CN1665589A - 排气净化用催化剂 - Google Patents

排气净化用催化剂 Download PDF

Info

Publication number
CN1665589A
CN1665589A CN038161230A CN03816123A CN1665589A CN 1665589 A CN1665589 A CN 1665589A CN 038161230 A CN038161230 A CN 038161230A CN 03816123 A CN03816123 A CN 03816123A CN 1665589 A CN1665589 A CN 1665589A
Authority
CN
China
Prior art keywords
catalyst
powder
composite oxides
exhaust gas
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN038161230A
Other languages
English (en)
Inventor
田中裕久
丹功
上西真里
梶田伸彦
谷口昌司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Publication of CN1665589A publication Critical patent/CN1665589A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6562Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/688Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/70Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
    • B01J35/733Perovskite-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G55/00Compounds of ruthenium, rhodium, palladium, osmium, iridium, or platinum
    • C01G55/002Compounds containing, besides ruthenium, rhodium, palladium, osmium, iridium, or platinum, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/402Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/15X-ray diffraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2235/00Indexing scheme associated with group B01J35/00, related to the analysis techniques used to determine the catalysts form or properties
    • B01J2235/30Scanning electron microscopy; Transmission electron microscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

为了提供一种经长时间使用可以使Rh的催化活性维持在高水平,可以具有优良的排气净化性能的排气净化用催化剂,使排气净化用催化剂配制成如下,即含有由通式(1)表示的钙钛矿型晶格结构的复合氧化物。ABRhO3 (1);(式中,A表示一定含有价数不变至3价以外的稀土类元素,而且,任意包含Ce和/或Pr的稀土类元素中的至少一种元素;B表示Co、Rh、稀土元素以外的过渡元素和Al中的至少一种元素。)

Description

排气净化用催化剂
技术领域
本发明涉及有效净化汽车用发动机等排气中所含有的一氧化碳(CO)、烃(HC)以及氮氧化物(NOx)的排气净化用催化剂。
背景技术
迄今为止,作为可以同时净化排气中含有的一氧化碳(CO)、烃(HC)以及氮氧化物(NOx)的三元催化剂,其作为催化剂活性成分广泛使用Pt(铂)、Rh(铑)、Pd(钯)等贵金属。
这些贵金属中,已知Rh对NOx的还原最好,例如使通式ABO3表示的钙钛矿型晶格结构的复合氧化物中含浸负载Rh,可以使其耐热性得到提高。另外已知,如果使Rh作为复合氧化物的组成而含有,则与使其含浸负载Rh相比,可以进一步提高其耐热性和排气的净化性能。
如上所述,含有以Rh为组成的钙钛矿型晶格结构的复合氧化物有如下各种方案,例如:La0.8Ba0.2Ni0.48Co0.50Rh0.02O3(特开平8-217461号公报)、La0.4Sr0.6Co0.95Rh0.05O3(特开平5-76762号公报)等。
但是,在上述复合氧化物中,当用通式ABO3表示的钙钛矿型晶格结构的A位置上配置Sr(锶)或Ba(钡)等2价的元素,另外,在B位置上配置Co(钴)时,在氧化还原气氛中Rh难以稳定地存在于钙钛矿型晶格结构中,由于长期使用,晶粒长大,有时使催化剂活性大幅度地降低。
发明内容
本发明的目的在于提供一种排气净化用催化剂,该催化剂经长期使用,也可以使Rh的催化活性维持在高的水平,可以使其具有优良的排气净化性能。
本发明的排气净化用催化剂的特征在于,含有通式(1)表示的钙钛矿型晶格结构的复合氧化物
ABRhO3    (1)
(式中,A表示含有价数不变至3价以外的稀土类元素,而且,选自任意包含Ce和/或Pr的稀土类元素中的至少一种元素;B表示Co、Rh、稀土元素以外的过渡元素和Al中的至少一种元素。)。
另外,本发明在通式(1)中,优选A表示只从价数不变至3价以外的稀土类元素中选择的至少一种元素。
而且,本发明的排气净化用催化剂的特征在于,含有通式(2)表示的钙钛矿型晶格结构的复合氧化物
A1-xA’xB1-zRhzO3    (2)
(式中,A表示选自La、Nd、Y中的至少一种元素,A’表示Ce和/或Pr,B表示选自Fe、Mn、Al中的至少一种元素,x表示原子比例,其数值范围为0≤x<0.5;z表示原子比例,其数值范围为0<z≤0.8。)。
另外,本发明在通式(2)中,优选B表示含有Fe或Al中的至少任意一种,而且,任意地含有Mn,x为0。
另外,本发明的排气净化用催化剂优选还负载有Pt。
具体实施方式
本发明的排气净化用催化剂含有通式(1)表示的钙钛矿型晶格结构的复合氧化物
ABRhO3    (1)
(式中,A表示一定含有价数不变至3价以外的稀土类元素,而且,任意地包含Ce和/或Pr的稀土类元素中的至少一种元素;B表示Co、Rh、稀土元素以外的过渡元素和Al中的至少一种元素。)。
也就是,该复合氧化物是一种钙钛矿型晶格结构,A位置上配置有稀土类元素,一定配置价数不变至3价以外的稀土类元素,而且,除此以外,任意地配置着Ce和/或Pr。另外,B位置上配置着Co、Rh、稀土元素以外的过渡元素和/或Al。
在A位置上配置的价数不变至3价以外的稀土类元素通常是具有3价的稀土类元素,例如有Sc(钪)、Y(钇)、La(镧)、Nd(钕)、Pm(钷)、Gd(钆)、Dy(镝)、Ho(钬)、Er(铒)、Lu(镥)等。
也就是,这些是作为稀土类元素,排除Ce(铈)、Pr(镨)、Tb(铽)等在3价或4价上价数变动的稀土类元素,及Sm(钐)、Eu(铕)、Tm(铥)、Yb(镱)等在2价或3价上价数变动的稀土类元素而举出的例子。
另外,在A位置上Ce和/或Pr和价数不变至3价以外的稀土类元素一起任意地配置。Ce和/或Pr如上所述,是在3价或4价上价数变动的稀土类元素,通过与具有可以和它们稳定配置的离子半径,通过和价数不变至3价以外的稀土类元素一起配置,可以使钙钛矿型晶格结构稳定。
也就是,本发明的复合氧化物在A位置上,一定配置有例如Sc、Y、La、Nd、Pm、Gd、Dy、Ho、Er、Lu等价数不变至3价以外的的稀土类元素,另外,任意地配置有Ce、Pr。
如上所述,在本发明的复合氧化物中,通过在A位置上,使其配置价数不变至3价以外的稀土类元素,任意地配置Ce和/或Pr,可以在氧化还原气氛中,使Rh在钙钛矿型晶格结构中稳定。
更具体的说,本发明的复合氧化物包含如下两种情况,即在A位置上只配置价数不变至3价以外的稀土类元素的情况,和配置价数不变至3价以外的稀土类元素与Ce和/或Pr的情况。其中,优选只配置价数不变至3价以外的稀土类元素的情况。通过只配置价数不变至3价以外的稀土类元素,可以使Rh在钙钛矿型晶格结构中更稳定。
另外,上述的价数不变至3价以外的稀土类元素可以单独使用,也可以配合两种或两种以上使用。
在B位置上,作为和Rh同时配置的Co、Rh、稀土类元素以外的过渡元素,可举出周期表(IUPAC、1990年)中,原子序数22(Ti)~原子序数30(Zn)、原子序数40(Zr)~原子序数48(Cd)、以及原子序数72(Hf)~原子序数80(Hg)的各元素(除去Rh和Co),没有特别限定,具体例如有Cr(铬)、Mn(锰)、Fe(铁)、Ni(镍)、Cu(铜)等。
这些过渡元素可以单独使用也可以混合两种或两种以上使用。
为此,在B位置上例如配置Cr、Mn、Fe、Ni、Cu等的除Co、Rh、稀土类元素以外的过渡元素、和/或、Al(铝)。
本发明的复合氧化物中,配置在A位置上价数不变至3价以外的稀土类元素例如优选La、Nd、Y。通过使用La、Nd、Y可以使钙钛矿型晶格结构的稳定性得到提高。
另外,在B位置上,和Rh同时配置的Co、Rh、稀土类元素以外的过渡元素和Al优选例如Fe、Mn、Al。通过使用Fe、Mn、Al,可以使钙钛矿型晶格结构在还原气氛中的稳定性得到提高。另外,通过使用Fe,可以降低对环境的影响,提高安全性。
另外,在本发明的复合氧化物中,在A位置上配置Ce和/或Pr的情况下,其原子比为小于0.5,更优选小于0.2。当原子比为0.5以上时,有时其晶体结构不稳定,不能保持均匀的钙钛矿型晶格结构。
另外,配置在B位置上的Rh的原子比优选0.8以下,更优选0.5以下。当超过0.8时,有时不能降低成本。
因此,在本发明的排气净化用催化剂中,复合氧化物优选由下述通式(2)表示的钙钛矿型晶格结构的复合氧化物构成
A1-xA’xB1-zRhzO3    (2)
(式中,A表示La、Nd、Y中的至少一种元素,A’表示Ce和/或Pr,B表示Fe、Mn、Al中的至少一种元素,x表示原子比例,其数值范围为0≤x<0.5;z表示原子比例,其数值范围为0<x≤0.8)。
也就是,在通式(2)中,A位置上,以A表示的La、Nd、Y分别单独配置,或者相互以任意的原子比配置。另外,在A位置上,用A’表示的Ce、Pr在任意原子比小于0.5时,有时其分别单独配置或者相互以任意的原子比配置,在这种情况下,A表示的La、Nd、Y以形成Ce、Pr的原子比的剩余量的原子比,分别单独配置或者相互以任意的原子比配置。另外,在B位置上Rh以小于0.8的原子比配置,而且用B表示的Fe、Mn、Al分别单独地、或者相互以任意的原子比、以其总量为Rh的原子比的剩余量的原子比进行配置。
另外,在B位置上,优选B表示的Fe、Mn、Al中,Fe或Al中的至少任意一个一定配置。这种情况下,优选Mn任意地混合使用,配置。通过一定配置Fe和/或Al,任意地混合使用Mn,可以使钙钛矿型晶格结构在高温还原气氛中的稳定性得到提高。
另外,在通式(2)中,A’表示的Ce和/或Pr未配置的情况下(x=0),如上所述,可以使钙钛矿型晶格结构稳定性得到提高。
由此,这样的本发明的钙钛矿型晶格结构的复合氧化物没有特别限定,可以采用用于配制复合氧化物的适当方法例如有共沉淀法、柠檬酸配合物法、醇盐法等进行制备。
在共沉淀法中,例如,配制含有上述的化学计量比的上述的各元素盐的混合含盐水溶液,在该混合含盐水溶液中加入中和剂,使其共沉淀,之后将得到的共沉淀物干燥,之后进行热处理。
各元素的盐例如有硫酸盐、硝酸盐、氯化物、磷酸盐等无机盐;例如有乙酸盐、草酸盐等有机酸盐等。优选硝酸盐或乙酸盐。另外,通过将各元素的盐以形成上述的化学计量比的比例添加至水中,搅拌混合,可以配制混合含盐水溶液。
其后,在该混合含盐水溶液中加入中和剂使其共沉淀。中和剂没有特别限定,例如可以使用氨、例如三乙胺、吡啶等胺类等有机碱、例如氢氧化钠、氢氧化钾、碳酸钾、碳酸铵等无机碱。另外,滴入中和剂使加入该中和剂后的混合含盐水溶液的pH为6~10左右。这样滴下可以有效地使各元素的盐进行共沉淀。
并且,对得到的共沉淀物,根据需要水洗,利用例如真空干燥或通风干燥等使其进行干燥之后,通过在约500~1000℃下,优选在约600~950℃下进行热处理,可以制备复合氧化物。
另外,在配合有柠檬酸的物法中,配制柠檬酸混合含盐水溶液,将柠檬酸和上述的各元素的盐配制柠檬酸混合含盐水溶液,使上述的各元素的盐形成上述的化学计量比,使该柠檬酸混合含盐水溶液干燥固化,使其形成上述的各元素的柠檬酸配合物之后,使得到的柠檬酸配合物轻微烧结之后,进行热处理。
各元素的盐例如有和上述同样的盐,另外,例如可以通过和上述同炎样地配制混合含盐水溶液,在该混合含盐水溶液中配合柠檬酸的水溶液,可以配制柠檬酸混合含盐水溶液。另外,柠檬酸的配合量相对于得到的复合氧化物1摩尔,例如优选2~3摩尔左右。
之后,使该柠檬酸混合含盐水溶液干燥固化,形成上述的各元素的柠檬酸配合物。在形成的柠檬酸配合物不分解的温度下,例如室温~150℃左右下进行干燥,快速地除去水分。这样可以形成上述的各元素的柠檬酸配合物。
并且,在轻微烧结形成的柠檬酸配合物之后,进行热处理。轻微烧结例如可以在真空或惰性气氛下在250℃以上进行加热。之后,例如在约500~1000℃下,优选在600~950℃下,进行热处理,由此可以配制复合氧化物。
另外,在醇盐法中,例如将除去贵金属(Rh等)的上述的各元素的醇盐,配制含有上述的化学计量比的混合醇盐溶液,在该混合醇盐溶液中加入含有贵金属(Rh等)的盐的水溶液,通过水解使其沉淀,之后干燥得到的沉淀物,之后进行热处理。
各元素的醇盐例如有各元素和甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基等烷氧基形成的醇盐,及下述通式(3)表示的各元素的烷氧基醇盐等。
E[OCH(R1)-(CH2)a-OR2]s    (3)
(式中,E表示各元素,R1表示氢原子或碳数1~4的烷基,R2表示碳数1~4的烷基,a表示1~3的整数,s表示2~3的整数。)
烷氧基醇盐具体的说例如有甲氧基乙醇盐、甲氧基丙醇盐、甲氧基丁醇盐、乙氧基乙醇盐、乙氧基丙醇盐、丙氧基乙醇盐、丁氧基乙醇盐等。
并且例如可以通过将各元素的醇盐添加在有机溶剂中,使其形成上述的化学计量比,通过搅拌使其混合配制混合醇盐溶液。有机溶剂只要是能够溶解各元素的醇盐就可以,没有特别限定,例如可以使用芳香族烃类、脂肪族烃类、醇类、酮类、酯类等。优选使用苯、甲苯、二甲苯等芳香族烃类。
之后,在该混合醇盐溶液中以上述的化学计量比添加含有贵金属盐(Rh等)的水溶液,通过水解使其沉淀。含有贵金属(Rh等)的盐的水溶液例如可以使用硝酸盐水溶液、氯化物水溶液、六氨络物氯化物水溶液、二硝基二氨络物硝酸水溶液、六氯酸水合物、氰化钾盐等。
并且,使得到沉淀物例如利用真空干燥或通风干燥等使其干燥之后,例如在约500~1000℃下,优选在500~850℃下进行热处理,由此可以得到复合氧化物。
另外,在所述的醇盐法中,例如在上述的混合醇盐溶液中混合含有贵金属(Rh等)的有机金属盐的溶液,配制均匀的混合溶液,在其中添加水,通过水解使其沉淀,之后干燥得到的沉淀物,通过热处理进行配制。
贵金属(Rh等)的有机金属盐例如有乙酸盐、丙酸盐等构成的贵金属(Rh等)的羧酸盐;例如在下述通式(4)中显示的二酮化合物形成的贵金属(Rh等)的二酮配合物等的,贵金属(Rh等)的金属螯合物。
R3COCH2COR4    (4)
(式中,R3表示碳数1~4的烷基,碳数1~4的氟代烷基或芳基;R4表示碳数1~4的烷基,碳数1~4的氟代烷基、芳基或碳数1~4的烷氧基。)
上述通式(4)中,R3和R4的碳数1~4的烷基例如有甲基、乙基、丙基、异丙基、丁基、仲丁基、叔丁基等。另外R3和R4的碳数1~4的氟代烷基例如有三氟甲基等。另外,R3和R4的芳基例如有苯基。另外,R4的碳数1~4的烷氧基例如有甲氧基、乙氧基、丙氧基、异丙氧基、丁氧基、仲丁氧基、叔丁氧基等。
二酮化合物更具体的说例如有:2,4-戊二酮、2,4-己二酮、2,2-二甲基-3,5-己二酮、1-苯基-1,3-丁二酮、1-三氟甲基-1,3-丁二酮、六氟乙酰丙酮、1,3-二苯基-1,3-丙二酮、二新戊酰甲烷、乙酰乙酸甲酯、乙酰乙酸乙酯、乙酰乙酸叔丁酯等。
另外,例如可以将贵金属(Rh等)的有机金属盐加入有机溶剂中至形成上述的化学计量比,搅拌混合,配制含有贵金属(Rh等)的有机金属盐的溶液。有机溶剂可以使用上述的有机溶剂。
并且,这样配制的含有贵金属(Rh等)的有机金属盐的溶液混合在上述的混合醇盐溶液中,配制均匀混合溶液,之后在该均匀混合溶液中添加水,通过水解使其沉淀。
并且,使得到沉淀物例如利用真空干燥或通风干燥等使其干燥之后,例如在约500~1000℃下,优选在500~850℃下进行热处理,由此可以得到复合氧化物。
并且,这样得到的本发明的复合氧化物也可以再负载Pt。通过负载Pt,可以在还原气氛中促进Rh从钙钛矿型晶格结构中析出,提高灵敏性。
在复合氧化物中负载Pt的方法没有特别限定,可以使用公知的方法。例如可以分别配制含有Pt的盐溶液,使该含盐溶液含浸在复合氧化物中之后烧结。
这种情况下,含盐溶液可以使用上述的列出的盐溶液,另外实用方面考虑可以使用硝酸盐水溶液、二硝基二氨络物硝酸溶液、氯化物水溶液等。更具体的说,铂盐溶液例如优选使用二硝基二氨合铂硝酸溶液、氯化铂酸溶液、4价铂氨络物溶液等。使复合氧化物中含浸Pt之后,例如在约50~200℃下,干燥约1~48小时,之后,优选在约350~1000℃下烧结约1~12小时。
并且,这样得到的本发明的复合氧化物可以直接用作排气净化用催化剂,不过通常利用公知的方法负载在催化剂担体上等,配制做成排气净化用催化剂。
催化剂担体没有特别限定,例如可以使用公知的催化剂担体例如堇青石等构成的蜂窝状的整体式担体等。
为了使其负载在催化剂担体上,例如首先在得到的复合氧化物中添加水,使其淤浆化,之后在催化剂担体上涂敷,使其干燥,之后在约300~800℃下,优选在约300~600℃下进行热处理。
并且,这样得到的含有本发明的复合氧化物的排气净化用催化剂,可以使Rh在钙钛矿型晶格结构中稳定地存在,利用自再生功能通过反复在氧化气氛下的固溶和还原气氛下的析出,即使经长期使用也可以使Rh在复合氧化物中保持细微而且高度地分散,保持高的催化活性。另外,利用自再生功能,使Rh相对钙钛矿型晶格结构在氧化还原气氛中进行固溶析出,即使Rh的使用量大幅度地降低,也可以实现催化活性。
结果,本发明的含有复合氧化物的排气净化用催化剂经长期使用也可以使Rh的催化活性维持在高水平,可以实现优良的排气净化性能。为此适合用作汽车用的排气净化用催化剂。
实施例
下面利用实施例和比较例对本发明进行更加详细地说明,但本发明不限于所述的实施例和比较例。
实施例1
将甲氧基丙醇镧[La(OCHMeCH2OMe)3]40.6g(0.100摩尔)以及甲氧基丙醇铁[Fe(OCHMeCH2OMe)3]30.7g(0.095摩尔)添加在500ml容量的圆底烧瓶中,加入甲苯200mL搅拌使之溶解,配制混合醇盐溶液。并且,将乙酰丙酮铑[Rh(CH3COCHCOCH3)3]2.00g(0.005摩尔)溶解在甲苯200mL中,将该溶液加入圆底烧瓶的混合醇盐溶液中,配制含有LaFeRh的均匀混合溶液。
然后,在该圆底烧瓶中将去离子水200mL用约15分钟滴入。这样水解生成褐色的粘稠沉淀。
其后,在室温下搅拌2小时,之后在减压条件下蒸馏除去甲苯和水分,得到LaFeRh复合氧化物的前体。然后将该前体转移至浅底盘中,在60℃下通风干燥24小时后,在大气中使用电炉在650℃下热处理1小时,得到黑褐色的粉状物。
利用粉末X线衍射测定该粉状物,结果表明该粉状物为La1.00Fe0.95Rh0.05O3的钙钛矿型晶格结构的复合氧化物构成的单一结晶相。另外,其比表面积为26m2/g,复合氧化物中的Rh含量为2.10质量%。
实施例2
将甲氧基丙醇镧[La(OCHMeCH2OMe)3]28.4g(0.070摩尔)、甲氧基丙醇镨[Pr(OCHMeCH2OMe)3]12.2g(0.030摩尔)、甲氧基丙醇铁[Fe(OCHMeCH2OMe)3]30.7g(0.095摩尔)添加在500ml容量的圆底烧瓶中,加入甲苯200mL,搅拌使之溶解,由此配制混合醇盐溶液。并且,将乙酰丙酮铑[Rh(CH3COCHCOCH3)3]2.00g(0.005摩尔)溶解在甲苯200mL中,将该溶液加入圆底烧瓶的混合醇盐溶液中,配制含有LaPrFeRh的均匀混合溶液。
之后利用和实施例1同样的操作得到黑褐色的粉状物。
利用粉末X线衍射测定该粉状物,结果表明该粉状物为La0.70Pr0.30Fe0.95Rh0.05O3的钙钛矿型晶格结构的复合氧化物构成的单一结晶相。另外,其比表面积为30m2/g,复合氧化物中的Rh含量为2.09质量%。
比较例1
使用硝酸铑水溶液(Rh部分为4.478质量%)71.9g(换算为Rh3.22g),在市售的γ-Al2O3(比表面积180m2/g)150g中含浸Rh,之后在60℃通风干燥24小时,然后在大气中使用电炉在500℃下热处理1小时,γ-Al2O3的Rh负载量为2.10质量%。
试验例1
1)相对催化剂担体的涂层
将实施例1、实施例2和比较例1得到的粉状物100g和去离子水100mL混合,再加入氧化锆溶胶(日产化学公司制NZS-3-B:固体成分30质量%)17.5g,分别制成淤浆。分别将各淤浆涂覆在堇青石质蜂窝状(直径80mm、长度95mm、晶格密度400单元/(0.025m)2)构成的催化剂担体上。
涂覆之后,用空气吹风吹扫剩余的淤浆,调整使粉体的涂覆量为157.5g/催化剂担体1L(75.2g/个)。之后,在120℃下通风干燥12小时,之后,在大气中在600℃下烧结3小时,这样可以分别得到含有实施例1、实施例2和比较例1的粉状物的催化剂整体状催化剂。另外,各整体状催化剂的Rh含量在实施例1中为3.14g/催化剂担体1L(1.50g/个)、在实施例2中为3.13g/催化剂担体1L(1.50g/个)、在比较例1中为3.14g/催化剂担体1L(1.50g/个)。
2)耐久试验
在V型8气缸排气量4L的发动机的两催化剂罐(bank)中,分别装入上述得到的各整体状催化剂,使耐久模式设置为催化剂床内温度为930℃,在900秒内进行一次循环,反复进行200小时。
耐久模式中,在0~第870秒(870秒)之间,以理论空燃比(λ=1)的A/F=14.6(A/F=空气对燃料的比=空燃比)为中心,在频率0.6Hz使振幅为Δλ=±4%(ΔA/F=±0.6A/F);在第870~第900秒(30秒)之间,从各催化剂的上游侧导入2维空气,在λ=1.25的条件下进行强制氧化。
3)活性评价
使用直列4气缸排气量1.5L的发动机,以理论空燃比(λ=1)为中心,在频率1Hz处使振幅为Δλ=±3.4%(ΔA/F=±0.5A/F),测定耐久前后的各整体状催化剂的CO、HC、NOx的净化率。结果示于表1。另外棉花整体状催化剂的上游侧(入口气体)的温度保持在460℃,流速设定为空间速度(SV)160000/每小时。另外,在表1中~起显示,各整体状催化剂每1L的Rh含量(g)。
表1
催化剂 组成   Rh含量(g/L催化剂)       耐久前净化率(%)       耐久后净化率(%)
 CO  HC  NOx  CO  HC  NOx
实施例1  La1.00Fe0.95Rh0.05O3  3.14  97.1  98.3  99.2  93.9  94.7  94.4
实施例2  La0.70Pr0.30Fe0.95Rh0.0.5O3  3.13  96.5  98.0  98.6  88.0  86.2  87.0
比较例1  Rh负载/γ-Al2O3  3.14  97.8  99.1  99.5  85.2  83.6  84.3
从表1可知,含有比较例1的粉状物的整体状催化剂经耐久后净化率低下,相反含有实施例1和实施例2的粉状物的整体式催化剂经耐久试验后仍然保持高的活性。
4)微细结构的解析
使用TEM(透射型电子显微镜)和XAFS(X线吸收精细结构),解析实施例1和比较例1的各粉状物的微细结构。
TEM解析:
将实施例1和比较例1的粉状物从各整体状催化剂上取下,利用TEM观察,结果表明,在实施例1的粉状物中Rh以纳米级水平作为微细的粒子分散着。另外,比较例1的粉状物确认是比其大数十纳米级水平的粒子。
XAFS解析:
将各粉状物进行氧化处理(大气中、在800℃下热处理1小时)后,进行还原处理(在含有10%H2的N2气体中、在800℃下热处理1小时),再进行再氧化处理(大气中、在800℃下热处理1小时)。并且,在各处理之后,进行实施例1和比较例1的粉状物的XAFS测定。用BN稀释处理后的粉状物之后,利用挤压成型为圆盘状的样品,利用透过法测定Rh-K吸收端附近。
由XANES(X线吸收近边精细结构)的结果可知,实施例1和比较例1的各粉体中其Rh的价数都是在氧化处理后为3价,还原处理后为0价(金属状态)、再氧化处理后为+3价。
另外,在EAXFS(扩展X线吸收精细结构)中,从付立叶变换后的参数匹配的结果可知,在实施例1中,Rh在氧化处理后配置在钙钛矿型晶格结构的B位置上,还原处理之后,析出在钛矿结晶构造的B位置之外,尽管暂且形成金属粒子,经再氧化处理后之后再配置在钙钛矿型晶格结构的B位置上。另一方面,在比较例1中,确认Rh经氧化处理后,形成Rh2O3,还原处理之后,形成金属粒子,经再氧化处理后再次形成Rh2O3
由以上结果可知,实施例1的粉状物(由LaFe0.95Rh0.05O3组成的复合氧化物)中,可以推定Rh在汽车用的排气净化用催化剂使用的氧化还原气氛中,通过相对钙钛矿型晶格结构反复进行固溶析出,可以维持高分散状态,由此可以维持高的催化活性。
实施例3
将甲氧基丙醇镧[La(OCHMeCH2OMe)3]32.5g(0.080摩尔)、甲氧基丙醇钕[Nd(OCHMeCH2OMe)3]6.2g(0.015摩尔)、甲氧基丙醇铈[Ce(OCHMeCH2OMe)3]2.0g(0.005摩尔)、甲氧基丙醇铁[Fe(OCHMeCH2OMe)3]19.4g(0.060摩尔)、甲氧基丙醇锰[Mn(OCHMeCH2OMe)2]11.3g(0.035摩尔)添加在500ml容量的圆底烧瓶中,加入甲苯200mL,搅拌使之溶解,由此配制混合醇盐溶液。
然后,在该圆底烧瓶中用约15分钟滴入将硝酸铑水溶液(Rh部分4.478质量%)11.5g(用Rh换算相当于0.51g、0.005摩尔)用去离子水150mL稀释的水溶液。这样水解生成黑褐色的粘稠沉淀。
下面,利用和实施例1同样的操作得到黑褐色的粉状物。应予说明,热处理在850℃下进行2小时。
利用粉末X线衍射测定该粉状物,结果表明该粉状物为La0.80Nd0.15Ce0.05Fe0.60Mn0.35Rh0.05O3的钙钛矿型晶格结构的复合氧化物构成的单一结晶相。另外,其比表面积为7.8m2/g,复合氧化物中的Rh含量为2.09质量%。
实施例4
将正丁醇镧[La(On-C4H9)3]32.2g(0.090摩尔)、正丁醇钇[Y(On-C4H9)3]3.1g(0.010摩尔)、正丁醇铁[Fe(On-C4H9)3]19.3g(0.070摩尔)、正丁醇铝[Al(On-C4H9)3]4.9g(0.020摩尔)添加在500ml容量的圆底烧瓶中,加入甲苯200mL,搅拌使之溶解,由此配制混合醇盐溶液。然后将乙酰丙酮铑([Rh(CH3COCHCOCH3)3]4.00g(0.010摩尔)溶解在甲苯200Ml这样,将该溶液再加入圆底烧瓶的混合醇盐溶液中,配制含有LaYFeAlRh的均匀混合溶液。
下面,利用和实施例1同样的操作得到黑褐色的粉状物。应予说明,热处理是在850℃下进行2小时。
利用粉末X线衍射测定该粉状物,结果表明该粉状物为La0.90Y0.10Fe0.70Al0.20Rh0.10O3的钙钛矿型晶格结构的复合氧化物构成的单一结晶相。另外,其比表面积为21m2/g,复合氧化物中的Rh含量为4.35质量%。
实施例5
将异丙醇镧[La(Oi-C3H7)3]31.6g(0.100摩尔)、异丙醇铝[Al(Oi-C3H7)3]19.4g(0.095摩尔)添加在500ml容量的圆底烧瓶中,加入苯200mL,搅拌使之溶解,由此配制混合醇盐溶液。然后将乙酰丙酮铑([Rh(CH3COCHCOCH3)3]2.00g(0.005摩尔)溶解在苯200mL中,将该溶液再加入圆底烧瓶的混合醇盐溶液中,配制含有LaAlRh的均匀混合溶液。
下面,利用和实施例1同样的操作得到黑褐色的粉状物。应予说明,热处理是在850℃下进行2小时。
利用粉末X线衍射测定该粉状物,结果表明该粉状物为La1.00Al0.95Rh0.05O3的钙钛矿型晶格结构的复合氧化物构成的单一结晶相。另外,其比表面积为24m2/g,复合氧化物中的Rh含量为2.36质量%。
其后,使该粉末全部含浸二硝基二氨合铂硝酸溶液(Pt部分8.50质量%)25.9g(用Pt换算为0.22g),之后在60℃下通风干燥24小时后,在大气中使用电炉在500℃下热处理1小时,得到负载Pt/La1.00Al0.95Rh0.05O3
实施例6
将甲氧基丙醇镧[La(OCHMeCH2OMe)3]32.5g(0.080摩尔)、甲氧基丙醇铈[Ce(OCHMeCH2OMe)3]8.2g(0.020摩尔)、甲氧基丙醇铁[Fe(OCHMeCH2OMe)3]21.0g(0.065摩尔)添加在500ml容量的圆底烧瓶中,加入甲苯200mL,搅拌使之溶解,由此配制混合醇盐溶液。然后将乙酰丙酮铑([Rh(CH3COCHCOCH3)3]14.00g(0.035摩尔)溶解在甲苯200mL,这样,将该溶液再加入圆底烧瓶的混合醇盐溶液中,配制含有LaCeFeRh的均匀混合溶液。
下面,利用和实施例1同样的操作得到黑褐色的粉状物。应予说明,热处理是在700℃下进行3小时。
利用粉末X线衍射测定该粉状物,结果表明该粉状物为La0.80Ce0.20Fe0.65Rh0.35O3的钙钛矿型晶格结构的复合氧化物构成的单一结晶相。另外,其比表面积为22m2/g,复合氧化物中的Rh含量为13.9质量%。
实施例7
将硝酸镧(La(NO3)3·6H2O)43.3g(0.100摩尔)溶解在离子交换水100mL中的水溶液、硝酸铁(Fe(NO3)3·9H2O)36.4g(0.090摩尔)溶解在离子交换水30mL中的水溶液、硝酸铑水溶液(Rh部分为4.478质量%)23g(用Rh换算为1.03g、相当于0.010摩尔)溶解在离子交换水10mL中的水溶液、柠檬酸38.4g(0.200摩尔)溶解在离子交换水240mL中的水溶液混合,配制含有La Fe Rh的柠檬酸混合含盐水溶液。
然后,用旋转蒸发器真空处理柠檬酸混合含盐水溶液,同时在80℃的油浴中用7小时使其蒸发干燥,得到柠檬酸配合物。
将得到的柠檬酸配合物利用3小时升温至400℃,之后降温。然后,通过在700℃下烧结3小时,得到粉状物。
利用粉末X线衍射测定该粉状物,结果表明该粉状物为La1.00Fe0.90Rh0.10O3的钙钛矿型晶格结构的复合氧化物构成的单一结晶相。另外,其比表面积为24.1m2/g,复合氧化物中的Rh含量为4.16质量%。
实施例8
将硝酸镧(La(NO3)3·6H2O)43.3g(0.100摩尔)、硝酸铁(Fe(NO3)3·9H2O)24.2g(0.060摩尔)、硝酸锰(Mn(NO3)2·6H2O)8.6g(0.030摩尔)、硝酸铑水溶液(Rh部分为4.478质量%)23g(用Rh换算为1.03g、相当于0.010摩尔)溶解在离子交换水400mL中,混合均匀,配制含有La Fe MnRh的混合含盐水溶液。
然后,在该溶液中滴加入中和剂碳酸铵水溶液,使pH达到10而共沉淀,搅拌1小时,使其熟化后,过滤水洗。
将得到的共沉淀物在120℃下干燥12小时,之后在700℃下烧结3小时,得到粉状物。
利用粉末X线衍射测定该粉状物,结果表明该粉状物为La1.00Fe0.60Mn0.30Rh0.10O3的钙钛矿型晶格结构的复合氧化物构成的单一结晶相。另外,其比表面积为22.0m2/g,复合氧化物中的Rh含量为4.16质量%。
比较例2
使用硝酸铑水溶液(Rh部分为4.478质量%)176g(用Rh换算为7.88g),在市售的γ-Al2O3(比表面积180m2/g)150g中含浸Rh,之后在60℃通风干燥24小时,然后,在大气中使用电炉在500℃下热处理1小时,γ-Al2O3的Rh负载量为5.0质量%。
比较例3
将硝酸镧(La(NO3)3·6H2O)34.6g(0.080摩尔)溶解在离子交换水100mL中的水溶液、硝酸钐(Sm(NO3)3·6H2O)8.9g(0.020摩尔)溶解在离子交换水30mL中的水溶液、硝酸铁(Fe(NO3)3·9H2O)24.2g(0.060摩尔)溶解在离子交换水30mL中的水溶液、硝酸钴(Co(NO3)2·4H2O)7.7g(0.030摩尔)溶解在离子交换水30mL中的水溶液、硝酸铑水溶液(Rh部分为4.478质量%)23g(用Rh换算为1.03g、相当于0.010摩尔)溶解在离子交换水10mL中的水溶液、柠檬酸38.4g(0.200摩尔)溶解在离子交换水240mL中的水溶液混合,配制含有La Sm Fe Co Rh的柠檬酸混合含盐水溶液。
利用和实施例7同样的操作得到粉状物。
利用粉末X线衍射测定该粉状物,结果表明该粉状物为La0.80Sm0.20Fe0.60Co0.30Rh0.10O3的钙钛矿型晶格结构的复合氧化物构成的单一结晶相。另外,其比表面积为23.5m2/g,复合氧化物中的Rh含量为4.11质量%。
比较例4
将硝酸镧(La(NO3)3·6H2O)43.3g(0.100摩尔)、硝酸铁(Fe(NO3)3·9H2O)24.2g(0.060摩尔)、硝酸钴(Co(NO3)2·4H2O)7.7g(0.030摩尔)、硝酸铑水溶液(Rh部分为4.478质量%)23g(用Rh换算为1.03g、相当于0.010摩尔)溶解在离子交换水400mL中,混合均匀,配制含有La Fe CoRh的混合含盐水溶液。
下面,利用和实施例8同样的操作得到粉状物。
利用粉末X线衍射测定该粉状物,结果表明该粉状物为La1.00Fe0.60Co0.30Rh0.10O3的钙钛矿型晶格结构的复合氧化物构成的单一结晶相。另外,其比表面积为21.8m2/g,复合氧化物中的Rh含量为4.14质量%。
试验例2
1)相对催化剂担体的涂层
将实施例3~8和比较例2~4得到的粉状物20g和Ce0.6Zr0.30Y0.1O0.95组成构成的复合氧化物的粉状物100g和去离子水120mL混合,再加入氧化锆溶胶(日产化学公司制NZS-30B:固体成分30质量%)21.1g,制成淤浆。将该淤浆涂覆在堇青石质蜂窝状(直径80mm、长度95mm、晶格密度400单元/(0.025m)2)构成的催化剂担体上。
涂覆之后,用空气吹风吹扫剩余的淤浆,调整使粉体的涂覆量为126g/催化剂担体1L(60g/个)。之后,在120℃下通风干燥12小时,之后,在大气中在600℃下烧结3小时,这样可以分别得到含有实施例3~8和比较例2~4的整体状催化剂。
2)耐久试验
在V型8气缸排气量4L的发动机的两催化剂罐中,分别装入上述得到的各整体状催化剂,使耐久模式设置为催化剂床内的最高温度为1050℃,在30秒内进行一次循环,反复进行60小时。
耐久模式中,在0~5秒(5秒)之间,以理论空燃比(λ=1)运转,在5~28秒(23秒)之间,喷射过剩的燃料(λ=0.89),延迟2秒,在7~30秒(23秒)之间,向催化剂的上游侧喷射高压2次空气,在7~28秒(21秒)之间,使空气稍微过剩(λ=1.02),使催化剂内部燃烧过剩的燃料,使催化床内的温度上升至1050℃,在28~30秒(2秒)之间,返回至理论空燃比(λ=1),再继续导入2次空气,使其形成空气高度过剩的高温氧化气氛(λ=1.25)。
3)活性评价
使用直列4气缸排气量1.5L的发动机,以理论空燃比(λ=1)为中心,在频率1Hz处使振幅为Δλ=±3.4%(ΔA/F=±0.5A/F),测定耐久前后的各整体状催化剂的CO、HC、NOx的净化率。结果示于表2。另外,使整体状催化剂的上游侧(入口气体)的温度保持在460℃进行测定,流速设定为空间速度(SV)70000/每小时。另外,在表2中一起显示各整体状催化剂每1L的Rh含量(g)。
表2
  催化剂                  组成   Rh含量(g/L催化剂)       耐久前净化率(%)      耐久后净化率(%)
CO HC NOx CO HC NOx
  实施例3   La0.80Nd0.15Ce0.05Fe0.60Mn0.35Rh0.05O3     0.42   93.1   94.8   98.7   72.7   76.3   78.7
  实施例4   La0.90Y0.10Fe0.70Al0.20Rh0.10O3     0.87   95.5   97.6   99.0   86.8   86.1   92.5
  实施例5   La1.00Al0.95Rh0.05O3     0.47   97.3   98.0   99.0   88.2   87.1   88.5
  实施例6   La0.80Ce0.20Fe0.65Rh0.35O3     2.78   98.3   98.5   99.5   91.9   92.7   93.4
  实施例7   La1.00Fe0.90Rh0.10O3     0.83   94.5   95.0   98.0   87.0   85.6   92.0
  实施例8   La1.00Fe0.60Mn0.30Rh0.10O3     0.83   90.3   92.2   95.2   82.6   80.5   79.0
  比较例1   Rh负载/γ-Al2O3     1.00   99.5   99.1   99.5   63.9   63.3   69.2
  比较例2   La0.80Sm0.20Fe0.60Co0.30Rh0.10O3     0.82   95.1   96.4   97.0   65.5   75.6   64.6
  比较例3   La1.00Fe0.60Co0.30Rh0.10O3     0.83   90.6   94.8   95.4   62.1   70.0   60.2
从表2可知,含有比较例2~4的粉状物的整体状催化剂经耐久后净化率大副度地低下,相反,含有实施例3~8的粉状物的整体式催化剂经耐久试验后仍然保持高的活性。
另外,上述说明提供了本发明举出的实施方式和实施例,上述只是一种举例,不限于此,由本领域技术人员可知的本发明的变形例也包含在后述的权利要求范围内。
工业上应用的可能性
本发明的排气净化用催化剂经长时间使用可以使Rh的催化剂活性维持在高水平,可以使其具有优良的排气净化性能。为此,适合用作汽车用排气净化用的催化剂。

Claims (5)

1、一种排气净化用催化剂,其特征在于,含有由通式(1)表示的钙钛矿型晶格结构的复合氧化物:
ABRhO3  (1)
式中,A表示一定含有价数不变至3价以外的稀土类元素,而且,任意地包含Ce和/或Pr的稀土类元素中的至少一种元素;B表示除Co、Rh、稀土元素以外的过渡元素和Al中的至少一种元素。
2、如权利要求1所述的排气净化用催化剂,其特征在于,在通式(1)中,A表示仅选自价数不变至3价以外的稀土类元素中的至少一种元素。
3、一种排气净化用催化剂,其特征在于,含有通式(2)表示的钙钛矿型晶格结构的复合氧化物:
A1-xA’xB1-zRhzO3  (2)
式中,A表示La、Nd、Y中的至少一种元素,A’表示Ce和/或Pr,B表示Fe、Mn、Al中的至少一种元素,x表示原子比例,其数值范围为0≤x<0.5;z表示原子比例,其数值范围为0<z≤0.8。
4、如权利要求3所述的排气净化用催化剂,其特征在于,在通式(2)中,B表示一定含有Fe或Al中的至少任意一种,而且任意地含有Mn,x为0。
5、如权利要求1所述的排气净化用催化剂,其特征在于,还负载有Pt。
CN038161230A 2002-07-09 2003-07-03 排气净化用催化剂 Pending CN1665589A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP200591/2002 2002-07-09
JP2002200591A JP2004041867A (ja) 2002-07-09 2002-07-09 排ガス浄化用触媒

Publications (1)

Publication Number Publication Date
CN1665589A true CN1665589A (zh) 2005-09-07

Family

ID=30112521

Family Applications (1)

Application Number Title Priority Date Filing Date
CN038161230A Pending CN1665589A (zh) 2002-07-09 2003-07-03 排气净化用催化剂

Country Status (6)

Country Link
US (1) US20050233897A1 (zh)
EP (1) EP1533030A4 (zh)
JP (1) JP2004041867A (zh)
CN (1) CN1665589A (zh)
AU (1) AU2003281201A1 (zh)
WO (1) WO2004004896A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104203402A (zh) * 2012-04-10 2014-12-10 三井金属矿业株式会社 废气净化用催化剂
CN106076360A (zh) * 2015-04-30 2016-11-09 三井金属矿业株式会社 废气净化催化剂

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7220390B2 (en) 2003-05-16 2007-05-22 Velocys, Inc. Microchannel with internal fin support for catalyst or sorption medium
US7566424B2 (en) * 2004-07-23 2009-07-28 Mazda Motor Corporation Exhaust gas purification catalyst
JP4868384B2 (ja) * 2004-08-16 2012-02-01 第一稀元素化学工業株式会社 希土類−貴金属系複合材料及び希土類−貴金属系複合酸化物
EP1854538A4 (en) * 2005-03-04 2011-06-08 Daihatsu Motor Co Ltd CATALYTIC COMPOSITION
JP4778724B2 (ja) * 2005-05-02 2011-09-21 株式会社キャタラー 硫化水素発生抑制触媒
JP4647406B2 (ja) * 2005-06-16 2011-03-09 ダイハツ工業株式会社 排ガス浄化用触媒
JP2007014873A (ja) * 2005-07-07 2007-01-25 Honda Motor Co Ltd 粒子状物質浄化装置
JP4969843B2 (ja) 2005-12-09 2012-07-04 新日鉄マテリアルズ株式会社 排ガス浄化用触媒及び排ガス浄化触媒部材
JP4328338B2 (ja) * 2006-06-01 2009-09-09 ダイハツ工業株式会社 内燃機関の排ガス浄化用触媒
BRPI0803103A2 (pt) 2007-01-24 2011-08-30 Nippon Steel Materials Co Ltd catalisador para purificação de gás de exaustão e estrutura alveolar para purificação de gás de exaustão com catalisador
JP5408518B2 (ja) * 2007-04-18 2014-02-05 日産自動車株式会社 Pm酸化触媒及びその製造方法
EP2218501A4 (en) 2007-10-23 2014-01-29 Cataler Corp CATALYST FOR PURIFYING EXHAUST GASES
US20090264283A1 (en) * 2008-04-16 2009-10-22 Basf Catalysts Llc Stabilized Iridium and Ruthenium Catalysts
US20090263300A1 (en) * 2008-04-16 2009-10-22 Yang Xiaolin D Stabilized Iridium and Ruthenium Catalysts
KR101774539B1 (ko) * 2009-07-20 2017-09-04 카운슬 오브 사이언티픽 앤드 인더스트리얼 리서치 전이 금속을 함유하는 CEAlO3 페로브스카이트
US8343888B2 (en) * 2009-10-01 2013-01-01 GM Global Technology Operations LLC Washcoating technique for perovskite catalysts
US20140048975A1 (en) 2012-08-14 2014-02-20 David Whitmore Corrosion Protection of Cables in a Concrete Structure
EP3081296A4 (en) 2013-12-11 2017-08-09 Cataler Corporation Exhaust gas purifying catalyst
JP2017070912A (ja) 2015-10-08 2017-04-13 株式会社キャタラー 排ガス浄化用触媒
JP6611623B2 (ja) 2016-01-21 2019-11-27 株式会社キャタラー 排ガス浄化用触媒
JP6742751B2 (ja) 2016-02-19 2020-08-19 株式会社キャタラー 排ガス浄化用触媒材料及び排ガス浄化用触媒
WO2017150350A1 (ja) 2016-03-01 2017-09-08 株式会社キャタラー 排ガス浄化触媒
EP3714974A1 (en) * 2019-03-29 2020-09-30 Johnson Matthey Public Limited Company Lanthanum-based perovskite-type catalyst compositions stable to ageing in three-way catalysis

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182694A (en) * 1974-04-25 1980-01-08 E. I. Du Pont De Nemours & Company Ruthenium-containing perovskite catalysts
US4200554A (en) * 1974-04-25 1980-04-29 E. I. Du Pont De Nemours & Company Barium- and ruthenium-containing perovskite catalysts
JPS5511381B2 (zh) * 1975-01-30 1980-03-25
JPS63302950A (ja) * 1987-06-03 1988-12-09 Nissan Motor Co Ltd 排ガス浄化用触媒
US5139992A (en) * 1989-11-08 1992-08-18 Engelhard Corporation Three-way conversion catalyst including a ceria-containing zirconia support
JPH03186346A (ja) * 1989-12-15 1991-08-14 Daihatsu Motor Co Ltd ガス浄化用触媒および触媒構造体
US5254519A (en) * 1990-02-22 1993-10-19 Engelhard Corporation Catalyst composition containing platinum and rhodium components
FR2665089B1 (fr) * 1990-07-25 1993-11-19 Stts Catalyseurs de post-combustion.
US5622680A (en) * 1990-07-25 1997-04-22 Specialites Et Techniques En Traitement De Surfaces-Stts Post-combustion catalysts
US5380692A (en) * 1991-09-12 1995-01-10 Sakai Chemical Industry Co., Ltd. Catalyst for catalytic reduction of nitrogen oxide
US5212142A (en) * 1991-11-04 1993-05-18 Engelhard Corporation High performance thermally stable catalyst
JP4087897B2 (ja) * 1991-11-26 2008-05-21 バスフ・カタリスツ・エルエルシー 改良された酸化触媒および使用方法
KR100318575B1 (ko) * 1991-11-26 2002-04-22 스티븐 아이. 밀러 세리아-알루미나산화촉매및그사용방법
JP3285614B2 (ja) * 1992-07-30 2002-05-27 日本碍子株式会社 排ガス浄化用触媒及びその製造方法
FR2696109B1 (fr) * 1992-09-28 1994-11-04 Inst Francais Du Petrole Catalyseur d'oxydation et procédé d'oxydation partielle du méthane.
US6033632A (en) * 1993-12-08 2000-03-07 Eltron Research, Inc. Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
JP3498453B2 (ja) * 1995-11-27 2004-02-16 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
US5837642A (en) * 1995-12-26 1998-11-17 Daihatsu Motor Co., Ltd. Heat-resistant oxide
JP3377676B2 (ja) * 1996-04-05 2003-02-17 ダイハツ工業株式会社 排ガス浄化用触媒
JP4092441B2 (ja) * 1997-02-24 2008-05-28 日産自動車株式会社 排ガス浄化用触媒
JPH1157471A (ja) * 1997-08-22 1999-03-02 Toyota Motor Corp Rh複合酸化物触媒
US6576200B1 (en) * 1998-08-28 2003-06-10 Daihatsu Motor Co., Ltd. Catalytic converter for automotive pollution control, and oxygen-storing complex oxide used therefor
JP2000167402A (ja) * 1998-12-09 2000-06-20 Daihatsu Motor Co Ltd 排気ガス浄化用触媒
US6464946B1 (en) * 1999-05-07 2002-10-15 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
US6261989B1 (en) * 1999-05-19 2001-07-17 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
DE10024994A1 (de) * 1999-05-24 2001-01-04 Daihatsu Motor Co Ltd Katalytischer Umwandler zum Reinigen von Abgasen
US6881384B1 (en) * 1999-08-30 2005-04-19 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
JP2001269578A (ja) * 2000-01-19 2001-10-02 Toyota Motor Corp 排気ガス浄化用触媒
JP2001224963A (ja) * 2000-02-16 2001-08-21 Nissan Motor Co Ltd 触媒組成物、その製造方法及びその使用方法
DE60138984D1 (de) * 2000-06-27 2009-07-30 Ict Co Ltd Abgasreinigungskatalysator
JP3704279B2 (ja) * 2000-07-18 2005-10-12 ダイハツ工業株式会社 排ガス浄化用触媒
US6864214B2 (en) * 2000-09-26 2005-03-08 Daihatsu Motor Co., Ltd. Exhaust gas purifying catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104203402A (zh) * 2012-04-10 2014-12-10 三井金属矿业株式会社 废气净化用催化剂
CN106076360A (zh) * 2015-04-30 2016-11-09 三井金属矿业株式会社 废气净化催化剂

Also Published As

Publication number Publication date
AU2003281201A1 (en) 2004-01-23
EP1533030A1 (en) 2005-05-25
WO2004004896A1 (ja) 2004-01-15
US20050233897A1 (en) 2005-10-20
EP1533030A4 (en) 2006-06-07
JP2004041867A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
CN1665589A (zh) 排气净化用催化剂
CN1665590A (zh) 排气净化用催化剂
JP4311918B2 (ja) ペロブスカイト型複合酸化物の製造方法
US9737877B2 (en) Surface-modified catalyst precursors for diesel engine aftertreatment applications
CN1130247C (zh) 含有基于二氧化铈、氧化锆和钪或稀土氧化物的载体的组合物及用于废气处理的用途
CN1930088B (zh) 钙钛矿型复合氧化物、催化剂组合物及钙钛矿型复合氧化物的制造方法
JP5290572B2 (ja) 排ガス浄化用触媒
CN1166441C (zh) 氮氧化物贮存材料及由其制得的氮氧化物贮存催化剂
CN101080364A (zh) 耐热性氧化物
US7576032B2 (en) Catalyst composition
CN101052589A (zh) 含贵金属的耐热性氧化物制造方法
JP2006346603A (ja) 触媒組成物
US20170128881A1 (en) Diesel oxidation catalyst with minimal platinum group metal content
JP2006062953A (ja) カーボンナノチューブの製造方法および製造用触媒
JP4647406B2 (ja) 排ガス浄化用触媒
US20070297971A1 (en) Heat-Resistant Oxide
JPWO2008004452A1 (ja) 酸素貯蔵材料
CN1925910A (zh) 排气净化催化剂
CN101146615A (zh) 催化剂组合物
JP4997176B2 (ja) 排ガス浄化用触媒組成物
JP5506286B2 (ja) 排ガス浄化用触媒
JP5822682B2 (ja) 排ガス浄化用触媒
JP2009160556A (ja) 排ガス浄化用触媒および排ガス浄化用触媒の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication