CN1604368A - 一种用于氢氧燃料电池的催化材料 - Google Patents

一种用于氢氧燃料电池的催化材料 Download PDF

Info

Publication number
CN1604368A
CN1604368A CNA2004100863002A CN200410086300A CN1604368A CN 1604368 A CN1604368 A CN 1604368A CN A2004100863002 A CNA2004100863002 A CN A2004100863002A CN 200410086300 A CN200410086300 A CN 200410086300A CN 1604368 A CN1604368 A CN 1604368A
Authority
CN
China
Prior art keywords
hydrogen
catalytic material
fuel cell
chitosan
oxygen fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100863002A
Other languages
English (en)
Other versions
CN1275344C (zh
Inventor
张涛
相艳
崔铮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CNB2004100863002A priority Critical patent/CN1275344C/zh
Publication of CN1604368A publication Critical patent/CN1604368A/zh
Application granted granted Critical
Publication of CN1275344C publication Critical patent/CN1275344C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于氢氧燃料电池的催化材料,该催化材料为改性壳聚糖膜负载金属氯化物材料。该工艺是将改性壳聚糖膜负载氯化钯或氯化镍材料涂覆在作为负极的电池电极上,在氢氧燃料电池的反应介质——碱性或弱碱性溶液中,具有较好的催化能力,可使电池输出电流增大2~5倍。本发明的壳聚糖膜具有较好的负载能力,且原料成本低;相对催化剂采用铂材料的氢氧燃料电池,其成本低廉,是一种环保型、普通型氢氧燃料电池。

Description

一种用于氢氧燃料电池的催化材料
技术领域
本发明涉及一种燃料电池用催化材料,具体地说,是指一种利用改性壳聚糖膜负载金属氯化物的适用于氢氧燃料电池用催化材料。
背景技术
燃料电池是借助于电池内的燃烧反应,将化学能直接转为电能的装置,是一种新型的高效化学电源,是除火力、水力、核能之外的第四种发电方式。对燃料电池,性能良好的催化剂至关重要,它决定着大电流密度放电时的电池性能、运行寿命和成本。燃料电池的催化剂应该满足以下条件:(1)具有导电性,或使用导电性良好的载体以求获得高的导电性;(2)一定的电化学稳定性,即能在实现目标反应的条件下,电催化剂表面不致因电化学反应而过早失活;(3)较好的催化性能,包括实现目标反应及抑制副反应的活性。
目前对质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)研究比较深入,它是指一类以质子交换膜作为电解质的燃料电池体系,这种燃料电池也经常被称为固态聚合物燃料电池(polymer electrolyte fuel cell,PEFC)。在PEMFC中,一般使用贵金属Pt或者其合金作催化剂,碳作载体。尽管质子交换膜具有优越的稳定性和质子导电性,但其价格昂贵,选择透过性较差。人们目前所追求的目标就是研制出的高效耐用、价格低廉的催化剂,从而普及燃料电池的使用。
壳聚糖(chitosan)是一种天然阳离子活性聚合物,分子结构中含有两个羟基和一个游离的氨基,易溶于一些有机溶剂而成膜,这种膜拉伸强度大、韧性好、耐碱和耐有机溶剂。经交联后耐酸和耐热性优于醋酸纤维素膜,同时无毒、亲水性大、对生物细胞有极好的相容性。它能通过分子中的氨基和羟基与许多金属离子形成稳定的螯合物。因此,壳聚糖是理想的环保型催化剂负载材料。
发明内容
本发明的目的在于公开一种利用改性壳聚糖膜负载金属氯化物作为氢气氧化催化剂,对氢氧燃料电池的负极进行催化的壳聚糖膜燃料电池。在本发明中,利用改性的壳聚糖膜负载催化剂对氢气有良好的催化效果,可大大降低催化剂和负载膜的成本,是一种环保型燃料电池。
本发明的一种用于氢氧燃料电池的催化材料,催化材料为改性壳聚糖膜负载金属氯化物材料。
本发明的氢氧燃料电池的催化材料是涂覆在氢氧燃料电池的负电极上的,催化材料能够使氢氧燃料电池输出的电流增大2~5倍。其制备工艺为:
(A)配制金属氯化物溶液
将粉末状金属氯化物材料在室温下溶于乙醇溶液中,其金属氯化物与乙醇的质量比为1∶30~100,取上层清液备用;
(B)在电极上制壳聚糖膜
称取壳聚糖粉末,并溶于1%的醋酸中,搅拌均匀,并将其涂抹于电池电极上,室温下悬挂10~24h晾干;
然后,将晾干的载负有壳聚糖粉末的电池电极浸泡在10~40%氢氧化钠溶液中10~30min,取出经水洗至中性;
然后,再将载负有壳聚糖粉末的电池电极浸泡在乙醇中10~30min,取出后在真空干燥器中干燥10~24h;
(C)交联固化
将上述经(B)处理后的电池电极浸泡在交联剂溶液中,其交联剂浓度0.1%~10%,在室温下交联20~60min;
(D)负载催化材料
将上述经(C)处理后的电池电极浸泡在上述(A)配制的金属氯化物溶液中3~12h,用蒸馏水清洗,然后,在真空干燥器中干燥10~24h,取出,即得到在电池电极上浸泡有改性壳聚糖膜负载金属氯化物材料的催化材料。
所述氢氧燃料电池的催化材料中的金属氯化物可以是氯化钯或氯化镍。
所述氢氧燃料电池的催化材料中的交联剂可以是戊二醛或者乙二醛或者表氯醇或者硫酸。
本发明用改性壳聚糖负载金属氯化物的催化材料的氢氧燃料电池的优点是:(1)可使碱性氢氧燃料电池的输出电流提高2~5倍;(2)改性的壳聚糖膜有很好的负载能力;(3)大大降低了催化剂和负载膜的成本。
附图说明
图1是反应装置结构示意图。
图2是用本发明制备得到的氢氧燃料电池在35%NaOH中的测试结果。
具体实施方式
下面将结合实例和附图对本发明作进一步的说明。
在本专利申请中首先介绍“氢氧燃料电池工作原理”,其反应装置如图1所示。
电池反应:
电极反应:负极: 
          正极: 
         总反应:
将燃料H2不断通入电池负极,在电池负极上氢气发生氧化反应,生成H+,同时释放出电子,电子流经电路,推动负载而流向正极。而氧化剂O2在正极上接受电子,发生还原反应生成负离子OH-,再与反应介质(电极的溶液)中来自负极的H+结合,生成化合物H2O。不用在详细说明了
本发明的用于氢氧燃料电池的催化材料,是为了提高电池输出的电流,同时能够使燃料电池上采用的催化剂、负载膜的成本得到降低,从而普及燃料电池的使用。
本发明的一种用于氢氧燃料电池的催化材料,其催化材料为改性壳聚糖膜负载金属氯化物材料。催化材料是涂覆在电池电极上,其制备工艺如下:
(A)配制金属氯化物溶液
将粉末状金属氯化物材料在室温下溶于乙醇溶液中,其金属氯化物与乙醇的质量比为1∶30~100,取上层清液备用;
(B)在电极上制壳聚糖膜
称取壳聚糖粉末,并溶于1%的醋酸中,搅拌均匀,并将其涂抹于电池电极上,室温下悬挂10~24h晾干;
然后,将晾干的载负有壳聚糖粉末的电池电极浸泡在10~40%氢氧化钠溶液中10~30min,取出经水洗至中性;
然后,再将载负有壳聚糖粉末的电池电极浸泡在乙醇中10~30min,取出后在真空干燥器中干燥10~24h;
(C)交联固化
将上述经(B)处理后的电池电极浸泡在交联剂溶液中,其交联剂浓度0.1%~10%,在室温下交联20~60min;
(D)负载催化材料
将上述经(C)处理后的电池电极浸泡在上述(A)配制的金属氯化物溶液中3~12h,用蒸馏水清洗,然后,在真空干燥器中干燥10~24h,取出,即得到在电池电极上浸泡有改性壳聚糖膜负载金属氯化物材料的催化材料。
实施例1:金属粉末氯化镍作为催化材料
(A)配制氯化镍溶液
将0.01g粉末状氯化钯室温下溶液40ml乙醇溶液中,搅拌均匀,取上层清液备用。
(B)在电极上涂覆壳聚糖膜
将1g壳聚糖溶于30ml 1%的醋酸中,将其涂抹于直径为1.5cm的石墨电极棒上,厚度1mm,室温下悬挂10小时晾干;再用10%氢氧化钠溶液浸泡10小时该石墨电极,将负载在壳聚糖膜中的醋酸中和,取出水洗至中性,再用乙醇浸泡10小时将壳聚糖膜转化为中性,最后在真空干燥器中干燥24h。
(C)交联固化处理
将壳聚糖膜包裹的石墨电极放入3%戊二醛溶液中,室温下交联1h。
(D)负载催化材料
将交联后的壳聚糖膜包裹的石墨电极放入饱和氯化镍溶液中浸没12小时,使壳聚糖膜上均匀包覆有催化材料氯化镍,取出用蒸馏水清洗,在真空干燥器中干燥24h,取出即得载负有改性壳聚糖膜负载金属氯化镍的石墨电极。
结论:把制备好的交联壳聚糖膜负载催化剂的石墨电极放入模拟反应装置(如图1所示)中进行输出电流测试,在氢气H型能道中通入氢气,在氧气H型能道中通入氧气,电池电极采用纯石墨电极。测试前检查各H型管道的气密性。模拟反应电池装置采用碱性或弱碱性反应介质,反应介质是与氢氧燃料电池所使用的反应溶液相同的,可以是饱和NaHCO2溶液或10%NaOH溶液或35%NaOH溶液或饱和NaCl溶液。在该模拟反应装置中采用启普发生器制氢气,制氧机制氧气。在两个涂覆有改性壳聚糖膜负载金属氯化镍催化材料的石墨电极之间连接上个万用表,该万用表用于检验产生的电流,经测量负载金属氯化物催化材料的电极输出的电流分别为0.12、0.19、0.27(表2所示)。这说明在纯石墨电极上涂有氯化镍的电池比未涂催化材料的电极输出电流提高了至少1倍,或者3倍以上。
实施例2:金属粉末氯化钯作为催化材料
(A)配制氯化钯溶液
将0.01g粉末状氯化钯室温下溶液40ml乙醇溶液中,搅拌均匀,取上层清液备用。
(B)在电极上涂覆壳聚糖膜
将1g壳聚糖溶于30ml 1%的醋酸中,将其涂抹于直径分别为1cm或者1.5cm的石墨电极棒上,室温下悬挂10小时晾干;再用10%氢氧化钠溶液浸泡10小时该石墨电极,将负载在壳聚糖膜中的醋酸中和,取出水洗至中性,再用乙醇浸泡10小时将壳聚糖膜转化为中性,最后在真空干燥器中干燥24h。
(C)交联固化处理
将壳聚糖膜包裹的石墨电极放入3%戊二醛溶液中,室温下交联1h。
(D)负载催化材料
将交联后的壳聚糖膜包裹的石墨电极放入饱和氯化钯溶液中浸没12小时。用蒸馏水清洗,真空干燥器中干燥24h。
把制备得到的石墨电极放入模拟反应装置(如图1所示)中进行输出电流测试,反应介质选取35%NaOH溶液。电极输出的最高电流为0.30mA(如图2所示)。
壳聚糖粉末经醋酸溶解后,涂覆在电池电极上形成一定厚度的壳聚糖膜,该壳聚糖膜表面致密、光滑,由于壳聚糖本身含有大量的氨基和羟基,可以与金属离子之间形成较稳定的键合作用,故壳聚糖膜是金属催化剂良好的载体。
由于壳聚糖(1,4-2-氨基-2-脱氧-β-D-葡聚糖)粉末中含有大量的亲水基团,因此较易溶胀从而导致膜的稳定性较差,对应用造成一定的影响,所以常用交联的方法对其进行改性。在本发明中戊二醛为交联剂。经过交联处理后的壳聚糖膜在碱溶液中稳定,不易脱落,对金属离子的吸附能力较强。未经交联的壳聚糖膜易溶于反应介质中,使得其上所负载的催化剂量减少,从而降低催化效果。交联过量的壳聚糖膜机械性能下降,如交联过量会在电极表面会出现起皮,裂纹等缺陷现象(见表1)。
    表1    交联剂浓度、交联时间、电极尺寸对催化材料吸附的影响
交联剂    交联    电极直径               现象
 浓度     时间      (cm)
 5%      12h       1         膜破碎,不能吸附催化剂
 5%      2h        1         电极表面出现微小裂纹,与催化剂结合不紧密
 5%      2h        1.5       膜起皮,催化剂在电池反应中易脱落
 5%      30min     1         膜与催化剂结合牢固,平整,不易脱落
 1%      2h        1         膜与催化剂结合牢固,平整,不易脱落
 1%      1h        1.5       膜与催化剂结合牢固,平整,不易脱落
由表1中数据可知,壳聚糖膜对催化剂的吸附效果与交联剂的浓度、交联时间,以及石墨电极的尺寸有关。为了达到壳聚糖膜对催化剂的最佳吸附效果,随着交联剂戊二醛浓度的降低,最佳交联时间应相应的增加。对直径均为1cm的壳聚糖膜包裹的石墨电极,当戊二醛浓度为5%时,最佳交联时间为30min;而戊二醛浓度为1%时,最佳交联时间为2h。另外,随着电极直径的增加,交联时间应相应的缩短。采用浓度均为1%的戊二醛为交联剂,直径为1cm的壳聚糖膜包裹的石墨电极最佳交联时间为2h,而直径为1.5cm的壳聚糖膜包裹的石墨电极最佳交联时间则为1h。
将制备得到的包覆有改性壳聚糖膜负载氯化钯或氯化镍的电池负极在作为氢氧燃料电池的反应液中对催化效果进行对比。(如表2)
采用质量百分比浓度分别为10%NaOH、35%NaOH溶液,以及饱和NaHCO3溶液为反应介质,交联改性的壳聚糖膜负载氯化钯、氯化镍包裹的石墨电极在模拟燃料电池装置中进行反应,测得结果如表2。
            表2    不同介质对燃料电池催化效果的影响
  反应介质     催化剂   产生电流I(mA)
饱和NaHCO3     无PdCl2     0.070.13
    NiCl2     0.12
10%NaOH     无PdCl2NiCl2     0.060.190.19
35%NaOH     无PdCl2NiCl2     0.100.300.27
根据不同反应介质在溶液中的电离情况,可以得出饱和NaHCO3溶液中OH-离子浓度为2.1×10-6mol/l,换算成pH值为8.32。饱和NaHCO3溶液以及10%NaOH溶液、35%NaOH溶液的OH-离子浓度、pH值见表3。
          表3    反应介质的溶液中OH-离子浓度及溶液pH值
    反应介质      溶液中OH-离子浓度(mol/l)   -1g(H+)
    NaHCO3                2.1×10-6         8.32
    10%NaOH               2.8                14.44
    35%NaOH               12.8               15.08
由表2和表3可得出反应电流I随溶液OH-离子浓度的增加而增加。在三种不同OH-离子浓度的溶液中,无催化剂时的电流在0.1mA以下,而且波动较小。而加入催化剂以后的反应电流明显增大,且OH-离子浓度越高电流增加越大。这表明用壳聚糖负载催化剂PdCl2、NiCl2对氢氧燃料电池体系有显著的催化效果,随着OH-离子浓度的增加,催化效果大大增强。
另一方面,在相同的反应介质中,PdCl2的催化性能比NiCl2稍高。考虑到PdCl2的价格较高,所以在实际应用中选用NiCl2为宜。实际应用中采用空气作为氧气来源,NaOH溶液容易和空气中的CO2结合,从而使电池性能降低。使用NaHCO3溶液可以避免上述反应发生,但催化效率较低。
利用戊二醛交联的壳聚糖膜负载催化剂PdCl2、NiCl2对氢氧燃料电池中的氢气的氧化有良好的催化效果。反应溶液的pH值越高,反应电流越大,即催化效果越强。利用戊二醛交联的壳聚糖膜负载催化剂可大大降低催化剂和负载膜的成本,是环保型燃料电池发展的新方向。

Claims (7)

1、一种用于氢氧燃料电池的催化材料,其特征在于:催化材料为改性壳聚糖膜负载金属氯化物材料。
2、一种用于氢氧燃料电池的催化材料的制备方法,其特征在于:催化材料是涂覆在电池电极上的,其制备工艺为:
(A)配制金属氯化物溶液
将粉末状金属氯化物材料在室温下溶于乙醇溶液中,其金属氯化物与乙醇的质量比为1∶30~100,取上层清液备用;
(B)在电极上制壳聚糖膜
称取壳聚糖粉末,并溶于1%的醋酸中,搅拌均匀,并将其涂抹于电池电极上,室温下悬挂10~24h晾干;
然后,将晾干的载负有壳聚糖粉末的电池电极浸泡在10~40%氢氧化钠溶液中10~30min,取出经水洗至中性;
然后,再将载负有壳聚糖粉末的电池电极浸泡在乙醇中10~30min,取出后在真空干燥器中干燥10~24h;
(C)交联固化
将上述经(B)处理后的电池电极浸泡在交联剂溶液中,其交联剂浓度0.1%~10%,在室温下交联20~60min;
(D)负载催化材料
将上述经(C)处理后的电池电极浸泡在上述(A)配制的金属氯化物溶液中3~12h,用蒸馏水清洗,然后,在真空干燥器中干燥10~24h,取出,即得到在电池电极上浸泡有改性壳聚糖膜负载金属氯化物材料的催化材料。
3、根据权利要求2所述的氢氧燃料电池的催化材料的制备方法,其特征在于:所述的金属氯化物可以是氯化钯或氯化镍。
4、根据权利要求2所述的氢氧燃料电池的催化材料的制备方法,其特征在于:所述的交联剂可以是戊二醛或乙二醛或表氯醇或硫酸。
5、根据权利要求2所述的氢氧燃料电池的催化材料的制备方法,其特征在于:涂抹在电池电极上的壳聚糖膜厚度为0.1毫米~2毫米。
6、根据权利要求1所述的氢氧燃料电池的催化材料,其特征在于:涂有催化材料的电池电极用作氢氧燃料电池的负极。
7、根据权利要求1所述的氢氧燃料电池的催化材料,其特征在于:使氢氧燃料电池输出的电流增大2~5倍。
CNB2004100863002A 2004-11-01 2004-11-01 一种用于氢氧燃料电池的催化材料及其制备方法 Expired - Fee Related CN1275344C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100863002A CN1275344C (zh) 2004-11-01 2004-11-01 一种用于氢氧燃料电池的催化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100863002A CN1275344C (zh) 2004-11-01 2004-11-01 一种用于氢氧燃料电池的催化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN1604368A true CN1604368A (zh) 2005-04-06
CN1275344C CN1275344C (zh) 2006-09-13

Family

ID=34667091

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100863002A Expired - Fee Related CN1275344C (zh) 2004-11-01 2004-11-01 一种用于氢氧燃料电池的催化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN1275344C (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444941C (zh) * 2007-03-27 2008-12-24 天津大学 壳聚糖与表面改性y型沸石杂化液体分离膜的制备方法
CN101807701A (zh) * 2010-04-23 2010-08-18 上海理工大学 一种直接甲醇燃料电池阳极纳米催化剂及其制备方法
CN105461968A (zh) * 2015-12-08 2016-04-06 福州大学 一种淀粉/壳聚糖固体电解质薄膜的制备方法
CN105655603A (zh) * 2015-12-31 2016-06-08 北京化工大学 一种燃料电池催化剂及其制备方法
CN108232255A (zh) * 2016-12-19 2018-06-29 天津艾博胜环保科技有限公司 金属半燃料电池用壳聚糖膜电极的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3119713B1 (fr) * 2021-02-05 2022-12-30 Univ Grenoble Alpes Composition pour la fabrication d’électrode, électrode et procédé associé

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444941C (zh) * 2007-03-27 2008-12-24 天津大学 壳聚糖与表面改性y型沸石杂化液体分离膜的制备方法
CN101807701A (zh) * 2010-04-23 2010-08-18 上海理工大学 一种直接甲醇燃料电池阳极纳米催化剂及其制备方法
CN105461968A (zh) * 2015-12-08 2016-04-06 福州大学 一种淀粉/壳聚糖固体电解质薄膜的制备方法
CN105461968B (zh) * 2015-12-08 2018-01-12 福州大学 一种淀粉/壳聚糖固体电解质薄膜的制备方法
CN105655603A (zh) * 2015-12-31 2016-06-08 北京化工大学 一种燃料电池催化剂及其制备方法
CN105655603B (zh) * 2015-12-31 2018-06-12 北京化工大学 一种燃料电池催化剂及其制备方法
CN108232255A (zh) * 2016-12-19 2018-06-29 天津艾博胜环保科技有限公司 金属半燃料电池用壳聚糖膜电极的制备方法

Also Published As

Publication number Publication date
CN1275344C (zh) 2006-09-13

Similar Documents

Publication Publication Date Title
CN1113420C (zh) 燃料电池的活化方法
CN1719648A (zh) 担载催化剂及利用它的燃料电池
CN1786047A (zh) 聚合物电解质和使用其的燃料电池
JP4575330B2 (ja) 燃料電池用アノード、その製造方法およびそれを備えた燃料電池
CN1783556A (zh) 燃料电池电极和膜电极组件以及燃料电池系统
CN1694288A (zh) 用于燃料电池的膜电极组件及包括它的燃料电池系统
CN100441291C (zh) 活性炭纤维载铂电催化剂及其制备方法
CN113540481B (zh) 一种质子交换膜燃料电池铂钴合金碳催化剂及其制备方法
CN111261878B (zh) 含水凝胶的催化剂浆料及制得的催化层和燃料电池电极
CN113097502A (zh) 一种以氮掺杂碳为载体的碳载铂催化剂的制备方法
CN1960042A (zh) 一种直接甲醇燃料电池阴极非贵金属催化剂及其制备方法
CN109216716B (zh) 一种高Pt载量的燃料电池用Pt/C催化剂的制备方法
CN113611874A (zh) 复合碳载体合金催化剂及其制备方法与应用
CN1853296A (zh) 用于直接甲醇燃料电池的膜电极单元及其制造方法
CN100341181C (zh) 燃料电池的催化剂及包含它的燃料电池
CN114583191A (zh) 一种电沉积制备直接甲醇燃料电池阳极催化剂的方法
CN1889296A (zh) 用于燃料电池的聚合物膜及其制备方法
CN1171671C (zh) 碳纳米管载铂钌系列抗co电极催化剂的制备方法
CN101162780A (zh) 一种直接甲醇燃料电池阳极催化剂及其制备方法
CN1604368A (zh) 一种用于氢氧燃料电池的催化材料
CN114361479A (zh) 一种高输出功率燃料电池及其制备方法
CN1289550C (zh) 包含端磺酸基的聚合物、聚合物电解液及采用它的燃料电池
CN1632975A (zh) 质子交换膜燃料电池阴极电催化剂及其应用
CN1259744C (zh) 碳酸氢铵造孔剂及其膜电极的制备方法
CN114725457A (zh) 一种加快局域氧气传质的膜电极制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee