CN1585729A - 通过离心烧结进行的取向材料或复合材料的制造 - Google Patents

通过离心烧结进行的取向材料或复合材料的制造 Download PDF

Info

Publication number
CN1585729A
CN1585729A CNA028222822A CN02822282A CN1585729A CN 1585729 A CN1585729 A CN 1585729A CN A028222822 A CNA028222822 A CN A028222822A CN 02822282 A CN02822282 A CN 02822282A CN 1585729 A CN1585729 A CN 1585729A
Authority
CN
China
Prior art keywords
orientation
particle
ceramic
base
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028222822A
Other languages
English (en)
Other versions
CN1255359C (zh
Inventor
渡利广司
中村和雄
佐藤公泰
杵鞭义明
内村胜次
石黑裕之
森光英树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinto V Cerax Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Sinto V Cerax Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001344947A external-priority patent/JP4135781B2/ja
Priority claimed from JP2002206059A external-priority patent/JP4094362B2/ja
Application filed by Sinto V Cerax Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Sinto V Cerax Ltd
Publication of CN1585729A publication Critical patent/CN1585729A/zh
Application granted granted Critical
Publication of CN1255359C publication Critical patent/CN1255359C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G29/00Compounds of bismuth
    • C01G29/006Compounds containing, besides bismuth, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/006Compounds containing, besides lead, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • C04B35/4525Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide also containing lead oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/583Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/028Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles by means of an interlayer consisting of an organic adhesive, e.g. phenol resin or pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/22Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/24Aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供一种通过离心烧结使氧化物、氮化物、碳化物和硼化物中一种或两种以上具有各向异性的粒子或晶体的陶瓷粒子或晶体取向而成的、粒子取向或晶体取向的陶瓷烧结体和无机膜的制造方法,其制品,以及将膜状材料或块状材料牢固粘着在基料样品表面上的复合粘着材料的制造方法,和被赋予预定功能和性能的复合粘着材料。

Description

通过离心烧结进行的取向材料或复合材料的制造
技术领域
本发明涉及一种在加热过程中通过对材料施加离心力负荷而赋予预定功能和性能的各种材料的制造方法。更详细地讲,本发明的第一种实施方式涉及一种使具有内在各向异性的粒子或结晶沿着一个方向取向的陶瓷烧结体和无机膜及其制造方法。
而且本发明的第二种实施方式涉及一种将材料牢固地粘着在基料样品表面上的粘着材料的制造方法以及该粘着材料,将例如有机物、金属、陶瓷等材料牢固地粘着在例如塑料、金属、单晶、陶瓷、玻璃等基料样品表面上的粘着材料的制造方法,以及这些粘着材料。
本发明可以用于提供这样一种新技术,即制造一种使粒子取向或晶体取向的陶瓷烧结体和无机膜的新技术,以及对材料不直接赋予机械压力负荷,在压力手段与材料非接触的情况下,通过对材料施加预定压力负荷制造一种使材料牢固地粘着在基料样品表面上,而且可以赋予预定功能性和性质的复合粘着材料的新技术。
背景技术
首先说明本发明的第一种实施方式。
粒子取向或晶体取向的陶瓷烧结体的制造方法,大体上通常可以分为以下两类。
(1)在成形过程中使具有各向异性的陶瓷粒子在成形体内取向后进行烧结的方法。
这种方法中,为了使具有各向异性的陶瓷粒子在成形体内取向,可以采用刮刀法和挤压成形法等。最近也试验了一种利用物质内的晶体磁各向异性,通过在成形时施加磁场使晶体在成形体内取向的方法。通过在大气中或特定的气氛气体中对事先这样取向的粒子或晶体的成形体进行烧结,能够制造出粒子取向或晶体取向的陶瓷烧结体。
(2)一边从一个方向或两个方向对具有各向异性的陶瓷成形体施加压力负荷,一边进行加热或烧结的方法。
作为这种方法的代表性方法,可以举出热压烧结法、锻造烧结法和烧结锻造法(Sinter-forging)等。这些方法都是一边从一个方向或两个方向对含有具有较大的各向异性的晶体或各向异性形状的陶瓷粒子的成形体或烧结体施加压力负荷,一边进行加热或烧结的方法,均能简单制造取向材料。
在热压烧结或者锻造烧结的情况下,都是将盛有原料粉末的模具置于炉中,或者边施加机械压力负荷边加热,或者达到一定温度后加压。
烧结锻造法,一般是将含有具有较大各向异性的晶体或各向异性形状的陶瓷粒子的成形体烧结后,从一个方向施加机械压力负荷而获得取向材料的一种方法。而且已知在机械压力负荷大的场合下,粒子的取向度或晶体的取向度增高。
以下说明已有的无机薄膜的制造方法,一般可以起始原料的不同而大致分为液相法和气相法。
作为液相法的代表性方法,可以举出溶胶-凝胶法。这种方法是,将醇盐溶液等混合成预定组成,将得到的混合溶液涂布在Si和SrTiO3等单晶基板上,通过在电炉中对其进行热处理得到无机膜的一种方法。对于这种溶胶-凝胶法等而言,通常使用在一个方向具有强晶体方向的单晶基板的情况下,通过基板上的晶核生长、外延生长可以得到具有与目的陶瓷膜晶格常数相等的,或者具有相近晶格常数的粒子取向或晶体取向的无机膜。而且最近也有报告指出,以单晶粒子作为种晶,通过事先使晶体方向一致地置于基板上,制造晶体高度取向的膜的技术。
为了制造粒子或晶体高度取向的陶瓷烧结体和无机膜,就上述的通常制造方法而言可以举出以下几个问题。其中所谓粒子高度取向和相同晶体取向,是指在作为对象的粒子或晶体中已经取向的比例大的情况。
(1)刮刀法,通常是将陶瓷粉末制成由溶剂、增塑剂和结合剂等添加剂组成的浆液,使其从被称为刮刀的刀刃之间流出,使其落在载带膜上边干燥边移动,制成数十~100微米的陶瓷片材的一种方法。将10~100片得到的陶瓷片材层叠起来,除去该层叠体中所含的粘结剂,制成陶瓷成形体。本方法中,具有各向异性的粒子由于从上述的刀刃之间流出时取向,所以为了使其在成形体内高度取向,重要的一点是将陶瓷片材的厚度减薄。其结果,要得到厚度大的层叠成形体,必须大幅度增加片材的层叠片数,这是不利的。此外本方法的制造过程中还有以下问题,即制造所需的时间长,而且要制出无缺陷的片材需要高度熟练的操作人员。
(2)挤压成形法,是将由粉末、溶剂、增塑剂和结合剂等添加剂组成的可塑性陶瓷坯料用螺旋挤压机等从具有预定形状的塑模挤出制成成形体。此时,具有针状、棒状、圆盘状、板状等各向异性形状的粒子,将会相对于挤压方向平行取向。但是,粒子在挤压成形体的表面与内部的取向度产生很大差异,在加热或烧结过程中却存在容易出现烧结体形状的变形、因龟裂而破裂以及容易产生气泡等问题。
(3)利用材料晶体磁性的各向异性的晶体取向方法,要使晶轴的磁性各向异性度和取向可以由附加的磁场力来决定。因此,当由于材料不同使晶轴的磁各向异性度小的情况下以及产生磁场用的磁场小的情况下,晶体就难于取向。此外由于磁场发生装置昂贵,而且还需要维护和安全管理费用,所以一般不适于作为生产设备使用。
(4)热压烧结、锻造烧结和烧结锻造等方法,虽然是能够在烧结时使陶瓷烧结体内的粒子或晶体取向的方法,但是这些方法都需要使用挤压棒和模具对样品加压,所以使接触坯料的表面产生污染,而且还容易因污染而生成副产物。因此,必须对煅烧后的样品表面进行抛光和切削,因而增加制造成本。此外,一旦考虑煅烧后进行抛光和切削,这些方法都存在不适于制造仅由数十~数mm厚度薄膜组成的取向膜的问题。
本发明的第一种实施方式正是为解决上述问题而提出的,目的在于提供一种不需要熟练操作和磁场发生装置等特殊装置,或者不需要切削后加工,仅用简单操作就能制造在表面和中心部分具有均一取向度的粒子取向或晶体取向的陶瓷烧结体和无机膜的方法,以及陶瓷烧结体和无机膜。
以下说明本发明的第二种实施方式。
一般而言,从赋予基料样品新性能和材料性能的融合化和复合化,以及从提高耐热性或耐冲击性的观点来看,异种材料之间的粘着或同种材料彼此之间的粘着是一种重要的技术。异种材料之间的粘着或同种材料彼此之间的粘着,通常可以采用以下两种方法中的任何方法:(1)将中间材料插入材料之间的方法,和(2)对粘着材料施加机械压力负荷的方法。这些方法中,上述第(1)种方法通常采用能在低熔点下形成液相的或者能在低温下软化的材料作为粘着材料。此外,为了缓和因材料热膨胀性能不同而产生的应力,可以在粘着材料之间夹以应力缓和材料的情况下进行粘着。
然而,使用这种粘着材料和应力缓和材料的情况下,将会产生使这些粘着工序变得复杂的问题,以及部分粘着材料或应力缓和材料会变成破坏起点等问题。而且虽然一直大量使用含铅材料作为低熔点粘着材料,但从水质污染、环境污染和有害于健康的观点来看,近年来正逐渐限制含铅材料的使用。其次关于上述(2)的方法,当对数厘米以上大小的样品间进行粘着的情况下,可以采用热压烧结装置和压接装置进行粘着。这种情况下,虽然有不使用粘着材料和应力缓和材料的优点,但是能够进行粘着的样品大小却受热压机的挤压棒尺寸的限制,因与挤压棒的接触面被污染而必须有对其进行加工将其除去的工序,粘着材料的厚度受到限制,以及很难对具有复杂形状的样品表面进行粘着等一系列问题。
本发明的第二种实施方式正是为了解决上述问题而提出的,目的在于提供一种将材料牢固粘着在基料样品表面的方法及其制品。
发明内容
本发明人等为解决上述问题而进行深入研究后发现,加热时利用离心力负荷能够得到粒子取向或晶体取向的陶瓷烧结体和无机膜,因而完成了本发明。
也就是说,本发明提供一种粒子取向或晶体取向的陶瓷烧结体的制造方法,其特征在于在加热过程中,对含有各向异性形状的陶瓷粒子的陶瓷成形体或含有各向异性晶体的陶瓷粒子的陶瓷成形体施加离心力负荷,使所述的陶瓷粒子取向。
而且本发明还提供一种无机膜的制造方法,其特征在于在单晶基板上,或者在蒸镀了金属或陶瓷的基板上形成前体膜,加热过程中施加离心力负荷,使内在的各向异性粒子或各向异性晶体取向。
本发明中,可以在加热过程中适当采用施加10~700,000G的离心力负荷条件,以及可以在加热过程中适当采用100~1900℃温度条件。
此外,本发明也提供一种陶瓷烧结体,其特征在于是利用上述陶瓷烧结体制造方法制造的、粒子取向或晶体取向均以预定方向取向的。此外,本发明提供一种无机膜,其特征在于是利用上述无机膜制造方法制造的、粒子取向或晶体取向均以预定方向取向的。
不仅如此,本发明人等鉴于上述已有技术,为了开发出一种全新材料粘着技术,使其从根本上解决上述已有技术中存在的各种问题,以此为目标而进行了深入研究,在研究的过程中发现,对材料加热时通过施加离心力负荷,能够容易制造出使材料牢固地粘着在作为对象的基料样品表面上的复合粘着材料,又经进一步研究,完成了本发明。
也就是说,本发明提供一种将材料牢固粘着在基料样品表面上的粘着方法。
而且本发明还提供一种利用上述方法将材料牢固粘着在基料样品表面的复合材料的制造方法。
此外,本发明也提供一种利用上述方法使材料与压力手段非接触的条件下,通过对材料施加预定压力负荷制造的、可以赋予预定功能和特性的粘着材料,以及作为构成要素含有所述的粘着材料的复合部件。
以下参照图1说明本发明的第一种实施方式。
本发明的陶瓷烧结体的制造方法,例如是以氧化物、氮化物、碳化物和硼化物中一种或两种以上各向异性粒子或晶体作为对象的,对含有具有各向异性形状的陶瓷粒子的陶瓷成形体或者含有具有各向异性晶体的陶瓷粒子的陶瓷成形体,优选在100~1900℃温度下加热的过程中,优选施加10~700,000G离心力负荷下,使所述的陶瓷粒子取向。
这种情况下,作为具有各向异性形状和各向异性晶体的陶瓷粒子,例如有Al2O3、莫来石(3Al2O3 2SiO2)和Sr3Ti2O7等氧化物,β-Si3N4和h-BN等氮化物,以及α-SiC等碳化物等。
而且本发明的无机膜的制造方法,是在单晶基板上,或者在蒸镀了金属或陶瓷的基板上形成前体膜,对其,优选在100~1900℃温度下加热的过程中,优选施加10~700,000G离心力负荷下,使内在的例如氧化物、氮化物、碳化物和硼化物中一种或两种以上各向异性粒子或各向异性晶体取向。
其中在本发明中,所谓各向异性是指与各向同性相对的用语,在本发明中则是用于特别表示在特定方向上长度不同、面积不同、厚度不同的形状上具有特征性质的用语,具体讲是用于表示针状、棒状、箔状、板状等的用语。
而且能适用本发明的装置,优选采用记载在特开2002-193680号公报上的烧结装置。这种烧结装置,是一边对由陶瓷或金属粉末制成的成形体或前体等处理材料施加离心力负荷一边加热烧结,获得烧结体和膜用的离心烧结装置。
这种装置备有安装处理材料用的能够以高速旋转的工件、加热工件的加热部分、加热部分的温度控制部分、使工件旋转的旋转部分、旋转速度控制部分、真空磁性密封轴承部分以及密闭用的盖体。
于是采用这种离心烧结装置,能够在加热装置内使工件高速旋转而产生离心力,通过一边对安装在工件内的样品(处理材料)施加该离心力负荷一边加热煅烧,制造内在的取向性粒子或取向性晶体产生粒子取向或者晶体取向的陶瓷烧结体或无机膜。
本发明中,若以作为对象的陶瓷烧结体的情况进行说明,则应当首先准备含有具有各向异性形状的陶瓷粒子的陶瓷成形体或者含有具有各向异性晶体的陶瓷粒子的陶瓷成形体。这些成形体有由型模赋予形状的、CIP成形的、利用锭带浇注(テ一プキヤステイング)、丝网印刷得到的片材、以及该片材的层叠品等,将这些成形体容纳在像上述那样的离心烧结装置内高速旋转的工件中,通过一边高速旋转一边加热,使上述内在的陶瓷粒子取向,得到粒子取向或晶体取向的烧结体。
这种取向的原理是:通过对处于处理材料内具有各向异性的陶瓷粒子沿着半径方向施加很大离心力,粒子为获得稳定位置而取向。例如,如图1所示,在被工件11容纳的处理材料12中,施加离心力负荷之前,内在的板状粒子12a如图1(A)所示排列得不规则,但是当对其施加离心力负荷时,如图11(B)所示,板状粒子12a为获得稳定位置板面就会相对于离心力垂直的方向互相排列,在本身是处理材料12的成形体和烧结体内将会取向。这种场合下,取向性形状不仅有针状、棒状、板状和圆盘状的粒子,而且还包含晶须等。
关于本发明中作为对象的取向膜制造中的前体膜,对其制造方法并无特别限制,但是重要的是在单晶基板上或者在蒸镀了金属或陶瓷的基板上形成没有龟裂的前体膜。作为前体膜的制造方法可以采用前体膜制造时广泛使用的以溶液为起始原料的溶胶-凝胶法。这种场合下前体膜可以采用以下两种方法制造。即第一种方法是将预定基板浸渍在溶胶溶液中的蘸涂法,第二种方法是将基板放置在圆盘上涂布溶胶溶液的旋涂法。
一旦在加热温度下将离心力负荷施加在这样得到的前体膜上,这种前体膜就会对基板施加很大的应力,此时产生的应力可以促进前体膜与基板之间的反应,同时促进基板上核的生成和外延生长。其结果能够制造出由晶体取向度或粒子取向度高的取向膜形成的无机膜。
正如上述说明的那样,本发明的基本原理是,将进行烧结的成形体或基板置于高速旋转的工件中,在加热的过程中通过对样品表面施加离心力而得到取向的烧结体和膜。由上述离心力产生的力优选为10~700,000G,更优选为1,000~10,000G。
例如将高速旋转的圆盘形工件半径设定为8厘米,若将处理材料容纳配置在该工件圆周附近,则转数与离心力之间的关系如下。
转数500rpm:22G、转数1000rpm:89G、转数1500rpm:201G、转数2000rpm:357G、转数3000rpm:804G、转数5000rpm:2,236G、转数10,000rpm:8,944G、转数20,000rpm:35,776G、转数50,000rpm:223,600G。
这些力比通常热压烧结施加的力大,其结果陶瓷成形体中各向异性形状粒子的移动和旋转变得容易,或者可以促进基板与前体膜之间的反应,使陶瓷和无机膜内的粒子取向和晶体取向成为可能。
而且本发明方法与热压烧结法等不同,由于在不接触下施加压力负荷,所以可以抑制烧结后样品表面的污染或副产物的生成,无需对样品表面进行抛光和切削。因此可以说这是一种不但适于处理膜状的处理材料的方法,而且还是能极有效产生粒子取向和晶体取向的一项技术。
本发明中对于粒子取向和晶体取向成为可能的加热温度并无特别限制。其理由是因为物质的扩散速度因处理对象材料的种类而有很大差别。但是对于粒子取向或晶体取向而言,在无机膜的场合下,通常优选100~1500℃加热温度,而在陶瓷烧结体的场合下通常优选500~1900℃加热温度。其理由是在无机膜的场合下由微粒组成,表观上物质的扩散速度较快,在更低温度下就能取向的缘故。另一方面,对于陶瓷烧结体而言,由于烧结的后期阶段烧结体内的粒子结合可以促进粒子取向和晶体取向,所以需要高温的缘故。
在以上详细叙述的本发明方法的说明的同时,不但说明了利用上述陶瓷烧结体制造方法制造的粒子或晶体以预定方向取向的陶瓷烧结体,而且还说明了利用上述无机膜制造方法制造的粒子或晶体以预定方向取向的无机膜。
以下说明本发明的第二种实施方式。
本发明是要制造提供一种复合粘着材料,其特征在于所述的复合粘着材料是将膜状材料或块状材料放置在作为对象的基料样品表面上,通过对其在加热时施加离心力负荷,利用将膜状材料和块状材料牢固地粘着在基料样品表面上而被赋予预定功能和特性。这种场合下,所述的膜状材料例如可以举出硬质膜、导电膜、绝缘膜、压电膜等,但是不限于此。这些材料例如可以采用涂布法、丝网印刷法、溶胶-凝胶法、溅射法等方法将其设置在基料样品表面上。而且所述的块状材料,例如可以举出具有耐热性的陶瓷或耐热合金等,但不限于此。利用适当手段可以将这些材料设置在基料样品表面上。
本发明中作为对象的基料样品,例如可以举出塑料、金属、单晶、陶瓷、玻璃等,当然并不限于这些。作为粘着材料,例如可以举出有机物、金属、陶瓷等,当然并不限于这些,只要与其具有相同效果的都同样可以使用。本发明中,将基料样品与粘着材料适当组合,能够对基料样品赋予所需的功能和特性。本发明中作为基料样品和膜状或块状材料的适当实例,例如可以举出将利用溶胶-凝胶法制造的无机膜粘着在单晶基板上的复合材料、将陶瓷类硬质膜粘着在塑料基体上的复合材料等。但是这些只是作为例示本发明的代表性实例用的,本发明并不限于这些。
本发明的基本原理是:例如将基料样品和要进行粘着的样品放置在高速旋转的圆盘或由转子构成的粘着装置的预定位置上,通过对这些样品施加离心力负荷而使膜状材料和块状材料牢固地粘着在本身是基料的样品上。
这种场合下,施加负荷的离心力F可以用下式表示:
F=mrω2
式中,m是材料的质量,r是从圆盘或转子的中心至样品的位置,ω是圆盘或转子的角速度。从上式可以看出,材料的比重越大、从圆盘或转子的中心至样品间位置越长、圆盘或转子角速度越大,负荷的离心力也越大。此外由于圆盘或转子角速度与圆盘或转子的转数成正比,所以在圆盘或转子越高速旋转,离心力也越大。因此要得到具有高粘着力粘着材料的场合下,应当使从旋转的圆盘或转子的中心至样品间的距离尽量加长,使圆盘或转子的转数增大。本发明中,这些转数处于500~100,000rpm范围内是适当的。
加热时施加离心力负荷越大,材料之间的粘着力也越大,但是正如上式所示的那样,由于施加的离心力负荷取决于将要粘着材料的质量、从圆盘或转子中心至样品间的距离、以及圆盘或转子的转数,所以例如在样品质量小的场合下,通过延长从圆盘或转子中心至样品间的距离、增加圆盘或转子的转数,能够产生粘着所需的离心力。
本发明中,粘着所需的离心力为10-10~108N是适当的。其中关于离心力的最低值,例如在粉末之间粘着的场合下由于无需大离心力,所以优选10-10N。而且关于其最高值,由于有些材料需要同时采用热压和压力负载进行粘着,所以优选108N。
图7表示利用压力负荷进行材料粘着的方法的示意图。利用高速旋转可以对被以圆盘半径方向产生的离心力粘着的材料(膜状材料或块状材料)施加负荷。借助于这种离心力可以将膜状材料或块状材料牢固地压接在基料样品(基板)的表面上,同时由于基料样品与材料之间的表面反应等而使其粘着性提高。
本发明方法,其特征在于是在材料与压力手段非接触的状态下对材料施加预定压力的,因而能抑制烧结后样品表面的污染和副产物的生成,能够在清洁的环境下得到膜状材料或块状材料被牢固粘着在基料样品表面上的复合粘着材料。
本发明对于为将膜状材料或块状材料牢固粘着在基料样品表面上的加热温度并无特别限制。这是因为物质的扩散速度以及材料之间的界面反应性因作为对象的材料种类而有很大差别的缘故。例如正如后述的实施例那样,当将SiO2膜粘着在不锈钢基板上的情况下,煅烧温度可以采用400℃,这是根据作为对象的材料种类而适当决定的条件。本发明中,通过适当选择这些作为对象的材料种类,能够合成具有所需功能和特性的复合粘着材料。
本发明方法中使用这样一种基料样品和膜状或块状材料粘着用粘着装置,其中至少包括具有可以以预定转速高速旋转的功能的驱动手段,利用该驱动手段能够旋转的设置的圆盘或转子,和对于能够将在这些圆盘或转子上的圆周部分形成的基料样品(基板)具有保持功能的保持手段等构成要素。其具体构成可以具体举出:例如具有能以高速旋转的样品台的工件部分、加热该工件部分的加热部分、控制该加热部分加热温度的温度控制部分、使上述工件部分旋转的旋转部分、控制该旋转部分旋转速度的旋转速度控制部分、真空磁性密封轴承部分和密封用的盖体。但是并不限于这些部分,本发明中可以根据膜状或块状材料的种类、形态、使用目的等任意设计这些装置形式后使用。
本发明特征在于,通过将膜状或块状材料形成或放置在基料样品表面上,在对其加热过程中施加离心力负荷,制造将这些材料牢固地粘着在基料样品表面上的复合粘着材料,在对上述基料样品和材料的加热和烧结过程中,通过对其施加离心力负荷来制造和提供一种被赋予了预定功能和特性的复合粘着材料。膜状材料或块状材料被上述离心力牢固地压接在基料样品表面上,同时产生界面反应等,在其共同作用下由于材料的粘着性增强,因而可以根据基料样品以及膜状材料和块状材料的种类、使用目的等通过适当调整加热和烧结条件、施加的离心力负荷等,制造具有所需的粘着性、功能和特性的复合粘着材料。本发明中,由于能在材料与压力手段非接触状态下对材料施加预定压力负荷,所以能够避免已有方法中不可避免产生的、加热和煅烧后样品表面的污染和副产物的生成,因而能够在清洁环境下制造上述粘着材料。
附图说明
图1是表示离心负荷施加前(A)、后(B)粒子取向的示意图。
图2是实施例中使用的Sr3Ti2O7单晶粉末的电子显微镜照片。
图3是实施例1得到的Sr3Ti2O7烧结体的X射线衍射图案(离心力负荷有:A,无:B)。
图4是实施例1得到的Sr3Ti2O7烧结体的电子显微镜照片。
图5是实施例2得到的(Bi,Pb)-2223陶瓷的X射线衍射图案(离心力负荷有:(1),无:(2))。
图6是实施例3得到的BaTiO3无机膜的X射线衍射图案(离心力负荷(1),有;(2),无)。
图7是表示借助于加热时施加离心力负荷将样品(膜状材料或块状材料)粘着在基料样品上的方法。
图8是表示在针上施加的载荷(针尖载荷)与在针上产生的反作用力之间的关系。
(符号的说明)
11...工件
12...处理材料
12a...板状粒子
具体实施方式
以下利用实施例具体说明本发明,但是本发明却不受以下实施例的任何限制。
实施例1
具有层叠钙钛矿型结构的Sr3Ti2O7(Ruddlesden-Propper typeStructure)由于具有很强的各向异性(晶格常数:a轴0.390nm,c轴2.038nm),所以借助于离心力负荷能够制造高度取向的陶瓷烧结体。其中使利用熔融盐法制备Sr3Ti2O7单晶粉末,将其加入Sr3Ti2O7原料粉末之中成形为粒状,对其成形体施加离心力负荷,制成具有高度晶体取向的陶瓷烧结体。
首先将Sr3Ti2O7原料粉末,与按照3∶2摩尔比称量的碳酸锶(SrCO3)和二氧化钛(TiO2)原料一起用乙醇作溶剂混合后,使用对其经过1200℃温度下加热者。
而且按照以下方法制备了Sr3Ti2O7单晶粉末。以3.2∶2的摩尔比称量SrCO3和TiO2原料,对其进行混合干燥。将得到的混合粉末(SrTiO3+TiO2)与氯化钾(KCl)按重量1∶1进行混合和干燥,将得到的粉末置于氧化铝坩埚中,用氧化铝盖子盖好,用氧化铝水泥密封,在1200℃下烧结4小时。从坩埚中取出经过烧结的粉末,用温水洗涤数10次,得到了图2所示的板状Sr3Ti2O7单晶粒子。
将这样得到的板状Sr3Ti2O7单晶粒子与原料粉末以体积比5∶95称量后,对其进行混合和干燥。将得到的粉末成形为颗粒状,将其置于离心烧结炉的工件上。使工件以10,000rpm旋转,然后以10℃/分升温速度加热至1200℃,保持30分钟,炉冷。作为对比试验,将同样制备的成形体置于离心烧结炉中,不使工件旋转并在上述条件下实施了热处理。
以下图3表示含有用上述方法得到的Sr3Ti2O7单晶粒子的陶瓷烧结体表面的X射线衍射结果。
使成形体以10,000rpm旋转的情况(图3中(A)),(0010)面出现强峰值,与其相比未实施旋转处理的情况(图3(B))下未能观察到(0010)面的强峰值。若观察施加了这种负荷的烧结体的微观结构,则如图4所示可以确认,以板状粒子为核,Sr3Ti2O7相从该处外延生长。据认为,这是由于在加热下施加了离心力,板状粒子相对于离心力负荷方向垂直方向取向,而且由于添加的Sr3Ti2O7原料以板状Sr3Ti2O7单晶粒子为核外延生长,因而得到了晶体高度取向的Sr3Ti2O7烧结体。
实施例2
作为代表性超导陶瓷的(Bi,Pb)-2223,由于具有很强各向异性的晶体,所以可以在烧结时利用离心力负荷制备高度取向性的材料。
使用氧化铋(Bi2O3)、氧化铅(PbO)、碳酸锶(SrCO3)、碳酸钙(CaCO3)、氧化铜(CuO)作为原料,以组成比为Bi1.80Pb0.34Sr1.87Ca2.02Cu3.0Oy将粉末混合后进行干燥。得到的粉末在空气中于700℃下加热30分钟。粉碎处理加热后的粉末使之微粉化,放入溶剂(主要成分是聚乙二醇)中,经过粘度调节后制成糊料。
将得到的糊料置于丝网上,在Ni基板上进行丝网印刷。印刷后的基板在干燥炉中于150℃下加热,将其设置在离心烧结炉的工件上。以10,000rpm转数使工件旋转,然后以10℃/分升温速度加热至1000℃,保持30分钟,炉冷。作为对比试验,将成形体置于离心烧结炉中,不使工件旋转在上述条件下实施了热处理。
对处于这样得到的基板上的陶瓷烧结体表面进行X射线衍射分析的结果示于图5之中。以10,000rpm转数处理后(图5(1))(0010)面出现强峰值,与之相比未进行旋转处理的情况(图5(2))下未能观察到(0010)面的强峰值。从上述结果可以理解,施加离心力负荷对于超导陶瓷的粒子取向和晶体取向是有效的。
实施例3
通过对用溶胶-凝胶法得到的前体膜加热时施加离心力负荷,得到了晶体高度取向的陶瓷膜。这里以BaTiO3膜为例说明如下。
为了制作BaTiO3膜,首先制备了涂布溶液。原料的调合量为:金属钡0.03、异丙醇钛0.03、乙酰丙酮7.0×103、水0.09、乙酸1.21、异丙醇100(均为摩尔)。
原料的调合在手套箱中进行,是在减压后流过干燥氮气的情况下进行的。将异丙醇加入烧瓶中,再放入细小的金属钡片,加热烧瓶制成异丙醇钡的异丙醇溶液。向此溶液中添加异丙醇钛溶液,进而添加乙酰丙酮,在手套箱中80℃温度下搅拌大约3小时。然后滴加乙酸和水的异丙醇溶液,得到了涂布液。
为了得到晶体取向的BaTiO3膜,使用显示强(100)面的SrTiO3基板。将基板浸渍在涂布液中,以0.1毫米/秒速度向上拉出后在100℃温度下干燥此基板。将涂布和干燥过程重复五次后,以此基板作为离心烧结处理用样品。将制膜后的基板安装在离心烧结装置的工件上之后,一边使该工件以10,000rpm转速旋转,一边以10℃/分钟升温速度加热至600℃并保温5分钟,得到了膜厚大约1微米的BaTiO3膜。而且为了对比,在没有旋转和同样条件下将制膜后的基板加热。
图6表示得到基板表面的X射线衍射结果。以10,000rpm转速处理的场合下(图6(1))(200)面显示强峰,与之相比未经旋转处理的场合下(图6(2))的场合下,没有观察到(200)面的强峰。从上述情况可以理解,通过对溶胶-凝胶法得到的无机膜在加热下施加离心力负荷,能够有效地制造粒子取向或晶体取向的膜。
实施例4
本实施例就制备在不锈钢基板上牢固粘着SiO2膜的复合粘着材料实例加以说明。
1.粘着材料的制备
向Si(OC2H5)4(=TEOS)中加入n-C4H9OH后混合,向其中添加水解所需的水和将作催化剂用的磷酸溶解在乙醇中的溶液。其中关于成膜用溶液的调合组成,按照摩尔比计TEOS∶n-C4H9OH∶C2H5OH∶H2O∶H3PO4=1∶7∶7∶7∶0.05。利用浸涂法将此溶液涂布在不锈钢基板上,以此作为试验材料(样品厚度约500纳米)。
材料的加热(烧结)是在以下各过程中所示的烧结温度、时间和离心力下进行的。
(1)烧结温度:400℃,保持时间1分钟
(2)煅烧温度:400℃,保持时间1分钟,离心力1×10-6N(相对于基板上的膜)
(3):(1)步骤+(2)步骤
2.试验结果
不锈钢基板上SiO2膜的粘着性,是按以下方法评价的。用拉伸试验机对带有SiO2膜的不锈钢基板施加单轴向应力,使之伸长1%。进而用セロテ-プ(注册商标)胶带进行剥离试验,然后从不锈钢基板上残存的SiO2膜面积定量评价粘着性。此外,SiO2膜的面积率,是利用扫描型电子显微镜观察剥离试验后样品表面,并对该图像进行图像处理的方法求出的。
表1表示在上述(1)~(3)的过程条件下加热(烧结)时不锈钢基板表面上SiO2膜的面积残存率。在条件(1)下进行的场合下,拉伸试验后于整个表面上出现线状裂纹,一旦对该样品进行剥离试验,SiO2膜几乎全部被剥离,因此SiO2膜面积残存率为12%。另一方面,在离心力负荷下煅烧的样品,拉伸试验后全未出现裂纹,即使进行剥离试验也未见到SiO2膜的减少变化。其结果,在上述(2)和(3)条件下试验的样品,基板表面上SiO2膜的面积残存比例处于90%以上。可以认为,这是由于在离心力负荷下煅烧的样品,能与基板牢固密着随着基板一起伸长的缘故。
表1
处理条件   SiO2膜面积残存率(%)
(1)煅烧温度400℃,保持1分钟(2)煅烧温度400℃,保持1分钟,离心力1×10-6N(3)(1)+(2)   129894
实施例5
本实施例中,说明在基板上形成金属微粒膜,在离心力下对其加热制备复合粘着材料的方法。
1.粘着材料的制备
将市售铜粉末微粒(平均粒径3微米)加入溶剂(主要成分聚乙二醇)中,制成糊料。将得到的糊料装载在丝网上,印刷在氧化硅玻璃基板上。印刷后将该基板在110℃温度下加热。对该基板上的糊料施加大约1×10-4N的离心力的条件下,真空中以10℃/分的升温速度加入至600℃,在600℃保持5分钟后,炉冷。为了对照,还在对制膜后的基板不施加离心力的条件下同时进行了加热试验。
2.试验结果
利用拉伸试验评价了玻璃基板与制膜的铜间的附着力。拉伸试验是将坚硬的小针头对铜膜施压,缓缓增加载荷重量,移动针头测定铜膜剥离时的载荷重量的一种方法。通过对针头施加载荷在基板上的铜膜加压,测定针头使膜破坏的力,即所谓从基板上将膜撕下剥离的力,作为膜与基板的附着力。
图8表示施加在针头上的荷重(针头荷重)与针头受到的阻力之间的关系。当对在离心力负荷下得到的膜施加345克荷重时,可以从基板上完全除去部分膜。另一方面,当对没有离心力负荷下得到的膜施加223克荷重时,可以从基板上除去膜。这里针头受到的阻力,经过离心处理的为70gf,而未经离心处理仅经热处理的为38gf。这些结果说明,加热时施加离心力负荷得到的膜,与对照例相比,与基板粘着得牢固,具有牢固的粘着力。
实施例6
本实施例中说明将金属铝粘着在氮化铝基料上制备复合粘着材料的实例。
1.粘着材料的制备
用以下所示的方法制备了氮化铝。在市售的氮化铝粉末中加入5重量%氧化钇,用甲醇作溶剂,在球磨机中混合。粉末干燥后,在氮气气氛下1800℃加热3小时,制备了陶瓷烧结体。然后将得到的陶瓷烧结体加工成10mm×10mm×3mm(厚度)的板状,以此作为基料。
关于金属铝,将市售的99.999%纯度的铝加工成10mm×10mm×3mm(厚度)的板状,以此作为被粘着的材料。氮化铝与金属铝用有机粘着材料固定,在离心力下进行烧结。
烧结是在以下各过程中所示的烧结温度、时间和离心力下进行的。
(1)烧结温度:500℃,保持时间1分钟
(2)烧结温度:500℃,保持时间1分钟,离心力1×10-6N
2.试验结果
关于氮化铝/铝粘着体的评价是采用拉伸试验法进行的。从粘着体上切下试验片使之夹持粘着出的界面,将金属拉伸试验片夹具用瞬间粘着剂安装在该试验片的两端上,在室温下用拉伸试验机进行拉伸试验。未施加离心力负荷的立即断裂,其抗拉强度为2.3MPa,而施加了1×10-6N离心力负荷的,抗拉强度为80MPa,这说明在施加离心力负荷下烧结的已经牢固地粘着。
综上所述,本发明涉及一种在烧结过程中通过施加离心力负荷,制造具有高度粒子取向和晶体取向的陶瓷烧结体和无机膜的方法,具有以下列举的各种优良效果。本发明是解决了已有方法中存在问题的陶瓷烧结体和无机膜的制造方法以及陶瓷烧结体和无机膜,其技术价值极大。
(1)为获得厚的取向用成形体,无需刀涂法之类的片材层叠,制造工艺过程简单,制造所需时间短,不需要熟练的操作人员。
(2)取向处理中,从处理体的表面至内部材质均匀,粒子的取向度不会产生实质性差异。因此在烧结过程中烧结体不易产生形状不良,可以得到均一的粒子取向和晶体取向。
(3)虽然需要使用施加离心力负荷所需的旋转装置,但是却不需要采用根据磁各向异性原理工作的那种磁场发生装置,维护也容易,能够使用一般可用的生产设备。
(4)没有热压烧结那种处理材料表面的污染和副产物生成的问题。而且不需要切削后加工,成本低,能够制造数十微米至数毫米的薄的取向膜。
另外,本发明涉及粘着材料的制造方法和粘着材料,根据本发明,可以获得以下列举的优良效果。
(5)在将膜材或块材粘着在基料样品表面的方法中,通过在材料加热时施加离心力负荷,能够制备膜材料或块材料牢固粘着在基料样品表面上的复合粘着材料。
(6)在使压力手段与材料不接触下通过对材料施加预定压力负荷,能够制造粘着材料。
(7)因此可以抑制煅烧后样品表面上的污染和副产物的生成,能够在清洁环境下制造膜材料和块材料牢固密着在基料样品表面上的负荷粘着材料。
能够提供一种赋予预定功能和特性的负荷粘着材料。

Claims (15)

1.陶瓷烧结体、无机膜或粘着材料的制造方法,是使粒子取向或晶体取向的陶瓷烧结体或无机膜、或将材料粘着在基料样品表面上的粘着材料的制造方法,其特征在于在加热过程中通过施加离心力负荷,将预定功能和物性赋予所述的材料。
2.粒子取向或晶体取向的陶瓷烧结体的制造方法,是将含有具有各向异性形状的陶瓷粒子的陶瓷成形体、或含有具有各向异性晶体的陶瓷粒子的陶瓷成形体烧结,制造陶瓷烧结体的,其特征在于在加热过程中通过施加离心力负荷,使所述的陶瓷粒子取向。
3.粒子取向或晶体取向的无机膜的制造方法,是在单晶基板上、或者在蒸镀了金属或陶瓷的基板上形成前体膜,将其加热制造无机膜的,其特征在于在加热过程中通过施加离心力负荷,使内在的各向异性粒子或各向异性晶体取向。
4.按照权利要求2或3所述的方法,其中,施加10~700,000G的离心力负荷。
5.按照权利要求2或3所述的方法,其中,在加热过程中是在100~1900℃温度下加热。
6.一种陶瓷烧结体,其特征在于是利用权利要求2、4或5记载的方法制造的、粒子取向或晶体取向均以预定方向取向。
7.一种无机膜,其特征在于是利用权利要求3、4或5记载的方法制造的、粒子取向或晶体取向均以预定方向取向。
8.一种粘着材料的制造方法,是将材料牢固粘着在基料样品表面上的粘着材料的制造方法,其特征在于:
(1)在基料样品表面上形成或者放置材料,
(2)加热所述的材料,
(3)在所述的加热过程中施加离心力负荷,
(4)利用上述(1)~(3)得到在基料样品表面上牢固粘着的粘着材料。
9.按照权利要求8所述的方法,其中所述的基料样品是塑料、金属、单晶或陶瓷。
10.按照权利要求8所述的方法,其中使用任意形状的基板作为基料。
11.按照权利要求8所述的方法,其中所述的材料是膜状或块状的有机物、金属或陶瓷。
12.按照权利要求8所述的方法,其中在30~1900℃下加热所述的材料。
13.按照权利要求8所述的方法,其中在所述的加热过程中施加10-3~108N离心力。
14.一种粘着材料,是利用权利要求8~13中任何一项所述的方法在压力手段与材料非接触的状态下施加预定压力负荷制造的、牢固粘着在基料样品表面上的粘着材料。
15.一种复合部件,其中合有权利要求1 4所述的粘着材料作为构成要素。
CNB028222822A 2001-11-09 2002-11-05 通过离心烧结进行的取向材料或复合材料的制造 Expired - Lifetime CN1255359C (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001344947A JP4135781B2 (ja) 2001-11-09 2001-11-09 無機膜の製造方法
JP344947/2001 2001-11-09
JP2002206059A JP4094362B2 (ja) 2002-07-15 2002-07-15 接着材料の製造方法及び接着材料
JP206059/2002 2002-07-15
PCT/JP2002/011510 WO2003040061A1 (fr) 2001-11-09 2002-11-05 Production de materiau oriente ou de materiau composite par cuisson centrifuge

Publications (2)

Publication Number Publication Date
CN1585729A true CN1585729A (zh) 2005-02-23
CN1255359C CN1255359C (zh) 2006-05-10

Family

ID=26624448

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028222822A Expired - Lifetime CN1255359C (zh) 2001-11-09 2002-11-05 通过离心烧结进行的取向材料或复合材料的制造

Country Status (7)

Country Link
US (1) US7459178B2 (zh)
EP (1) EP1449817B1 (zh)
KR (1) KR100653191B1 (zh)
CN (1) CN1255359C (zh)
AT (1) ATE513797T1 (zh)
TW (1) TW572866B (zh)
WO (1) WO2003040061A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049371A (zh) * 2010-10-27 2011-05-11 西安飞机工业(集团)有限责任公司 一种提高精铸铝工装气密性的方法
CN109942291A (zh) * 2019-03-14 2019-06-28 华南理工大学 一种SrTiO3基晶界层陶瓷电容器及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004210593A (ja) * 2002-12-27 2004-07-29 National Institute Of Advanced Industrial & Technology 遠心焼結装置
JP2005126255A (ja) * 2003-10-21 2005-05-19 National Institute Of Advanced Industrial & Technology 積層型セラミックス電子部品・膜電子部品及びその製造方法
FR3045036B1 (fr) * 2015-12-15 2017-12-22 Commissariat Energie Atomique Procede de preparation d'une solution sol-gel utilisable pour la preparation d'une ceramique de titanate de baryum dope par du hafnium et/ou par au moins un element lanthanide

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2345227A (en) * 1943-02-03 1944-03-28 Joseph Dixon Crucible Co Adhesive applying mechanism
US3377417A (en) * 1965-04-30 1968-04-09 Emil R. Capita Centrifugal furnace
US3850368A (en) * 1973-02-12 1974-11-26 Kennametal Inc Apparatus for centrifugal compaction
US5262366A (en) * 1986-03-17 1993-11-16 Sumitomo Electric Industries, Ltd. Formation of a ceramic composite by centrifugal casting
JPS63236793A (ja) * 1987-03-26 1988-10-03 Matsushita Electric Ind Co Ltd 配向性積層膜
JPH0264065A (ja) * 1988-05-24 1990-03-05 Ube Ind Ltd 結晶粒配向性セラミックスの製造方法
US5527501A (en) * 1991-06-25 1996-06-18 Nippon Soken Inc. Process for producing piezoelectric ceramic sheet and dielectric ceramic sheet
JP3212159B2 (ja) * 1992-09-28 2001-09-25 ローム株式会社 結晶性薄膜製造方法
JPH07196380A (ja) * 1993-12-28 1995-08-01 Nippon Cement Co Ltd 非酸化物セラミックスと金属との接合方法
JPH07242424A (ja) * 1994-03-01 1995-09-19 Kyocera Corp 酸化物超電導構造体およびその製造方法
JP3509491B2 (ja) * 1996-08-23 2004-03-22 株式会社豊田中央研究所 形状異方性セラミックス粉末及びその製造方法
JP3652915B2 (ja) * 1999-03-19 2005-05-25 三菱重工業株式会社 円筒容器内面への耐食被覆形成方法及びその形成装置
US6514476B1 (en) * 1999-04-27 2003-02-04 Penn State Research Foundation Anisotropically shaped SrTiO3 single crystal particles
JP2002193680A (ja) * 2000-12-26 2002-07-10 National Institute Of Advanced Industrial & Technology 焼結方法及びその装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102049371A (zh) * 2010-10-27 2011-05-11 西安飞机工业(集团)有限责任公司 一种提高精铸铝工装气密性的方法
CN102049371B (zh) * 2010-10-27 2013-05-08 西安飞机工业(集团)有限责任公司 一种提高精铸铝工装气密性的方法
CN109942291A (zh) * 2019-03-14 2019-06-28 华南理工大学 一种SrTiO3基晶界层陶瓷电容器及制备方法
CN109942291B (zh) * 2019-03-14 2021-08-10 华南理工大学 一种SrTiO3基晶界层陶瓷电容器及制备方法

Also Published As

Publication number Publication date
KR100653191B1 (ko) 2006-12-05
EP1449817A1 (en) 2004-08-25
US20050006022A1 (en) 2005-01-13
ATE513797T1 (de) 2011-07-15
KR20050043759A (ko) 2005-05-11
WO2003040061A1 (fr) 2003-05-15
CN1255359C (zh) 2006-05-10
EP1449817A4 (en) 2008-04-23
TW572866B (en) 2004-01-21
EP1449817B1 (en) 2011-06-22
US7459178B2 (en) 2008-12-02

Similar Documents

Publication Publication Date Title
CN103613382B (zh) 钛酸铋钠-钛酸钡-钛酸铋钾无铅压电织构陶瓷及其制备方法
CN1238860C (zh) 导电糊、迭层陶瓷电子器件制造方法及迭层陶瓷电子器件
CN111747756A (zh) 一种氮化物陶瓷流延浆料及其制备的氮化物陶瓷基片
CN1205619C (zh) 陶瓷糊浆组合物和制造陶瓷坯料片及多层电子元件的方法
CN1629992A (zh) 通过旋涂法制造层压陶瓷电容器的方法及层压陶瓷电容器
CN1834016A (zh) 制备α-氧化铝细粒的方法
JP5676910B2 (ja) セラミクスの製造方法および圧電材料
CN1255359C (zh) 通过离心烧结进行的取向材料或复合材料的制造
CN1680212A (zh) 压电陶瓷组合物和压电元件
JP2009007185A (ja) 独立ガラスセラミックフィルムの製造方法
CN107602114B (zh) 一种锆钛酸钡钙bczt压电陶瓷及其织构化制备方法
JP3135036B2 (ja) 複合酸化物セラミックスの製造方法
CN1289441C (zh) 利用离心力的烧结方法和设备
CN105732022A (zh) 高居里温度压电陶瓷及其薄膜的制备方法
CN1313418C (zh) 电介质陶瓷组合物、电子部件及其制造方法
CN108349823B (zh) 取向烧结体的制造方法
CN1822931A (zh) 生产陶瓷坯片中使用的工程膜及其生产方法
CN1486281A (zh) 制备钛酸铅锆的稳定溶胶的方法和由该溶胶制膜的方法
CN1790568A (zh) 电介质瓷器组合物、电子部件和它们的制造方法
CN101074170A (zh) 一种硅基锆钛酸铅铁电厚膜的制备方法
JP6305310B2 (ja) アルミナセラミックス接合体及びその製造方法
JP7272370B2 (ja) 窒化ケイ素基板の製造方法および窒化ケイ素基板
JP4135781B2 (ja) 無機膜の製造方法
CN1594217A (zh) 片式电容器用介质陶瓷材料及其制备方法
CN1702882A (zh) 压电陶瓷、压电元件、及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20060510