CN1795635B - 信号传输装置、供电系统和串行通信装置 - Google Patents

信号传输装置、供电系统和串行通信装置 Download PDF

Info

Publication number
CN1795635B
CN1795635B CN2004800141108A CN200480014110A CN1795635B CN 1795635 B CN1795635 B CN 1795635B CN 2004800141108 A CN2004800141108 A CN 2004800141108A CN 200480014110 A CN200480014110 A CN 200480014110A CN 1795635 B CN1795635 B CN 1795635B
Authority
CN
China
Prior art keywords
signal
circuit
input signals
digital input
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800141108A
Other languages
English (en)
Other versions
CN1795635A (zh
Inventor
藤井达也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of CN1795635A publication Critical patent/CN1795635A/zh
Application granted granted Critical
Publication of CN1795635B publication Critical patent/CN1795635B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/16Half-duplex systems; Simplex/duplex switching; Transmission of break signals non-automatically inverting the direction of transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M9/00Parallel/series conversion or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4902Pulse width modulation; Pulse position modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/04Channels characterised by the type of signal the signals being represented by different amplitudes or polarities, e.g. quadriplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/18Automatic changing of the traffic direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Dc Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Power Sources (AREA)
  • Selective Calling Equipment (AREA)

Abstract

信号传输装置包括发送部分和接收部分。发送部分按照预定权重将多个数字输入信号的每个宽度转换成电压,通过将从多个数字输入信号转换而来的电压相加来生成发送信号,并且输出发送信号。接收部分从发送部分接收发送信号,将发送信号与多个预定电压比较,生成每个数字输入信号,并且输出每个数字输入信号。

Description

信号传输装置、供电系统和串行通信装置
技术领域
本发明一般涉及用于多路复用多个数字信号并通过单条信号线发送和接收多个数字信号的信号传输装置,用于通过通信部分对启动和停止多个供电设备、输出电压、输出电流和多个供电设备的操作模式的每一种进行控制的供电系统,以及进行串行通信、尤其是通过半双工通信进行串行通信的串行通信装置。
背景技术
按常规,由于为了发送和接收多个信号,需要为每个信号配备信号线,因此信号线的数量与信号数量成正比地增加,而且发送和接收信号的设备之间的连线越来越复杂。结果是,设备变得更大了,成本也提高了。于是,需要进行按时序排列多个信号、通过单个信号发送和接收数据的串行通信。通过应用串行通信,信号线的数量显著减少。另一方面,由于串行通信通过转换成串行数据来发送信号,发送部分需要并行-串行转换电路,而且接收部分需要串行-并行转换电路。于是,电路规模增大了,设备规模变得更大了,成本也提高了。
此外,由于多个信号通过分时来发送,因此传输速率变得更低了。并且,在串行通信的情况下,数据信号、用作移位信号的时钟信号和锁存成将按时序发送的串行信号转换成原始并行信号的负载信号至少需要三条信号线。因此,在传输的信号不多的情况下,即使应用串行通信,信号的数量也不会减少,而且电路规模也会增大。在这种情况下,没有什么优点可言。因此,例如,日本已公布专利申请第11-355255号公开了多路复用数据信号、时钟信号和负载信号,并且改变信号波形的波高以便通过单条信号线发送多路复用信号的多路复用数据传输设备。
如上所述,信号线的数量变成一条了。但是,由于按时序串行地将多个数据集发送到数据线上,需要时间将串行数据转换成并行信号。因此,不能实现更高速数据传输。况且,发送部分需要并行-串行转换电路,而接收部分需要串行-并行转换电路。
图1是例示按常规和一般性使用的供电装置的方块图。
在如图1所示的供电装置100中,供电部分101与负载102到104连接。负载102到104的每一个接受来自供电部分101的供电。控制部分105对供电部分101进行各种操作控制和条件设置,譬如,启动操作和停止操作、输出电压的设置、输出电流的设置和将操作模式从正常模式切换到低功耗模式的切换操作。此外,供电部分101监视负载102到104每一个的当前电流消耗值和输出电压,并将监视信息发送到控制部分105。结果是,控制部分105将新指令发送给供电部分101。如上所述,控制部分105和供电部分101之间相互发送和接收大量信息。
图2是例示具有控制部分控制多个供电部分的配置的常规供电装置的方块图。
在如图2所示的供电装置110中,第一供电部分112与负载1a到1c连接,第二供电部分113与负载2a到2c连接,而第三供电部分114与负载3a到3c连接。控制部分111与第一、第二和第三供电部分112到114连接,直接控制第一、第二和第三供电部分112到114的每一个。
最近,电子产品的功能显著提高了。具有各种功能的各种电路和部件用在了电子产品内。例如,像数字摄像机、扬声器、麦克风、液晶显示单元、切换器、发送电路、接收电路、音频电路、电机、操作单元和存储单元等那样的大量电路和部件用在蜂窝式电话内。此外,本身安装在蜂窝式电话内的数字摄像机包括大量功能部件。
为了把电力供应给大量电路和部件,需要,例如,适合每个电路和部件的电压和电流特性。因此,通过一个电力电路将寸步难行。尤其,由于节电要求,取代将电力供应给电子产品内的所有电路,根据电子产品的使用条件限制将电力供应给未用电路和部件,并使将电力供应给这些电路和部件的供电电路本身的功耗最小化越来越常见。
此外,还向供电部分112到114的每一个提供过电流保护电路和短路保护电路,以便当启动过电流保护电路和短路保护电路时,将动作通知控制部分105和11的每一个,然后,像电子产品那样确定操作。因此,按常规,在控制部分111和供电部分112到114之间发送和接收的信息只不过是控制供电部分112到114的启动和停止。最近,信息量大幅度增加,结果是,信号线的数量也随之增加。另外,当供电部分112到114的数量增加时,信号线的数量也增加供电部分112到114的增量那么多。这种信号线的增加导致电子产品变大和成本提高。为了减少控制部分111和多个供电部分112到114之间的信号线的数量,日本已公布专利申请第4-322140号公开了如图3所示,包括CPU(中央处理单元)的控制单元与多个供电单元连接的供电控制系统120。
供电控制系统120包括多个供电单元PS1到PS4;以及多个遥控器RCD1到RCD4,用于控制多个供电单元PS1到PS4每一个的导通和断开并监视多个供电单元PS1到PS4。供电控制系统120进一步包括电力控制器MCD,用于输出构成与遥控器RCD1到RCD4的每一个相关地选择、打开、关闭并监视供电单元PS1到PS4每一个的指令数据的串行数据;以及连接在电力控制器MCD和遥控器RCD1到RCD4的每一个之间的串行总线SBUS。串行总线SBUS将每个指令数据从电力控制器MCD发送到遥控器RCD1到RCD4的每一个,并将电力监视数据从遥控器RCD1到RCD4的每一个发送到电力控制器MCD。
但是,在如上所述的常规系统中,由于电力控制器MCD与遥控器RCD1到RCD4是分开的,即使用最少配置实现该常规系统,也需要串行总线。因此,难以使系统最小化。
按常规,通过串行通信传输数字信号的各种方法是已知的。一种典型方法显示在图4到图7中。
在图4中,数据信号SdA是最常见的信号,它通过信号电平示出数据。利用指示数据块的定界符的同步信号SaA从数据信号SdA中提取数据。在这种方法中,需要两个信号,即,数据信号和同步信号。
接着,在图5中,数据信号SdB是其脉冲宽度被调制的信号,数据信号SdB的间隔是常数,其中数据示出“0”时的脉冲宽度不同于数据示出“1”时的脉冲宽度。在这种方法中,可能需要关心代码的间隔,但可以容易地进行异步操作。另外,在图6中,数据信号SdC是改变脉冲的瞬时位置的脉冲位置调制方法中的信号。数据通过作为时基的同步信号SaC来取样。在图7中,数据信号SdD是将如上所述的脉冲宽度调制与脉冲位置调制对应的信号。应该注意到,代码的间隔不相同,但数据信号SdD是异步信号,不需要同步信号。
图8是例示进行半双工通信的常规串行通信装置的示意性方块图。在如图8所示的串行通信装置中,主发送/接收电路121包括第一发送电路部分122、第一接收电路部分123和进行发送权控制控制的第一切换部分124。类似地,从发送/接收电路125包括第二发送电路部分126、第二接收电路部分127和进行发送权控制控制的第二切换部分128。基本上,第一发送电路部分122与第二发送电路部分126相同,而第一接收电路部分123与第二接收电路部分127相同。
在主发送/接收电路121拥有发送权的情况下,将数据从主发送/接收电路121的第一发送电路部分122传输到从发送/接收电路125的第二接收电路部分127。当发送权转移到从发送/接收电路125时,将数据从从发送/接收电路125的第二发送电路部分126传输到主发送/接收电路121的第一接收电路部分123。
但是,如上所述,按常规,除了数据信号之外,还需要同步信号。即使不需要同步信号,从数据中生成数据信号和从数据信号中提取数据的电路配置也变得复杂。此外,为了进行半双工通信,需要从方与主方相同。于是,需要在发送部分和接收部分之间切换的切换部分。结果是,电路规模和电路空间变得更大了,成本也提高了。
发明内容
本发明的一般目的是提供消除了上述问题的、勇于多路复用多个数字信号并通过单条信号线发送和接收多个数字信号的信号传输装置,用于通过通信部分对启动和停止多个供电设备、输出电压、输出电流和多个供电设备的操作模式的每一种进行控制的供电系统,以及进行串行通信、尤其是通过半双工通信进行串行通信的串行通信装置。
本发明的更具体目的是提供在发送部分不用并行-串行转换和在接收部分不用串行-并行转换地通过单条信号线传输多个数据集的数据传输装置。
本发明的另一个目的是提供即使供电部分的数量增加了和在供电部分和控制部分之间发送和接收的信息量增加了,也可以抑制连接控制部分和供电部分的信号线的数量增加的供电系统。
本发明的还有一个目的是提供不需要同步信号、主方和从方的每个发送电路和接收电路可以通过简单电路配置实现、从方的电路负载可以减轻和不需要在发送电路和接收电路之间切换的切换部分的通过较低成本最小化和实现的串行通信装置。
本发明的上述目的是通过通过单条信号线发送和接收输入其中的多个数字输入信号的信号传输装置达到的,该信号传输装置包括:发送部分,用于按照预定权重将多个数字输入信号的每个宽度转换成电压,通过将从多个数字输入信号转换而来的电压相加来生成发送信号,并且输出发送信号;以及接收部分,用于从发送部分接收发送信号,将发送信号与多个预定电压比较,生成每个数字输入信号,并且输出每个数字输入信号。
本发明的上述目的是通过将电力从多个供电部分供应到多个负载的每一个的供电系统达到的,该供电系统包括:第一供电设备,包括将电力供应给多个负载的至少一个的第一供电部分,对第一供电部分进行操作控制的控制部分,以及向和从控制部分发送和接收信号的第一通信部分;以及至少一个第二供电设备,包括将电力供应给多个负载的至少一个的第二供电部分,以及向和从第二供电部分发送和接收信号的第二通信部分,其中,第一通信部分和第二通信部分相互发送和接收信号,并且控制部分通过第一通信部分和第二通信部分对第二供电部分进行操作控制。
本发明的上述目的是通过将电力从多个供电部分供应到多个负载的每一个的供电系统达到的,该供电系统包括:第一供电设备,包括将电力供应给多个负载的至少一个的第一供电部分,对第一供电部分进行操作控制的控制部分,以及向和从控制部分发送和接收信号的第一通信部分;以及至少一个第二供电设备,包括将电力供应给多个负载的至少一个的第二供电部分,以及向和从第二供电部分发送和接收信号的第二通信部分,其中,第一通信部分和第二通信部分相互发送和接收信号,并且控制部分通过第一通信部分和第二通信部分对第二供电部分进行操作控制。
本发明的上述目的是通过在第一发送/接收电路和第二发送/接收电路之间通过半双工通信进行串行通信的串行通信装置达到的,其中,至少一个第一发送/接收电路通过传输信道与至少一个第二发送/接收电路连接,第一发送/接收电路和第二发送/接收电路的每一个包括:发送电路部分,用于通过在预定信号电平期间将预定叠加脉冲叠加在具有两个值的发送数据信号上来生成串行数据信号,并且输出串行数据信号;以及接收电路部分,用于接收从发送电路部分发送的串行数据信号,并且通过从串行数据信号中提取叠加脉冲来提取发送数据信号。
附图说明
通过结合附图进行如下详细描述,本发明的其它目的、特征和优点将更加清楚,在附图中:
图1是例示常规供电装置的方块图;
图2是例示具有控制部分控制多个供电部分的配置的常规供电装置的方块图;
图3是例示常规供电系统的方块图;
图4是示出通过串行通信传输数字信号的方法的图形;
图5是示出通过串行通信传输数字信号的另一种方法的图形;
图6是示出通过串行通信传输数字信号的又一种方法的图形;
图7是示出通过串行通信传输数字信号的再一种方法的图形;
图8是例示进行半双工通信的常规串行通信装置的示意性方块图;
图9是示出根据本发明第一实施例的信号传输装置的电路配置的图形;
图10是示出根据本发明第一实施例、组合如图9所示的数字输入信号Ai和Bi的信号电平的输出电压Vo的电压值的图形;
图11是示出根据本发明第一实施例、如图9所示的每个部分的信号的波形的时序图;
图12是示出根据本发明第二实施例的信号传输装置的电路配置的图形;
图13是示出根据本发明第二实施例、组合如图12所示的数字输入信号Ai和Bi的信号电平的输出电压VoA的电压值的图形;
图14是示出根据本发明第二实施例、如图12所示的每个部分的信号的波形的时序图;
图15是示出根据本发明第二实施例的信号传输装置的另一种电路配置的图形;
图16是示出根据本发明第二实施例、组合如图12所示的数字输入信号Ai、Bi和Ci的信号电平的输出电压VoB的电压值的图形;
图17是例示根据本发明第三实施例的供电系统的方块图;
图18是例示根据本发明第三实施例的另一个供电系统的方块图;
图19是例示根据本发明第四实施例的供电系统的方块图;
图20是例示根据本发明第五实施例的串行通信装置的示意性方块图;
图21是例示根据本发明第五实施例、如图20所示的第一发送电路部分的电路配置的图形;
图22是示出根据本发明第五实施例、如图21所示的每个部分的信号的波形的时序图;
图23是例示根据本发明第五实施例、如图20所示的第一接收电路部分的电路配置的图形;
图24是示出根据本发明第五实施例、如图23所示的每个部分的信号的波形的时序图;
图25是例示根据本发明第五实施例、如图23所示的输入信号延迟电路的另一种电路配置的图形;
图26是例示根据本发明第五实施例、如图20所示的从发送/接收电路的电路配置的图形;
图27是示出根据本发明第五实施例、如图26所示的每个部分的信号的波形的时序图;
图28A到28C是例示根据本发明第五实施例、从传输信道输出的串行输出信号的图形;
图29是例示根据本发明第五实施例的第一接收电路的另一种电路配置的图形;
图30是示出根据本发明第五实施例、如图29所示的每个部分的信号的波形的时序图;
图31是例示根据本发明第六实施例的串行通信装置的从发送/接收电路的电路配置的图形;以及
图32是示出根据本发明第六实施例、如图31所示的每个部分的信号的波形的时序图。
优选实施例详述
在下文中,将参照附图描述本发明的实施例。
[第一实施例]
图9是示出根据本发明第一实施例的信号传输装置的电路配置的图形。在图9中,为了方便起见,例示了多路复用和传输两个数字输入信号的情况。
在图9中,信号传输装置1包括:发送部分2,用于按照预定权重将输入信号传输装置1的数字输入信号Ai和Bi的幅度转换成相应电压,并且通过加入从幅度转换而来的每个电压生成和输出发送信号Sol;以及接收部分3,用于通过信号线5从发送部分2接收发送信号Sol,将发送信号Sol与多个参考电压Vt1到Vt3的每一个相比较,并根据比较结果生成和输出数字输入信号Ai和Bi。
发送部分2包括由运算放大器AMP1和电阻器R1到R5组成的反相放大电路。数字输入信号Ai通过具有输入电阻的电阻器R1输入运算放大器AMP1的反相输入端。数字输入信号Bi通过具有输入电阻的电阻器R2输入运算放大器AMP1的反相输入端。另一方面,在电源电压Vdd与地线之间,串联着电阻器R4和电阻器R5,电阻器R4和R5的连接部分与运算放大器AMP1的非反相输入端连接,并且将预定偏置电压Vs输入到运算放大器AMP1的非反相输入端。此外,具有反馈电阻的电阻器R3连接在运算放大器AMP1的输出端和反相输入端之间,而运算放大器AMP1的输出端与发送部分2的发送端OUT连接。发送端OUT通过信号线5与接收部分3的接收端IN连接。
然后,接收部分3包括电压比较器CMP1到CMP3、NAND(“与非”)电路N1到N3、反相器INV和电阻器R6到R9。电阻器R6到R9构成参考电压生成电路,电压CMP1到CMP3构成电压比较电路,而NAND电路N1到N3和反相器INV构成逻辑电路。输入接收端IN的信号被输入到电压比较器CMP1到CMP3的每个反相输入端。电阻器R6到R9串联在电源电压Vdd与地线之间。电阻器R6和R7的连接部分与电压比较器CMP1的非反相输入端连接,电阻器R7和R8的连接部分与电压比较器CMP2的非反相输入端连接,而电阻器R8和R9的连接部分与电压比较器CMP3的非反相输入端连接。
电压比较器CMP1的输出端与NAND电路N1一侧的输入端连接,而电压比较器CMP2的输出端是接收部分3一侧的输出端和与NAND电路N1另一侧的输入端连接。此外,电压比较器CMP2的输出端与NAND电路N2一侧的输入端连接,而电压比较器CMP3的输出端与NAND电路N2另一侧的输入端连接。NAND电路N1和N2的输出端与NAND电路N3的相关输入端连接,而NAND电路N3的输出端是接收部分3另一侧的输出端。
在这种配置中,从发送部分2的发送端OUT输出的发送信号Sol的电压Vo通过如下公式(1)表达:
Vo=Vs-R3×{(VAi-Vs)/R1+(VBi-Vs)/R1}                (1)
在公式(1)中,R1代表电阻器R1的电阻值,R3代表电阻器R3的电阻值,VAi代表数字输入信号Ai处在高电平或低电平上的电压,而VBi代表数字输入信号Bi处在高电平或低电平上的电压。
电源电压Vdd是6V,偏置电压Vs是3V,电阻器R1的电阻值是15kΩ,电阻器R2的电阻值是30kΩ,而电阻器R3的电阻值是10kΩ。另外,在数字输入信号Ai和Bi中,每个电压在高电平上是6V和在低电平上是0V。在这种情况下,通过数字输入信号Ai和Bi的信号电平的每种组合得出的输出电压Vo变成如图10所示那样。在偏置电压Vs被设置成电源电压Vdd的一半,电阻器R1与电阻器R2的电阻比被设置成1∶2,而电阻器R3的电阻值被设置成等于电阻器R1与电阻器R2并联时的合成电阻值的情况下,如图10所示,获得对于数字输入信号Ai和数字输入信号Bi的电压的每种组合,电压差为偶数的输出电压Vo。即使输入信号的数量增加了,这种关系也是稳定的。
也就是说,在图10中,在数字输入信号Ai和Bi两者都是高电平的状态M1的情况下,输出电压Vo变成0V的预定值V1。在数字输入信号Ai是高电平和数字输入信号Bi是低电平的状态M2的情况下,输出电压Vo是2V的预定值V2。此外,在数字输入信号Ai是低电平和数字输入信号Bi是高电平的状态M3的情况下,输出电压Vo是4V的预定值V3。并且,在数字输入信号Ai和Bi都是低电平的状态M4的情况下,输出电压Vo是6V的预定值V4。
图11是示出如图9所示的每个部分的信号的波形的时序图。
在图11中,在数字输入信号Ai和数字输入信号Bi两者都是低电平的部分(a)中,输出电压Vo是6V。当在部分(b)中数字输入信号Bi变成高电平时,输出电压Vo变成4V。当在部分(c)中数字输入信号Ai变成高电平时,输出电压Vo变成0V。接着,当在部分(d)中数字输入信号Bi变成低电平时,输出电压Vo是2V。在部分(d)之后,在部分(e)、(f)、(g)、(h)和(i)中,每当数字输入信号Ai和数字输入信号Bi的信号电平发生改变,输出电压Vo的电压值也随之改变。另外,对于数字输入信号Ai和数字输入信号Bi中的信号电平的所有组合,输出电压Vo都输出不同的电压值。
接着,在接收部分3中,将电阻器R6到R9的每个电压值设置成参照电压Vt1是1V,参照电压Vt2是3V,而参照电压Vt3是5V。也就是说,将参考值Vt1设置成如图10所示的状态M1和状态M2的输出电压Vo的中间值,将参考值Vt2设置成如图10所示的状态M2和状态M3的输出电压Vo的中间值,并将参考值Vt3设置成如图10所示的状态M3和状态M4的输出电压Vo的中间值。
从图11可以看出,从电压比较器CMP2的输出端输出与数字输入信号Ai相同的信号。当输出信号Ao是高电平时,从电压比较器CMP3的输出端输出和从NAND电路N2输出与数字输入信号Bi相同的信号。此外,当输出信号Ao是低电平时,从电压比较器CMP1的输出端输出和从NAND电路N1输出与数字输入信号Bi相同的信号。NAND电路N3合成NAND电路N1和N2的输出信号,并且输出与数字输入信号Bi相同的信号,作为输出信号Bo。
如上所述,在信号传输装置1中,发送部分2按照预定权重将数字输入信号Ai和Bi的幅度转换成电压,相加所有转换电压,分别生成不同预定电压V1到V4,并将信号传输到接收部分3。接收部分3利用预定参考电压Vt1到Vt3对从发送部分2接收到的信号进行电压比较,从比较结果中生成与数字输入信号Ai相同的输出信号Ao和与数字输入信号Bi相同的输出信号Bo,并且输出输出信号Ao和输出信号Bo。于是,可以同时再现所有数字输入信号。由于消除了常规串行-并行转换造成的延迟,可以更高速地进行信号处理。
在第一实施例中,例示和描述了两个数字输入信号的情况。由于这种情况仅仅是一个例子,本发明不局限于这种情况,而是可应用于多个数字输入信号。此外,在第一实施例中,例示和描述了用2的倍数加权每个电阻值的情况。由于这种情况仅仅是一个例子,本发明不局限于这种情况。
[第二实施例]
在将信号发送到特定电路和存在使能特定电路的使能信号的情况下,如果只有当使能信号变得有效时才多路复用和传输其它控制信号,则可以通过简单电路多路复用控制信号。也就是说,在第一实施例中,只有当数字输入信号Ai处在低电平和高电平时,发送部分2才可以多路复用和向接收部分3传输数字输入信号Ai和Bi。将这种配置作为本发明的第二实施例来描述。
图12是示出根据本发明第二实施例的信号传输装置的电路配置的图形。在图12中,将相同的标号赋予与如图9所示的那些相同的部分。此外,在图12中,为了方便起见,例示和描述多路复用和传输两个数字输入信号的情况。
在图12中,例如,信号传输装置1a包括发送部分2a和接收部分3a。发送部分2a按照在两个数字输入信号Ai和Bi下按最大权重转换幅度的预定权重,将数字输入信号Ai处在低电平时的数字输入信号Bi转换成相应电压。此外,发送部分2a通过将数字输入信号Bi的转换电压加入数字输入信号Ai的低电平的转换电压中,生成发送信号SoA。接收部分3a通过信号线5从发送部分2a接收发送信号SoA,将发送信号SoA与预定参考电压Vt4和Vt5的每一个相比较,根据比较结果生成数字输入信号Ai和Bi,并且输出数字输入信号Ai和Bi。
发送部分2a包括构成开关电路的NMOS(N沟道金属氧化物半导体)晶体管M1和M2和构成负载电阻的电阻器R11和R12。数字输入信号Ai输入NMOS晶体管M1的栅极,而数字输入信号Bi输入NMOS晶体管M2的栅极。另一方面,电阻器R11和NMOS晶体管M1串联在电源电压Vdd与地线之间,而电阻器R12和NMOS晶体管M2的串联电路与NMOS晶体管M1并联。NMOS晶体管M1与电阻器R11和R12的连接部分与发送部分2a的发送端OUTa连接。发送端OUTa通过信号线5与接收部分3a的接收端INa连接。
然后,接收部分3a包括电压比较器CMP11和CMP12以及电阻器R13到R15。电阻器R13到R15构成参考电压生成电路,电压比较器CMP11和CMP12构成电压生成电路,而电压比较器CMP11和CMP12构成电压比较电路。与电压比较器CMP11和CMP12的每个输出端连接的每条连线构成伪逻辑电路。输入接收端INa的信号被输入到电压比较器CMP11和CMP12的每个反相输入端。电阻器R13到R15串联在电源电压Vdd与地线之间。电阻器R13与电阻器R14的连接部分与电压比较器CMP11的非反相输入端连接,而电阻器R14与电阻器R15的连接部分与电压比较器CMP12的非反相输入端连接。电压比较器CMP11的输出端构成接收部分3a的输出端,而电压比较器CMP12的输出端构成接收部分3a的另一个输出端。
在如上所述的这种配置中,在电源电压Vdd被设置成4V和电阻器R11的电阻值与电阻器R12的电阻值相同的情况下,与数字输入信号Ai和Bi的信号电平的每种组合相对应的输出电压VoA变成如图13所示那样。从图13可以看出,通过将电阻器R11的电阻值设置成与电阻器R12的电阻值相同,数字输入信号Ai和Bi的幅度偶数地改变。
也就是说,在图13中,在数字输入信号Ai和Bi两者都是低电平的状态M4a的情况下,输出电压VoA变成4V的预定值V3a。并且,在数字输入信号Ai是低电平和数字输入信号Bi是高电平的状态M3a的情况下,输出电压VoA变成2V的预定值V2a。此外,在数字输入信号Ai是高电平和数字输入信号Bi是低电平的状态M2a的情况下和在数字输入信号Ai和Bi两者都是高电平的状态M1a的情况下,输出电压VoA变成0V的预定值V1a。
图14是示出如图12所示的每个部分的信号的波形的时序图。如图12所示的每个部分的操作将参照图14作详细描述。
当数字输入信号Ai是高电平(4V)时,作为开关器件的NMOS晶体管M1导通,从发送端OUTa输出0V的发送信号SoA。当数字输入信号Ai变成低电平(0V)时,从发送端OUTa输出与数字输入信号Bi的信号电平相对应的2V或4V,作为发送信号SoA。也就是说,在数字输入信号Ai是低电平的情况下,当数字输入信号Bi是低电平(0V)时,发送信号SoA变成4V,并且当数字输入信号Bi是高电平(4V)时,发送信号SoA变成2V。
另一方面,在接收部分3a中,电阻器R13到R15的电阻值被设置成使参考电压Vt4变成1V和参考电压Vt5变成3V,也就是说,参考电压Vt4变成预定值V1a与预定值V2a之间的中间值,而参考电压Vt5变成预定值V2a与预定值V3a之间的中间值。从图14可以看出,电压比较器CMP11输出具有与比较输出电压VoA和参考电压Vt5所得的比较结果相对应的信号电平的输出信号Bo,并且输出信号Bo变成与数字输入信号Bi相同的信号。此外,电压比较器CMP12输出具有与比较输出电压VoA和参考电压Vt4所得的比较结果相对应的信号电平的输出信号Ao。
在数字输入信号Ai处在高电平和多路复用数字输入信号Bi的情况下,在图12中,很简单,数字输入信号Ai的信号电平经反相器反相,输入NMOS晶体管M1的栅极。可替代地,可以用PMOS晶体管取代NMOS晶体管M1和M2。如上所述,在多路复用两个信号的情况下,可以通过简单电路配置传输信号。
上面参照图12到图14描述了多路复用两个输入信号的情况。在图15中,将相同的标号赋予与如图12所示的那些相同的部分,并且省略对它们的说明。下面将描述与图12的不同之处。
与图12不同,在图15中,对如图12所示的发送部分2a另外配备了NMOS晶体管M3和电阻器R21,作为开关器件。此外,取代如图12所示的接收部分3a中的电阻器R13到R15,另外配备了电阻器R22到R26,而对接收部分3a另外配备了电压比较器CMP13和CMP14和逻辑电路11。
在图15中,信号传输装置1b包括发送部分2b和接收部分3b。发送部分2b按照在三个数字输入信号Ai、Bi和Ci下按最大权重转换幅度的预定权重,将数字输入信号Ai处在低电平时的数字输入信号Bi和Ci转换成各个电压。并且,发送部分2b通过将数字输入信号Bi和Ci的各个电压加入转换数字输入信号Ai处在低电平的电压中,生成发送信号SoB。接收部分3b通过信号线5从发送部分2b接收发送信号SoB,将发送信号SoB与预定参考电压Vt6和Vt9的每一个相比较,根据比较结果生成数字输入信号Ai、Bi和Ci,并且输出数字输入信号Ai、Bi和Ci。
发送部分2b包括构成开关电路的NMOS晶体管M1到M3和每一个构成负载电阻的电阻器R11、R12和R21。数字输入信号Ci输入NMOS晶体管M3的栅极。此外,NMOS晶体管M2的串联电路与电阻器R12的串联电路并联。NMOS晶体管M1与电阻器R11、R12和R21的连接部分与发送部分2b的发送端OUTb连接。发送端OUTb通过信号线5与接收部分3b的接收端INb连接。
然后,接收部分3b包括电压比较器CMP11到CMP14、电阻器R22到R26和逻辑电路11。电阻器R22到R26构成参考电压生成电路,而电压比较器CMP11到CMP13构成电压比较电路。输入接收端INb的信号输入电压比较器CMP11到CMP14的每个反相输入端。电阻器R22到R26串联在电源电压Vdd与地线之间。电阻器R22与电阻器R23的连接部分与电压比较器CMP11的非反相输入端连接,而电阻器R23与电阻器R24的连接部分与电压比较器CMP12的非反相输入端连接。
此外,电阻器R24与电阻器R25的连接部分与电压比较器CMP13的非反相输入端连接,而电阻器R25与电阻器R26的连接部分与电压比较器CMP14的非反相输入端连接。电压比较器CMP11到CMP14的每个输出端与逻辑电路11连接。逻辑电路11从四个电压比较器CMP11到CMP14的每个输出信号中生成数字输入信号Ai、Bi和Ci的每一个,而从接收部分3b的相应输出端输出输出信号Ao、Bo和Co的每一个。
在这种电路配置中,在电源电压Vdd被设置成4V,电阻器R11被设置成10kΩ,电阻器R12被设置成15kΩ,而电阻器R21被设置成30kΩ的情况下,与数字输入信号Ai、Bi和Ci的信号电平的组合相对应的输出电压VoB变成如图16所示那样。从图16可以看出,电阻器R12与电阻器R21的电阻比被设置成1∶2,电阻器R12与电阻器R21并联,并且合成电阻值被设置成近似等于电阻器R11的电阻值,从而使从发送端OUTb输出的输出电压VoB的电压变化相对较大。
另一方面,可以将参考电压Vt6到Vt9的每一个设置成如图16所示的输出电压VoB的中间值。例如,在如图16所示的情况下,将电阻器R22到R26的每个电阻值设置成使参考电压Vt6变成1V,参考电压Vt7变成2.2V,参考电压Vt8变成2.7V,而参考电压Vt9变成3.5V。逻辑电路11从四个电压比较器CMP11到CMP14的每个输出信号中生成数字输入信号Ai、Bi和Ci的每一个,并且输出数字输入信号Ai、Bi和Ci,作为输出信号Ao、Bo和Co。
如上所述,在根据第二实施例的信号传输装置中,只有当预定的一个输入信号处在低电平或高电平时,发送部分2a才按照预定权重将每个输入信号的幅度转换成电压,通过相加转换电压生成不同的预定电压,并将不同电压传输到接收部分3b。接收部分3b进行将从发送部分3b接收到的信号与每个预定参考电压相比较的电压比较,根据比较结果生成与数字输入信号的每一个相同的输出信号,并且输出每个输出信号。于是,在第二实施例中,可以取得与第一实施例相同的效果。此外,在只有当使能特定电路的使能信号有效时,才多路复用和传输其它控制信号的情况下,可以简化电路配置。
根据本发明,在信号传输设备1、1a和1b中,由于通过预定权重将多个数字输入信号每一个的幅度转换成电压,并相加和传输转换数字输入信号的电压,所以可以通过单条信号线传输多个数字输入信号的信息,因此,可以缩小连线的空间和降低成本。此外,可以在接收部分3、3a和3b上同时接收所有数字输入信号,可以消除常规串行-并行转换带来的时间损失,并可以更高速地进行信号处理。
此外,在只有当多个数字输入信号中权重最大的数字输入信号是高电平或低电平的信号电平时,才传输其它数字输入信号的情况下,可以通过简单配置实现和最小化发送/接收电路,并可以降低发送/接收电路的成本。
[第三实施例]
图17是例示根据本发明第三实施例的供电系统的方块图。
在图17中,供电系统1001包括:第一供电单元1002,用于对负载A1到Am(m是整数,其中,m>0)进行供电;以及第二供电单元1003,用于对负载B1到Bn(n是整数,其中,n>0)进行供电。第一供电单元1002和第二供电单元1003通过通信线1004相互连接。
第一供电单元1002包括第一供电部分1011,用于对负载A1到Am进行供电;控制部分1012,用于对第一供电部分1011进行操作控制;以及第一通信部分1013,用于与第二供电单元1003通信。此外,第二供电单元1003包括第二供电部分1021,用于对负载B1到Bm进行供电;以及第二通信部分1022,用于与第一供电单元1002通信。第一通信部分1013和第二通信部分1022利用通信线1004相互发送和接收信号。控制部分1012对第一供电部分1011进行操作控制,还通过第一通信部分1013和第二通信部分1022对第二供电部分1021进行操作控制。
例如,控制部分1012关于第一供电部分1011和第二供电部分1021进行诸如供电开始和停止、要供应的电力的电压设置、要供应的电力的电流设置和从正常操作模式到低功耗操作模式的切换之类的各种条件设置和操作控制。另外,控制部分1012接收从第一供电部分1011和第二供电部分1021发送的有关负载A1到Am和负载B1到Bn每一个的信息,例如,诸如当前电流消耗值和输出电压值之类的信息,并将新指令发送给第一供电部分1011和第二供电部分1021。如上所述,控制部分1012与第一供电部分1011和第二供电部分1021相互发送和接收信息。
控制部分1012与第一供电部分1011之间的信号直接发送和接收。控制部分1012与第二供电部分1021之间的信号通过第一通信部分1013和第二通信部分1022发送和接收。第一通信部分1013和第二通信部分1022通过通信线1004相互连接。第一通信部分1013和第二通信部分1022可以通过任何类型的通信部分连接。可以使用众所周知的技术,并可以是有线的或无线的。第一供电单元1002与权利要求书中的第一供电设备相对应,而第二供电单元1003与权利要求书中的第二供电设备相对应。第一供电部分1011与权利要求书中的第一供电部分相对应,而第一通信部分1013与权利要求书中的第一通信部分相对应。第二供电部分1021与权利要求书中的第二供电部分相对应,而第二通信部分1022与权利要求书中的第二通信部分相对应。
通过这种配置,在由于进行供电的负载的数量较少,而形成小型供电系统的情况下,可以通过只配置第一供电单元1002来使供电系统最小化。此外,为了与诸如进行供电的负载的数量之类的产品规模相对应,可以通过加入第二供电单元1003与进行复杂供电的情况相对应。
另外,为了控制第二供电部分1021,很简单,可以只在第一通信部分1013与第二通信部分1022之间连接信号线,以便可以容易地在利用供电系统1001的产品内连线。此外,串行通信可以用于第一通信部分1013与第二通信部分1022之间的通信,从而可以减少信号线的数量。因此,可以使利用供电系统1001的产品最小化和降低成本。并且,第一通信部分1013与第二通信部分1022之间的通信可以通过无线电通信实现。于是,不再需要信号线,从而可以进一步使供电系统最小化。
然后,在图17中,例示了与第一供电单元1002连接的供电单元只有第二供电单元1003的情况。可替代地,可以将多个供电单元与第一供电单元1002连接。在这种情况下,可以将如图17所示的配置修改成如图18所示那样。在图18中,例示了两个供电单元与第一供电单元1002连接的情况。在图18中,将相同的标号赋予与如图17所示的那些相同的部分,并且省略对它们的说明。下面将描述与图17的不同之处。
与如图17所示的配置不同,在图18中,另外配备了第三供电单元1005。
在图18中,供电系统1101包括第一供电单元1002、第二供电单元1003和对负载C1到Cp(p是整数,其中,p>0)进行供电的第三供电单元1005。第一供电单元1002、第二供电单元1003和第三供电单元1005与通信线1004连接。第三供电单元1005包括第三供电部分1031,用于对负载C1到Cp进行供电;以及第三通信部分1032,用于与第一供电单元1002通信。第一到第三通信部分1013、1022和1032利用通信线1004相互通信。控制部分1012关于第一供电部分1011和第二供电部分1021进行操作控制,并且,还通过第一通信部分1013和第三通信部分1032对第三供电部分1031进行操作控制。
例如,控制部分1012对第一、第二和第三供电部分1011、1021和1031进行诸如供电开始和停止、要供应的电力的电压设置、要供应的电力的电流设置和从正常操作模式到低功耗操作模式的切换之类的各种条件设置和操作控制。此外,控制部分1012接收从第一供电部分1011、第二供电部分1021和第三供电部分1031发送的有关负载A1到Am、负载B1到Bn和负载C1到Cp每一个的信息,例如,诸如当前电流消耗值和输出电压值之类的信息,并将新指令发送给第一供电部分1011、第二供电部分1021和第三供电部分1031。如上所述,控制部分1012与第一供电部分1011、第二供电部分1021和第三供电部分1031相互发送和接收信息。
控制部分1012与第三供电部分1031之间的信号通过第一通信部分1013和第三通信部分1032接收和发送。第一、第二和第三通信部分1013、1022和1032通过通信线1004连接。第一、第二和第三通信部分1013、1022和1032可以通过任何类型的通信部分连接。可以使用众所周知的技术,并可以是有线的或无线的。第三供电单元1005与权利要求书中的第二供电设备相对应,第三供电部分1031与权利要求书中的第二供电部分相对应,而第三通信部分1032与权利要求书中的第二通信部分相对应。
通过这种配置,为了与基于进行供电的负载的数量的产品规模相对应,除了使第一供电单元1002工作之外,可以将第一、第二和第三供电单元组合在一起使用。于是,通过组合第一、第二和第三供电单元1002、1003和1005,可以实现更复杂的供电。
此外,为了控制第三供电部分1031,可以简单地只在第一通信部分1013与第三通信部分1032之间连接信号线。因此,可以容易地在利用供电系统1101的产品内连线。并且,串行通信可以用于第一通信部分1013与第二通信部分1022和第三通信部分1032的每一个之间的通信,从而可以减少信号线的数量。因此,可以使利用供电系统的产品最小化和降低成本。另外,无线电通信也可以用于第一通信部分1013与第二通信部分1022和第三通信部分1032的每一个之间的通信,从而不再需要信号线。因此,可以进一步使利用供电系统的产品最小化。
如上所述,通过通信线1004,将控制部分1012提供给第一供电单元1002的指令发送给供电单元1003和1005的每一个。于是,可以为供电单元1003和1005的每一个设置各种条件。另一方面,将来自供电单元1003和1005每一个的信息发送给第一供电单元1002。然后,控制部分1012接收该信息和生成下一个指令。通过这种配置,可以通过简单配置对任意规模的产品实现供电系统1101。此外,通过将通信部分用于供电系统1101的外部通信,可以控制从外部配备给供电系统1101的可选装置和相同系统的并行工作的供电单元。
如上所述,在根据第三实施例的供电系统1101中,第一供电单元1002通过通信线1004与至少一个其它供电单元连接,并对至少一个供电单元内的供电部分进行操作控制。于是,即使供电单元的数量增加了,而在供电单元之间发送和接收的信息量和控制部分的数量增加了,也可以减少连接控制部分和供电单元的信号线的数量。
[第四实施例]
在第三实施例中,控制部分1012控制每个供电部分。一些利用供电系统的产品包括控制包括在产品中的各种功能的控制部分,并且通过控制部分控制供电部分。在这种情况下,为控制供电部分配备特殊控制电路是不恰当的。于是,可以将控制部分1012配置成与第一供电单元1002分离的一个控制单元。这种配置被当作第四实施例来描述。
图19是例示根据本发明第四实施例的供电系统的方块图。在图19中,将相同的标号赋予与如图18所示的那些相同的部分,并且省略对它们的说明。下面将描述与图18的不同之处。
与如图18所示的配置不同,在图19中。第一供电单元1002的控制部分1012被单独配置成控制单元1041,给第一供电单元1002和控制单元1041每一个配备连接第一供电单元1002和控制单元1041的接口部分。于是,如图18所示的第一供电单元1002被配置成如图19所示的第一供电单元1002a,而如图18所示的供电系统1101被配置成如图19所示的供电系统1001a。
在图19中,供电系统1001a包括第一供电单元1002a、第二供电单元1003、第三供电单元1004以及包括第一、第二和第三供电部分1011、1021和1031以及预定功能的功能单元。第一供电单元1002a包括对接第一供电部分1011和控制部分1041的第一接口部分1015以及第一通信部分1013。另外,控制部分1041包括对第一、第二和第三供电部分1011、1021和1031以及功能单元1045进行操作控制的控制部分1042和与第一供电单元1002a对接的第二接口部分1043。
第一和第二接口部分1015和1043相互连接,而第一接口部分1015和第一通信部分1013相互连接。控制部分1042和功能单元1045相互直接发送和接收信号。控制部分1042通过第二接口部分1043和第一接口部分1015向和从第一供电部分1011发送和接收信号。此外,控制部分1042通过第二接口部分1043、第一接口部分1015、第一通信部分1013、通信线1004和第二通信部分1022向和从第二供电部分1012发送和接收信号。此外,控制部分1042通过第二接口部分1043、第一接口部分1015、第一通信部分1013、通信线1004和第三通信部分1032向和从第三供电部分1031发送和接收信号。
控制部分1042关于第一、第二和第三供电部分1011、1021和1031的每一个进行诸如供电开始和停止、要供应的电力的电压设置、要供应的电力的电流设置和从正常操作模式到低功耗操作模式的切换之类的各种条件设置和操作控制。此外,控制部分1042接收从第一供电部分1011、第二供电部分1021和第三供电部分1031发送的有关负载A1到Am、负载B 1到Bn和负载C1到Cp每一个的信息,例如,诸如当前电流消耗值和输出电压值之类的信息,并将新指令发送给第一供电部分1011、第二供电部分1021和第三供电部分1031。如上所述,控制部分1012与第一供电部分1011、第二供电部分1021和第三供电部分1031相互发送和接收信息。
如上所述,第四实施例中的供电系统1001a通过单独配备控制单元1041,对供电单元1002a、1003和1005的供电部分1011、1021和1031的每一个进行操作控制,并且,与功能单元1045相互发送和接收信号,以便进行操作控制。于是,通过控制整个产品的控制部分或控制除了电源之外的其它功能的控制部分用作控制每个供电单元的每个供电部分的控制部分的配置,可以进一步使供电系统1001a的配置最小化和进一步降低成本。
在第四实施例中,第一接口部分1015和第二接口部分1043配备在供电系统1001a中。可替代地,如果控制部分1042诸如输入/输出电压电平和当前驱动能力之类的条件对应于第一供电部分1011和第一通信部分1013的那些条件,不再需要第一接口部分1015和第二接口部分1043。于是,控制部分1042可以直接与第一供电部分1011和第一通信部分1013连接。
从上面的说明可以看出,根据基于本发明第三和第四实施例的供电系统,控制部分直接控制的第一供电部分与控制部分通过第一通信部分和第二通信部分控制的至少一个第二供电部分组合在一起。因此,可以实现小型供电系统向大型供电系统的更可取供电。此外,由于第一通信部分和第二通信部分相互进行通信来发送和接收信号,即使在大型供电系统中,信号线的数量也不会增加。可以使供电系统最小化和降低成本。
此外,配备控制单元对第一供电单元中的第一供电部分进行操作控制,还对第二供电单元中的第二供电部分进行操作控制。于是,可以部分使用用在产品中的控制部分。因此,可以进一步使供电系统最小化和降低成本。
[第五实施例]
图20是例示根据本发明第五实施例的串行通信装置的示意性方块图。
在图20中,串行通信装置2001通过主单元HC和从单元SC之间的半双工通信进行串行通信,它包括主发送/接收电路2002和从发送/接收电路2003。主发送/接收电路2002与主单元HC连接,而从发送/接收电路2003与从单元SC连接。主发送/接收电路2002和从发送/接收电路2003通过传输串行信号的传输信道2004相互连接。主发送/接收电路2002与权利要求书中的第一发送/接收电路相对应,而从发送/接收电路2003与权利要求书中的第二发送/接收电路相对应。
主发送/接收电路2002包括第一发送电路部分2011和第一接收电路部分2012。从发送/接收电路2003包括第二发送电路部分2013和第二接收电路部分2014。第一发送电路部分2011和第一接收电路部分2012通过传输信道2004与第二发送电路部分2013和第二接收电路部分2014连接。在将数据从主发送/接收电路2002发送到从发送/接收电路2003的情况下,通过传输信道2004将串行数据信号从第一发送电路部分2011发送到从发送/接收电路2003,而第二接收电路部分2014从通过传输信道2004输入的信号中提取数据。
此外,当将数据从从发送/接收电路2003发送到主发送/接收电路2002时,通过传输信道2004将一个非数据信号从第一发送电路部分2011发送到从发送/接收电路2003。第二发送电路部分2013与第二接收电路部分2014连接。第二发送电路部分2013通过将一个脉冲叠加在通过传输信道2004输入的非数据信号上写入数据,并且,通过传输信道2004将写入数据的串行数据信号发送到主发送/接收电路2002。第一接收电路部分2012从通过传输信道2004输入的信号中提取数据。
图21是例示根据本发明第五实施例、如图20所示的第一发送电路部分2011的电路配置的图形。图22是示出如图21所示的每个部分的信号的波形的时序图。下面将参照图21和22描述第一发送电路部分2011。
将输出数据信号SDo51和时钟信号CLK从主单元HC输入如图21所示的第一发送电路部分2011。第一发送电路部分2011生成与输出数据信号SDo51相对应的串行输出信号So51,并将串行输出信号So51输出到传输信道2004。时钟信号CLK具有两倍于输出数据信号SDo51的输出定时的频率,并使输出数据信号SDo51同步。
第一发送电路部分2011包括T52延迟电路2021,用于使时钟信号CLK延迟预定时间T52;T51延迟电路2022,用于使输出信号S51或T52延迟电路2021进一步延迟预定时间T51;叠加脉冲生成电路2023,用于从T52延迟电路2021的输出信号S51和T51延迟电路2022的输出信号S52中生成叠加脉冲信号S53;T53信号生成电路2024,用于通过将时钟信号CLK分成两个序列生成预定脉冲宽度T53的脉冲信号S55;以及输出信号生成电路2025,用于从通过与输出数据信号SDo51相对应叠加了叠加脉冲信号S53的叠加脉冲信号S54和脉冲信号S55中生成串行输出信号So51。T51延迟电路2022与权利要求书中的第一T51延迟电路相对应,叠加脉冲生成电路2023与权利要求书中的第一叠加脉冲生成电路相对应,并且输出信号生成电路2025与权利要求书中的第一输出信号生成电路相对应。
T52延迟电路2021包括电阻器R51、电容器C51和缓冲门BUF51。电容器C51连接在电阻器R51的一端与地线之间,而时钟信号CLK输入电阻器R51的另一端。此外,电阻器R51与电容器C51的连接部分与缓冲门BUF51的输入端连接。如图22所示,T52延迟电路2021的输出信号S51变成时钟信号CLK延迟了时间T52的信号。延迟的时间T52由电阻器R51、电容器C51和缓冲门BUF51的阈电压Vt51决定。
此外,T51延迟电路2022包括电阻器R52、电容器C52和反相器INV52。电阻器R52和电容器C52串联在T52延迟电路2021的输出端上,也就是说,串联在缓冲门BUF51的输出端与地线之间。另外,电阻器R52与电容器C52的连接部分与反相器INV51的输入端连接。如图22所示,T51延迟电路2022的输出信号S52与T52延迟电路2021的输出信号S51反相,变成延迟了时间T51的信号。被T51延迟电路2022延迟的时间T51由电阻器R52、电容器C52和反相器INV52的阈电压Vt52决定。
叠加脉冲生成电路2023包括AND(“与”)电路AN51。T52延迟电路2021的输出信号S51和T51延迟电路2022的输出信号S52分别输入AND电路AN51的输入端。如图22中的叠加脉冲信号S53所示,从AND电路AN51的输出端按时钟信号CLK的每个周期逐个创建叠加信号。
T53信号生成电路2024包括由D触发器DFF51构成的1/2除法电路。时钟信号CLK输入D触发器DFF51的时钟输入端CK。当时钟信号CLK从低电平上升到高电平时,输出端Q反相,并且如图22中的信号S55所示,T53信号生成电路2024生成每隔时间T53反相的具有脉冲宽度T53的信号,并且输出该信号。
输出信号生成电路2025包括AND电路AN52和ExOR(“异或”)电路EXC51。输出数据信号SDo51和叠加脉冲生成电路2023的输出信号S53分别输入AND电路AN52的两个输入端。AND电路AN52的输出端与ExOR电路EXC51的一个输入端连接。T53信号生成电路2024的输出信号S55与ExOR电路EXC51的另一个输入端连接。每当输出信号S55的电平发生改变,输出信号生成电路2025就响应输出数据信号SDo51确定输出信号S53的叠加脉冲存在与否,并且生成如图22所示的串行输出信号So51。
接着,图23是例示图20中的第一接收电路部分2012的电路配置的图形。图24是示出如图23所示的每个部分的信号的波形的时序图。下面将参照图23和图24描述第一接收电路部分2012。
图23中的第一接收电路部分2012从从传输信道2004输入的串行输入信号Si51中提取数据,并将该数据作为输入数据信号SDi51输出到主单元HC。
第一接收电路部分2012包括T51消除电路2031,用于从串行输入信号Si51中消除叠加脉冲;输入信号延迟电路2032,用于在消除叠加脉冲的同时,使串行输入信号Si51延迟超过(T51+T52)的时间;叠加脉冲提取电路2033,用于从串行输入信号Si51、T51消除电路2031的输出信号S12和输入信号延迟电路2032的输出信号S14中提取叠加脉冲;以及数据提取电路2034,用于从叠加脉冲提取电路2033的输出信号S17中提取数据信号,并将数据信号作为输入数据信号SDi51输出到主单元HC。此外,T51消除电路2031与权利要求书中的第一T51消除电路相对应,输入信号延迟电路2032与权利要求书中的第一输入信号延迟电路相对应,叠加脉冲提取电路2033与权利要求书中的第一叠加脉冲提取电路相对应,而数据提取电路2034与权利要求书中的第一数据提取电路相对应。
T51消除电路2031包括电阻器R11、电容器C11和缓冲门BUF11。电容器C11连接在电阻器R11的一端与地线之间,而串行输入信号Si51输入电阻器R11的另一端。此外,电阻器R11与电容器C11的连接部分与缓冲门BUF11的输入端连接。电阻器R11与电容器C11的连接部分上的信号是信号S11。
从图24可以看出,通过T51消除电路2031,消除了串行输入信号Si51的叠加脉冲,取出脉冲宽度T53的原始信号和作为输出信号S12输出。叠加脉冲的脉冲宽度T51越窄,T51消除电路2031的时间常数就变得越小。于是,可以容易地消除叠加脉冲。此外,由于T51消除电路2031的输出信号S12与串行输入信号Si51之间的相差变小,施加脉冲的脉冲宽度T51较窄更可取。
输入信号延迟电路2032包括电阻器R12、电容器C12和缓冲门BUF12。电容器C12与电阻器R12的一端和地线连接,并且串行输入信号Si51输入电阻器R12。此外,电阻器R12与电容器C12的连接部分与缓冲门BUF12的输入端连接。电阻器R12与电容器C12的连接部分上的信号是信号S13。
从图24可以看出,由于输入信号延迟电路2032的时间常数被设置成较大时间常数,输入信号延迟电路2032的输出信号S14是从串行输入信号Si51中消除了叠加脉冲和使串行输入信号Si51延迟超过时间(T51+T52)的信号。在图24中,电压Vt11示出了缓冲门BUF11的阈电压,而电压Vt12是缓冲门BUF12的阈电压。
叠加脉冲提取电路2033包括ExNOR(“异或非”)电路EXN11、ExOR电路EXC11和AND电路AN11。串行输入信号Si51和输入信号延迟电路2032的输出信号S 14与ExNOR电路EXN11的两个输入端相对应和输入ExNOR电路EXN11的两个输入端中。T51消除电路2031的输出端和输入信号延迟电路2032的输出端与ExOR电路EXC11的两个输入端相对应和连接。
ExNOR电路EXN11的输出端和ExOR电路EXC11的输出端与AND电路AN11的两个输入端相对应和连接。输出信号S15是ExOR电路EXC11的输出信号,输出信号S16是ExNOR电路EXN11的输出信号,并且输出信号S17是AND电路AN11的输出信号。从图24可以看出,提取的叠加脉冲作为输出信号S17从AND电路AN11输出。
数据提取电路2034包括三个D触发器DFF11到DFF13、反相器INV11和ExOR电路EXC12。叠加脉冲提取电路2033的输出信号S17输入D触发器DFF11的时钟信号输入端CK中。D触发器DFF11的反相输出端QB与D触发器DFF11的数据输入端D连接。另外,D触发器DFF11的输出端Q与D触发器DFF12的数据输入端D连接。
并且,D触发器DFF12的输出端Q与D触发器DFF13的数据输入端D连接。ExOR电路EXC11的输出端与D触发器DFF12和D触发器DFF13的时钟信号输入端CK连接。D触发器DFF12和D触发器DFF13的输出端Q与ExOR电路EXC12的两个输入端相对应和连接。
输出信号S18是反相器INV11的输出信号和输出信号S19到S21是来自D触发器DFF11到DF13的输出端Q的输出信号。
在图24中,当输出信号S20和输出信号S21的信号电平相互对应时,ExOR电路EXC12输出具有低电平的信号,并且当输出信号S20和输出信号S21的信号电平不相互对应时,ExOR电路EXC12输出具有高电平的信号。于是,在叠加脉冲叠加在串行输入信号Si51上的时候,输入数据信号SDi51变成高电平。
图25是例示如图23所示的输入信号延迟电路2032的另一种电路配置的图形。由于叠加脉冲由T51消除电路2031来消除,通过延迟T51消除电路2031的输出信号S12可以生成如图24所示的信号S14。在图25中,例示了在反相器的输入出现变化之前利用信号延迟的电路例子。四个反相器INV12到1NV15串联。通过增加反相器的数量可以获得必要延迟时间。在图25中,在输入信号延迟电路2032中,串联成使输出信号的信号电平相对于输入信号不反相的反相器的数量是偶数。此外,输入信号延迟电路2032不局限于如图25所示的电路,而可以是利用CR的单稳多谐振荡器或诸如移位晶体管之类的延迟电路。
图26是例示如图20所示的从发送/接收电路的电路配置的图形。图27是示出如图26所示的每个部分的信号的波形的时序图。下面将参照图26和图27描述从发送/接收电路2003。
在图26中,第二接收电路部分2014从从传输信道输入的串行输入信号Si52中提取数据,并且作为输入数据信号SDi52输出到主单元SC。
第二接收电路部分2014包括T51消除电路2041,用于从串行输入信号Si52中消除叠加脉冲;输入信号延迟电路2042,用于通过延迟超过时间(T51+T52)输出T51消除电路2041的输出信号S31;叠加脉冲提取电路2043,用于从串行输入信号Si52、T51消除电路2041的输出信号S31和输入信号延迟电路2042的输出信号S32中提取叠加脉冲;以及数据提取电路2044,用于从叠加脉冲提取电路2043的输出信号中提取数据信号,并且输出数据信号,作为输入数据信号SDi52。
第二接收电路部分2014具有与如图23所示的第一接收电路部分2012相似的电路配置,因此,省略对它的说明。T51消除电路2041与权利要求书中的第二T51消除电路相对应,输入信号延迟电路2042与权利要求书中的第二输入信号延迟电路相对应,叠加脉冲提取电路2043与权利要求书中的第二叠加脉冲提取电路相对应,而数据提取电路2044与权利要求书中的第二数据提取电路相对应。
然后,第二发送电路部分2013包括T51延迟电路2051,用于使输入信号延迟电路2042的输出信号S32延迟时间T51;叠加脉冲生成电路2052,用于从输入信号延迟电路2042的输出信号S32和T51延迟电路2051的输出信号S33中生成和输出叠加脉冲信号S34;以及输出信号生成电路2053,用于生成串行输出信号So52和将串行输出信号So52输出到传输信道2004。T51延迟电路2051与权利要求书中的第二T51延迟电路相对应,叠加脉冲生成电路2052与权利要求书中的第二叠加脉冲生成电路相对应,而输出信号生成电路2053与权利要求书中的第二输出信号生成电路相对应。
T51延迟电路2051包括电阻器R32、电容器C22和反相器INV26。电容器C22连接在电阻器R32的一端与地线之间,而输入信号延迟电路2042的输出信号S32输入电阻器R32的另一端。此外,电阻器R32与电容器C22的连接部分与反相器INV26的输入端连接。从图27可以看出,T51延迟电路2051将输入信号延迟电路2042的输出信号S32延迟了延迟时间T51,并且使信号电平反相,以便将输出信号S32输出成输出信号S33。
叠加脉冲生成电路2052包括ExNOR电路EXN22。T51延迟电路2051的输入端和输出端与ExNOR电路EXN22的两个输入端相对应和连接。从ExNOR电路EXN22的输出端输出通过按串行输入信号Si52的半个周期逐个生成叠加信号形成的输出信号S34。
输出信号生成电路2053包括含有三个输出端的AND电路AN22、含有三个输出端的NAND电路NA21、PNP晶体管Tr21和NPN晶体管Tr22。在AND电路AN22和NAND电路NA21中,叠加脉冲生成电路2052的输出信号S34输入每个第一输入端,而输出数据信号SDo52输入每个第二输入端。并且,第二接收电路部分2014中的T51消除电路2041的输出信号S31输入AND电路AN22的第三输入端,而与T51消除电路2041的输出信号S31的信号电平反相的信号输入NAND电路NA21的第三输入端。
AND电路AN22的输出端与NPN晶体管Tr22的基极连接,而NAND电路NA21的输出端与PNP晶体管Tr21的基极连接。PNP晶体管Tr21和NPN晶体管Tr22串联在电源电压Vdd与地线之间,而串行输出信号So52从PNP晶体管Tr21与NPN晶体管Tr22的连接部分输出到传输信道2004。当串行输入信号Si52和输出数据信号SDo52两者都具有高电平时,AND电路AN22输出具有高电平的信号,并且,NPN晶体管Tr22导通,以降低串行输出信号So52的信号电平。
当串行输入信号Si52是低电平和输出数据信号SDo52是高电平时,NAND电路NA21输出具有低电平的信号,并且,PNP晶体管Tr21导通,提高串行输入信号Si52的信号电平。如上所述,第二发送电路部分2013通过将叠加脉冲叠加在串行输入信号Si52上来生成串行输出信号So52。在从图26中的第二发送电路部分2013输出的串行输出信号So52中,叠加脉冲叠加在上面的位置比起点晚了大约时间(T52+T51)。由于时间T51与时间T52相比足够短,可以表达成T52≈T51+T52。于是,如上所述的第一接收电路部分2012可以充分地接收串行输出信号So52。
下面将描述时间T51到T53。
图28A到28C是例示从传输信道输出的串行输出信号的图形。
在如图28A所示的串行输出信号中,重复具有时间T53的脉冲宽度的重复信号中从低电平改变成高电平的时刻和从高电平改变成低电平的时刻是起点。
当输出数据信号是“1”时,在从起点开始经过了时间T52的时刻,生成脉冲宽度为时间T51和信号电平反相的脉冲。当输出数据信号是“0”时,不生成具有时间T51的脉冲宽度。另外,时间T53示出了从起点到高电平或低电平的期限。
时间T51到T53之间的关系满足如下条件1:
T51<T52<T53和(T51+T52)<T53              (条件1)。
时间T51越尽可能地短,配置发送/接收电路就越容易。最好,时间T51到T53满足如下条件2:
T51<<T52<T53                            (条件2)。
此外,如果时间T53是时间T52的两倍,可以容易地配置发送/接收电路。最好,满足如下条件3:
(T51+T52)<T53/2                           (条件3)。
图28B例示了重复信号中从低电平改变成高电平的时刻被设置成起点的串行输出信号。在这种情况下,具有T53的脉冲宽度是重复信号的高电平的期限。另一方面,如果起点是从高电平改变成低电平的时刻,具有T53的脉冲宽度变成重复信号的低电平的期限。
图28C例示了每隔重复信号的一个周期从低电平改变成高电平的时刻被设置成起点的串行输出信号。
除了如图28A、28B和28C的起点之外,可以考虑各种起点设置。最好,可以根据正被使用的传输系统将起点设置成满足上面的条件1到3。
图29是例示第一接收电路的另一种电路配置的图形。图30是示出如图29所示的每个部分的信号的波形的时序图。在图29中,将相同的标号赋予与如图23所示的那些相同的部分,并且省略对它们的说明。下面将描述与图23中的第一接收电路2012的电路配置的不同之处。
与如图23所示的电路配置不同,在图29中,改变了图23中的数据提取电路2034的电路配置。
图29中的数据提取电路2034包括D触发器DFF11到EFF13和由反相器INV11和PLL(锁相环)构成的递减计数器DC31。与D触发器DFF11的连接与图23中的连接相似,而与D触发器DFF12、EFF13和ExOR电路EXC12的连接与除了D触发器DFF12和EFF13的每个时钟信号输入端CK之外的其它连接相似。
将时钟信号CLK划分成四个的内部时钟信号CLKi作为PLL的输出从递减计数器DC31的输出端Q3供应到D触发器DFF12和EFF13的每个时钟信号输入端CK。于是,如图30所示,D触发器DFF12的输出信号S20和D触发器DFF13的输出信号S21在内部时钟信号CLKi上升时同步,并变成D触发器DFF11的输出信号移动后的信号。
叠加脉冲提取电路2033的输出信号S17输入递减计数器DC31的重置输入端R,并将时钟信号CLK锁定成在具有时间T53的脉冲宽度期间生成四个时钟脉冲。于是,作为PLL的输出从递减计数器DC31的输出端Q输出的内部时钟信号CLKi变成频率两倍于串行输入信号Si51的基频的信号。从图30可以看出,ExOR电路EXC12在输出信号S20和S21的信号电平相互对应时,输出低电平的信号,并且在输出信号S20和S21的信号电平不相互对应时,输出高电平的信号。从图30中的输入数据信号SDi51可以看出,可以获得在叠加脉冲叠加在串行输入信号Si51上的期限内变成高电平的输入数据信号SDi51。
如上所述,根据本发明的第五实施例,在串行通信装置中,在相对于起点经过了比时间T53短的时间T52的时刻,用从预定起点开始的时间T53的脉冲宽度中脉冲宽度比T52短的叠加脉冲的存在与否代表数据的“1”和“0”。于是,不需要同步信号,通过简单电路配置就可以在主方和从方实现发送/接收电路。并且,可以缩小从方的电路规模,并且不再需要切换到发送或接收的切换部分。可以使串行通信装置最小化和可以降低成本。此外,从方的从发送/接收电路不需要生成时钟信号。因此,可以进一步简化电路配置。
[第六实施例]
图31是例示根据本发明第六实施例的串行通信装置的从发送/接收电路的电路配置的图形。图32是示出如图31所示的每个部分的信号的波形的时序图。在图31中,改变与图20中的从发送/接收电路2003和第二发送电路部分2013有关的标号。在图31中,除了图20中的从发送/接收电路2003和第二发送电路部分2013之外的其它部分与如图26所示的那些相同,对它们赋予相同的标号,并且,省略对它们的说明。下面将描述与图26中的电路配置的不同之处。
与图26中的配置不同,在图31中,图26中的叠加脉冲生成电路2052的电路配置被改变成叠加脉冲生成电路2052a,而输出信号生成电路2053的电路配置被改变成信号生成电路2053a。因此,图26中的第二发送电路部分2013被显示成第二发送电路部分2013a,而从发送/接收电路2003被显示成从发送/接收电路2003a。
在图31中,从发送/接收电路2003a包括第二发送电路部分2013a和第二接收电路部分2014。第二接收电路部分2014与图7中的那个相同,因此,省略对它的说明。
第二发送电路部分2013a包括T51延迟电路2051;叠加脉冲生成电路2052a,用于从输入信号延迟电路2042的输出信号S32和T51延迟电路2051的输出信号S33中生成叠加脉冲信号S34a;以及输出信号生成电路2053a,用于生成串行输出信号So52和将串行输出信号So52输出到传输信道2004。叠加脉冲生成电路2052a与权利要求书中的第二叠加脉冲生成电路相对应,而输出信号生成电路2053a与权利要求书中的第二输出信号生成电路相对应。
叠加脉冲生成电路2052a包括AND电路AN31。T51延迟电路2051的输入端和输出端与AND电路AN31的两个输入端相对应和连接。通过逐个生成串行输入信号Si52的每个高电平期限形成的输出信号S34a从AND电路AN31的输出端输出。
输出信号生成电路2053a包括AND电路AN32和NPN晶体管Tr31。叠加脉冲生成电路2052a的输出信号S34a与AND电路AN32的一个输入端连接,而输出数据信号SDo52与AND电路AN32的另一个输入端连接。AND电路AN32的输出端与NPN晶体管Tr31的基极连接,而NPN晶体管Tr31连接在串行输入信号Si52所在的输入端与地线之间。输出信号S36a是AND电路AN32的输出信号。
在这种配置中,当AND电路AN32的输出信号S36a变成高电平时,NPN晶体管Tr31导通,以降低串行输入信号Si52的信号电平。因此,如图32所示,可以生成叠加脉冲叠加在串行输入信号上的串行输出信号So52。从图32可以看出,只有当串行输入信号Si52是高电平时,图31中的第二发送电路部分2013a才将叠加脉冲叠加在串行输入信号Si52上。在将数据信号从第二发送电路部分2013a发送到主单元HC的情况下,数据信号密度变成将数据信号从主发送/接收电路2002发送到从发送/接收电路2003的情况的一半。在这种情况下,串行输出信号So52与如图28B所示的那个相同。
如上所述,根据本发明的第六实施例,在串行通信装置2003a中,只有当串行输入信号Si52是高电平时,第二发送电路部分2013a才将叠加脉冲叠加在串行输入信号Si52上。因此,可以获得与第五实施例相同的效果。另外,当不存在来自从发送/接收电路2003的数据时,按重复信号的每个周期设置起点的位置。因此,可以进一步简化从发送/接收电路2003中的发送电路部分2013a的电路配置。
根据第五实施例和第六实施例,在串行通信装置2003和2003a中,脉冲宽度为时间T53和从预定起点开始的的参考脉冲信号通过与脉冲宽度比T52短的叠加脉冲的存在与否相对应,在相对于预定起点经过了比时间T53短的时间T52的时刻代表发送数据的“1”和“0”。于是,不需要处在与要发送的数据信号不同的线路上的同步信号。因此,只通过诸如两套延迟电路和简单逻辑电路之类的简单电路就可以配置发送电路部分2013和2013a。另外,延迟电路可以是应用CR时间常数的极其简单电路,从而可以节省电路空间和可以提高性价比。
此外,在第二发送/接收电路中,用在接收电路部分中的延迟电路可以部分与发送电路部分共享,而发送电路部分本身可以由简单逻辑电路构成。另外,第二发送/接收电路将叠加脉冲叠加在不含输入第二发送/接收电路的数据的串行数据信号上,生成输出到传输信道的串行数据信号。因此,不需要时钟脉冲生成电路和控制发送权的电路,而第二发送/接收电路可以节省比第一发送/接收电路多的电路空间和可以提高性价比。
并且,当不存在来自第二发送/接收电路的发送数据时,按参考脉冲信号的每个周期设置起点的位置。因此,可以进一步简化发送电路部分的电路配置。
在供电系统中,串行通信装置可以应用于第一通信部分和第二通信部分。另外,串行传输装置可以应用于串行通信装置。
根据本发明,将电力从多个供电设备供应到多个负载的供电系统可以包括:第一供电设备,包括将电力供应给多个负载的至少一个的第一供电部分,对第一供电部分进行操作控制的控制部分,以及向和从控制部分发送和接收信号的第一通信部分;以及至少一个第二供电设备,包括将电力供应给多个负载的至少一个的第二供电部分,以及向和从第二供电部分发送和接收信号的第二通信部分,其中,第一通信部分和第二通信部分相互发送和接收信号,并且控制部分通过第一通信部分和第二通信部分对第二供电部分进行操作控制。
其中,在第一通信部分中的第一发送/接收电路与第二通信部分中的第二发送/接收电路之间进行通过半双工通信的串行通信,其中,至少一个第一发送/接收电路通过传输信道与至少一个第二发送/接收电路连接,第一发送/接收电路和第二发送/接收电路的每一个包括:发送电路部分,用于通过在预定信号电平期间将预定叠加脉冲叠加在具有两个值的发送数据信号上来生成串行数据信号,并且输出串行数据信号;以及接收电路部分,用于接收从发送电路部分发送的串行数据信号,并且通过从串行数据信号中提取叠加脉冲提取发送数据信号。
根据本发明,将电力从多个供电设备供应到多个负载的供电系统可以包括:第一供电设备,包括将电力供应给多个负载的至少一个的第一供电部分,对第一供电部分进行操作控制的控制部分,以及向和从控制部分发送和接收信号的第一通信部分;以及至少一个第二供电设备,包括将电力供应给多个负载的至少一个的第二供电部分,以及向和从第二供电部分发送和接收信号的第二通信部分,其中,第一通信部分和第二通信部分相互发送和接收信号,并且控制部分通过第一通信部分和第二通信部分对第二供电部分进行操作控制。
其中,在第一通信部分中的第一发送/接收电路与第二通信部分中的第二发送/接收电路之间进行通过半双工通信的串行通信,其中,至少一个第一发送/接收电路通过传输信道与至少一个第二发送/接收电路连接,第一发送/接收电路和第二发送/接收电路的每一个包括:发送电路部分,用于通过在预定信号电平期间将预定叠加脉冲叠加在具有两个值的发送数据信号上来生成串行数据信号,并且输出串行数据信号;以及接收电路部分,用于接收从发送电路部分发送的串行数据信号,并且通过从串行数据信号中提取叠加脉冲提取发送数据信号。
其中,第一发送/接收电路和第二发送/接收电路的每一个包括:发送部分,用于按照预定权重将多个数字输入信号的每个宽度转换成电压,通过将从多个数字输入信号转换而来的电压相加来生成发送信号,并且输出发送信号;以及接收部分,用于从发送部分接收发送信号,将发送信号与多个预定电压比较,生成每个数字输入信号,并且输出每个数字输入信号,从而通过单条信号线发送和接收的多个数字输入信号。
本发明不局限于具体公开的实施例,并可以作出改变和修改,而不偏离本发明的范围。
本发明基于2003年4月17日提出的日本优先专利申请第2003-112930号、2003年4月17日提出的第二003-112916号和2003年4月17日提出的第二003-112922号,特此全文引用,以供参考。

Claims (9)

1.一种通过单条信号线发送和接收输入其中的多个数字输入信号的信号传输装置,所述信号传输装置包含:
发送部分,用于按照预定权重将多个数字输入信号的每个幅度转换成电压,通过将从多个数字输入信号转换而来的电压相加来生成发送信号,并且输出发送信号;以及
接收部分,用于从发送部分接收发送信号,将发送信号与多个预定参考电压比较,根据发送信号生成对应于所述多个数字输入信号的多个数字输出信号,并且输出所述多个数字输出信号,
其中,所述接收部分包括:
参考电压生成电路,用于生成多个预定参考电压;
电压比较电路,用于将多个预定参考电压的每一个与从所述发送部分接收到的信号相比较,并且输出示出每个比较结果的信号;以及
逻辑电路,用于按照预定方法从所述电压比较电路的每个输出信号中合成每个数字输入信号,
其中,所述参考电压生成电路生成数量等于数字输入信号的数量乘以2再减去1的多个参考电压的每一个,并且输出所述多个参考电压的每一个。
2.根据权利要求1所述的信号传输装置,其中,所述发送部分包括数量与数字信号的数量相同的输入电阻,以及由运算放大器形成的反相放大电路,其中,与运算放大器的反相输入端连接的每个输入电阻的电阻值被设置成与数字输入信号的所述每个幅度的权重相对应。
3.根据权利要求2所述的信号传输装置,其中,输入电阻并联的情况下的合成电阻值等于运算放大器的反馈电阻值。
4.根据权利要求2所述的信号传输装置,其中,输入电阻的电阻值之间的比被设置为2的倍数。
5.根据权利要求2所述的信号传输装置,其中,运算放大器的非反相输入端的电压被设置成电源电压的一半。
6.根据权利要求1所述的信号传输装置,其中,在两个数字输入信号的情况下,响应来自用于检测权重大于另一个数字输入信号的权重的一个数字输入信号的所述电压比较电路的输出信号,所述逻辑电路取消来自用于检测另一个数字输入信号的电压比较电路的输出信号之一。
7.根据权利要求1所述的信号传输装置,其中,所述发送部分将在数字输入信号中具有最大权重的数字输入信号是预定信号电平的时候正在转换的电压相加。
8.根据权利要求7所述的信号传输装置,其中,所述发送部分包括:
每个都受每个相应数字输入信号控制的多个开关电路;以及
每个都与每个开关电路串联的多个负载电阻,
其中,与受具有最大权重的一个数字输入信号控制的一个开关电路连接的一个负载电阻连接在预定电压与相关开关电路之间,而其它开关电路与相关电阻的串联电路与受具有最大权重的一个数字输入信号控制的一个开关电路并联。
9.根据权利要求8所述的信号传输装置,其中,与受具有最大权重的一个数字输入信号控制的一个开关电路连接的一个负载电阻被设置成与其它负载电阻并联时的合成电阻值相同的电阻值。
CN2004800141108A 2003-04-17 2004-04-15 信号传输装置、供电系统和串行通信装置 Expired - Fee Related CN1795635B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP112930/2003 2003-04-17
JP2003112930A JP4141885B2 (ja) 2003-04-17 2003-04-17 シリアル通信装置
JP2003112916A JP4141884B2 (ja) 2003-04-17 2003-04-17 信号伝送装置
JP2003112922A JP2004320530A (ja) 2003-04-17 2003-04-17 電源供給システム装置
JP112916/2003 2003-04-17
JP112922/2003 2003-04-17
PCT/JP2004/005376 WO2004093377A1 (en) 2003-04-17 2004-04-15 Signal transmitting apparatus, power supplying system, and serial communication apparatus

Publications (2)

Publication Number Publication Date
CN1795635A CN1795635A (zh) 2006-06-28
CN1795635B true CN1795635B (zh) 2012-02-29

Family

ID=33303696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800141108A Expired - Fee Related CN1795635B (zh) 2003-04-17 2004-04-15 信号传输装置、供电系统和串行通信装置

Country Status (6)

Country Link
US (1) US7859991B2 (zh)
EP (1) EP1614249A4 (zh)
JP (3) JP4141885B2 (zh)
KR (3) KR100788776B1 (zh)
CN (1) CN1795635B (zh)
WO (1) WO2004093377A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4276981B2 (ja) * 2004-06-30 2009-06-10 株式会社リコー シリアル通信装置、その通信方法及びそのシリアル通信装置を使用したシステム装置
US7248061B2 (en) * 2004-09-14 2007-07-24 Denso Corporation Transmission device for transmitting a signal through a transmission line between circuits blocks having different power supply systems
JP2006262275A (ja) * 2005-03-18 2006-09-28 Nec Corp 送受信機、光伝送装置、ポート別切替方法、プログラム、記録媒体
JP4935379B2 (ja) * 2007-01-26 2012-05-23 富士通株式会社 電源装置および通信機器
JP5347985B2 (ja) * 2010-01-19 2013-11-20 株式会社リコー 画像形成装置、識別装置、識別用半導体集積装置及び識別方法
JP5457273B2 (ja) 2010-05-31 2014-04-02 富士通コンポーネント株式会社 電源制御システム、電源制御システムの制御方法、電源制御装置及びプログラム
EP2525533B1 (en) * 2011-05-16 2014-02-26 Alcatel Lucent Method and apparatus for providing bidirectional communication between segments of a home network
JP5853186B2 (ja) * 2011-05-20 2016-02-09 パナソニックIpマネジメント株式会社 通信システムおよび重畳モジュール
JP6287184B2 (ja) 2012-12-28 2018-03-07 株式会社リコー 情報提供システムおよび情報提供装置
JP6013214B2 (ja) * 2013-02-04 2016-10-25 ルネサスエレクトロニクス株式会社 バス通信トランシーバ
US10205485B2 (en) * 2013-09-30 2019-02-12 Panasonic Intellectual Property Management Co., Ltd. Communication apparatus and motor control apparatus
KR101830866B1 (ko) * 2016-05-19 2018-02-22 주식회사 지엠케이 마이크 단자를 이용한 전원 통신 장치
KR20170133858A (ko) * 2016-05-27 2017-12-06 주식회사 지엠케이 전력선 통신 시스템
KR20170133862A (ko) * 2016-05-27 2017-12-06 주식회사 지엠케이 전력선 통신 시스템
KR20170133861A (ko) * 2016-05-27 2017-12-06 주식회사 지엠케이 전력선 통신 시스템
US10228670B2 (en) * 2016-12-15 2019-03-12 Woodward, Inc. Characterization using multiplexed resistance reading
JP7006565B2 (ja) * 2018-10-31 2022-01-24 オムロン株式会社 電気機器、通信装置、および通信システム
CN109495134B (zh) * 2018-11-19 2022-12-09 西安理工大学 一种基于测井电缆的数据通讯传输系统及数据传输方法
CN110085241B (zh) * 2019-04-28 2021-10-08 北京地平线机器人技术研发有限公司 数据编码方法、装置、计算机存储介质及数据编码设备
US11695596B2 (en) * 2021-04-19 2023-07-04 Realtek Semiconductor Corp. Multi-level signal transmitter and method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063200A (en) * 1976-02-10 1977-12-13 Westinghouse Electric Corporation Hybrid multiplexed filter
US5499269A (en) * 1993-07-20 1996-03-12 Hitachi, Ltd. Transmission-reception circuit

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3674937A (en) * 1970-02-02 1972-07-04 Trt Telecom Radio Electr Transmission device for the transmission of analog signals by means of pulse code modulation
JPS6024620B2 (ja) * 1976-07-20 1985-06-13 日本電気株式会社 パルス送受信回路
JPS5744209A (en) * 1980-08-29 1982-03-12 Sharp Corp Signal separating circuit
US4524335A (en) * 1982-03-13 1985-06-18 Nippon Gakki Seizo Kabushiki Kaisha Pulse-width modulation circuit with carrier signal frequency control
DE3511968A1 (de) * 1985-04-02 1986-10-09 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zur seriellen fehlercode-uebertragung und schaltungsanordnung zu dessen durchfuehrung
JPH0683274B2 (ja) * 1988-06-07 1994-10-19 沖電気工業株式会社 光通信における通信制御方法
JPH02185132A (ja) * 1989-01-12 1990-07-19 Nec Corp 光通信用受信回路
JP2711164B2 (ja) * 1990-01-25 1998-02-10 松下電工株式会社 エクステリア電建設備
JPH0491637A (ja) * 1990-08-03 1992-03-25 Mitsubishi Electric Corp 制御監視装置
JPH04322140A (ja) 1991-04-22 1992-11-12 Toshiba Corp 電源制御方式
JPH05122759A (ja) * 1991-10-24 1993-05-18 Fujitsu Ltd 遠隔電源制御システム
US5694428A (en) * 1992-03-12 1997-12-02 Ntp Incorporated Transmitting circuitry for serial transmission of encoded information
JP3469326B2 (ja) * 1994-08-16 2003-11-25 バー−ブラウン・コーポレーション デジタル−アナログ変換器
KR970010485B1 (ko) * 1994-08-25 1997-06-26 엘지전자 주식회사 프로젝션티브이용 램프의 다중 출력회로
US5594324A (en) * 1995-03-31 1997-01-14 Space Systems/Loral, Inc. Stabilized power converter having quantized duty cycle
US5740241A (en) * 1995-05-12 1998-04-14 Carrier Access Corporation T1 channel bank control process and apparatus
JP3899648B2 (ja) * 1998-03-13 2007-03-28 株式会社明電舎 多重巻線電動機の制御方法
JPH11355255A (ja) * 1998-06-03 1999-12-24 Toshiba Mach Co Ltd 多重データ伝送装置
JP3705102B2 (ja) * 2000-09-14 2005-10-12 日本電気株式会社 通信装置
JP2002101044A (ja) * 2000-09-25 2002-04-05 Fuji Xerox Co Ltd 光信号伝送装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063200A (en) * 1976-02-10 1977-12-13 Westinghouse Electric Corporation Hybrid multiplexed filter
US5499269A (en) * 1993-07-20 1996-03-12 Hitachi, Ltd. Transmission-reception circuit

Also Published As

Publication number Publication date
JP2004320529A (ja) 2004-11-11
EP1614249A4 (en) 2010-11-24
EP1614249A1 (en) 2006-01-11
KR20070026838A (ko) 2007-03-08
KR100847505B1 (ko) 2008-07-22
KR100788776B1 (ko) 2007-12-26
KR20070094021A (ko) 2007-09-19
JP4141885B2 (ja) 2008-08-27
JP2004320531A (ja) 2004-11-11
JP4141884B2 (ja) 2008-08-27
KR100810008B1 (ko) 2008-03-10
KR20060003026A (ko) 2006-01-09
JP2004320530A (ja) 2004-11-11
US7859991B2 (en) 2010-12-28
WO2004093377A1 (en) 2004-10-28
US20060280112A1 (en) 2006-12-14
CN1795635A (zh) 2006-06-28

Similar Documents

Publication Publication Date Title
CN1795635B (zh) 信号传输装置、供电系统和串行通信装置
US8207759B2 (en) MIPI analog switch for automatic selection of multiple inputs based on clock voltages
KR100782305B1 (ko) 3개의 전송선의 차동신호화에 의한 데이터 신호 송수신장치 및 송수신 방법
US20080268800A1 (en) Hybrid parallel/serial bus interface
US20130128994A1 (en) Mixed-mode signaling
JP2018522484A (ja) 光媒体のための低電力モード信号ブリッジ
CN101742723B (zh) 信息处理设备和双工传输方法
KR930701871A (ko) 공통 버스 라인상의 디지탈, 오디오 및 제어 데이터의 공통 전달 방법; 상기 방법을 수행하는 버스 시스템과 상기 방법에서 적용되는 인터페이스
CN102739384B (zh) 全双工通信电路及其方法
CN101540158A (zh) 用于发送和接收数据位的装置和方法
JPH0678019A (ja) インターフェース装置
CN101512995B (zh) 电路装置、包括这种电路装置的局部互联网络以及处理局部互联网络的输入信号的方法
CN102377554A (zh) 信号传输设备和传输控制方法
KR102006068B1 (ko) 인터페이스 변환장치
AU2009311067B2 (en) Master-slave mode direct current carrier communication system
CN1443004B (zh) 图像传感器集成电路和图像传感器
CN101502036A (zh) 半导体集成电路和具有该电路的发送装置
US20030174737A1 (en) Demultiplexer apparatus and communication apparatus using the same
US7592838B2 (en) Method for communicating data and clock signals and corresponding signal, transmitter and receiver
WO2007125754A1 (ja) 信号受信装置
CN217116234U (zh) 视频信号扩展电路以及扩展设备
US11223892B2 (en) Headset charging and data transmission system
CN116094877B (zh) 差分信号传输电路及数据传输装置
CN216873286U (zh) 第一图像采集设备和第二图像采集设备
JP2677274B2 (ja) 可変長シリアルデータ通信方式

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120229

Termination date: 20150415

EXPY Termination of patent right or utility model