶体管。注意:除了源极跟随晶体管1506以外的结构和图15C的结构都是通用的,由此在此使用通用的附图标记,并且省略对其的描述。
如图15D所示的源极晶体管降低了阈值电压Vth,因此当阈值电压Vth的改变在形成源极跟随电路的每个源极跟随晶体管中减少时,也可以将源极跟随电路用作模拟缓冲器。相应地,如图15D所示的源极跟随电路不仅可以应用于图13中的显示设备的缓冲器1302,而且可以应用于缓冲器1301。
此外,图16B所示的结构可以用作缓冲器。源极跟随电路包括源极跟随晶体管1604、电容器1605、第一开关1606、第二开关1607、第三开关1608、电流源1609以及电压源1610。然后,源极跟随晶体管1604的漏极端连接供给电源电位Vdd的导线,其源极端连接输出端、通过电流源1609供给低电源电位Vss的导线以及第一开关1606的一个端。然后,第一开关1606的另一端连接电容器1605的一个端并通过第三开关1608连接输入端。此外,电容器1605的另一端连接源极跟随晶体管1604的栅极端以及通过第二开关1607和电压源1610供给低电源电位Vss的导线。
主要对图16B的源极跟随电路的操作进行描述。在预充电周期中,第一开关1606和第二开关1607导通。然后,电荷聚集在电容器1605中,这些电荷是与流动电流I1所必须的源极跟随晶体管1604的栅极-源极电压相对应的电压Vgs。然后,第一开关1606和第二开关1607关断。相应地,电容器1605保持源极跟随晶体管1604的栅极-源极电压Vgs。当第三开关1608导通时,虽然电容器1605保持栅极-源极电压Vgs,但输入电位Vin仍被输入输入端。相应地,将输入电位Vin加上栅极-源极电压Vgs的电位提供给电容器1605的另一端所连接的源极跟随晶体管1604的栅极端。另一方面,从输出端输出的输出电位Vout是源极跟随晶体管1604的栅极端电位减去栅极-源极电压Vgs的电位。相应地,从输出端输出的电位是与输入输入端的电位相同的电位,即Vin=Vout。
相应地,图16B所示的源极跟随电路不仅可以应用于图13的显示设备中的缓冲器1302,而且可以应用于缓冲器1301,用来提高模拟信号的供电容量。
另外,该电路与电压跟随电路相比是简单的,因此在形成具有整体形成扫描线驱动电路和信号线驱动电路以及像素的薄膜晶体管的显示面板时,也可以将图16B中所示的源极跟随电路整体地形成作为缓冲器。此外,如图16B所示的源极跟随电路可以由单极晶体管构成,因此,可以形成单极显示面板。
注意:晶体管、电阻器或在饱和区域操作的整流器元件可以用作图15C和15D所示的电流源1505以及图16B所示的电流源1609。此外,作为整流器元件,PN结型二极管或二极管连接晶体管也可以使用。
在此,参考图16A对将二极管连接晶体管应用于图15D中的电流源1505的情况进行描述。源极跟随电路包括源极跟随晶体管1506和二极管连接晶体管1507,源极跟随晶体管1506的漏极端连接供给电源电位Vdd的导线,而其源极端连接二极管连接晶体管1507的漏极端以及输出端。另外,二极管连接晶体管1507的漏极端连接其栅极端,而其源极端连接供给低电源电位Vss的导线。
注意:可应用于该实施例模型的显示设备的像素结构不限于图13所示的结构,可以应用实施例模型1、实施例模型2、实施例模型3和实施例模型4中所示的各种像素结构。另外,在输入扫描线驱动电路、信号线驱动电路和电源线驱动电路的所有输出的扫描线、信号线、电源线中不要求设置缓冲器,可以恰当地设置缓冲器。特别是在具有实施例模型3所述的图48的像素结构的显示设备的情况下,输入电源线4808的信号要求是用于使电流流过一像素行的发光元件的电流,因此,可以为用于给电源线4808输入信号的电源线驱动电路设置缓冲器。
【实施例模型5】
在该实施例模型中,对具有本发明像素结构的显示设备的扫描线驱动电路、信号线驱动电路以及电源线驱动电路进行描述。也就是说,在该实施例模型中所描述的扫描线驱动电路、信号线驱动电路以及电源线驱动电路可以恰当地应用于具有实施例模型1、实施例模型2和实施例模型3所述的像素结构的显示设备以及实施例模型4中所述的显示设备中。
图25A所示的显示设备包括其中排列有多个像素的像素部分2502,在该像素部分2502的周边具有在衬底2501上的电源线驱动电路2503、扫描线驱动电路2504以及信号线驱动电路2505。注意:在具有实施例模型1或实施例模型2所述的像素结构的显示设备的情况下,可以不设置电源线驱动电路2503。在这种情况下,扫描线驱动电路2504与图2中的扫描线驱动电路202相对应,而信号线驱动电路2505与图2中的信号线驱动电路201相对应。
输入电源线驱动电路2503、扫描线驱动电路2504以及信号线驱动电路2505的信号是从外部通过柔性印刷电路(柔性印刷电路:FPC)2506提供的。
注意:尽管未示出,但是IC芯片可以通过COG(玻璃上芯片)、TAB(载带自动接合)等安装在FPC 2506上。也就是说,在难以和像素部分2502整体形成的电源线驱动电路2503、扫描线驱动电路2504以及信号线驱动电路2505的部分中所包括的存储器、缓冲器等可以在IC芯片上形成,从而安装在显示设备上。
此外,如图25B所示,电源线驱动电路2503和扫描线驱动电路2504可以排列在像素部分2502的一侧上。注意:图25B所示的显示设备仅在电源线驱动电路2503的排列方面与图25A所示的显示设备不同,因此使用相同的附图标记。另外,一个驱动电路可以起到与电源线驱动电路2503和扫描线驱动电路2504中的一个驱动电路相似的作用。
随后,对图25A和25B所示的显示设备的信号线驱动电路2505的结构例子进行描述。这是用于给图2所示的显示设备的信号线(D1至Dn)提供信号的驱动电路。图31A所示的信号线驱动电路具有脉冲输出电路3101、第一锁存电路3102、第二锁存电路3103、D/A转换器电路(数字/模拟转换器电路)3104、写入周期/发光周期选择电路3105以及模拟缓冲器电路3106。
参考图33所示的详细的结构对图31A所示的信号线驱动电路的操作进行描述。
脉冲输出电路3301由多级触发电路(FF)3309等构成,并且时钟信号(S-CLK)、时钟反相信号(S-CLKB)、启动脉冲信号(S-SP)输入脉冲输出电路3301。根据这些信号的时序,顺序输出采样脉冲。
由脉冲输出电路3301输出的采样脉冲输入到第一锁存电路3302。数字视频信号输入到第一锁存电路3302,并且根据输入采样脉冲的时序,数字视频信号保持在每一级中。在此,以每级三字节的方式输入数字视频信号,每一字节的视频信号保持在每个第一锁存电路3302中。一个采样脉冲并行地操作每级第一锁存电路3302的三个锁存电路。
在第一锁存电路3302中,在最后一级中完成保持数字视频信号,在水平回扫周期中,将锁存脉冲输入到第二锁存电路3303中,并且在第一锁存电路3302中保持的数字视频信号都被立刻传送到第二锁存电路3303中。之后,在第一锁存电路3303中保持的数字视频信号以同时输入一行的方式输入到DAC(D/A转换器电路)3304中。
在DAC 3304中,输入的数字视频信号被数字—模拟转换,具有模拟电位的视频信号输入写入周期/发光周期选择电路3305中的开关电路3307。
当在第二锁存电路3303中所保持的数字视频信号输入到DAC 3304中时,再一次从脉冲输出电路3301中输出采样脉冲。然后,在写入周期中,重复上述操作,进行一帧视频信号的处理。
另外,写入周期/发光周期选择电路3305具有三角波电位生成电路3308。在发光周期期间,由三角波电位生成电路3308生成的三角波电位被输入到开关电路3307中。
以这种方式,来自DAC 3304的视频信号在写入周期中输入到开关电路3307,而来自三角波电位生成电路3308的三角波电位在发光周期中输入到开关电路3307中。然后,开关电路3307在写入周期中将视频信号输入到模拟缓冲器电路3306中,而在发光周期中将三角波电位输入到模拟缓冲器电路3306中。
模拟缓冲器电路3306变换阻抗,并将等效于输入电位的电位提供给信号线D1至Dn。也就是说,通过模拟缓冲器电路3306提供给信号线D1至Dn作为模拟信号电位而使视频信号的供电容量得以提高。注意:例如这些信号线D1至Dn与图2和13中的显示设备中的信号线D1至Dn相对应。
在图31A中,存在在将输入的数字视频数据转换成模拟信号之前对该输入的数字视频数据进行希望的校正的情况。因此,如图31B所示,在将数字视频数据输入到第一锁存电路3102中之前,优选通过校正电路3107对该数字视频数据进行校正,以输入到第一锁存电路3102中。该校正电路3107可以进行例如灰度校正等。
此外,在D/A转换器电路的输出输入到写入周期/发光周期选择电路中之前可以进行阻抗变换。也就是说,在图31A的结构中,作为D/A转换器电路3104的输出被阻抗变换成输入到写入周期/发光周期选择电路3105的结构,可以使用如图35A所示的结构。在这时,如图33所示的结构是如图37所示的结构,在图33所示的结构中详细描述了图31A中的结构。在图37中,附图标记3701指示脉冲输出电路,3702指示第一锁存电路,3703指示第二锁存电路,3704指示D/A转换器电路,3705指示写入周期/发光周期选择电路,3706指示模拟缓冲器电路,3707指示开关电路,3708指示三角波电位生成电路。另外,在图31B的结构中,作为D/A转换器电路3104的输出被阻抗变换成输入到写入周期/发光周期选择电路3105的结构,可以使用如图35B所示的结构。
另外,对输入到信号线驱动电路中的视频信号是在图31和33中的数字的结构进行描述,接下来对视频信号是在图32和34中的模拟的情况进行描述。在该情况下,如图31A和31B所示,可以不设置D/A转换器电路。另外,模拟锁存电路以及可以保持模拟信号的模拟锁存电路可以在每级中以一字节设置。如图32A所示,存在脉冲输出电路3201、第一模拟锁存电路3202、第二模拟锁存电路3203、写入周期/发光周期选择电路3204以及模拟缓冲器电路3205。
通过图34的详细的结构对图32A所示的信号线驱动电路的操作进行描述。
脉冲输出电路3401由多级触发电路(FF)3408等构成,并且将时钟信号(S-CLK)、时钟反相信号(S-CLKB)、启动脉冲信号(S-SP)输入到脉冲输出电路3301。根据这些信号的时序,顺序输出采样脉冲。
由脉冲输出电路3401输出的采样脉冲被输入到第一模拟锁存电路3402。将模拟视频信号输入到第一模拟锁存电路3402,并且根据输入采样脉冲的时序,将模拟视频信号保持在每一级中。在此,以每级一字节的方式输入模拟视频信号,并且这些模拟视频信号保持在每级的第一模拟锁存电路3402中。
在第一模拟锁存电路3402中,在最后一级中完成保持模拟视频信号,在水平回扫周期中,将锁存脉冲输入到第二模拟锁存电路3403中,并且在第一模拟锁存电路3402中保持的模拟视频信号都被立刻传送到第二模拟锁存电路3403中。之后,在第二模拟锁存电路3403中保持的模拟视频信号以同时输入一行的方式输入到写入周期/发光周期选择电路3404中的开关电路3406中。
然后,在写入周期中,开关电路3406将从第二模拟锁存电路3403中输入的视频信号输入到模拟缓冲器电路3405,该模拟缓冲器电路3405变换阻抗,并且将每个模拟信号电位提供给信号线D1至Dn。注意:例如这些信号线D1至Dn与图2和13中的显示设备中的信号线D1至Dn相对应。
以这种方式,当将一像素行的模拟信号电位提供给这些信号线D 1至Dn时,再一次从脉冲输出电路3401输出采样脉冲。然后,在写入周期中,重复上述操作,以进行一帧视频信号的处理。
另外,写入周期/发光周期选择电路3404具有三角波电位生成电路,在发光周期中,由三角波电位生成电路3407生成的三角波电位被输入到开关电路3406中。然后,在发光周期中,模拟缓冲器电路3405变换阻抗,并且将等效于输入的三角波电位的电位提供给信号线D1至Dn。也就是说,通过模拟缓冲器电路使输出电流容量增加。
以这种方式,对于开关电路3406,来自第二模拟锁存电路3403的视频信号在写入周期中被输入,而来自三角波电位生成电路3407的三角波电位在发光周期中被输入。然后,开关电路3406在写入周期中将视频信号输入到模拟缓冲器电路3405中,而在发光周期中将三角波电位输入到模拟缓冲器电路3405中。
此外,在来自外部的视频信号是数字视频信号的情况下,D/A转换器电路3206可以将数字视频信号转换成模拟视频信号,输入到如图32B所示的第一模拟锁存电路3202中。
此外,在将第二锁存电路的输出输入到写入周期/发光周期选择电路之前可以进行阻抗变换。也就是说,在图32A的结构中,作为第二模拟锁存电路3203的输出被阻抗变换成输入到写入周期/发光周期选择电路3204的结构,可以使用如图36A所示的结构。在这时,如图34所示的结构是如图38所示的结构,在图34所示的结构中详细描述了图32A中的结构。在图38中,附图标记3801指示脉冲输出电路,3802指示第一锁存电路,3803指示第二锁存电路,3804指示写入周期/发光周期选择电路,3805指示模拟缓冲器电路,3806指示开关电路,3807指示三角波电位生成电路。另外,在图32B的结构中,作为第二锁存电路3203的输出被阻抗变换成输入到写入周期/发光周期选择电路3204的结构,可以使用如图36B所示的结构。
此外,参考图39和40对可应用于具有像素结构(例如诸如图6和8这样的像素结构)的显示设备的信号线驱动电路进行描述,在该像素结构中,通过另一信号线将与视频信号相对应的模拟信号电位以及以模拟方式改变用于控制驱动晶体管的导通/截止的电位输入到像素中。
首先,对图39所示的结构进行描述。
脉冲输出电路3901由多级触发电路(FF)3907等构成,并且将时钟信号(S-CLK)、时钟反相信号(S-CLKB)、启动脉冲信号(S-SP)输入到脉冲输出电路3301中。根据这些信号的时序,顺序输出采样脉冲。
由脉冲输出电路3901输出的采样脉冲被输入到第一锁存电路3902。将数字视频信号输入到第一锁存电路3902,并且根据输入采样脉冲的时序,将数字视频信号保持在每一级中。在此,以每级三字节的方式输入数字视频信号,并且每一字节的视频信号被保持在第一锁存电路3902中。一个采样脉冲并行操作每级第一锁存电路3902的三个锁存电路。
在第一锁存电路3902中,在最后一级中完成保持数字视频信号,在水平回扫周期中,将锁存脉冲输入到第二锁存电路3903中,并且在第一锁存电路3902中保持的数字视频信号都被立刻传送到第二锁存电路3903中。之后,在第二锁存电路3903中保持的数字视频信号以同时输入一行的方式输入到DAC(D/A转换器电路)3904中。
在DAC 3904中,输入的数字视频信号被数字—模拟转换,并且作为具有模拟电位的视频信号被输入到模拟缓冲器电路3905中。
将模拟信号电位从模拟缓冲器电路3905提供给每个信号线D1a1至D1an。同时,也从三角波电位生成电路3906向每个信号线D2a1至D2an提供三角波电位。注意:信号线D1a1至D1an与具有如图6和8的像素的显示设备的第一信号线609或第一信号线809相对应。此外,信号线D2a1至D2an与具有如图6和8的像素的显示设备的第二信号线610或第二信号线810相对应。
另外,对图40所示的结构进行描述。
脉冲输出电路4001由多级触发电路(FF)4006等构成,并且将时钟信号(S-CLK)、时钟反相信号(S-CLKB)、启动脉冲信号(S-SP)输入到脉冲输出电路4001中。根据这些信号的时序,顺序输出采样脉冲。
由脉冲输出电路4001输出的采样脉冲被输入到第一模拟锁存电路4002。将模拟视频信号(模拟数据)输入到第一模拟锁存电路4002,并且根据输入采样脉冲的时序,将模拟视频信号保持在每一级中。在此,以每级一字节的方式输入模拟视频信号,并且这些模拟视频信号保持在每级的第一模拟锁存电路4002中。
在第一模拟锁存电路4002中,在最后一级中完成保持模拟视频信号,在水平回扫周期中,将锁存脉冲输入到第二模拟锁存电路4003中,并且在第一模拟锁存电路4002中保持的模拟视频信号都被立刻传送到第二模拟锁存电路4003中。之后,在第二模拟锁存电路4003中保持的模拟视频信号以同时输入一行的方式输入到模拟缓冲器电路4004中。
将模拟信号电位从模拟缓冲器电路4004提供给每个信号线D1a1至Dlan。同时,也从三角波电位生成电路4005向每个信号线D2a1至D2an提供三角波电位。
注意:这些描述是对在将信号立刻写入在行方向上选择(也称为线顺序方法)的像素中的情况下的信号线驱动电路进行的。可是,根据从脉冲输出电路输出的信号,可以将输入信号线驱动电路的视频信号直接写入像素中(也称为点顺序方法)。
结合图41A对可应用于实施例模型1中所述的图1和4所示的像素结构的点顺序方法的信号线驱动电路进行描述。该信号线驱动电路包括脉冲输出电路4101、第一开关组4102以及第二开关组4103。每个第一开关组4102以及第二开关组4103具有多个开关级,其分别与信号线相对应。
每级第一开关组4102的开关的一个端连接输入与视频信号相对应的模拟视频数据的导线,其另一端连接各自对应的信号线。此外,每一级第二开关组4103的开关的一个端连接提供三角波电位的导线,其另一端连接各自对应的信号线。
在将信号写入像素的周期中,将时钟信号(S-CLK)、时钟反相信号(S-CLKB)和启动脉冲信号(S-SP)输入到脉冲输出电路4101中。根据这些信号的时序,顺序输出采样脉冲。注意:这时,将用于控制第二开关组4103导通/截止的控制信号设定成关断所有级的开关。
然后,根据采样脉冲的输出,第一开关组4102的开关导通一级。
因此,在写入周期中,将模拟视频数据输入与导通第一开关组4102的一级开关相对应的信号线中。相应地,每一级第一开关组4102的开关顺序导通,将模拟视频数据写入已选择行的像素中。
随后,选择下一行像素,并且同样写入信号。当将信号写入所有行的像素中时,完成信号写入周期。
在完成像素的信号写入周期之后,开始发光周期。在像素的发光周期中,并没有从脉冲输出电路4101中输出采样脉冲。也就是说,脉冲输出电路4101的输出不可能被输入到第一开关组4102中,或者启动脉冲信号(S-SP)不可能被输入到脉冲输出电路4101中。也就是说,可能关断第一开关组4102的开关。
输入控制信号从而关断第二开关组4103的所有开关。然后,给所有信号线提供三角波电位。注意:在发光周期中,选择所有行的像素,因此可以给所有像素提供三角波电位。输入三角波电位。
以这种方式,完成发光周期,完成一帧周期。
接下来,参考图41B对可应用于实施例模型2中所述的图6和图8的像素结构的点顺序方法的信号线驱动电路进行描述。该信号线驱动电路包括脉冲输出电路4111和开关组4112。每个开关组4112包括多级开关。这多级分别与第一信号线相对应。
每级开关组4112的开关的一个端连接输入与视频信号相对应的模拟视频数据的导线,其另一端分别连接与像素列相对应的第一信号线。另外,提供三角波电位的导线分别连接与像素列相对应的第二信号线。
在将信号写入像素的周期中,将时钟信号(S-CLK)、时钟反相信号(S-CLKB)、启动脉冲信号(S-SP)输入到脉冲输出电路4111中。根据这些信号的时序,顺序输出采样脉冲。
然后,根据采样脉冲的输出,开关组4112的开关导通一级。
因此,在将信号写入像素的周期中,将模拟视频数据输入到与导通开关组4112的一级开关相对应的第一信号线中。相应地,每一级开关组4112的开关顺序导通,将模拟视频数据写入已选择行的像素中。
注意:未被选择的行的像素连接处于发光周期的第二信号线。
以这种方式,可以将图41B所示的结构应用于诸如实施例模型2中图6和8所示的像素这样的像素中,在这种像素中,给每一像素行设定写入周期,并且当一行处于写入周期时,其它行处于发光周期。
随后,对扫描线驱动电路和电源线驱动电路进行描述。
每个扫描线驱动电路和电源线驱动电路具有脉冲输出电路。在写入周期中,从脉冲输出电路向扫描线和电源线输出采样脉冲。在发光周期中,并不输出采样脉冲的输出,将信号输入扫描线,使得所有像素行都不被选择。另外,将用于向发光元件施加正向电压的电位提供给电源线。
注意:当扫描线驱动电路和电源线驱动电路由一个驱动电路形成时,因此可以减少驱动电路的空间,得到窄屏。
接下来,对可应用于该实施例模型的D/A转换器电路的结构进行描述。
图17表示可以将三字节的数字信号转换成模拟信号的电阻器串D/A转换器电路。
多个电阻器串联连接,将参考电源电位Vref提供给电阻器组的一个端,而将低电源电位(例如GND)提供给它的另一个端。然后,电流流向电阻器组,并且由于电压降使得每个电阻器的两个端具有不同的电位。根据分别输入到输入端1、输入端2和输入端3的信号,选择开关的导通/关断,因此,可以从输出端得到八个不同的电位。具体来说,通过输入到输入端3的信号,在八个电位中选择四个较高电位或四个较低电位。然后,通过输入到输入端2的信号,在由输入端3所选择的四个电位中选择两个较高电位或两个较低电位。然后,通过输入到输入端1的信号,在由输入端2所选择的两个电位中选择一个较高电位或一个较低电位。以这种方式,从八个电位中选择一个电位。因此,输入到输入端1、输入端2和输入端3的数字信号可以转换成模拟信号电位。
另外,也可以应用可以将六字节数字信号转换成图18所示的模拟信号的电容器阵列D/A转换器电路。
具有不同静电容量的多个电容器并联电连接。在这些电容器中,根据数字信号,控制开关1至6的导通/关断,然后与参考电源电位Vref和低电源电位(例如GND)之间的电位差相对应的电荷聚集在任意电容器中,然后由这多个电容器分配这些聚集的电荷。然后,多个电容器的电压变得稳定在某一值。通过该电压,由放大器检测到一个电位,将数字信号转换成模拟信号电位。
此外,也可以使用组合了电阻器串类型和电容器阵列类型的D/A转换器电路。这些D/A转换器电路仅是例子,因此可以恰当地使用各种D/A转换器电路。
【实施例模型6】
在该实施例模型中,参考图19A和19B对具有实施例模型1、实施例模型2、实施例模型3或实施例模型4所述的像素结构的显示面板的结构进行描述。
在该实施例模型中,参考图19A和19B对在像素部分中具有本发明像素结构的显示面板进行描述。注意:图19A是显示面板的顶面视图,图19B是沿图19A的线A-A’切割的横截面图。该显示面板包括用点线表示的信号线驱动电路(数据线)1901、像素部分1902、电源线驱动电路(照明线)1903、扫描线驱动电路(复位线)1906、密封衬底1904以及密封材料1905。由密封材料1905环绕的内侧是空间1907。注意:在实施例模型1和实施例模型2的像素结构的情况下,可以不设置电源线驱动电路1903。
注意:导线1908传输输入到电源线驱动电路1903、扫描线驱动电路1906和信号线驱动电路1901的信号,并从作为外部输入端的FPC(柔性印刷电路)1909接收视频信号、时钟信号、启动信号等。在FPC 1909和显示面板之间的连接点上,通过COG(玻璃上芯片)等安装有IC芯片(在其上形成有存储电路、缓冲器电路等的半导体芯片)。注意:在此,尽管仅示出了FPC,但是印刷配线板(PWB)可以粘附在该FPC上。在该说明书中的显示设备不仅包括显示面板主体,而且包括FPC或粘附的PWB。另外,该显示设备包括IC芯片等。
接下来,参考图19B对横截面结构进行描述。尽管像素部分1902以及其周边驱动电路(电源线驱动电路1903、扫描线驱动电路1906和信号线驱动电路1901)形成在衬底1910上,在此,示出信号线驱动电路1901和像素部分1902。
此外,在该实施例模型中,尽管示出的是周边驱动电路整体形成在衬底上的显示面板,但并不限于此,还可以所有外围驱动电路或部分外围驱动电路形成在IC芯片等上或通过COG等安装在IC芯片上。在那种情况下,不要求驱动电路是单极的,可以组合P沟道晶体管使用。另外,尽管在该实施例模型中所述的显示面板中未示出在图13所示的显示设备中所包括的缓冲器1301和缓冲器1302,但是在每个外周驱动电路中设置缓冲器。
此外,像素部分1902包括形成包括开关TFT 1911和驱动TFT 1912的像素的多个电路。注意:驱动TFT 1912的源极连接第一电极1913。形成覆盖第一电极1913的端部的绝缘体1914。在此,使用正性光敏丙烯酸树脂膜。
另外,为了好的覆盖,形成在绝缘体1914的上端部或下端部具有曲率的弯曲表面。例如,在使用正性光敏丙烯酸作为绝缘体1914的材料的情况下,优选在绝缘体1914的上端部设置具有曲率半径(0.2至3μm)的弯曲表面。另外,作为绝缘体1914,也可以使用不可通过光敏光而溶于蚀刻剂的负性光敏有机材料或可通过光而溶于蚀刻剂的正性光敏有机材料。
在第一电极1913上形成有含有有机化合物的层(电致发光层)1916和第二电极1917。在此,作为用作起阳极作用的第一电极1913的材料,希望使用具有高功函的材料。例如,可以使用诸如ITO(氧化铟锡)膜、氧化铟锌(IZO)膜、氮化钛膜、铬膜、钨膜、Zn膜以及Pt膜这样的单层膜、主要含有氮化钛的膜和主要含有铝的膜的叠层、氮化钛膜、主要含有铝的膜以及氮化钛膜的三层结构等。注意:在叠层结构的情况下,作为导线的阻抗低,并且得到良好的欧姆接触,另外,该叠层结构可以起到阳极的作用。
此外,通过使用气相淀积掩模的气相淀积方法或微滴释放方法形成含有有机化合物1916的层。对于含有有机化合物1916的层,元素周期表第4族的金属络合物可以用作其一部分,并且可以组合的材料是低分子量的材料或高分子量的材料。另外,对于用作含有有机化合物的层的材料,通常存在单层或叠层的有机化合物的情况。可是,在该实施例模型中,部分由有机化合物形成的膜包括使用无机化合物的结构。另外,可以使用已知的三重态材料。
此外,作为用作在含有有机化合物1916的层上形成的第二电极(阴极)1917的材料,可以使用具有低功函的材料(Al、Ag、Li、Ca或这些金属的合金诸如MgAg、MgIn、AlLi、CaF2或CaN)。注意:在由含有有机化合物的层(电致发光层)1916生成的光被传输通过第二电极1917的情况下,作为第二电极(阴极)1917,可以使用具有薄厚度的金属薄膜以及透明传导膜(ITO(氧化铟氧化锡合金)、氧化铟氧化锌合金(In2O3-ZnO)、氧化锌(ZnO)等)的叠层。
另外,密封衬底1904通过密封材料1905粘附在衬底1910上,形成在由衬底1910、密封衬底1904和密封材料1905所围成的空间中设置发光元件1918的结构。注意:具有惰性气体(氮、氩等)填充空间1907的结构以及用密封材料1905填充的结构。
注意:环氧树脂优选用作密封材料1905。此外,这些尽可能不传输湿气或氧气的材料是理想的材料。另外,作为用作密封衬底1904的材料,玻璃衬底、石英衬底以及FRP(玻璃钢)、PVF(聚氟乙烯)、聚酯薄膜、聚酯、丙烯酸等。
如上所述,可以得到具有本发明像素结构的显示面板。注意:附图标记1920指示N沟道晶体管,附图标记1921指示P沟道晶体管。
如图19A和19B所示,整体形成信号线驱动电路1901、像素部分1902、电源线驱动电路1903以及扫描线驱动电路1906,以降低显示设备的成本。此外,在这种情况下,用作信号线驱动电路1901、像素部分1902、电源线驱动电路1903以及扫描线驱动电路1906的晶体管是单极的,因此可以简化制造步骤来进一步降低成本。
注意:作为如图19A所示的显示面板的结构,整体形成信号线驱动电路1901、像素部分1902、电源线驱动电路1903以及扫描线驱动电路1906的结构并不限于此,也可以使用将与信号线驱动电路1901相对应的如图42A所示的信号线驱动电路4201形成在通过COG等安装在显示面板上的IC芯片上的结构。注意:图42A中的衬底4200、像素部分4202、扫描线驱动电路4203、电源线驱动电路4204、FPC 4205、IC芯片4206、IC芯片4207、密封衬底4208以及密封材料4209分别与图19A中的衬底1910、像素部分1902、电源线驱动电路1903、扫描线驱动电路1906、FPC 1909、IC芯片1919A、IC芯片1919B、密封衬底1904以及密封材料1905相对应。
也就是说,仅有驱动电路高速工作所要求的信号线驱动电路形成在使用CMOS等的IC芯片上,由此降低了功耗。另外,IC芯片是硅晶片的半导体芯片等,以进行高速工作,并且降低功耗。
然后,扫描线驱动电路4203和电源线驱动电路4204与像素部分4202整体形成,以降低成本。此外,扫描线驱动电路4203、电源线驱动电路4204以及像素部分4202由单极晶体管形成,以进一步降低成本。对于像素部分4202中的像素结构,可以应用实施例模型1、2、3、4和5中所述的像素。因此,可以提供具有高孔径比的像素。
以这种方式,具有高清晰度的显示设备可以降低成本。另外,在FPC 4205和衬底4200的连接部分上安装在其上形成有功能电路(存储器或缓冲器)的IC芯片,由此,可以有效地使用衬底区域。
此外,分别与图19A中的信号线驱动电路1901、电源线驱动电路1903和扫描线驱动电路1906相对应的图42B中的信号线驱动电路4211、电源线驱动电路4214和扫描线驱动电路4213可以形成在通过COG等安装在显示面板上的IC芯片上。在这种情况下,具有高清晰度的显示设备可以进一步降低成本。相应地,对于功耗小得多的显示设备来说,理想的是将多晶硅用于晶体管的半导体层,其中该半导体层用作像素部分。注意:图42B中的衬底4210、像素部分4212、FPC 4215、IC芯片4216、IC芯片4217、密封衬底4218以及密封材料4219分别与图19A中的衬底1910、像素部分1902、FPC 1909、IC芯片1919A、IC芯片1919B、密封衬底1904以及密封材料1905相对应。
此外,当将非晶硅用作像素部分4212的晶体管的半导体层时,可以降低成本。另外,可以制造大的显示面板。
此外,扫描线驱动电路、电源线驱动电路和信号线驱动电路可以不设置在像素的行方向和列方向上。例如,如图26A所示形成在IC芯片上的外周驱动电路2601可以具有如图42B所示的电源线驱动电路4214、扫描线驱动电路4213以及信号线驱动电路4211的功能。注意:图26A中的衬底2600、像素部分2602、FPC 2604、IC芯片2605、IC芯片2606、密封衬底2607以及密封材料2608分别与图19A中的衬底1910、像素部分1902、FPC 1909、IC芯片1919A、IC芯片1919B、密封衬底1904以及密封材料1905相对应。
注意:图26B中示出描述图26A中的显示设备的信号线连接的示意图。显示设备具有衬底2610、外周驱动电路2611、像素部分2612、FPC 2613以及FPC 2614。从FPC 2613向外周驱动电路2611输入外部信号和电源电位。然后,将来自外周驱动电路2611的输出输入到与像素部分2612的像素相连接的行方向和列方向的信号线中。
此外,图20A和20B表示可应用于发光元件1918的发光元件的例子。也就是说,参考图20A和20B对可应用于实施例模型1、实施例模型2、实施例模型3、实施例模型4和实施例模型5所示的像素中的发光元件的结构进行描述。
图20A中的发光元件具有如下元件结构:阳极2002、由空穴注入材料形成的空穴注入层2003、在其上由空穴传输材料形成的空穴传输层2004、发光层2005、由电子传输材料形成的电子传输层2006、由电子注入材料形成的电子注入层2007以及阴极2008层叠在衬底2001上。在此,尽管可以用一种发光材料形成发光层2005,但是也可以用两种或更多种材料形成发光层2005。另外,本发明的元件的结构并不限于该结构。
此外,存在多种改变:如图20A所示的每个功能层层叠的层叠层结构、使用高分子量化合物的元件、使用从发光层的三重激发态发光的三重态发光材料的高性能元件等等。本发明的元件可应用于通过用空穴阻挡层将发光区域分成两个区域来控制载流子的再结合区域而得到的白—彩色发光元件。
在制造图20A所示的本发明的元件的方法中,首先,将空穴注入材料、空穴传输材料以及发光材料以该顺序淀积在具有阳极2002(ITO)的衬底2001上。随后,淀积电子传输材料和电子注入材料,通过淀积最后形成阴极2008。
接下来,下面分别对用于空穴注入材料、空穴传输材料、电子传输材料、电子注入材料以及发光材料的优选材料进行描述。
作为空穴注入材料,在有机化合物中,卟啉化合物、酞菁(以下称为“H2Pc”)、酞菁铜(以下称为“CuPc”)等等是有效的。另外,也可以将具有比使用的空穴传输材料更低的电离电位并且具有空穴传输功能的材料用作空穴注入材料。具有给传导性高分子量化合物进行化学掺杂的材料,诸如掺杂聚苯乙烯磺酸盐(以下称为“PSS”)、聚苯胺等的聚乙烯二羟噻吩(以下称为“PEDOT”)。此外,在阳极的平面化中绝缘高分子量化合物是有效的,并且经常使用聚酰亚胺(以下称为“PI”)。此外,使用无机化合物,具有金或铂金属薄膜以及氧化铝(以下称为“氧化铝”)超薄膜等。
作为空穴传输材料,最广泛使用的是芳香胺基化合物(也就是具有苯环-氮键的化合物)。这些广泛使用的材料包括4,4′-二(二苯胺)-联苯(以后称为“TAD”),其衍生物诸如4,4′-二[N-(3-甲基苯基)-N-苯基-氨基]-联苯(以后称为“TPD”)或4,4′-二[N-(1-萘基)-N-苯基-氨基]-联苯(以后称为“a-NPD”),除此以外,还包括星爆式芳香胺化合物,诸如4,4′,4″-三(N,N-联苯-氨基)-三苯胺(以后称为“TDATA”)或4,4′,4″-三[N-(3-甲基苯基)-N-苯基-胺基]-三苯胺(以后称为“MTDATA”)。
作为电子传输材料,经常使用金属络合物,其包括具有喹啉构架或苯并喹啉构架的金属络合物,诸如上述Alq3、BAlq、三(4-甲基-8-喹啉)铝(以后称为“Almq”)或二(10-羟基苯并[h]-喹啉)铍(以后称为“BeBq”),除此以外,还包括具有唑基或三唑基配合基的金属络合物,诸如二[2-(2-羟苯基)-苯并恶嗪]锌(以后称为“Zn(BOX)2”)或二[2-(2-羟苯基)-苯并噻唑]锌(以后称为“Zn(BTZ)2”)。此外,除了这些金属络合物外,恶二唑衍生物诸如2-(4-联苯基)-5-(4-叔-丁基苯)-1,3,4-恶二唑(以后称为“PBD”)或OXD-7、三唑衍生物诸如TAZ、3-(4-叔-丁基苯)-4-(4-乙基苯)-5-(4-联苯基)-1,2,4-三唑(以后称为“p-EtTAZ”)以及菲咯啉衍生物诸如红菲绕啉(以后称为“BPhen”)或BCP具有电子传输特性。
作为电子注入材料,可以使用上述电子传输材料。另外,经常使用诸如金属卤化物或者碱性金属氧化物之类的绝缘体的超薄膜,其中金属卤化物诸如是氟化钙、氟化锂或氟化铯,碱性金属氧化物诸如是氧化锂。此外,碱性金属络合物诸如乙酰丙酮锂(以后称为“Li(acac)”)或者8-喹啉-锂(以后称为“Liq”)也是有效的。
作为发光材料,除了上述金属络合物诸如Alq3、Almq、BeBq、BAlq、Zn(BOX)2和Zn(BTZ)2以外,各种不同的荧光染料也是有效的。这些荧光染料包括为蓝色的4,4′-二(2,2-联苯-乙烯基)联苯、为橙红色的4-双氰基亚甲基2-甲基-6-(p-二甲基氨基苯乙烯基)-4H-吡喃等。另外,可以利用三重态发光材料,其主要是具有作为重要金属的铂或铱的络合物。作为三重态发光材料,已知有三(2-苯基吡啶)铱、二(2-(4′-tryl)吡啶-N,C2′)乙酰丙酮铱(以后称为“acacIr(tpy)2”)、2,3,7,8,12,13,17,18-八乙基-21H,23H卟啉-铂等。
具有上述功能的材料相互组合,然后可以制得具有高可靠性的发光元件。
此外,当使晶体管的极性反相、使提供电源电位或低电源电位的导线的电位反相、使实施例模型1、实施例模型2、实施例模型3等中所述的像素结构中的扫描线和信号线的电平反相时,可以使用如图20B所示的与图20A的顺序相反的顺序形成层的发光元件。也就是说,在元件结构中,阴极2018、由电子注入材料形成的电子注入层2017、在其上由电子传输材料形成的电子传输层2016、发光层2015、由空穴传输材料形成的空穴传输层2014、由空穴注入材料形成的空穴注入层2013以及阳极2012层叠在衬底2011上。
另外,为了发光,发光元件的至少一个阳极或阴极可以是透明的。TFT和发光元件形成在衬底上。发光元件可以具有从与衬底相对的表面发光的顶部发光结构,、从衬底侧发光的底部发光结构或者从衬底侧和与该衬底相对的表面发光的双重发光结构。因此本发明的像素结构可以应用于具有任意发光结构的发光元件中。
参考图21A对具有顶部发光结构的发光元件进行描述。
驱动TFT2101形成在衬底2100上,第一电极2102形成为与驱动TFT2101的源极相接触。含有有机化合物2103的层和第二电极2104形成在其上。
此外,第一电极2102是发光元件的阳极,第二电极2104是发光元件的阴极。也就是说,含有有机化合物2103的层夹在第一电极2102和第二电极2104之间的部分与发光元件相对应。
在此,用作起阳极作用的第一电极2102的材料理想的是具有高功函的材料。例如,可以使用像氮化钛膜、铬膜、钨膜、Zn膜以及Pt膜这样的单层膜、主要含有氮化钛的膜和主要含有铝的膜的叠层、氮化钛膜、主要含有铝的膜以及氮化钛膜的三层结构等。注意:在叠层结构的情况下,作为导线的阻抗低,并且得到良好的欧姆接触,另外,该叠层结构可以起到阳极的作用。当使用反射光的金属膜时,可以形成不传输光的阳极。
此外,作为用作起阴极作用的第二电极2104的材料,可以使用由低功函的材料(Al、Ag、Li、Ca或这些金属的合金诸如MgAg、MgIn、AlLi、CaF2或CaN)制成的金属薄膜和透明传导膜(ITO(氧化铟锡)、氧化铟锌(IZnO)、氧化锌(ZnO)等)的层叠层。由此,当使用薄膜金属膜和具有光传输特性的透明传导膜时,可以形成可传输光的阴极。
由此,如图21A的箭头所示,可以从顶面得到从发光元件发出的光。也就是说,在应用图19A和19B的显示面板的情况下,光发出至密封衬底1904侧。相应地,在将具有顶部发光结构的发光元件用作显示设备时,可以将具有光传输特性的衬底用作密封衬底1904。
另外,在提供光学膜的情况下,可以给密封衬底1904提供光学膜。
注意:在图21A的像素结构的情况下,当第一电极2102起阴极的作用时,可以将由低功函材料诸如MgAg、MgIn和AlLi构成的金属膜用作阴极。然后,可以将透明传导膜诸如ITO(氧化铟锡)膜和氧化铟锌(IZO)膜用作起阳极作用的第二电极2104。因此,根据该结构,可以提高顶部发光的透射率。
此外,参考图21B对具有底部发光结构的发光元件进行描述。除了发光结构以外,该发光元件与图21A的发光元件相似,因此使用相同的附图标记来进行描述。
在此,作为用作起阳极作用的第一电极2102的材料,理想的是使用高功函材料。例如,可以使用透明传导膜诸如ITO(氧化铟锡)膜和氧化铟锌(IZO)膜。通过使用具有光传输特性的透明传导膜可以形成可传输光的阳极。
此外,作为用作起阴极作用的第二电极2104的材料,可以使用由低功函的材料(Al、Ag、Li、Ca或这些金属的合金诸如MgAg、MgIn、AlLi、CaF2或CaN)制成的金属膜。由此,当使用反射光的金属膜时,可以形成不传输光的阴极。
以这种方式,如图21B的箭头所示,从底面可以得到从发光元件发出的光。也就是说,在应用图19A和19B的显示面板的情况下,光发出至衬底1910侧。相应地,在将具有底部发光结构的发光元件用作显示设备时,可以将具有光传输特性的衬底用作衬底1910。
另外,在提供光学膜的情况下,可以给衬底1910提供光学膜。
参考图21C对具有双重发光结构的发光元件进行描述。除了发光结构以外,该发光元件与图21A的发光元件相似,因此使用相同的附图标记来进行描述。
在此,作为用作起阳极作用的第一电极2102的材料,理想的是使用高功函材料。例如,可以使用透明传导膜诸如ITO(氧化铟锡)膜和氧化铟锌(IZO)膜。通过使用具有光传输特性的透明传导膜可以形成可传输光的阳极。
此外,作为用作起阴极作用的第二电极2104的材料,可以使用由低功函的材料(Al、Ag、Li、Ca或这些金属的合金诸如MgAg、MgIn、AlLi、CaF2或CaN)制成的金属薄膜和透明传导膜(ITO(氧化铟锡)、氧化铟氧化锌合金(In2O3-ZnO)、氧化锌(ZnO)等)的层叠层。由此,当使用金属薄膜和具有传输特性的透明传导膜时,可以形成可传输光的阴极。
由此,如图21C的箭头所示,可以从两面得到从发光元件发出的光。也就是说,在应用图19A和19B的显示面板的情况下,光发出至衬底1910侧和密封衬底1904侧。相应地,在将具有双重发光结构的发光元件用作显示设备时,可以将具有光传输特性的衬底用作衬底1910和密封衬底1904。
另外,在提供光学膜的情况下,可以给衬底1910和密封衬底1904提供光学膜。
此外,可以将本发明应用于通过使用白-彩色发光元件以及滤色镜实现全色显示的显示设备。
如图22所示,在衬底2200上形成基膜2202,在其上形成驱动TFT 2201,形成第一电极2203与驱动TFT 2201的源极接触,在其上形成含有有机化合物2204的层和第二电极2205。
此外,第一电极2203是发光元件的阳极,第二电极2205是发光元件的阴极。也就是说,含有有机化合物2204的层夹在第一电极2203和第二电极2205之间的部分与发光元件相对应。在图22的结构中发出白光。然后,在发光元件上设置红色滤色镜2206R、绿色滤色镜2206G以及蓝色滤色镜2206B,因此可以进行全色显示。另外,提供将这些滤色镜隔开的黑底(也称为BM)2207。
注意:本发明除了可以应用于实现使用白-彩色发光元件的显示的显示设备以外,还可以应用于实现全色显示的显示设备。例如,可以使用具有如下结构的显示设备:红光(R)发光元件、绿光(G)发光元件和蓝光(B)发光元件分别设置有红色滤色镜、绿色滤色镜和蓝色滤色镜。通过应用该结构,可以从每个发光元件中去除不理想的光频率分量,提高色纯度,因此可以恰当地进行彩色显示。此外,用于减少反射光的滤色镜防止外部光被反射,而不用偏振器。相应地,抑制了反射的外部光,不会使由于该偏振器引起光传输性降低。
可以组合发光元件的上述结构,从而恰当地用作具有本发明像素结构的显示设备。另外,显示面板和发光元件的上述结构是例子,不言而喻,本发明的像素结构可以应用于具有其它结构的显示设备。
接下来,对显示面板中的像素部分的局部横截面图进行描述。
首先,参考图23A至24B对将多晶硅(p-Si:H)膜用作晶体管的半导体层的情况进行描述。
在此,对于半导体层,例如非晶硅(a-Si)膜以已知的淀积方法形成在衬底上。注意:并不限于非晶硅膜,可以使用具有非晶结构的半导体膜(包括微晶半导体膜)。此外,可以使用具有非晶结构的复合半导体膜诸如非晶硅锗膜。
然后,通过激光晶化方法、使用RTA或退火炉的热晶化方法、使用用于促进晶化的金属元素的热晶化方法等使非晶硅膜结晶化。不言而喻,可以对这些方法进行组合。
通过上述晶化,在非晶硅膜中形成部分结晶化的区域。
此外,将结晶度部分增加的半导体膜蚀刻成预定形状,以从结晶化区域形成岛状半导体膜。该半导体膜用作晶体管的半导体层。
如图23A和23B所示,在衬底23101上形成基膜23102,在其上形成半导体层。该半导体层包括作为驱动晶体管23118的源极区域或漏极区域的沟道形成区23103、LDD区域23104、杂质区23105、作为底部电极的沟道形成区23106、LDD区域23107以及电容器23119的杂质区23108。注意:可以对沟道形成区23103和沟道形成区23106进行沟道掺杂。
玻璃衬底、石英衬底、陶瓷衬底等可以用作衬底。另外,作为基膜23102,可以使用氮化铝(AlN)、氧化硅(SiO2)、氮氧化硅(SiOxNy)等的单层或者这些的层叠层。
在该半导体层上,形成栅极电极23110和电容器的上部电极23111,栅极绝缘层23109嵌入二者之间。
形成覆盖驱动晶体管23118和电容器23119的中间层绝缘膜23112。导线23113通过中间层绝缘膜23112上的接触孔与杂质区23105相接触。形成像素电极23114与导线23113相接触,形成覆盖像素电极23114的端部和导线23113的绝缘体23115。在此,使用正性光敏丙烯酸树脂膜。然后,在像素电极23114上形成含有有机化合物23116的层以及相对电极23117,在含有有机化合物23116的层夹在像素电极23114和相对电极23117之间的区域形成发光元件23120。
另外,如图23B所示,可以将区域23202设置成与上部电极23111重叠,上部电极23111具有形成电容器23119的部分底部电极的LDD区域。注意:与图23A相通用的部分用相同的附图标记来表示,并且省略其描述。
另外,如图24A所示,可以设置第二上部电极23301,其在与导线23113相同的层上形成,导线23113与驱动晶体管23118的杂质区23105相接触。注意:与图23A相通用的部分用相同的附图标记来表示,并且省略其描述。第二电容器形成有在第二上部电极23301和上部电极23111之间夹着的中间层绝缘膜23112。另外,第二上部电极23301与杂质区23108相接触,因此,通过将栅极绝缘膜23109夹在上部电极23111和沟道形成区23106之间而形成的第一电容器以及通过将中间层绝缘膜23112夹在上部电极23111和第二上部电极23301之间而形成的第二电容器并联连接,构成由第一电容器和第二电容器形成的电容器23302。电容器23302具有第一电容器的电容和第二电容器的电容加和得到的合成电容,因此,可以形成在小面积上具有大电容的电容器。也就是说,当将该电容器用作本发明的像素结构中的电容器时,可以增加孔径比。
另外,也可以使用如图24B所示的电容器的结构。基膜24102形成在衬底24101上,半导体层形成其上。该半导体层包括沟道形成区24103、LDD区域24104以及作为驱动晶体管24118的源极区域或漏极区域的杂质区24105。注意:可以对沟道形成区24103进行沟道掺杂。
玻璃衬底、石英衬底、陶瓷衬底等可以用作衬底。另外,作为基膜24102,可以使用氮化铝(AlN)、氧化硅(SiO2)、氮氧化硅(SiOxNy)等的单层或者这些的层叠层。
在该半导体层上,形成栅极电极24107和第一电极24108,栅极绝缘层24106嵌入二者之间。
形成第一中间层绝缘膜24109,其覆盖驱动晶体管24118和第一电极24108,导线24110通过第一中间层绝缘膜24109上的接触孔与杂质区24105相接触。另外,第二电极24111形成在与导线24110相同材料制成的层的同一层上。
形成第二中间层绝缘膜24112,其覆盖导线24110和第二电极24111,形成像素电极24113,其通过第二中间层绝缘膜24112上的与接触孔与导线24110相接触。另外,第三电极24114形成在与像素电极24113相同材料制成的层的同一层上。在此,形成由第一电极24108、第二电极24111和第三电极24114构成的电容器24119。
形成绝缘体24115,其覆盖像素电极24113和第三电极24114,含有有机化合物的层24116和相对电极24117形成在绝缘体24115和第三电极24114上,在含有有机化合物的层24116夹在像素电极24113和相对电极24117之间的区域中,形成发光元件24120。
如上所述,将晶体半导体膜用作半导体层的晶体管的结构可以是如图23A至24B所示的结构。注意:如图23A至24B所示的晶体管的结构是具有顶部栅极结构的晶体管的例子。也就是说,LDD区域可以与栅极电极相重叠,也可以不与栅极电极相重叠,或者LDD区域的部分区域可以与栅极电极相重叠。另外,栅极电极可以是锥形形状,LDD区域可以通过自对准方式设置在栅极电极的锥形部分下方。另外,栅极电极的个数并不限于两个,可以使用具有三个或更多栅极电极的多栅极结构,也可以仅设置一个栅极电极。
当将晶体半导体膜用作形成本发明像素的晶体管的半导体层(沟道形成区、源极区域、漏极区域等)时,例如图2的扫描线驱动电路202和信号线驱动电路201很容易与像素部分203整体形成。此外,在图13的结构中,缓冲器1301和缓冲器1302很容易整体形成。另外,图2的部分信号线驱动电路201可以与像素部分203整体形成,而另一部分信号线驱动电路201可以形成在IC芯片上,如图19A和19B中的显示面板中所示,IC芯片是通过COG等安装的。以这种方式,可以降低制造成本。
此外,图27A和27B表示显示面板的局部横截面图,作为使用多晶硅(p-Si:H)作为半导体层的晶体管的结构,可以采用栅极电极夹在衬底和半导体层之间的结构,也就是说,可应用栅极电极设置在半导体层下方的底部栅极晶体管。
基膜2702形成在衬底2701上,栅极电极2703形成在基膜2702上。另外,第一电极2704形成在由与栅极电极2703相同材料制成的层的同一层上。对于栅极电极2703的材料,可以使用加入磷的多晶硅。除了多晶硅外,也可以使用由金属和硅组成的硅化物。
此外,形成栅极绝缘膜2705,其覆盖栅极电极2703和第一电极2704。作为栅极绝缘膜2705,使用氧化硅膜、氮化硅膜等。
另外,在栅极绝缘膜2705上,形成半导体层。该半导体层包括沟道形成区2706、LDD区域2707、作为驱动晶体管2722的源极区域或漏极区域的杂质区2708、作为电容器2723的第二电极的沟道形成区2709、LDD区域2710以及杂质区2711。注意:可以对沟道形成区2706和沟道形成区2709进行沟道掺杂。
玻璃衬底、石英衬底、陶瓷衬底等可以用作衬底。另外,作为基膜2702,可以使用氮化铝(AlN)、氧化硅(SiO2)、氮氧化硅(SiOxNy)等的单层或者这些的层叠层。
形成覆盖半导体层的第一中间层绝缘膜2712,导线2713通过中间层绝缘膜2712上的接触孔与杂质区2708相接触。另外,第三电极2714形成在与导线2413相同材料制成的层的同一层上。电容器2723由第一电极2704、沟道形成区2709和第三电极2714构成。
此外,在第一中间层绝缘膜2712中形成开口2715。形成覆盖驱动晶体管2722、电容器2723和开口2715的第二中间层绝缘膜2716。像素电极2717通过在第二中间绝缘膜2716上的接触孔形成。形成覆盖像素电极2717端部的绝缘体2718。例如,使用正性光敏丙烯酸树脂膜。然后,含有有机化合物的层2719和相对电极2720形成在像素电极2717上,并且在将含有有机化合物的层2719夹在像素区域2717和相对电极2720之间的区域中,形成发光元件2721。另外,在发光元件2721下方设置开口2715。也就是说,当从衬底侧得到来自发光元件2721的发光时,通过设置开口2715可以提高光透射率。
另外,可以在与图27A的像素电极2717相同材料制成的层的同一层中形成第四电极2724,其具有如图27B所示的结构。然后,可以形成由第一电极2704、第二电极、第三电极2714和第四电极2724构成的电容器2725。
接下来,对将非晶硅(a-Si:H)膜用作晶体管的半导体层的情况进行描述。图28A和28B表示顶部栅极晶体管的情况,图29A至30B表示底部栅极晶体管的情况。
图28A表示具有将非晶硅用作半导体层的顶部栅极结构的晶体管的横截面。基膜2802形成在衬底2801上,像素电极2803形成在基膜2802上。另外,第一电极2804形成在由与像素电极2803相同的材料制成的层的同一层上。
玻璃衬底、石英衬底、陶瓷衬底等可以用作衬底。另外,作为基膜2802,可以使用氮化铝(AlN)、氧化硅(SiO2)、氮氧化硅(SiOxNy)等的单层或者这些的层叠层。
此外,导线2805和导线2806形成在基膜2802上,像素电极2803的端部由导线2805所覆盖。在导线2805和导线2806上,形成N型半导体层2807和N型半导体层2808,其中每层都具有N型传导性。另外,在导线2805和导线2806之间,半导体层2809形成在基膜2802上。然后,部分半导体层2809在N型半导体层2807和N型半导体层2808上延伸。注意:由具有非晶体诸如非晶硅(a-Si:H)和微晶半导体(μ-Si:H)的半导体膜形成半导体层。另外,栅极绝缘膜2810形成在半导体层2809上,在由与栅极绝缘膜2810相同材料制成的层的同一层上形成的绝缘膜2811形成在第一电极2804上。注意:对于栅极绝缘膜2810,可以使用氧化硅膜、氮化硅膜等。
另外,在栅极绝缘膜2810上,形成栅极电极2812。在由与栅极电极2812相同材料制成的层的同一层上形成的第二电极2813形成在第一电极2804上,绝缘膜2811嵌入二者之间。形成绝缘膜2811夹在第一电极2804和第二电极2813之间的电容器2819。此外,形成覆盖像素电极2803的端部、驱动晶体管2818和电容器2819的中间层绝缘膜2814。
含有有机化合物的层2815和相对电极2816形成在中间层绝缘膜2814和像素电极2803上,像素电极2803上设置开口部分,在将含有有机化合物的层2815夹在像素电极2803和相对电极2816之间的区域中,形成发光元件2817。
另外,通过如图28B所示的第一电极2820可以形成如图28A所示的第一电极2804。第一电极2820形成在由与导线2805和2806相同材料制成的层的同一层上。
此外,图29A和29B表示使用具有底部栅极结构的晶体管的显示面板的局部横截面图,其中非晶硅用作半导体层。
基膜2902形成在衬底2901上,栅极电极2903形成在基膜2902上。另外,第一电极2904形成在由与栅极电极2903相同材料制成的层的同一层上。对于栅极电极2903的材料,可以使用加入磷的多晶硅。除了多晶硅外,也可以使用由金属和硅组成的硅化物。
此外,形成栅极绝缘膜2905,其覆盖栅极电极2903和第一电极2904。作为栅极绝缘膜2905,使用氧化硅膜、氮化硅膜等。
另外,在栅极绝缘膜2905上,形成半导体层2906。半导体层2907形成在由与该半导体层2906相同材料制成的层的同一层上。
玻璃衬底、石英衬底、陶瓷衬底等可以用作衬底。另外,作为基膜2902,可以使用氮化铝(AlN)、氧化硅(SiO2)、氮氧化硅(SiOxNy)等的单层或者这些的层叠层。
在半导体层2906上,形成N型半导体层2908和2909,其中每个半导体层具有N型传导性,而N型半导体层2910形成在半导体层2907上。
在N型半导体层2908和2909上,分别形成导线2911和2912,而在N型半导体层2910上,形成半导体层2913,该半导体层2913形成在由与导线2911和2912相同材料制成的层的同一层上。
形成由半导体层2907、N型半导体层2910和传导层2913构成的第二电极。注意:形成具有将栅极绝缘膜2905夹在该第二电极和第一电极2904之间的结构的电容器2920。
此外,导线2911的一个端部延伸,形成与该延伸的导线2911的上部接触的像素电极2914。
此外,形成覆盖像素电极2914端部、驱动晶体管2919和电容器2920的绝缘体2915。
含有有机化合物的层2916和相对电极2917形成在像素电极2914和绝缘体2915上,在将含有有机化合物的层2916夹在像素区域2914和相对电极2917之间的区域中,形成发光元件2918。
可以不设置作为电容器的部分第二电极的半导体层2907和N型半导体层2910。也就是说,第二电极可以是传导层2913,电容器可以具有将栅极绝缘膜夹在第一电极2904和传导层2913之间的结构。
注意:在图29A中,在形成导线2911之前形成像素电极2914,如图29B所示,可以形成具有将栅极绝缘膜2905夹在第一电极2904和像素电极2914形成的第二电极2921之间的结构的电容器2922。
注意:在图29A和29B中,虽然对反转交错的沟道蚀刻型晶体管进行了描述,但是不言而喻,也可以使用沟道保护型晶体管。参考图30A和30B对沟道保护型晶体管的情况进行描述。
如图30A所示的沟道保护型晶体管不同于图29A所示的沟道蚀刻型驱动晶体管2919之处就在于:在由半导体层2906的沟道形成的区域上提供作为蚀刻掩模的绝缘体3001。可是,通用的附图标记用作其它通用的部分。
相似的是,图30B所示的沟道保护型晶体管不同于图29B所示的沟道蚀刻型驱动晶体管2919之处就在于:在由半导体层2906的沟道形成的区域上提供作为蚀刻掩模的绝缘体3001。可是,通用的附图标记用作其它通用的部分。
当将非晶硅膜用作形成本发明像素的晶体管的半导体层(沟道形成区、源极区域、漏极区域等)时,可以缩减制造成本。
注意:并不限于可以应用本发明像素结构的晶体管结构和电容器结构的上述结构,可以使用晶体管结构和电容器结构的各种不同的结构。
【实施例模型7】
本发明可以应用于各种电子设备,尤其可以应用于电子设备的显示部分。作为这些电子设备,具有摄像机、数码相机、目镜型显示器、导航系统、声音再现设备(车载音频、音频组件系统等)、计算机、游戏机、便携式数据终端(移动计算机、移动电话、便携式游戏机、电子图书等)、提供记录介质的图像再现设备(具体来说为提供显示器的设备,其中该显示器再现记录介质诸如数字化视频光盘(DVD)并且显示该图像)等等。
图44A表示一种显示器,其包括壳体44001、支架44002、显示部分44003、扬声器44004、视频输入端44005等。具有本发明像素结构的显示设备可以用作显示部分44003。注意:显示包括作为信息显示的所有显示设备,诸如用作个人计算机、用作电视、用作广告显示。使用本发明用作显示部分44003的显示设备可以表示清楚的灰度,提高像素孔径比和在不降低亮度的情况下以高清晰度显示图像。
图44B表示一种相机,其包括主体44101、显示部分44102、图像接收部分44103、操作键44104、外部连接端口44105、快门44106等。
最近几年里,随着数码相机等的高性能,产品竞争日益升温。由此,以低成本生产出高性能设备是很重要的。使用本发明用作显示部分44102的数码相机可以表示清楚的灰度级,提高像素孔径比和在不降低亮度的情况下以高清晰度显示图像。
图44C表示一种计算机,其包括主体44201、壳体44202、显示部分44203、键盘44204、外部连接部分44205、指示鼠标44206等。使用本发明作为显示部分44203的该计算机可以表示清楚的灰度级,提高像素孔径比和在不降低亮度的情况下以高清晰度显示图像。
图44D表示一种移动计算机,其包括主体44301、显示部分44302、开关44303、操作键44304、红外端口44305等。使用本发明作为显示部分44302的该移动计算机可以表示清楚的灰度级,提高像素孔径比和在不降低亮度的情况下以高清晰度显示图像。
图44E表示一种提供记录介质(具体来说是DVD再现设备)的便携式图像再现设备,其包括主体44401、壳体44402、显示部分A 44403、显示部分B44404、记录介质(DVD等)记录部分44405、操作键44406、扬声器部分44407等。显示部分A 44403可以主要显示图像数据,而显示部分B 44404主要显示文本数据。使用本发明作为显示部分A 44403和显示部分B 44404的该图像再现设备可以表示清楚的灰度级,提高像素孔径比和在不降低亮度的情况下以高清晰度显示图像。
图44F表示一种目镜型显示器,其包括主体44501、显示部分44502、臂部44503等。使用本发明作为显示部分44502的该目镜型显示器可以表示清楚的灰度级,提高像素孔径比和在不降低亮度的情况下以高清晰度显示图像。
图44G表示一种数码相机,其包括主体44601、显示部分44602、壳体44603、外部连接端口44604、遥控接收部分44605、图像接收部分44606、电池44607、声音输入部分44608、操作键44609、目镜44610等。使用本发明作为显示部分44602的该数码相机可以表示清楚的灰度级,提高像素孔径比和在不降低亮度的情况下以高清晰度显示图像。
图44H表示一种移动电话设备,其包括主体44701、壳体44702、显示部分44703、声音输入部分44704、声音输出部分44705、操作键44706、外部连接端口44707、天线44708等。
最近几年里,移动电话设备已经安装有游戏功能、照相功能、电子银行功能等,因此提升了对具有高附加值的移动电话设备的需要。此外,显示也要求具有高清晰度。使用本发明用作显示部分44703的移动电话设备可以表示清楚的灰度级,提高像素孔径比和在不降低亮度的情况下以高清晰度显示图像。
另外,当显示部分具有含如图21C所示的双重发光结构的显示设备时,就可以提供具有高附加值和高清晰度的显示部分的移动电话。
以这种方式,移动电话设备可以实现多功能化,其使用频率也得以提高。另一方面,就要求一次充电可利用的时间更长。
例如,当如图42B所示将外周驱动电路形成在IC芯片上并且使用CMOS等时,就可以得到低功耗。
以这种方式,本发明可以应用于各种电子设备。
【实施例1】
在该实施例中,参考图47对具有使用本发明像素结构作为显示部分的显示设备的移动电话结构的例子进行描述。
显示面板4710可分离地结合在壳体4700中。根据显示面板4710的尺寸可以恰当地改变该壳体4700的形状及尺寸。固定显示面板4710的该壳体4700结合在印刷电路板4701中作为一个组件。
显示面板4710通过FPC连接印刷电路板4701。在印刷电路板4701上,形成扬声器4702、麦克风4703、发射/接收电路4704、包括CPU的信号处理电路4705、控制器等。这些组件、输入装置4706和电池4707组合集成在壳体4709中。显示面板4710的像素部分设置成可以从壳体4709中形成的窗口中看见。
对于显示面板4710,像素部分和一部分外周驱动电路(在多个驱动电路中,具有较低操作频率的驱动电路)通过使用TFT可以整体地形成在衬底上,外周电路的另一部分(在多个驱动电路中,具有较高操作频率的驱动电路)可以形成在IC芯片上,并且该IC芯片可以通过COG(玻璃上芯片)安装在显示面板4710上。可选择的是,该IC芯片可以通过使用TAB(载带自动接合)连接玻璃衬底或印刷电路板。注意:图42A表示部分周边电路和像素部分整体形成在衬底上的显示面板的结构的例子,形成另一部分外周驱动电路的IC芯片通过COG等安装。这种结构可以得到显示设备的低功耗,并且增加了移动电话设备一次充电可利用的使用时间。此外,可以实现移动电话设备的低成本。
另外,对于像素部分,可以恰当地应用实施例模型1至3中所描述的像素结构。
此外,当应用实施例模型2中图6和8所示的像素结构来增加发光周期时,可以降低发光元件的瞬间亮度来提高发光元件的可靠性。
此外,当对提供给扫描线或信号线的信号通过缓冲器进行阻抗变换来增加供电容量时,可以避免信号延迟,从而缩短了对每一行像素的写入时间。相应地,可以提供具有高灰度级的显示设备。
为了进一步减少功耗,如图42B所示,使用TFT的像素部分可以形成在衬底上,所有外周驱动电路可以形成在IC芯片上,IC芯片可以通过COG(玻璃上芯片)安装在显示面板上。
此外,在该实施例中所描述的结构是移动电话设备的一个例子,因此,本发明的像素结构并不限于具有这种结构的移动电话设备,其可以应用于具有各种不同结构的移动电话设备。
【实施例2】
图45表示组合了显示面板4501和电路板4502的EL组件。该显示面板4501具有像素部分4503、扫描线驱动电路4504以及信号线驱动电路4505。例如,控制电路4506、信号分割电路4507等形成在电路板4502上。显示面板4501通过连接导线4508连接电路板4502。FPC等可以用作连接导线4508。
对于显示面板4501,像素部分和一部分外周驱动电路(在多个驱动电路中,具有较低操作频率的驱动电路)通过使用TFT可以整体地形成在衬底上,外周电路的另外部分(在多个驱动电路中,具有较高操作频率的驱动电路)可以形成在IC芯片上,并且该IC芯片可以通过COG(玻璃上芯片)安装在显示面板4501上。可选择的是,该IC芯片可以通过使用TAB(载带自动接合)连接显示面板4501或印刷电路板。注意:图42B表示部分周边电路和像素部分整体形成在衬底上的结构的例子,形成另外部分外周驱动电路的IC芯片通过COG等安装。
另外,对于像素部分,可以恰当地应用实施例模型1至3中所描述的像素结构。
此外,当应用实施例模型2中图6和8所示的像素结构来增加发光周期时,可以降低发光元件的瞬间亮度来提高发光元件的可靠性。
此外,当对提供给扫描线或信号线的信号通过缓冲器进行阻抗变换来增加供电容量时,可以避免信号延迟,从而缩短了对每一行像素的写入时间。相应地,可以提供具有高灰度级的显示设备。
为了进一步减少功耗,像素部分可以形成在使用TFT的衬底上,所有外周驱动电路可以形成在IC芯片上,IC芯片可以通过COG(玻璃上芯片)安装在显示面板上。
注意:在将非晶半导体膜应用于形成像素的晶体管的半导体层的情况下,像素部分可以形成在使用TFT的衬底上,所有外周驱动电路可以形成在IC芯片上,并且IC芯片可以通过COG(玻璃上芯片)安装在显示面板上。注意:图42B表示像素部分形成在衬底上并且在衬底上形成外周驱动电路的IC芯片通过COG等安装的结构的例子。
该EL组件可以完成EL电视。图46是表示EL电视的主要结构的结构图。调谐电路4601接收视频信号和音频信号。视频信号通过视频信号放大电路4602、视频信号处理电路4603以及控制电路4506进行处理,从视频信号放大电路4602输出的信号在视频信号处理电路4603中转换成与红、绿和蓝每种颜色相对应的颜色信号,控制电路4506用于将视频信号转换成驱动电路的输入规格。控制电路4506每个输出信号至扫描线侧和信号线侧。在以数字方式驱动的情况下,信号驱动电路4507可以设置在信号线侧,输入数字信号可以被分割成m个被提供的信号。
在调谐电路4601接收的信号中,音频信号被传输给音频信号放大电路4604,输出通过音频信号处理电路4605提供给扬声器4606。控制电路4607接收接收站(接收频率)和来自输入部分4608的声音音量控制数据,并且将信号传送给调谐电路4601和音频信号处理电路4605。
如图44A所示,图45的EL组件结合在壳体44001中,使得可以完成电视。由EL组件形成显示部分44003。此外,可以恰当地提供扬声器部分44004、视频输入端44005等。
不言而喻,本发明并不限于电视,并且可以应用于尤其作为大面积显示介质之类的各种不同的应用,这些大面积显示介质诸如个人计算机的监控器、火车站、飞机场等的信息显示板以及街道上的广告显示。
该申请以2005年1月21日在日本专利局提出的日本专利申请No.2005-014890为基础,在此结合其全部内容作为参考。

Claims (10)

1、一种半导体器件,包括:
包括栅极端、源极端和漏极端的第一晶体管;
包括栅极端、源极端和漏极端的第二晶体管;
包括栅极端、源极端和漏极端的第三晶体管;以及
包括第一电极和第二电极的电容器,
其中第一晶体管的栅极端连接到第一扫描线;
其中第二晶体管的源极端或漏极端之一连接到电源线;
其中第三晶体管的源极端或漏极端之一连接到第二扫描线;
其中电容器的第一电极连接到第二晶体管的栅极端和第三晶体管的栅极端,该第二电极连接到信号线,
其中第二晶体管的源极端或漏极端中的另一个以及第三晶体管的源极端或漏极端中的另一个连接到像素电极;
其中第一晶体管的源极端或漏极端之一连接到第二晶体管的源极端或漏极端中的另一个以及第三晶体管的源极端或漏极端中的另一个;和
其中第一晶体管的源极端或漏极端中的另一个连接到第二晶体管的栅极端和第三晶体管的栅极端。
2、根据权利要求1的半导体器件,
其中第一晶体管和第三晶体管是N沟道晶体管,第二晶体管是P沟道晶体管。
3、包括布置成矩阵的多个像素的显示设备,该多个像素中的至少一个包括:
包括P沟道晶体管和N沟道晶体管的CMOS反相器;
连接CMOS反相器的输入端和输出端的开关;
被输入模拟电位的信号线;
保持CMOS反相器的输入端和信号线之间的电位差的电容器;和
发光元件,其中该发光元件的发光或者不发光通过CMOS反相器的输出来控制,
其中控制该多个像素中至少另一个的开关的导通/关断的信号电位对应于CMOS反相器的P沟道晶体管和N沟道晶体管之一的电源电位。
4、根据权利要求3的显示设备,
其中该开关是N沟道晶体管。
5、根据权利要求3的显示设备,
其中该开关是P沟道晶体管。
6、一种显示设备包括:
包括栅极端、源极端或漏极端的第一晶体管;
包括栅极端、源极端或漏极端的第二晶体管;
包括栅极端、源极端或漏极端的第三晶体管;
包括第一电极和第二电极的电容器;和
包括像素电极的发光元件,
其中第一晶体管的栅极端连接到第一扫描线;
其中第二晶体管的源极端或漏极端之一连接到电源线;
其中第三晶体管的源极端或漏极端之一连接到第二扫描线;
其中电容器的第一电极连接到第二晶体管的栅极端和第三晶体管的栅极端,该第二电极连接到信号线,
其中发光元件的像素电极连接到第二晶体管的源极端或漏极端中的另一个以及第三晶体管的源极端或漏极端中的另一个;
其中第一晶体管的源极端或漏极端之一连接到第二晶体管的源极端或漏极端中的另一个以及第三晶体管的源极端或漏极端中的另一个;和
其中第一晶体管的源极端或漏极端中的另一个连接到第二晶体管的栅极端和第三晶体管的栅极端。
7、根据权利要求6的显示设备,
其中第一晶体管和第三晶体管是N沟道晶体管,第二晶体管是P沟道晶体管。
8、根据权利要求1的显示设备,
其中该显示设备结合在选自显示器、照相机、计算机、便携式计算机、便携式图像再现设备、目镜型显示器、摄像机和移动电话中的至少一个中。
9、根据权利要求3的显示设备,
其中该显示设备结合在选自显示器、照相机、计算机、便携式计算机、便携式图像再现设备、目镜型显示器、摄像机和移动电话中的至少一个中。
10、根据权利要求8的显示设备,
其中该显示设备结合在选自显示器、照相机、计算机、便携式计算机、便携式图像再现设备、目镜型显示器、摄像机和移动电话中的至少一个中。
CNB2006100592230A 2005-01-21 2006-01-20 半导体器件、显示设备和电子装置 Expired - Fee Related CN100565645C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005014890 2005-01-21
JP2005014890 2005-01-21

Publications (2)

Publication Number Publication Date
CN1822083A true CN1822083A (zh) 2006-08-23
CN100565645C CN100565645C (zh) 2009-12-02

Family

ID=36696250

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100592230A Expired - Fee Related CN100565645C (zh) 2005-01-21 2006-01-20 半导体器件、显示设备和电子装置

Country Status (4)

Country Link
US (2) US7646367B2 (zh)
JP (1) JP5640066B2 (zh)
KR (1) KR101189113B1 (zh)
CN (1) CN100565645C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101911165A (zh) * 2007-12-28 2010-12-08 京瓷株式会社 图像显示装置
US8941566B2 (en) 2007-03-08 2015-01-27 3M Innovative Properties Company Array of luminescent elements
CN105225633A (zh) * 2014-06-20 2016-01-06 乐金显示有限公司 有机发光二极管显示装置
WO2020199774A1 (zh) * 2019-03-29 2020-10-08 京东方科技集团股份有限公司 像素驱动电路及其驱动方法以及显示面板
CN110473497B (zh) * 2018-05-09 2021-01-22 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
CN112767874A (zh) * 2019-11-01 2021-05-07 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6831299B2 (en) * 2000-11-09 2004-12-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US7365713B2 (en) * 2001-10-24 2008-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
US7646367B2 (en) * 2005-01-21 2010-01-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device and electronic apparatus
US20070063192A1 (en) * 2005-09-20 2007-03-22 Toppoly Optoelectronics Corp. Systems for emitting light incorporating pixel structures of organic light-emitting diodes
KR101324756B1 (ko) 2005-10-18 2013-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시장치 및 그의 구동방법
US8138075B1 (en) 2006-02-06 2012-03-20 Eberlein Dietmar C Systems and methods for the manufacture of flat panel devices
US9101279B2 (en) 2006-02-15 2015-08-11 Virtual Video Reality By Ritchey, Llc Mobile user borne brain activity data and surrounding environment data correlation system
TWI279763B (en) * 2006-03-13 2007-04-21 Himax Tech Ltd Light emitting display, pixel circuit and driving method thereof
EP1873746A1 (en) * 2006-06-30 2008-01-02 Deutsche Thomson-Brandt Gmbh Method and apparatus for driving an amoled with variable driving voltage
WO2008033256A1 (en) * 2006-09-11 2008-03-20 Vanderbilt University Polymer light-emitting diode and fabrication of same by resonant infrared laser vapor deposition
KR100729084B1 (ko) 2006-09-21 2007-06-14 삼성에스디아이 주식회사 유기 전계 발광표시장치
KR100769425B1 (ko) * 2006-09-21 2007-10-22 삼성에스디아이 주식회사 유기전계발광 표시장치
JP4346636B2 (ja) * 2006-11-16 2009-10-21 友達光電股▲ふん▼有限公司 液晶表示装置
JP2008233122A (ja) * 2007-03-16 2008-10-02 Sony Corp 表示装置、表示装置の駆動方法および電子機器
KR101452204B1 (ko) * 2007-11-05 2014-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 박막 트랜지스터 및 상기 박막 트랜지스터를 구비하는 표시 장치
JP5298284B2 (ja) * 2007-11-30 2013-09-25 株式会社ジャパンディスプレイ 画像表示装置とその駆動方法
KR100916914B1 (ko) * 2008-04-25 2009-09-09 삼성모바일디스플레이주식회사 유기전계발광 표시장치
CN102057504A (zh) * 2008-06-05 2011-05-11 3M创新有限公司 接合有半导体波长转换器的发光二极管
BRPI0918524A2 (pt) * 2008-09-10 2015-12-01 Sharp Kk dispositivo de video e método para o acionamento do mesmo
KR101498094B1 (ko) * 2008-09-29 2015-03-05 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
JP5329327B2 (ja) * 2009-07-17 2013-10-30 株式会社ジャパンディスプレイ 画像表示装置
KR101711236B1 (ko) * 2009-10-09 2017-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9064473B2 (en) * 2010-05-12 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Electro-optical display device and display method thereof
US9935622B2 (en) 2011-04-28 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Comparator and semiconductor device including comparator
JP6050054B2 (ja) * 2011-09-09 2016-12-21 株式会社半導体エネルギー研究所 半導体装置
US10043794B2 (en) 2012-03-22 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
WO2013172220A1 (en) * 2012-05-18 2013-11-21 Semiconductor Energy Laboratory Co., Ltd. Pixel circuit, display device, and electronic device
KR101360767B1 (ko) * 2012-08-17 2014-02-12 엘지디스플레이 주식회사 유기 발광 다이오드 표시장치 및 그 구동 방법
DE102012111247A1 (de) 2012-11-21 2014-05-22 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil
JP6406926B2 (ja) * 2013-09-04 2018-10-17 株式会社半導体エネルギー研究所 半導体装置
CN103715226A (zh) * 2013-12-12 2014-04-09 京东方科技集团股份有限公司 Oled阵列基板及其制备方法、显示面板及显示装置
CN104113053B (zh) * 2014-04-21 2017-05-24 京东方科技集团股份有限公司 静电放电保护电路、显示基板和显示装置
KR102465559B1 (ko) * 2015-12-28 2022-11-11 엘지디스플레이 주식회사 박막 트랜지스터 기판 및 이를 이용한 표시장치
KR20180038600A (ko) * 2016-10-06 2018-04-17 삼성디스플레이 주식회사 표시 장치
CN111656430B (zh) * 2018-02-01 2022-07-26 株式会社半导体能源研究所 显示装置及电子设备
KR101970713B1 (ko) * 2018-06-05 2019-04-22 (주)실리콘인사이드 Led 액티브 매트릭스 디스플레이 구현을 위한 led 픽셀 패키지
KR102598383B1 (ko) * 2018-12-10 2023-11-06 엘지디스플레이 주식회사 표시 장치 및 신호 반전 장치
KR20210048945A (ko) 2019-10-24 2021-05-04 엘지디스플레이 주식회사 스트레쳐블 표시 장치
JP2021071593A (ja) 2019-10-30 2021-05-06 キヤノン株式会社 表示装置、情報表示装置、及び電子機器
KR20220026172A (ko) * 2020-08-25 2022-03-04 엘지디스플레이 주식회사 디스플레이 장치
KR20240040188A (ko) * 2022-09-20 2024-03-28 삼성디스플레이 주식회사 화소, 표시 장치 및 표시 장치의 구동 방법

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW349218B (en) * 1992-11-20 1999-01-01 Toshiba Corp Display control device and display control method
JP2821347B2 (ja) * 1993-10-12 1998-11-05 日本電気株式会社 電流制御型発光素子アレイ
JPH113048A (ja) 1997-06-10 1999-01-06 Canon Inc エレクトロ・ルミネセンス素子及び装置、並びにその製造法
US6175345B1 (en) 1997-06-02 2001-01-16 Canon Kabushiki Kaisha Electroluminescence device, electroluminescence apparatus, and production methods thereof
JP2000268957A (ja) 1999-03-18 2000-09-29 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置
JP2001202035A (ja) 2000-01-18 2001-07-27 Sharp Corp 有機エレクトロルミネッセンス表示装置
TW494447B (en) 2000-02-01 2002-07-11 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
TW521226B (en) * 2000-03-27 2003-02-21 Semiconductor Energy Lab Electro-optical device
JP4954380B2 (ja) 2000-03-27 2012-06-13 株式会社半導体エネルギー研究所 発光装置、半導体装置
US6989805B2 (en) 2000-05-08 2006-01-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20020030647A1 (en) 2000-06-06 2002-03-14 Michael Hack Uniform active matrix oled displays
TW502236B (en) 2000-06-06 2002-09-11 Semiconductor Energy Lab Display device
GB0017471D0 (en) 2000-07-18 2000-08-30 Koninkl Philips Electronics Nv Thin film transistors and their manufacture
GB2367413A (en) 2000-09-28 2002-04-03 Seiko Epson Corp Organic electroluminescent display device
US7015882B2 (en) 2000-11-07 2006-03-21 Sony Corporation Active matrix display and active matrix organic electroluminescence display
JP2003195815A (ja) 2000-11-07 2003-07-09 Sony Corp アクティブマトリクス型表示装置およびアクティブマトリクス型有機エレクトロルミネッセンス表示装置
JP3620490B2 (ja) 2000-11-22 2005-02-16 ソニー株式会社 アクティブマトリクス型表示装置
MY127343A (en) 2001-01-29 2006-11-30 Semiconductor Energy Lab Light emitting device.
US6661180B2 (en) * 2001-03-22 2003-12-09 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, driving method for the same and electronic apparatus
JP3819723B2 (ja) 2001-03-30 2006-09-13 株式会社日立製作所 表示装置及びその駆動方法
JP4982014B2 (ja) * 2001-06-21 2012-07-25 株式会社日立製作所 画像表示装置
JP4075505B2 (ja) 2001-09-10 2008-04-16 セイコーエプソン株式会社 電子回路、電子装置、及び電子機器
JP3917494B2 (ja) * 2001-09-17 2007-05-23 株式会社半導体エネルギー研究所 発光装置の駆動方法
JP3899886B2 (ja) 2001-10-10 2007-03-28 株式会社日立製作所 画像表示装置
US7456810B2 (en) * 2001-10-26 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and driving method thereof
JP3866084B2 (ja) 2001-11-08 2007-01-10 松下電器産業株式会社 アクティブマトリクス型表示装置およびその駆動方法
JP3800404B2 (ja) 2001-12-19 2006-07-26 株式会社日立製作所 画像表示装置
GB0130411D0 (en) 2001-12-20 2002-02-06 Koninkl Philips Electronics Nv Active matrix electroluminescent display device
JP3892732B2 (ja) 2002-01-31 2007-03-14 株式会社日立製作所 表示装置の駆動方法
JP4024557B2 (ja) 2002-02-28 2007-12-19 株式会社半導体エネルギー研究所 発光装置、電子機器
JP4165120B2 (ja) 2002-05-17 2008-10-15 株式会社日立製作所 画像表示装置
JP4206693B2 (ja) 2002-05-17 2009-01-14 株式会社日立製作所 画像表示装置
JP2003330422A (ja) 2002-05-17 2003-11-19 Hitachi Ltd 画像表示装置
JP2004145278A (ja) 2002-08-30 2004-05-20 Seiko Epson Corp 電子回路、電子回路の駆動方法、電気光学装置、電気光学装置の駆動方法及び電子機器
JP2004117921A (ja) 2002-09-26 2004-04-15 Toshiba Matsushita Display Technology Co Ltd El表示装置およびel表示装置の駆動方法
JP2004157250A (ja) * 2002-11-05 2004-06-03 Hitachi Ltd 表示装置
US7327168B2 (en) 2002-11-20 2008-02-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and driving method thereof
JP4409821B2 (ja) 2002-11-21 2010-02-03 奇美電子股▲ふん▼有限公司 El表示装置
JP2004191752A (ja) * 2002-12-12 2004-07-08 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
US7230594B2 (en) 2002-12-16 2007-06-12 Eastman Kodak Company Color OLED display with improved power efficiency
JP2004246320A (ja) 2003-01-20 2004-09-02 Sanyo Electric Co Ltd アクティブマトリクス駆動型表示装置
KR20050101182A (ko) 2003-01-24 2005-10-20 코닌클리케 필립스 일렉트로닉스 엔.브이. 액티브 매트릭스 디스플레이 디바이스
TWI228696B (en) 2003-03-21 2005-03-01 Ind Tech Res Inst Pixel circuit for active matrix OLED and driving method
JP2004325885A (ja) 2003-04-25 2004-11-18 Seiko Epson Corp 電気光学装置、電気光学装置の駆動方法および電子機器
JP4366988B2 (ja) 2003-05-01 2009-11-18 セイコーエプソン株式会社 有機el装置および電子機器
JP2004341144A (ja) 2003-05-15 2004-12-02 Hitachi Ltd 画像表示装置
JP2004341263A (ja) 2003-05-16 2004-12-02 Hitachi Ltd 自発光素子表示方法および装置
JP4425571B2 (ja) 2003-06-11 2010-03-03 株式会社半導体エネルギー研究所 発光装置及び素子基板
JP2005005227A (ja) 2003-06-16 2005-01-06 Hitachi Displays Ltd 有機el発光表示装置
JP5051565B2 (ja) * 2003-12-10 2012-10-17 奇美電子股▲ふん▼有限公司 画像表示装置
KR101013631B1 (ko) * 2003-12-30 2011-02-10 엘지디스플레이 주식회사 액정 표시소자의 구동장치 및 그 구동방법
JP2005354035A (ja) 2004-05-14 2005-12-22 Toppan Printing Co Ltd 半導体装置の形成方法
JP2005354036A (ja) 2004-05-14 2005-12-22 Toppan Printing Co Ltd 半導体装置の形成方法
JP2006013433A (ja) 2004-05-24 2006-01-12 Toppan Printing Co Ltd 薄膜トランジスタ
JP4846999B2 (ja) 2004-10-20 2011-12-28 株式会社 日立ディスプレイズ 画像表示装置
JP4617840B2 (ja) 2004-11-17 2011-01-26 日本電気株式会社 ブートストラップ回路及びその駆動方法並びにシフトレジスタ回路、論理演算回路、半導体装置
US8426866B2 (en) 2004-11-30 2013-04-23 Semiconductor Energy Laboratory Co., Ltd. Display device and driving method thereof, semiconductor device, and electronic apparatus
US7646367B2 (en) * 2005-01-21 2010-01-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device and electronic apparatus
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8941566B2 (en) 2007-03-08 2015-01-27 3M Innovative Properties Company Array of luminescent elements
CN101911165A (zh) * 2007-12-28 2010-12-08 京瓷株式会社 图像显示装置
US8379010B2 (en) 2007-12-28 2013-02-19 Lg Display Co., Ltd. Image display apparatus
CN101911165B (zh) * 2007-12-28 2014-04-30 乐金显示有限公司 图像显示装置
CN105225633A (zh) * 2014-06-20 2016-01-06 乐金显示有限公司 有机发光二极管显示装置
CN110473497B (zh) * 2018-05-09 2021-01-22 京东方科技集团股份有限公司 像素电路及其驱动方法、显示面板
WO2020199774A1 (zh) * 2019-03-29 2020-10-08 京东方科技集团股份有限公司 像素驱动电路及其驱动方法以及显示面板
CN112767874A (zh) * 2019-11-01 2021-05-07 京东方科技集团股份有限公司 像素驱动电路及其驱动方法、显示面板
US11257423B2 (en) 2019-11-01 2022-02-22 Boe Technology Group Co., Ltd. Pixel driving circuit and driving method thereof, and display panel

Also Published As

Publication number Publication date
US7646367B2 (en) 2010-01-12
US8395604B2 (en) 2013-03-12
US20060164359A1 (en) 2006-07-27
CN100565645C (zh) 2009-12-02
KR20060085181A (ko) 2006-07-26
JP5640066B2 (ja) 2014-12-10
KR101189113B1 (ko) 2012-10-08
JP2013101357A (ja) 2013-05-23
US20100110113A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
CN1822083A (zh) 半导体器件、显示设备和电子装置
CN1133972C (zh) 电光装置
CN1313996C (zh) 发光器件
CN1892766A (zh) 半导体器件、显示装置和电子设备
CN1848223A (zh) 半导体器件,显示器件,驱动方法及其电子装置
CN1877678A (zh) 半导体器件及显示器件
CN1193333C (zh) 显示装置、便携式设备及基板
CN1271725C (zh) 显示装置
CN1251332C (zh) 发光器件
CN1248185C (zh) 显示器件
CN1866340A (zh) 有源矩阵显示器件及其驱动方法和电子设备
CN1912980A (zh) 半导体器件、显示器件和具有该半导体器件的电子器件
CN1292486C (zh) 发光器件
CN1244896C (zh) 电子装置
CN100350447C (zh) 显示器件及其驱动方法和电子装置
CN1858838A (zh) 显示装置以及显示装置的驱动方法和电子设备
CN1630306A (zh) 显示器件
CN1932940A (zh) 显示器件及显示器件的驱动方法
CN1437178A (zh) 半导体器件及其驱动方法
CN1991947A (zh) 显示装置与电子装置
CN1848222A (zh) 显示器件、显示器件的驱动方法以及电子设备
CN1610931A (zh) 信号线驱动电路、发光装置及其驱动方法
CN1912975A (zh) 显示装置
CN1904989A (zh) 显示装置、驱动方法及其电子装置
CN1608280A (zh) 信号线驱动电路和发光装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091202

Termination date: 20180120

CF01 Termination of patent right due to non-payment of annual fee