CN1610167A - 锂硫电池 - Google Patents

锂硫电池 Download PDF

Info

Publication number
CN1610167A
CN1610167A CNA2004100832856A CN200410083285A CN1610167A CN 1610167 A CN1610167 A CN 1610167A CN A2004100832856 A CNA2004100832856 A CN A2004100832856A CN 200410083285 A CN200410083285 A CN 200410083285A CN 1610167 A CN1610167 A CN 1610167A
Authority
CN
China
Prior art keywords
lithium
sulfur cell
dividing plate
anode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004100832856A
Other languages
English (en)
Inventor
金株烨
柳永均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of CN1610167A publication Critical patent/CN1610167A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/426Fluorocarbon polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

一种锂硫电池,包括阴极,锂金属阳极和插入阴极和阳极之间的隔板。隔板的每个碳原子上含有少于两个的氟原子,使得可在锂金属阳极表面上形成保护层。锂硫电池在工作期间在锂金属表面上形成了均匀和密实的LiF保护层而稳定锂金属。锂硫电池防止了锂的树枝状晶体的形成和抑制了电解溶液的分解,从而提供了改进的循环特性和优异的充/放电效率。另外,锂硫电池阻止了多硫化物和锂金属表面的反应,从而防止电池寿命下降。

Description

锂硫电池
优先权要求
本申请以更早前于2003年8月23日在韩国知识产权局提交的序列号为2003-58506的硫锂电池的申请为参考,并在此引入,并根据35U.S.C.§119要求其中产生的所有的权益。
发明背景
发明领域
本发明涉及一种锂硫电池,并且更具体而言涉及通过防止形成锂的树枝状晶体而获得改进的充/放电效率的锂硫电池。
相关技术描述随着对更小型的便携式电子设备,如便携式摄像机、便携式通信设备和便携式计算机的需求的增长,对于具有更大容量的更紧凑、更轻、更薄的用于这些便携式电子设备电源的电池的需求正在增长,并且正在对这种电池进行大规模研究。常规的锂离子二次电池利用过渡金属氧化物,如LiCoO2和LiMnO2作为阴极活性材料,和用碳作为阳极活性材料。碳的理论容量为372mA/g,和LiCoO2和LiMnO2的理论容量分别为140mA/g和120mA/g。因而常规的锂离子二次电池具有较低的能量密度。
但是,当采用锂金属代替碳作为阳极时,由于在金属中锂具有最低的密度(0.53g/cm2)和最高的电势差(相对于标准氢电极(SHE)为-3.045V),电池就具有更高的能量密度和更低的重量,以及非常高的理论容量3860mAh/g。另一方面,当采用锂金属作为阳极时,相应的阳极活性物质必须具有高容量。在阴极活性物质中,硫(S8)具有1675mAh/g的高容量,并且与过渡金属氧化物相比比较便宜和有利于环境保护。但是,锂硫电池的使用规模仍然较小。原因之一是多硫化物和锂金属之间的反应导致电池寿命缩短。硫分子从锂硫电池上离析出来并形成多硫化物,该多硫化物溶于电解溶液且在传递离子时在电解溶液中仍然为离子。当采用锂金属作为阳极材料时,多硫化物阳离子和锂金属反应,并且不能获得硫的高理论容量。另外,由于在充放电期间的非均匀表面反应,会在锂金属阳极上生成锂的树枝状晶体,从而引起电池的短路和不稳定。另外,当锂表面与电解溶液反应时,锂受到腐蚀,并且电解溶液被耗尽,从而缩短了周期长度。
为了克服这些问题,已经进行了积极的研究,并已开发出了在起始操作中填料与锂金金属反应形成锂合金的电池、在锂电极的表面用化学方式形成保护层的电池和在生产电池前用保护剂对阳极表面进行涂覆的电池。
K.Naoi等在J.of Electrochem.Soc.,147,813(2000)中报导了利用聚乙烯醇二甲基醚中的螺旋状氧化乙烯链核在充电和放电期间起到锂离子通道作用的原理,可在充电和放电周期中通过将聚乙烯醇二甲基醚吸收到锂金属的表面来形成均匀的保护层。M.Ishikawa等在J.of Electrochem.,473,279(2000)中披露了可通过在有机电解液中加入碘化铝(AlI3)或碘化镁(MgI2)形成锂合金来抑制锂的树枝状晶体的生长。但是,在这些例子中,表面膜在重复的充放电周期和一段浸泡时间后不能保持均匀的状态。充放电效率也不能获得令人满意的提高。
美国专利No.6,017,651中披露了通过在电解溶液中加入LiAlCl4 3SO2,并使溶液与含有锂金属的表面进行反应而在锂电极表面上形成保护层的方法。美国专利No.6,025,049中也披露了一种阳极,其中通过真空喷镀在锂电极表面涂布了含有硅酸锂或硼酸锂的保护层。但是,经过许多次循环后,由于锂离子的插入和脱出,保护层会变得不稳定和破裂,从而使大量的电解溶液通过保护层上的缝隙与锂金属接触,导致电解溶液的分解和容量的持续下降。
已经提出了一种使氮等离子体与锂表面反应形成氮化锂层的方法。但是,在该方法中,电解溶液可穿透晶界,并且由于氮化锂在水中不稳定而可能分解。同时,由于具有低的电化学稳定性范围为0.45V,这种电池难于进行实际的应用。
下列专利均披露了与本发明共有的特征,但并没有教导或提出本权利要求中具体列举的创造性特征:Ouellette等的美国专利No.6,025,049,名称为显示表面能梯度的流体传输网,2000年2月5日公布;Visco等的美国专利申请No.2004/0142244,名称为用于保护活性金属阳极的离子导电组合物,2004年7月24日公布;Lee等的美国专利申请No.2004/0137330,名称为用于锂硫电池的负极、其制备方法及含有该负极的锂硫电池,2004年7月15日公布;Visco等的美国专利申请No.2004/0126653,名称为用于保护活性金属阳极的离子导电组合物,2004年7月1日公布;Nimon等的美国专利申请No.2002/0182508,名称为涂覆锂电极,2002年12月5日公布;Chu等的美国专利申请No.2001/0041294,名称为保护涂层下面的电镀金属负极,2001年11月15日公布;Chu等的美国专利No.6,723,140,名称为名称为保护涂层下面的电镀金属负极,2004年4月20日公布;Nimon等的美国专利No.6,537,701,名称为涂覆锂电极,2003年3月25日公布;Chu等的美国专利No.6,402,795,名称为名称为保护涂层下面的电镀金属负极,2002年6月11日公布;Nimon等的美国专利No.6,225,002,名称为作为锂电极保护体的二氧戊环,2001年5月1日公布;Visco等的美国专利No.6,025,094,名称为负极的保护涂层,2000年2月15日公布;Nimon等的美国专利No.6,017,651,名称为用于增强锂聚合物电池循环效率的方法和试剂,2000年1月25日公布。
发明概述
本发明提供—种锂硫电池,其中通过在锂电池表面连续形成均匀和密实的钝性层而获得优异的充/放电效率。
按照本发明的一部分,提供一种包含以下部分的电池:含有选自硫元素、固体Li2Sn(n≥1)、含有溶解的Li2Sn(n≥1)的阴极电解液、有机硫和形式为(C2Sx)n(2.5≤x≤50且n≥2)的碳硫复合聚合物中的至少一种活性物质的阴极;锂金属阳极;和插入阴极和阳极之间且每个碳原子上含有少于两个氟原子的隔板,使得可在锂金属阳极表面上形成保护层。
附图简述
对本发明的更全面评价、以及其许多附带的优点将易于看出,因为在结合附图进行考察的同时,参照以下的详细描述使其变得更易于理解,其中图中相同的参考符号表示相同或相似的部件,其中:
图1为实施例1-3和比较例1-4所制备的锂硫电池的放电容量图;
图2为预备实施例1-3和预备比较例1-4中制备的钮扣电池的锂循环效率图;
图3为实施例1-3和比较例1、3、4所制备的锂硫电池的在1℃下经10次循环后锂金属电极表面的扫描电镜(SEM)照片;
图4为实施例1和比较例1所制备的锂硫电池在放置4周后锂金属电极表面的SEM照片;
图5为预备实施例1-3和预备比较例1、5、6、7中制备的钮扣电池的锂循环效率图;
图6为对应实施例1和对应比较例1所制备的锂硫电池在1℃下经10次循环后的交变阻抗图;
图7为实施例1和比较例1所制备的锂硫电池的放电容量对循环次数的变化图线。
发明详述
在使用锂金属的锂硫电池中,与锂离子电池相似,在电池的第一次充/放电期间会在阳极表面形成固体的电解液中间相(SEI)。因而,阳极不能与电解溶液直接接触,从而防止电解溶液在阳极表面上分解。但是在充/放电操作中,锂会沉积和附着到SEI上或从其上分离。这会使得SEI不稳定,甚至使得SEI解离。这种现象会引起电解液随后在阳极表面的分解和电池容量的持续下降。如上所述,多硫化物和锂金属的反应以及锂的树枝状晶体沿SEI晶界的沉积会引起电池容量的迅速下降,这种下降取决于循环次数、充/放电操作的容量变化、电池的低稳定性等。
按照本发明的一个实施方案的锂电池,通过在锂金属阳极的表面形成具有长期寿命的含LiF的均匀SEI,抑制了硫化物和锂金属的反应,防止了电解溶液的分解和锂的树枝状晶体的形成。按照本发明的一个实施方案的锂电池中所用的阴极含有活性物质硫。活性物质包括硫元素、固体Li2Sn(n≥1)、含有溶解的Li2Sn(n≥1)的阴极电解液、有机硫和形式为(C2Sx)n(2.5≤x≤50且n≥2)的碳硫复合聚合物等中的一种。
按本发明的一个实施方案的锂电池,包含含硫的阴极、锂金属阳极和插在阴极和阳极之间的隔板。隔板的每个碳原子上含有少于两个的氟原子,并且容许在锂金属阳极表面形成均匀的LiF保护层。如果隔板的每个碳原子上含有至少两个氟原子,隔板的流变性会变差。例如,隔板聚合物中所含的大量氟化物会与锂金属反应,从而破坏隔板聚合物的主链。为了使LiF的形成最大化和使隔板聚合物获得最佳的流变性,隔板的每个碳原子上可含有1至1.6个氟原子。
另—种形成LiF保护层的方法,包括在有机电解溶液中加入氟代甲烷(CH3F)。但是,当重复进行充/放电时,LiF层变得不稳定且一部分LiF层会按上述方式被破坏。也就是说,LiF层不能起到持久保护层的作用。尽管多余的氟代甲烷可形成新的LiF层,它可能引起副反应,该副反应导致电池特性有变差的危险。因此,采用在电解溶液中加入添加剂来形成化学保护层的方法是有局限性的。由于按本发明的实施方案使用了含氟的隔板,而没有加入添加剂作为氟源,就可以提高氟的用量而没有使电池性能变差的危险。另外,即使在开始时LiF保护层会有损坏,还可以获得持久的LiF保护层。
用于本发明实施方式的隔板的聚合物,包括聚偏氟乙烯(PVDF)、偏氟乙烯-六氟丙烯(PVDF-HFP)共聚物、聚三氟氯乙烯、乙烯-四氟乙烯共聚物、乙烯-三氟氯乙烯共聚物、聚氟乙烯、氟化乙烯-六氟丙烯共聚物、乙烯-氟化乙烯共聚物、乙烯-偏氟乙烯共聚物及其混合物。当使用上述的凝胶聚合物时,可以使用至少一种增塑剂以控制孔隙,该增塑剂选自碳酸亚乙酯、碳酸亚丙酯、碳酸二甲酯、二乙氧基乙烷、邻苯二甲酸二丁酯、二甲氧基乙烷、碳酸二乙酯、碳酸二丙酯和碳酸亚乙烯酯。
此外,在隔板中使用无机填料可提高力学流变性和离子传导性。无机填料可以是二氧化硅、氧化铝、氧化锆、氧化钇、粘土、沸石等中的一种。隔板中无机填料的量可以为5-40重量份,基于100重量份的含氟聚合物。如果无机填料的量少于5重量份,力学流变性和离子传导性没有提高。如果无机填料的量大于40重量份,由于界面处的层隔离等,电池性能会有不良损失。
隔板孔隙率的范围为20%-50%。如果孔隙率小于20%,离子传导性会变差。如果孔隙率大于50%,力学强度会变差。
隔板的孔隙尺寸的范围为0.1-0.7μm。如果孔隙尺寸小于0.1μm,锂离子的移动受到限制。如果孔隙尺寸大于0.7μm,就会有隔板的力学流变性将变差的危险。
按照本发明的一个实施方案,锂电池的阴极可通过以下方法制备:将硫元素、固体Li2Sn(n≥1)、含有溶解的Li2Sn(n≥1)的阴极电解液、有机硫和形式为(C2Sx)n(2.5≤x≤50且n≥2)的碳硫复合聚合物等中的一种进行研磨等等,以获得平均粒径约为20μm的颗粒,将获得的颗粒和导体加入到粘结剂溶液中并用球磨机对所得产品进行搅拌。将得到的产品与溶剂,如异丙醇混合获得一种淤浆,用刮板将该淤浆在已涂有碳的铝箔基底上涂覆成均匀的厚度。然后在干燥炉中干燥该涂覆基底。
本实施方案的锂电池的阳极可由锂金属、锂金属合金或锂-惰性硫复合材料组成。
本实施方案中的锂电池中采用含有锂盐的有机溶剂作为电解溶液。锂盐包括下列物质的至少一种:高氯酸锂(LiClO4)、四氟硼酸锂(LiBF4)、六氟磷酸锂(LiPF6)、三氟甲烷磺酸锂(LiSO3CF3)和双三氟甲烷磺酰胺(LiN(CF3SO2)2)。
本实施方案中的适宜有机溶剂包括苯、氟代苯、甲苯、三氟甲苯(FT)、二甲苯、环己烷、四氢呋喃(THF)、2-甲基四氢呋喃(2-MeTHF)、乙醇、异丙醇(IPA)、丙酸甲酯(MP)、丙酸乙酯(EP)、乙酸甲酯(MA)、乙酸乙酯(EA)、乙酸丙酯(PA)、二甲酯(DME)、1,3-二氧五环、二甘醇二甲醚(DGM)、四甘醇二甲醚(TGM)、γ-丁内酯(GBL)、sulforane、二甲砜、N-甲基吡咯烷酮、四甲基脲、冠醚、二甲氧基乙烷、六甲基磷酰胺、吡啶、N,N-二乙基乙酰胺、N,N-二乙基甲酰胺、二甲基亚砜、N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、磷酸三丁酯、磷酸三甲酯、四亚甲基二胺、四甲基丙二胺、五甲基二亚乙基三胺及其混合物。
本实施方案的锂电池的特征在于在电池的工作期间阳极表面上形成了LiF保护层。SEI中含有以这种方式形成的LiF,从而形成密实的保护层。这防止了锂的树枝状晶体的形成和抑制了电解溶液与锂金属或多硫化物与锂金属的反应。
通过提供的实施例将对本发明进行更详细的说明。这些实施例用于举例说明的目的,而非用于限制本发明的保护范围。
实施例1
1-1、阴极的制备
通过将聚(甲基丙烯酸甲酯)溶解在乙腈中制得凝胶状的粘结剂溶液。然后,在该溶液中加入Ketjen黑作为导体以确保其导电性。将导体分散在溶液中后,在溶液中加入研磨到平均粒径约为20μm的硫(S8)并用球磨机搅拌24小时。将获得的粉末(硫∶导体∶粘结剂的重量比为70∶20∶10)与异丙醇混合得到一种淤浆。用60℃热空气干燥1小时,获得阴极。
1-2、阳极的制备
用厚度为50μm的锂金属箔作为阳极。
1-3、电池组装
将获得的阴极放置在真空炉(60℃)中至少1天,然后转移到带有氧气控制的手套箱中以在其中进行随后的操作。将阴极板和阳极板分别切成预定的尺寸,并分别贴上阴极和阳极标签。然后,将孔隙率为30%和孔隙尺寸为0.5μm的聚偏氟乙烯(PVDF)(可商购于ELF Atochem)隔板插入到阴极和阳极之间。用恒定张力对产品进行卷绕并插入作为电池外包装的盒中。将盒子密封,并留出未密封部位以注入电解溶液。
1-4、注入电解溶液
将1M的LiSO3CF3在1,3-二氧五环/二甘醇二甲醚/sulforane/二甲氧基乙烷(体积比为5∶2∶1∶2)中的溶液作为电解溶液。将电解溶液通过未密封部位注入盒中,然后完全密封盒子。这样,就制得了锂硫电池。
实施例2
按与实施例1相同的方式制备锂硫电池,除了用孔隙率为30%和孔隙尺寸为0.25μm的PVDF-HFP共聚物(可商购于SAEHAN)作为隔板和用体积比为4∶2∶1的DME、DGM和DOX的混合物作为有机溶剂。
实施例3
按与实施例1相同的方式制备锂硫电池,除了使用孔隙率为25%和孔隙尺寸为0.5μm、含有作为无机填料的煅制二氧化硅(TS-530,可商购于Cabot)的PVDF隔板作为隔板,其中二氧化硅的表面经过憎水基团处理,用量为20重量份,基于100重量份的隔板聚合物。
比较例1
按与实施例1相同的方式制备锂硫电池,除了用PE/PP/PE作为隔板。
比较例2
按与实施例1相同的方式制备锂硫电池,除了用聚四氟乙烯(PTFE,可商购于Gore tech)和用体积比为4∶2∶1的DME、DGM和DOX的混合物作为有机溶剂。
比较例3
按与实施例1相同的方式制备锂硫电池,除了用涂覆有四乙二醇二丙烯酸酯(TTEGDA)的PE/PP/PE作为隔板。
比较例4
按与实施例1相同的方式制备锂硫电池,除了用涂覆有三羟甲基丙烷丙烯酸酯(TMPTA)的PE/PP/PE作为隔板。
预备比较例5
按以下方法制备钮扣电池(2016):用锂金属电极作为阴极和阳极、用PE/PP/PE作为隔板和用体积比为4∶2∶1的DME、DGM和DOX的混合物作为有机溶剂,然后加入0.05重量份(500ppm)的碘化铝作为添加剂来形成锂合金,基于100重量份的有机溶剂。
预备比较例6
按与预备比较例5相同的方式制备钮扣电池(2016),除了加入0.05重量份(500ppm)(基于100重量份的电解溶液)的碘化镁作为添加剂来形成锂合金。
预备比较例7
按与预备比较例5相同的方式制备钮扣电池(2016),除了加入0.05重量份(500ppm)(基于100重量份的电解溶液)的氟代甲烷作为添加剂来形成LiF。
实验例1
放电容量的测定
测定实施例1-3和比较例1-4所制备的锂硫电池在0.5℃下经10次循环后的放电容量。结果示于图1中。从结果可以看出按照本发明的实施方案的锂硫电池显示出了较高的容量。
实验例2
锂循环效率的测定
本实验例的进行是为了证实按照本发明实施方案的锂硫电池的更高容量是否是由于电池中隔板和锂金属阳极的相互作用。用锂金属电极作为阴极和阳极,用与实施例1-3和比较例1-4分别相同的隔板、锂盐和有机溶剂来制备对应的钮扣电池(2016)(预备实施例1-3和预备比较例1-4)。测定每种钮扣电池的充/放电效率。结果示于图2中。电流密度为0.5mA/cm2,放电的截止电压为1.5V。如图2所示,用按照本发明实施方案的隔板制备的预备实施例1-3的充/放电效率高于预备比较例1-4。结果表明,锂硫电池的更高容量是由于本发明实施方案所用的隔板和锂金属阳极的相互作用。
实验例3
观察经过10次循环后的锂金属电极的表面
在1℃下对实施例1-3和比较例1、3和4中制备的锂硫电池重复进行10次循环。然后,打破盒电池,用THF清洗锂金属电极的表面。接着,进行原位的SEM分析。结果示于图3中。参照图3,按照本发明实施方案的锂硫电池的锂金属电极的表面比比较例1、3和4的更为洁净。可以确认LiF保护层的存在防止了锂的树枝状晶体的形成和抑制了由于与电解溶液反应而引起的锂表面的腐蚀。
实验例4
观察被放置4周后的锂金属电极的表面
将实施例1和比较例1中制备的锂硫电池放置4周。然后,打破盒电池,用THF清洗锂金属电极的表面。进行原位的SEM分析。结果示于图4中。参照图4,比较例1中形成的锂金属电极的表面上有许多杂质,而按照本发明实施方案的实施例1中的锂金属电池表面非常洁净。杂质是由于腐蚀产生的,而腐蚀是由电解溶液与锂金属表面的自发反应引起的。
实验例5
循环效率的测定
测定预备实施例1和预备比较例1、5、6和7中制备的钮扣电池的循环效率。结果示于图5中。参照图5,具有通过加入其它添加剂而形成的锂合金或LiF保护层的钮扣电池显示出了比预备比较例1中制得的钮扣电池更好的循环效率,预备比较例中未使用添加剂和具有比本发明实施方案的电池更低的循环效率。这是由于用添加剂形成的保护层相对于发明实施方案的LiF保护层更不均匀和更不密实。
实验例6
10次循环后交变阻抗的测定
用锂金属电极进行工作、计数器和参考,用与实施例1和比较例1分别相同的隔板、锂盐和有机溶剂来制备对应的盒电池(对应实施例1和对应比较例1)。进行一个周期的充/放电实验并测定交变阻抗。结果示于图6中。参照图6,对应比较例1呈现出至少两个弧形,弧下的面积至少为对应实施例1弧下面积的2倍。弧下面积对应于界面电阻。高界面电阻表明在锂金属表面形成的SEI既不均匀也不密实,至少两个弧表明在锂金属表面上形成了至少两个SEI。也就是说,对应比较例1的结果证实在锂金属表面上至少形成了两个SEI(两个弧表明形成了两个SEI),它们既不均匀也不密实,对应实施例1的结果证实在形成了均匀和密实的SEI,因为只有一个弧且弧的长度大约是对应比较例1的一半。
实验例7
放电容量随循环数变化的测定
在0.5℃进行50次循环,测定实施例1和比较例1中制备的锂硫电池的放电容量。结果示于图7中。参照图7,按照本发明实施方案实施例1的锂硫电池显示出比比较例1更好的循环特性。
如上所述,在按照本发明实施方案的锂硫电池中,可在锂金属表面上形成均一并且密实的LiF保护层和稳定锂金属。这样,在锂硫电池中可以避免形成锂的树枝状晶体和抑制电解溶液的分解,从而确保电池有改进的循环特性和优异的充/放电效率。另外,当采用硫作为阴极材料时,锂硫电池可阻止多硫化物和锂金属表面的反应,从而防止电池寿命下降。
虽然已经对本发明进行了详细说明和参照所举实施例进行了描述,对于本领域的普通技术人员来说可以理解的是,可以对其中的形式和细节进行变化而不偏离由权利要求所定义的本发明的精神和范围。

Claims (8)

1.一种锂硫电池,其包括:
含有选自硫元素、固体Li2Sn(n≥1)、含有溶解的Li2Sn(n≥1)的阴极电解液、有机硫和形式为(C2Sx)n(2.5≤x≤50且n≥2)的碳硫复合聚合物中的至少一种活性物质的阴极;
锂金属阳极;和
插入阴极和阳极之间的隔板,且隔板上的每个碳原子上含有少于两个氟原子,使得可在锂金属阳极表面上形成保护层。
2.权利要求1的锂硫电池,其中的隔板由选自下述物质的含氟聚合物构成:聚偏氟乙烯、偏氟乙烯-六氟丙烯共聚物、聚三氟氯乙烯、乙烯-四氟乙烯共聚物、乙烯-三氟氯乙烯共聚物、聚氟乙烯、氟化乙烯-六氟丙烯共聚物、乙烯-氟化乙烯共聚物、乙烯-偏氟乙烯共聚物及其混合物。
3.权利要求1的锂硫电池,其中的隔板基于100重量份的含氟聚合物,包含5-40重量份的无机填料,。
4.权利要求1的锂硫电池,其中隔板孔隙率的范围为20-50%。
5.权利要求1的锂硫电池,其中隔板孔隙尺寸的范围为0.1-0.7μm。
6.权利要求1的锂硫电池,其中隔板的每个碳原子上含有1-1.6个氟原子。
7.权利要求1的锂硫电池,其中阳极由锂金属、锂金属合金或锂-惰性硫复合材料构成。
8.权利要求1的锂硫电池,其中在锂硫电池的工作期间,阳极表面上形成了LiF保护层。
CNA2004100832856A 2003-08-23 2004-08-23 锂硫电池 Pending CN1610167A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR58506/2003 2003-08-23
KR20030058506A KR100522694B1 (ko) 2003-08-23 2003-08-23 리튬 설퍼전지

Publications (1)

Publication Number Publication Date
CN1610167A true CN1610167A (zh) 2005-04-27

Family

ID=34192205

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004100832856A Pending CN1610167A (zh) 2003-08-23 2004-08-23 锂硫电池

Country Status (4)

Country Link
US (1) US20050042503A1 (zh)
JP (1) JP2005071999A (zh)
KR (1) KR100522694B1 (zh)
CN (1) CN1610167A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960651A (zh) * 2008-02-25 2011-01-26 株式会社Lg化学 包覆有氟化锂化合物的阳极、用于制备所述阳极的方法以及含有所述阳极的锂二次电池
CN101479911B (zh) * 2006-03-23 2013-07-24 赛昂能源有限公司 锂硫电池的充电方法
CN105958045A (zh) * 2016-06-07 2016-09-21 浙江大学 一种用于锂硫电池的正极材料及其制备方法
CN107221649A (zh) * 2016-03-21 2017-09-29 中国科学院苏州纳米技术与纳米仿生研究所 具有有机-无机复合保护层的电极、其制备方法及应用
CN107293683A (zh) * 2016-04-01 2017-10-24 宁德新能源科技有限公司 锂离子电池及其隔离膜
CN107293679A (zh) * 2016-04-01 2017-10-24 宁德新能源科技有限公司 锂离子电池及其隔离膜
CN107369797A (zh) * 2016-05-13 2017-11-21 中南大学 一种锂硫电池隔膜的制备方法
CN108270030A (zh) * 2016-12-30 2018-07-10 福建新峰二维材料科技有限公司 一种锂硫全电池及其制备方法
CN109565039A (zh) * 2017-01-11 2019-04-02 株式会社Lg化学 氟化锂在锂金属表面的沉积及使用其的锂二次电池
CN110556509A (zh) * 2019-08-14 2019-12-10 南京大学 一种利用含氟有机物进行金属锂负极表面保护和钝化处理的方法、产品及应用
CN110854344A (zh) * 2019-11-28 2020-02-28 厦门大学 一种高分子聚合物修饰隔膜、制备方法及应用

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070060708A1 (en) * 2005-09-13 2007-03-15 Jian Wang Vinyl fluoride-based copolymer binder for battery electrodes
WO2009142794A2 (en) * 2008-03-05 2009-11-26 Eaglepicher Technologies, Llc Lithium-sulfur battery and cathode therefore
JP5640324B2 (ja) * 2009-04-23 2014-12-17 株式会社豊田中央研究所 リチウム硫黄電池
WO2011105126A1 (ja) * 2010-02-24 2011-09-01 日立マクセルエナジー株式会社 正極材料、その製造方法、非水二次電池用正極および非水二次電池
US8632915B2 (en) * 2010-04-26 2014-01-21 Battelle Memorial Institute Nanocomposite protective coatings for battery anodes
KR102123918B1 (ko) 2010-11-09 2020-06-17 코넬 유니버시티 황 함유 나노다공성 재료들, 나노입자들, 방법들 및 응용들
DE102010054610A1 (de) 2010-12-15 2012-06-21 Li-Tec Battery Gmbh Elektrochemische Zelle
EP2691338A4 (en) * 2011-03-31 2014-10-15 Basf Se PARTICULAR POROUS CARBON MATERIAL AND ITS USE IN LITHIUM CELLS
KR101826990B1 (ko) * 2011-06-07 2018-02-07 현대자동차주식회사 폴리설파이드 구속층을 갖는 리튬황 전지
FR2977722B1 (fr) * 2011-07-05 2014-03-14 Commissariat Energie Atomique Separateur d'electrodes pour accumulateur au lithium/soufre
US9406960B2 (en) * 2012-03-28 2016-08-02 Battelle Memorial Institute Energy storage systems having an electrode comprising LixSy
JP2015531968A (ja) * 2012-08-17 2015-11-05 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム リチウム硫黄バッテリのための多孔性炭素内層
US9882243B2 (en) 2013-09-26 2018-01-30 Eaglepicher Technologies, Llc Lithium-sulfur battery and methods of reducing insoluble solid lithium-polysulfide depositions
US9455447B2 (en) 2013-09-26 2016-09-27 Eaglepicher Technologies, Llc Lithium-sulfur battery and methods of preventing insoluble solid lithium-polysulfide deposition
US9991493B2 (en) 2013-10-15 2018-06-05 Eaglepicher Technologies, Llc High energy density non-aqueous electrochemical cell with extended operating temperature window
DE102014218803A1 (de) 2014-09-18 2016-03-24 Robert Bosch Gmbh Separator für eine Batteriezelle und Batteriezelle
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN104868097B (zh) * 2015-05-13 2018-03-30 北京化工大学 一种锂硫电池负极材料及其制备方法
KR102050836B1 (ko) * 2015-12-08 2019-12-03 주식회사 엘지화학 리튬이차전지용 전해질 및 이를 포함하는 리튬이차전지
CN105552307B (zh) * 2016-02-03 2017-08-25 湖南高瑞电源材料有限公司 一种锂硫电池负极材料及其制备方法
CN105514396B (zh) * 2016-02-05 2017-10-13 深圳市技领科技有限公司 一种锂硫电池负极材料及其制备方法
MX2019000912A (es) 2016-07-22 2019-09-27 Nantenergy Inc Sistema de gestion de humedad y dioxido de carbono de celdas electroquimicas.
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
CN106450190B (zh) * 2016-10-11 2019-06-28 武汉理工大学 锂硫电池中高电流密度快速填充微孔硫的方法
WO2018187561A1 (en) 2017-04-06 2018-10-11 Jaramillo Mateo Cristian Refuelable battery for the electric grid and method of using thereof
WO2019133702A1 (en) 2017-12-29 2019-07-04 Staq Energy, Inc. Long life sealed alkaline secondary batteries
US11973254B2 (en) 2018-06-29 2024-04-30 Form Energy, Inc. Aqueous polysulfide-based electrochemical cell
KR20210027538A (ko) 2018-07-27 2021-03-10 폼 에너지 인코퍼레이티드 전기화학 전지들에 대한 음의 전극들
KR102244917B1 (ko) 2018-07-30 2021-04-27 주식회사 엘지화학 리튬 전극 및 이를 포함하는 리튬 이차전지
WO2020027495A1 (ko) * 2018-07-30 2020-02-06 주식회사 엘지화학 리튬 전극 및 이를 포함하는 리튬 이차전지
CN109686921B (zh) * 2018-11-21 2021-06-11 清华大学 一种具有锂碳复合界面层的复合金属锂负极及其制备方法
US11217781B2 (en) * 2019-04-08 2022-01-04 GM Global Technology Operations LLC Methods for manufacturing electrodes including fluoropolymer-based solid electrolyte interface layers
US11949129B2 (en) 2019-10-04 2024-04-02 Form Energy, Inc. Refuelable battery for the electric grid and method of using thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1750517A (en) * 1926-10-18 1930-03-11 Groh Harold David Circuit maker and breaker
US3593417A (en) * 1969-08-13 1971-07-20 Stanley Works Hand tool having a holder for spare blades and the like
FR2208327A5 (zh) * 1972-11-27 1974-06-21 Quenot Mabo Manuf
US4910106A (en) * 1988-08-05 1990-03-20 Hoechst Celanese Corporation Formation of halogenated polymeric microporous membranes having improved strength properties
AU2824795A (en) * 1994-06-30 1996-01-25 Procter & Gamble Company, The Fluid transport webs exhibiting surface energy gradients
US6025094A (en) * 1994-11-23 2000-02-15 Polyplus Battery Company, Inc. Protective coatings for negative electrodes
US6017651A (en) * 1994-11-23 2000-01-25 Polyplus Battery Company, Inc. Methods and reagents for enhancing the cycling efficiency of lithium polymer batteries
US6402795B1 (en) * 1998-02-18 2002-06-11 Polyplus Battery Company, Inc. Plating metal negative electrodes under protective coatings
US6955866B2 (en) * 1998-09-03 2005-10-18 Polyplus Battery Company Coated lithium electrodes
US6537701B1 (en) * 1998-09-03 2003-03-25 Polyplus Battery Company, Inc. Coated lithium electrodes
US6194098B1 (en) * 1998-12-17 2001-02-27 Moltech Corporation Protective coating for separators for electrochemical cells
US6225002B1 (en) * 1999-02-05 2001-05-01 Polyplus Battery Company, Inc. Dioxolane as a proctector for lithium electrodes
US6574868B1 (en) * 2000-03-01 2003-06-10 Steven D Overholt Knife with replaceable cutting element
US6446341B1 (en) * 2001-07-16 2002-09-10 Mei-Chen Wang Tool holder and tools combination
US6911280B1 (en) * 2001-12-21 2005-06-28 Polyplus Battery Company Chemical protection of a lithium surface
KR20120118511A (ko) * 2002-10-15 2012-10-26 폴리플러스 배터리 컴퍼니 활성 금속 애노드를 보호하기 위한 이온 전도성 합성물
US7282302B2 (en) * 2002-10-15 2007-10-16 Polyplus Battery Company Ionically conductive composites for protection of active metal anodes
KR100467436B1 (ko) * 2002-10-18 2005-01-24 삼성에스디아이 주식회사 리튬-황 전지용 음극, 그의 제조 방법 및 그를 포함하는리튬-황 전지

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479911B (zh) * 2006-03-23 2013-07-24 赛昂能源有限公司 锂硫电池的充电方法
CN101960651A (zh) * 2008-02-25 2011-01-26 株式会社Lg化学 包覆有氟化锂化合物的阳极、用于制备所述阳极的方法以及含有所述阳极的锂二次电池
US8609273B2 (en) 2008-02-25 2013-12-17 Lg Chem, Ltd. Anode coated with lithium fluoride compounds, method for preparing the same, and lithium secondary battery having the same
CN101960651B (zh) * 2008-02-25 2014-01-08 株式会社Lg化学 包覆有氟化锂化合物的阳极、用于制备所述阳极的方法以及含有所述阳极的锂二次电池
CN107221649A (zh) * 2016-03-21 2017-09-29 中国科学院苏州纳米技术与纳米仿生研究所 具有有机-无机复合保护层的电极、其制备方法及应用
CN107293683B (zh) * 2016-04-01 2020-11-27 宁德新能源科技有限公司 锂离子电池及其隔离膜
CN107293683A (zh) * 2016-04-01 2017-10-24 宁德新能源科技有限公司 锂离子电池及其隔离膜
CN107293679A (zh) * 2016-04-01 2017-10-24 宁德新能源科技有限公司 锂离子电池及其隔离膜
CN107293679B (zh) * 2016-04-01 2020-06-02 宁德新能源科技有限公司 锂离子电池及其隔离膜
CN107369797B (zh) * 2016-05-13 2019-08-20 中南大学 一种锂硫电池隔膜的制备方法
CN107369797A (zh) * 2016-05-13 2017-11-21 中南大学 一种锂硫电池隔膜的制备方法
CN105958045B (zh) * 2016-06-07 2018-08-24 浙江大学 一种用于锂硫电池的正极材料及其制备方法
CN105958045A (zh) * 2016-06-07 2016-09-21 浙江大学 一种用于锂硫电池的正极材料及其制备方法
CN108270030A (zh) * 2016-12-30 2018-07-10 福建新峰二维材料科技有限公司 一种锂硫全电池及其制备方法
CN108270030B (zh) * 2016-12-30 2020-09-22 福建新峰二维材料科技有限公司 一种锂硫全电池及其制备方法
CN109565039A (zh) * 2017-01-11 2019-04-02 株式会社Lg化学 氟化锂在锂金属表面的沉积及使用其的锂二次电池
CN110556509A (zh) * 2019-08-14 2019-12-10 南京大学 一种利用含氟有机物进行金属锂负极表面保护和钝化处理的方法、产品及应用
CN110854344A (zh) * 2019-11-28 2020-02-28 厦门大学 一种高分子聚合物修饰隔膜、制备方法及应用

Also Published As

Publication number Publication date
US20050042503A1 (en) 2005-02-24
KR20050020498A (ko) 2005-03-04
KR100522694B1 (ko) 2005-10-19
JP2005071999A (ja) 2005-03-17

Similar Documents

Publication Publication Date Title
CN1610167A (zh) 锂硫电池
CN1269254C (zh) 锂二次电池
CN105720302B (zh) 非水电解质电池
JP5466364B2 (ja) リチウム・硫黄電池用電解質及びこれを使用するリチウム・硫黄電池
EP2212964B1 (en) Non-aqueous electrolyte lithium secondary battery
EP1679760A1 (en) Electrolytes, cells and methods of forming passivation layers
CN113273000A (zh) 可充电电池单元
CN111063863A (zh) 一种金属锂复合负极材料及其制备方法和应用
CN100346526C (zh) 非水电解液及包含它的锂二次电池
CN1297022C (zh) 非水电解质二次电池、正极活性物质及其制造方法
CN1846326A (zh) 改进电池安全性的电解质溶剂和包含其的锂二次电池
JP2008522376A5 (zh)
WO2006059085A1 (en) Electrolyte for lithium-sulphur batteries and lithium-sulphur batteries using the same
CN1551401A (zh) 非水电解质以及包含该非水电解质的锂二次电池
CN100395905C (zh) 非水性电解液二次电池
CN104979587B (zh) 长寿命二次电池用非水性电解液及包含其的二次电池
JP2001223024A (ja) リチウム二次電池用電解液
CN103840127A (zh) 正极活性物质层、隔板和含其至少一种的可再充电锂电池
KR20200002167A (ko) 리튬 이차전지용 전해질 조성물 및 이를 이용한 리튬 이차전지
JP5050379B2 (ja) 二次電池
CN1822423A (zh) 锂二次电池的电解液及含有该电解液的锂二次电池
CN1610179A (zh) 有机电解溶液和使用该有机电解溶液的锂电池
CN1282273C (zh) 一种锂二次电池用非水电解质
TWI709262B (zh) 非水性電解液以及包括其的鋰金屬二次電池與鋰離子二次電池
CN1533616A (zh) 非水电解质二次电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication