CN105514396B - 一种锂硫电池负极材料及其制备方法 - Google Patents

一种锂硫电池负极材料及其制备方法 Download PDF

Info

Publication number
CN105514396B
CN105514396B CN201610079882.4A CN201610079882A CN105514396B CN 105514396 B CN105514396 B CN 105514396B CN 201610079882 A CN201610079882 A CN 201610079882A CN 105514396 B CN105514396 B CN 105514396B
Authority
CN
China
Prior art keywords
solvent
lithium
stable state
mixed
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610079882.4A
Other languages
English (en)
Other versions
CN105514396A (zh
Inventor
李祎
曾炳军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Jiling Technology Co ltd
Original Assignee
Shenzhen Geelink Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Geelink Technology Co Ltd filed Critical Shenzhen Geelink Technology Co Ltd
Priority to CN201610079882.4A priority Critical patent/CN105514396B/zh
Publication of CN105514396A publication Critical patent/CN105514396A/zh
Application granted granted Critical
Publication of CN105514396B publication Critical patent/CN105514396B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1399Processes of manufacture of electrodes based on electro-active polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种锂硫电池负极材料及其制备方法,其特征在于包括:以质量份数计,由以下原料组合物组成:7‑10份稳态锂粉、3‑8份碳材料和溶剂。本发明特别选用了稳态锂粉以及垂直阵列状碳纳米管(VACNT)和介孔碳按照质量比为10:1混合而成的混合物作为负极中的碳材料制备负极混合浆料,避免的负极浆料中粘结剂的使用,使得该锂硫电池负极材料具有更优异的性能。同时配合最优化选择的正极材料本发明的制备方法制得的电池表现出较小的阻抗,能有效减弱连续充放电过程中的穿梭效应和枝晶生长,比常规金属锂箔表现出更好的循环性能和倍率性能。

Description

一种锂硫电池负极材料及其制备方法
技术领域
本发明属于电极材料制备领域,尤其涉及一种锂硫电池电极材料及利用该种电极材料制备锂硫电池的方法。
背景技术
锂离子电池(Lithium-ion battery, LIB),又称为锂二次电池,是一种可循环充电的移动电源设备。LIB具有高能量密度、高功率密度、循环寿命长、清洁无毒和无记忆效应等诸多优点,自从上世纪90年代索尼公司将LIB商业化以来,LIB得到了迅速而广泛的发展。目前LIB己经成为大多数移动电子设备的电源。近几年,人们对LIB进行了深入和广泛的研究。在LIB中,负极材料对电池的性能有着很大的影响,发展优异的负极材料也是提高LIB性能的关键因素之一。碳材料是最主要的一种LIB负极材料,目前己经有上百种拥有不同结构的碳材料被用作锂离子电池负极,这些材料包括天然石墨、人工石墨、焦炭、碳纤维、中间相碳微球、碳黑等。
然而,锂硫电池商业化过程中存在诸多问题,如金属锂化学性质不稳定,使用时存在潜在的危险;当负极采用金属锂箔时,电池经过多次充放电后,金属锂箔表面易形成枝晶。枝晶的不断生长导致电池容量下降,且枝晶生长可能刺穿隔膜,造成电池短路,引发安全问题。
硬碳是高分子聚合物的热解碳,即使在高温下也难以石墨化。硬碳的可逆容量能较高,循环性能也很好。但是硬碳也存在电极电位过高、电位滞后(即嵌锂电位小于脱锂电位)以及首次循环不可逆容量大等缺点。
目前,大部分锂硫电池都采用金属锂作为负极。锂作为负极在多次充放电过程中会由十电流密度不均导致枝品的形成。枝品会导致隔膜穿透,进而使电池发生短路,是主要的安全隐患来源。如果在负极中添加石墨烯,负极的比表面积变大,面电流密度减小,同时,疏松的石墨烯提供了锂沉积的空间,从而使锂枝品的生长越来越困难。针对锂负极存在的问题,科研工作者进行的改进和研究较少。归结起来主要包括两个方面:一是从电解液添加剂进行改性,通过加入不同的添加剂,如LiNO3和PEO等,促使锂负极表面在充放电过程中快速形成更为稳定的SEI膜,希望能抑制锂枝晶和提高循环性能。然而添加剂在充放电过程中逐渐被消耗,影响电池的稳定性和连续性。二是从锂电极的制备工艺入手,通过使用锂化合物包覆锂粉或者电沉积金属锂,锂箔表面增加保护层等方法,提高了循环效率和循环寿命,但操作过程也较为复杂。
发明内容
为了解决现有技术中存在的问题,本发明的目的是提供一种由稳态锂粉和特殊配比碳材料制备而成的负极浆料,以及由该浆料制备而成的锂硫电池,其解决了现有技术中采用硬碳等材料带来的技术缺陷、并且解决了锂电池负极改进的中存在的稳定性和连续性差以及操作复杂等技术问题。
一种锂硫电池负极材料,其特征在于包括:以质量份数计,由以下原料组合物组成:7-10份稳态锂粉、3-8份碳材料和溶剂。
进一步,所述的稳态锂粉由滴液乳化技术(DET)制成,锂粉直径为50μm-70μm。
进一步,所述的碳材料为垂直阵列状碳纳米管(VACNT)和介孔碳按照质量比为10:1混合而成的混合物。
进一步,所述溶剂为碳酸乙烯酯(EC)、甲基乙烯酯(MA)和三氟代碳酸丙烯酯(TFPC)按照体积比为7:7:1混合而成的混合溶剂。
一种锂硫电池的制备方法,采用如上所述的锂硫电池负极材料作为负极,其特征在于包括如下步骤:
(1)将含硫的正极浆料涂在集流体制成正极片;
(2)把稳态锂粉和碳材料按照质量比称量,以碳酸乙烯酯(EC)、甲基乙烯酯(MA)和三氟代碳酸丙烯酯(TFPC)按照体积比为7:7:1混合而成的混合物为溶剂;先把所述碳材料溶解于所述溶剂中,而后把稳态锂粉倒入上述溶液中,混合均匀后涂抹于集流体上从而得到负极片;把负极片置于加热片上加热以使溶剂挥发;而后把负极片压平待用;
(3)将正极、负极、隔膜组装成纽扣电池。
进一步,步骤(1)中所述的含硫的正极浆料包含:聚萘/硫复合材料、导电剂、粘结剂和溶剂;所述的导电剂由科琴黑ECP600JD和纳米碳纤维按照质量比为1:3组合而成,所述粘结剂由的聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成;所述溶剂由碳酸乙烯酯(EC)、甲基乙烯酯(MA)和三氟代碳酸丙烯酯(TFPC)按照体积比为7:7:1混合而成;先将粘结剂溶解于的混合溶剂中,再将聚萘/硫复合材料与导电剂按质量比混合均匀后,倒入已溶解粘结剂的溶剂中,制作成正极浆料,然后将正极浆料均匀涂抹在集流体上,制成正极片。
进一步,所述正极片需在真空干燥箱中加热去除水分和溶剂,然后将其表面刮平和压平;所述的真空干燥箱中的温度为55℃,干燥时间为9h。
进一步,所述的含硫的正极浆料中的聚萘/硫复合材料、导电剂与粘结剂的质量比为8:5:1。
进一步,步骤(2)中所述负极片需在40℃-70℃加热8h-11h以去除溶剂,而后压平待用。
进一步,步骤(2)和(3)中的操作均在充满氩气的真空手套箱中完成。
本发明制备得到的锂硫电池负极材料以及锂硫电池具有如下有益效果:
(1)本发明制备得到的锂硫电池负极材料由稳态锂粉和特定配比的碳材料制作的负极与普通锂箔电极相比,比表面积更大,孔隙率更高,与电解液接触更完全,从而有效放电面积更大,阻抗更小,且能有效抑制锂枝晶的生长,可表现出较好的循环性能和倍率性能。
(2)本发明制备得到的锂硫电池负极材料由稳态锂粉和特定配比的碳材料组成,其中使用的大量碳纳米管有效的兼顾的额起到了碳材料的作用和粘结剂的作用,有效的避免了黏结剂的使用,巧妙的降低的成本,减少了工艺步骤,对十提高锂硫电池的实际能量密度也有重要的意义。
(3)本发明制备得到的锂硫电池负极材料中采用垂直阵列状碳纳米管(VACNT)具有良好的取向,可与集流体形成良好的接触并形成高效定向导电骨架,有效提高锂硫电池负极材料中骨架导电性。其又充分结合了介孔碳的结构优势,高度有序介孔碳具有比表面积大、孔径均匀、孔隙体积非常高、相互关联的多孔结构和高导电性等特点。本发明充分利用这两者结构的优势,能有效减弱连续充放电过程中的穿梭效应和枝晶生长,比常规电极表现出更好的循环性能和倍率性能。
(4)在正极的导电添加剂方面,本发明添加科琴黑ECP600JD和纳米碳纤维,后者可形成三维导电网络,既能增加极片中的远程导电能力,又不易被允放电过程中形成的产物完全覆盖,从而改善了极片的表面结构;前者利用科琴黑ECP600JD的丰富空间孔道结构及良好吸附性能,也可提高锂硫电池的循环性能。
(5)本发明的正极活性物质选择了聚萘/硫复合材料,聚萘用于锂硫电池中具有一定优势:(1)聚萘是导电聚合物,结构中的大,n键使其易于导电,能明显改善硫电极的导电性;(2)聚萘具有类似石墨的层状结构,其结构更易与单质硫紧密联系,可以抑制其电极反应产物多硫化锂在电解液中的溶解;(3)聚萘作为电极材料具有一定的容量,可以与硫电极产生协同作用。
(6)本发明在正极材料中还特别选用了聚乙烯吡咯烷酮和聚乙烯亚胺的混合体系作为粘结剂,从而跟有力的保持硫正极在循环过程中的多孔结构。
(7)本发明选用了三种物质的混合体系最为溶剂,经过实验,该溶剂能更好的保持各种极片的原材料的结构特征以及优势,同样碳酸乙烯酯(EC)、甲基乙烯酯(MA)可获得良好的低温性,又加上少量的三氟代碳酸丙烯酯(TFPC)可以获得较好的放电容量和循环寿命。三种溶剂的选择兼顾考虑了溶剂的最优组合性能以及成本方面的因素,使得最终制备得到的产品具有更好的稳定性和更高的品质。
具体实施方式
实施例一:
正极片的制备:以聚萘/硫复合材料为正极活性物质、科琴黑ECP600JD和纳米碳纤维按照质量比为1:3组合而成的混合物为导电剂,聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成的混合体系为粘结剂。
含硫的正极浆料中的聚萘/硫复合材料、导电剂与粘结剂的质量比为8:5:1。把混合体粘结剂溶于由碳酸乙烯酯(EC)、甲基乙烯酯(MA)和三氟代碳酸丙烯酯(TFPC)按照体积比为7:7:1混合而成的溶剂中制成溶液。其中,按照质量计算,按照固体含量为30%的比例称取溶剂,固体包括聚萘/硫复合材料和导电剂。再将聚萘/硫复合材料与导电剂按质量比混合均匀后,倒入已溶解粘结剂的溶剂中,制作成正极浆料。
然后将得到的浆料均匀涂布在泡沫镍集流体上。再置于真空干燥箱中干燥,除去溶剂和水分,真空干燥箱中的温度为55℃,干燥时间为9h,用刀片将泡沫镍表面的浆料刮除干净,再以一定压力把正极片压平。而后把正极片置于真空干燥箱中再次干燥。以上操作均在真空手套箱中完成。
负极片制备:把稳态锂粉和碳材料按照质量比称量,以碳酸乙烯酯(EC)、甲基乙烯酯(MA)和三氟代碳酸丙烯酯(TFPC)按照体积比为7:7:1混合而成的混合物为溶剂。其中,按照质量计算,按照固体含量为30%的比例称取溶剂,固体包括稳态锂粉和碳材料。
先把碳材料溶解于溶剂中,而后把稳态锂粉倒入上述溶液中,混合均匀后涂抹于泡沫镍集流体上从而得到负极片;把负极片置于加热片上加热以使溶剂挥发;而后把负极片压平待用;其中,稳态锂粉和碳材料的质量比为10:8;加热片上加热的温度为70℃,加热时间为8h。以上操作均在真空手套箱中完成。
关于聚萘/硫复合材料的制备方法:取适量聚萘分散于去离子水中,超声分散,加入一定量的Na2S203.5H20后再超声分散;向混合物中缓慢滴加适量的1 mol/L的盐酸溶液,至上述溶液pH值为7为止;继续搅拌反应后抽滤,将样品置于真空干燥箱中烘干,即得到聚萘/硫复合材料。
电池组装与测试:纽扣式电池在充满氩气的手套箱中装配。以上述负极片为负极,采用Celgard2400隔膜和2025型纽扣式电池。电解液为1M LiClO4、0.15M LiNO3溶于DOL:DME(体积比1:1)。电池置于蓝电测试系统(CT2001A)进行恒流测试。充放电电压范围为1.5-3.0V,测试温度为室温。
实施例二:
与实施例一相比,实施例二在负极片制备过程中,改变稳态锂粉和碳材料的质量比为7:3,加热片上加热的温度为40℃,加热时间为11h。其余操作和说明同实施例一。
实施例三:
与实施例一相比,实施例二在负极片制备过程中,改变稳态锂粉和碳材料的质量比为6:5,加热片上加热的温度为60℃,加热时间为9h。其余操作和说明同实施例一。
相比对普通锂箔电极,当实施例一、二和三的负极使用稳态锂粉和混合碳材料时,本发明的锂硫电池可表现出更好的首次充放电比容量,同时100次循环后容量保持率均在95.8%以上。
各实施例的纽扣电池静置24小时后做交流阻抗对比实验。实验结果显示,当实施例一、二和三使用稳态锂粉和混合碳材料后,相比对普通锂箔电极,本发明的锂硫电池的阻抗大大减小,原因在于稳态锂粉的比表面积大、与电解液接触完全,可表现出更快的电子传递和转移。
同时,本发明制备得到的锂硫电池负极材料由稳态锂粉和特定配比的碳材料组成,其中使用的大量碳纳米管有效的兼顾的额起到了碳材料的作用和粘结剂的作用,有效的避免了黏结剂的使用,巧妙的降低的成本,减少了工艺步骤,对十提高锂硫电池的实际能量密度也有重要的意义。
(3)本发明制备得到的锂硫电池负极材料中采用垂直阵列状碳纳米管(VACNT)具有良好的取向,可与集流体形成良好的接触并形成高效定向导电骨架,有效提高锂硫电池负极材料中骨架导电性。其又充分结合了介孔碳的结构优势,高度有序介孔碳具有比表面积大、孔径均匀、孔隙体积非常高、相互关联的多孔结构和高导电性等特点。本发明充分利用这两者结构的优势,能有效减弱连续充放电过程中的穿梭效应和枝晶生长,比常规电极表现出更好的循环性能和倍率性能。
(4)在正极的导电添加剂方面,本发明添加科琴黑ECP600JD和纳米碳纤维,后者可形成三维导电网络,既能增加极片中的远程导电能力,又不易被允放电过程中形成的产物完全覆盖,从而改善了极片的表面结构;前者利用科琴黑ECP600JD的丰富空间孔道结构及良好吸附性能,也可提高锂硫电池的循环性能。
(5)本发明的正极活性物质选择了聚萘/硫复合材料,聚萘用于锂硫电池中具有一定优势:(1)聚萘是导电聚合物,结构中的大,n键使其易于导电,能明显改善硫电极的导电性;(2)聚萘具有类似石墨的层状结构,其结构更易与单质硫紧密联系,可以抑制其电极反应产物多硫化锂在电解液中的溶解;(3)聚萘作为电极材料具有一定的容量,可以与硫电极产生协同作用。
(6)本发明在正极材料中还特别选用了聚乙烯吡咯烷酮和聚乙烯亚胺的混合体系作为粘结剂,从而跟有力的保持硫正极在循环过程中的多孔结构。
(7)本发明选用了三种物质的混合体系最为溶剂,经过实验,该溶剂能更好的保持各种极片的原材料的结构特征以及优势,同样碳酸乙烯酯(EC)、甲基乙烯酯(MA)可获得良好的低温性,又加上少量的三氟代碳酸丙烯酯(TFPC)可以获得较好的放电容量和循环寿命。三种溶剂的选择兼顾考虑了溶剂的最优组合性能以及成本方面的因素,使得最终制备得到的产品具有更好的稳定性和更高的品质。
以上实施例显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,而不是以任何方式限制本发明的范围,在不脱离本发明范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的范围内。

Claims (1)

1.一种锂硫电池,其特征在于,包括正极片和负极片,
锂硫电池负极材料以质量份数计,由以下原料组合物组成:7-10份稳态锂粉、3-8份碳材料和溶剂;所述的稳态锂粉由滴液乳化技术(DET)制成,锂粉直径为50μm-70μm;所述的碳材料为垂直阵列状碳纳米管(VACNT)和介孔碳按照质量比为10:1混合而成的混合物;所述溶剂为碳酸乙烯酯(EC)、甲基乙烯酯(MA)和三氟代碳酸丙烯酯(TFPC)按照体积比为7:7:1混合而成的混合溶剂;把稳态锂粉和碳材料按照质量比称量,以碳酸乙烯酯(EC)、甲基乙烯酯(MA)和三氟代碳酸丙烯酯(TFPC)按照体积比为7:7:1混合而成的混合物为溶剂;先把所述碳材料溶解于所述溶剂中,而后把稳态锂粉倒入上述溶液中,混合均匀后涂抹于集流体上从而得到负极片;把负极片置于加热片上加热以使溶剂挥发;而后把所述负极片压平待用;
将含硫的正极浆料涂在集流体制成正极片;所述含硫的正极浆料包含:聚萘/硫复合材料、导电剂、粘结剂和溶剂;所述的导电剂由科琴黑ECP600JD和纳米碳纤维按照质量比为1:3组合而成,所述粘结剂由聚乙烯吡咯烷酮和聚乙烯亚胺按照体积比为2:1混合而成;所述溶剂由碳酸乙烯酯(EC)、甲基乙烯酯(MA)和三氟代碳酸丙烯酯(TFPC)按照体积比为7:7:1混合而成;先将粘结剂溶解于的混合溶剂中,再将聚萘/硫复合材料与导电剂按质量比混合均匀后,倒入已溶解粘结剂的溶剂中,制作成正极浆料,然后将正极浆料均匀涂抹在集流体上,制成所述正极片。
CN201610079882.4A 2016-02-05 2016-02-05 一种锂硫电池负极材料及其制备方法 Active CN105514396B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610079882.4A CN105514396B (zh) 2016-02-05 2016-02-05 一种锂硫电池负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610079882.4A CN105514396B (zh) 2016-02-05 2016-02-05 一种锂硫电池负极材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105514396A CN105514396A (zh) 2016-04-20
CN105514396B true CN105514396B (zh) 2017-10-13

Family

ID=55722207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610079882.4A Active CN105514396B (zh) 2016-02-05 2016-02-05 一种锂硫电池负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105514396B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129471A (zh) * 2016-08-29 2016-11-16 无锡市宝来电池有限公司 一种相容性良好的锂电池电解液
CN111244394B (zh) * 2020-01-19 2021-03-19 河南电池研究院有限公司 一种金属锂复合电极及其制备方法
CN112271287A (zh) * 2020-09-27 2021-01-26 天津师范大学 一种网格化锂金属负极及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071999A (ja) * 2003-08-23 2005-03-17 Samsung Sdi Co Ltd リチウム硫黄電池
CN101409338A (zh) * 2007-10-10 2009-04-15 清华大学 锂离子电池负极,其制备方法和应用该负极的锂离子电池
CN104362294A (zh) * 2014-12-05 2015-02-18 上海空间电源研究所 一种用于锂硫电池的多孔硫正极、其制备方法及锂硫电池
CN104868097A (zh) * 2015-05-13 2015-08-26 北京化工大学 一种锂硫电池负极材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005071999A (ja) * 2003-08-23 2005-03-17 Samsung Sdi Co Ltd リチウム硫黄電池
CN101409338A (zh) * 2007-10-10 2009-04-15 清华大学 锂离子电池负极,其制备方法和应用该负极的锂离子电池
CN104362294A (zh) * 2014-12-05 2015-02-18 上海空间电源研究所 一种用于锂硫电池的多孔硫正极、其制备方法及锂硫电池
CN104868097A (zh) * 2015-05-13 2015-08-26 北京化工大学 一种锂硫电池负极材料及其制备方法

Also Published As

Publication number Publication date
CN105514396A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN105932297B (zh) 一种碳纳米管导电涂层集流体及其制备工艺
CN103855431B (zh) 一种提高锂离子电池循环性能的化成方法
CN104868097B (zh) 一种锂硫电池负极材料及其制备方法
CN109244413A (zh) 一种基于多孔生物质碳的硫正极复合材料及其制备方法
CN104966822A (zh) 一种锂离子电池多层包覆钛酸锂负极材料及其制备方法
CN105529490B (zh) 一种锂硫电池的制备方法
CN112133896B (zh) 一种高容量石墨-硅-氧化亚硅复合材料及其制备方法、应用
CN108232111A (zh) 一种固态电池用的复合正极极片及其制备方法
CN104393298A (zh) 一种锂离子电池用块状石墨负极材料、制备方法及锂离子电池
CN107681130A (zh) 一种固体电解质的锂硫电池正极材料的制备方法
CN105514396B (zh) 一种锂硫电池负极材料及其制备方法
CN103840130A (zh) 一种防止过放电的锂电池碳负极
CN113066988B (zh) 一种负极极片及其制备方法和用途
CN104882631A (zh) 一种提高锂离子电池极片均匀散热性能的方法
CN105552307B (zh) 一种锂硫电池负极材料及其制备方法
CN105513827A (zh) 一种(lmo-ncm-ac)/(lto-ac)混合电池电容电极材料及电极片
CN104979534A (zh) 一种碘-硫/碳复合材料及其制备方法与应用
CN109659475A (zh) 一种高性能高压锂离子电池的制备方法
CN105702944B (zh) 一种锂硫电池
CN106410283B (zh) 一种锂硫电池的制备方法
CN111646472A (zh) 一种原位制备多孔硅碳复合负极材料的方法
CN110233246A (zh) 碳包覆含有磷酸铁锂的复合负极活性材料及其制备方法和在锂离子电池负极的应用
JP4682395B2 (ja) 非水電池
CN103247776A (zh) 电极复合材料的制备方法
CN116936791A (zh) 双连续Nb2O5SiOx电极材料及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Li Dai

Inventor after: Zeng Bingjun

Inventor before: Zong Ming

CB03 Change of inventor or designer information
TA01 Transfer of patent application right

Effective date of registration: 20170906

Address after: 518000 Guangdong city of Shenzhen province Longhua District, Dalang street, China Fanlu Jincheng garden 3 Building 10 floor

Applicant after: SHENZHEN JILING TECHNOLOGY CO.,LTD.

Address before: 315040 Zhongshan East Road, Jiangdong District, Zhejiang, China, No. 455, No.

Applicant before: NINGBO LIANGNENG NEW MATERIAL Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20221221

Address after: 523000 Room 702, Building 6, No. 71, Fumin South Road, Dalang Town, Dongguan City, Guangdong Province

Patentee after: Dongguan Jiling Technology Co.,Ltd.

Address before: Floor 10, Building 3, Jincheng Garden, Huafan Road, Dalang Street, Longhua District, Shenzhen, Guangdong 518000

Patentee before: SHENZHEN JILING TECHNOLOGY CO.,LTD.

TR01 Transfer of patent right