CN1574124A - 薄膜电感器的铁氧体基体及共模滤波器、阵列和制造方法 - Google Patents

薄膜电感器的铁氧体基体及共模滤波器、阵列和制造方法 Download PDF

Info

Publication number
CN1574124A
CN1574124A CNA2004100592301A CN200410059230A CN1574124A CN 1574124 A CN1574124 A CN 1574124A CN A2004100592301 A CNA2004100592301 A CN A2004100592301A CN 200410059230 A CN200410059230 A CN 200410059230A CN 1574124 A CN1574124 A CN 1574124A
Authority
CN
China
Prior art keywords
mole
matrix
oxide
ferrite
mode filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004100592301A
Other languages
English (en)
Inventor
庄司茂
佐藤玲
川口行雄
田中一满
谷岛利和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of CN1574124A publication Critical patent/CN1574124A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Abstract

通过以下方法提供一种薄膜电感的铁氧体基体:将原材料混合以满足如下成分:三氧化二铁(Fe2O3):40-55摩尔%,氧化镍(NiO):5-35摩尔%,氧化锌(ZnO):10-40摩尔%,三氧化二铋(Bi2O3):150-750ppm;或者Fe2O3:40-55摩尔%,NiO:5-35摩尔%,ZnO:10-40摩尔%,氧化铜(CuO):5-10摩尔%和二氧化锰(MnO2):0.5-2摩尔%,然后将混合好的原料成形和烧结,并将烧结后的产品进行热等静压。同时也提供了一种使用此类铁氧体基体的共模滤波器和滤波器阵列以及此基体的制造方法。

Description

薄膜电感器的铁氧体基体 及共模滤波器、阵列和制造方法
优先权要求
本发明要求2003年6月9日提出申请的日本专利申请2003-163563的优先权,此专利申请在此引用作为参考。
技术领域
本发明涉及一种用于薄膜电感器的铁氧体基体、一种使用此基体的共模滤波器、一种使用此基体的共模滤波器阵列以及这种基体的制造方法。
背景技术
共模滤波器是一种抑制共模电流的装置,这种电流在平行传输线路中会产生电磁干扰。共模滤波器具有磁耦合电感器(线圈),用于去除同相噪音成分。
通过在铁氧体基体之间形成双层薄膜线圈以及制成芯片的形式而微型化和高度集成的薄膜共模滤波器,以及上面装有多个滤波器的共模滤波器阵列,例如,在日本专利公报08-203737A和11-054326A的专利中都有描述。
一般地,这种铁氧体基体通过热压的方法生产,其中将热压块切成所需要形状的基体,然后将基体研磨和成型,或者通过薄板制造方法生产,其中将铁氧体薄板堆积并在加热的条件下加压,接着将堆积的铁氧体研磨并成形为所需的形状。
在薄膜共模滤波器中,线圈彼此之间排布很近,目的是满足其特性需求以及在线圈上施加高压。这样,这种滤波器就需要能承受高的电压和具有高度可靠的电绝缘性。而且,滤波器的接线端子彼此之间也应该电气绝缘,并且要精确地形成,而不引起线圈之间电绝缘的失效。另外,为了获得在高频(几GHz)波段的可操作性,滤波器应当有微型线圈和渗透性大约100-400的铁氧体基体。
然而,用于薄膜共模滤波器的传统铁氧体基体,具有一种有孔洞的多孔晶体结构并且它的表面也是如此,这样引起低的表面绝缘电阻和大的表面退化。因此,这种铁氧体基体,力学强度很低,以致于不能承受薄膜的处理过程,再者,在这种基体表面上很难形成精确的接线端子。
发明内容
因此,本发明的一个目标是为薄膜电感器提供一种具有较高的表面绝缘电阻和较小的表面退化的铁氧体基体,提供一种使用这种基体的共模滤波器、提供一种使用这种基体的共模滤波器阵列以及这种基体的制造方法。
本发明的另一个目标是为薄膜电感器提供一种具有高力学强度的铁氧体基体,提供一种使用这种基体的共模滤波器、提供一种使用这种基体的共模滤波器阵列以及这种基体的制造方法。
本发明的再一个目标是为薄膜电感提供一种铁氧体基体,在这种基体表面上容易形成精确的接线端子,提供一种使用这种基体的共模滤波器、提供一种使用这种基体的共模滤波器阵列以及这种基体的制造方法。
按照本发明,为薄膜电感提供的铁氧体基体,含有一种铁氧体的成分如下:三氧化二铁(Fe2O3):40-55摩尔%,氧化镍(NiO):5-35摩尔%,氧化锌(ZnO):10-40摩尔%,三氧化二铋(Bi2O3):150-750ppm;或者Fe2O3:40-55摩尔%,NiO:5-35摩尔%,ZnO:10-40摩尔%,氧化铜(CuO):5-10摩尔%和二氧化锰(MnO2):0.5-2摩尔%。这种铁氧体基体通过热等静压(HIP)获得高密度的晶体结构。而且,提供由部分基体制成的一种薄膜共模滤波器和薄膜共模滤波器阵列。
更优选地,基体包含铁氧体的成分为,Fe2O3:40-55摩尔%,NiO:15-30摩尔%,ZnO:20-40摩尔%,Bi2O3:150-750ppm;或者Fe2O3:40-55摩尔%,NiO:15-30摩尔%,ZnO:20-40摩尔%,CuO:5-10摩尔%和MnO2:0.5-2摩尔%。
上面提到的铁氧体成分通过热等静压(HIP)获得致密化的晶体结构,这种基体具有2×1010Ω·cm或更高的表面绝缘电阻,从这种基体生产的共模滤波器在线圈间具有足够的电绝缘。并且,在薄膜处理的退火后,基体的体绝缘电阻和表面绝缘电阻不变(没有退化)。再者,与传统的热压法生产的基体相比,其力学强度(抗弯强度)增大到至少高出1.5倍,这种强度使基体足以承受薄膜的处理过程。并且,当接线端子和希望的部位通过电镀形成时,几乎没有孔洞的致密基体表面能够阻止由于镀在不想要的部分而带来的电气问题。另外,致密的基体表面可以使接线端子的图形精确地形成。
更优选地,基体是直径3英寸或更大的晶片。
按照本发明,进一步提供了一种用于薄膜电感器的铁氧体基体的制造方法,这种制造方法包括如下步骤,混合原料并且如果需要可以加入原料,使其满足以下成分:Fe2O3:40-55摩尔%,NiO:5-35摩尔%,ZnO:10-40摩尔%,Bi2O3:150-750ppm,或者Fe2O3:40-55摩尔%,NiO:5-35摩尔%,ZnO:10-40摩尔%,CuO:5-10摩尔%和MnO2:0.5-2摩尔%,以及成形和烧结混合的原料,然后将烧结的产品进行热等静压。
更优选地,此方法包括一个混合原料的步骤,以便满足如下成分:Fe2O3:40-55摩尔%,NiO:15-30摩尔%,ZnO:20-40摩尔%,Bi2O3:150-750ppm,或者Fe2O3:40-55摩尔%,NiO:15-30摩尔%,ZnO:20-40摩尔%,CuO:5-10摩尔%和MnO2:0.5-2摩尔%
在经过配制成上述铁氧体成分和烧结后的等静压,得到的基体获得2×1010Ω·cm或更大的高表面绝缘电阻,从这种基体生产的共模滤波器在线圈间具有足够的电绝缘。并且,在薄膜处理的退火后,基体的体绝缘电阻和表面绝缘电阻不变或没有退化。再者,与传统的热压法生产的基体相比,其力学强度或抗弯强度增大到至少高出1.5倍,这种强度使基体足以承受薄膜的处理过程。并且,当接线端子和希望的部位通过电镀形成时,几乎没有孔洞的致密基体表面能够阻止由于镀在不想要的部分而带来的电气问题。另外,致密的基体表面可以使接线端子的图形精确地形成。
更优选地,本方法还包括一个如下步骤:在对产品进行热等静压后,将得到的产品退火,并对退火的产品进行表面研磨,研磨量至少5μm。
通过下面对附图所示的本发明优选实施例的描述,本发明的其它目标和优点是显而易见的。
附图说明
图1是一个流程图,示意地表示根据本发明制造薄膜电感器的铁氧体基体的方法的一个优选实施例中的一些步骤;
图2a-2j是用于解释制造薄膜共模滤波器阵列的晶片工艺的透视图;
图3a-3j是用于解释薄膜共模滤波器阵列的制造过程的透视图;
图4是薄膜共模滤波器的共模特性图;
图5是铁氧体基体中Fe2O3、NiO和ZnO成分与渗透性μ之间的关系曲线;
图6是表示Fe2O3含量不同的铁氧体基体烧结后表面绝缘电阻测量值的曲线;
图7是表示图6所示的烧结后铁氧体基体,在表面研磨后的表面绝缘电阻测量值的曲线;
图8是表示图7所示铁氧体基体经过5次在绝缘层固化温度(400℃)的退火处理后,表面绝缘电阻测量值的曲线;
图9是表示图8所示铁氧体基体经过1000℃的真空退火处理,表面绝缘电阻测量值的曲线;
图10是表示图9所示的真空退火处理的铁氧体基体,经过研磨量为5μm或更多的表面研磨后,表面绝缘电阻测量值的曲线;
图11是表示图10所示铁氧体基体研磨量与表面绝缘电阻之间关系的测量结果的曲线;
图12是表示图10所示表面研磨的铁氧体基体经过5次在大约400℃的真空退火后,表面绝缘电阻测量值的测量结果曲线;
图13是表示图12所示铁氧体基体和在其基本成分中加入Bi2O3形成的NiZn铁氧体基体的表面绝缘电阻测量值的测量结果曲线;
图14是表示含有55摩尔%Fe2O3的铁氧体基体中,Bi2O3的加入量与表面绝缘电阻测量值之间关系的测量结果曲线;
图15是表示含有55摩尔%Fe2O3的铁氧体基体中,抗弯强度与Bi2O3的加入量之间关系的测量结果曲线;
图16是表示在基本成分中加入CuO形成的NiZn铁氧体基体中,抗弯强度与CuO加入量之间关系的测量结果曲线;
图17是表示图16所示成分中加入MnO2得到的基体中,渗透性μ与MnO2加入量之间关系的测量结果曲线;
图18是表示图16所示成分中加入MnO2得到的基体中,绝缘电阻与MnO2加入量之间关系的测量结果曲线;
图19是表示热压和热等静压得到的基体中,绝缘电阻与Bi2O3加入量之间关系的测量结果曲线;
图20是表示热压和热等静压得到的基体中,抗弯强度与Bi2O3加入量之间关系的测量结果曲线;
图21是表示热等静压的压力与基体抗弯强度之间关系的测量结果曲线;
图22是表示热压的压力与基体抗弯强度之间关系的测量结果曲线;
图23是表示热压得到的铁氧体基体和热等静压得到的铁氧体基体(二者都基本由Fe2O3、NiO和ZnO组成)中,密度与施加的压力之间关系的测量结果曲线;
图24是表示热压得到的铁氧体基体和热等静压得到的铁氧体基体(二者都基本由Fe2O3、NiO和ZnO组成)中,表面粗糙度与所用抛光粉的筛目数之间关系的测量结果曲线;
图25是表示热等静压得到的铁氧体基体的表面的光学显微镜照片;
图26是表示热压得到的铁氧体基体的表面的光学显微镜照片;
图27是表示由薄板制造方法生产的铁氧体基体的表面的光学显微镜照片。
具体实施方式
图1示意地表示根据本发明制造薄膜电感的铁氧体基体的方法的一个优选实施例中的一些步骤。下面将参考此图详细描述铁氧体基体的制造步骤。
基体成分的第一例子
首先,为了获得预定成分的铁氧体基体,将原材料按混合表称重,然后加入纯净水混合(步骤S1)。预定成分为:Fe2O3:40-55摩尔%、NiO:15-30摩尔%、ZnO:20-40摩尔%。
接着,将获得的混合料浆进行干燥(步骤S2)、预烧(步骤S3)。
接着,将得到的预烧材料用纯净水研磨(步骤S4)。研磨的同时加入150-750ppm的Bi2O3。也可以加入CaCO3等等。
接着,将得到的研磨材料干燥并造粒,然后成形(步骤S5)。并且,在大气下,以燃烧气体加热到约1160℃进行烧结(步骤S6)。
接着,烧结产品在1200℃以1000kg/cm2的压力进行2小时的热等静压(步骤S7)。
接着,得到的产品进行平面磨,成型和切割(步骤S8)。
此后,将切好的产品在空气中在约1000℃下进行加热或退火(步骤S9)。
接着,将退火后产品的表面用筛目数为#2000的抛光粉以至少5μm的研磨量进行研磨(步骤S10)。
基体成分的第二例子
首先,为了获得预定成分的铁氧体基体,将原材料按混合表称重,然后加入纯净水混合(步骤S1)。预定成分为:Fe2O3:40-55摩尔%、NiO:15-30摩尔%、ZnO:20-40摩尔%、CuO:5-10摩尔%、MnO2:0.5-2摩尔%、。
接着,将获得的混合料浆进行干燥(步骤S2)、预烧(步骤S3)。
接着,将得到的预烧材料用纯净水研磨(步骤S4)。研磨的同时加入CaCO3等等。
接着,将得到的研磨材料干燥并造粒,然后成形(步骤S5)。并且,在大气下,以燃烧气体加热到约1160℃进行烧结(步骤S6)。
接着,烧结产品在1200℃以1000kg/cm2的压力进行2小时的热等静压(步骤S7)。
接着,得到的产品进行平面磨,成型和切割(步骤S8)。
此后,将切好的产品在空气中在约1000℃下进行加热或退火(步骤S9)。
接着,将退火后产品的表面用筛目数为#2000的抛光粉以至少5μm的研磨量进行研磨(步骤S10)。
如上所述,在经过配制成上述铁氧体成分并烧结后的等静压,以及经过退火和表面研磨,得到的基体获得2×1010Ω·cm或更大的高表面绝缘电阻。并且,在薄膜工艺的退火处理后,体绝缘电阻和表面绝缘电阻没有变化(退化)。再者,与传统的热压法生产的基体相比,其力学强度(抗弯强度)高出至少1.5倍,这种强度使基体足以承受对薄膜的处理。进一步地,基体表面致密化,几乎没有孔洞,生产过程中的表面也是如此。
图2a-2j和图3a-3j表示用于解释生产薄膜共模滤波器阵列的晶片处理和生产工艺的透视图,这种薄膜共模滤波器阵列由上述铁氧体基体制成的、两个连接的薄膜共模滤波器组成。在图2a-2j和图3a-3j中,图的下部表示一个晶片,图的上部表示实际上未切割分离的单个芯片。下面结合这些附图详细介绍薄膜共模滤波器阵列的生产过程。
首先,如图2a所示,准备好将按图1所示方法制备的铁氧体晶片,并且,如图2b所示,由诸如聚酰亚胺树脂制成的第一绝缘层21涂在晶片20上,然后图形化。
接着,如图2c所示,在第一绝缘层21上形成第一铜导线和电极层22。然后,如图2d所示,由诸如聚酰亚胺树脂制成的第二绝缘层23涂在层22上,并图形化。
接着,如图2e所示,在第二绝缘层23上形成第一铜线圈层24。然后,如图2f所示,由诸如聚酰亚胺树脂制成的第三绝缘层25涂在层24上,并图形化。
接着,如图2g所示,在第三绝缘层25上形成第二铜线圈层26。然后,如图2h所示,由诸如聚酰亚胺树脂制成的第四绝缘层27涂在层26上,并图形化。
接着,如图2i所示,在第四绝缘层27上形成第二铜导线和电极层28。然后,如图2j和3a所示,由诸如聚酰亚胺树脂制成的第五绝缘层29涂在层28上,并图形化。
然后,如图3b所示,用丝网印刷将银膏30印在导线上。然后,如图3c所示,用于磁通返回部分的铁氧体膏31嵌入中心部分。
接着,如图3d所示,用粘接剂将铁氧体板盖32结合在经过处理的晶片上。
接着,如图3e所示,将得到的晶片切成条33,在每个条33上排列有多个薄膜共模滤波器阵列芯片。
接着,如图3f所示,在条33中的每个薄膜共模滤波器阵列芯片的上端印上标记34。然后,如图3g所示,在条33中的每个薄膜共模滤波器阵列芯片的一边,通过溅射形成镍的电极接线端子35。
然后,如图3h所示,将每个条切割分成单个芯片36。接着,如图3i所示,通过滚镀将电极接线端子35形成为镍层和锡层的双层结构37。并且,如图3j所示,将得到的薄膜共模滤波器阵列芯片36结合在带38上。
铁氧体基体整体要求有高的电绝缘性能,因为如图3g所示,在薄膜共模滤波器和薄膜共模滤波器阵列在铁氧体基体切割面有电极接线端子。并且铁氧体基体也需要有高的表面绝缘性能。由这种基体得到的薄膜共模滤波器在线圈接线端子之间的绝缘电阻应在108Ω的数量级。虽然基体表面电阻和实际的接线端子间的电阻之间没有精确的比例关系,但基体需要体电阻和表面电阻的综合电阻达到2×1010Ω或者更高,以保绝缘电阻达到至少108Ω。再者,在晶片处理中,为了热固化绝缘层以便形成薄膜共模滤波器,需在空气或氮气气氛中400℃左右进行热处理,此时铁氧体基体需要保持稳定的高表面绝缘性能。
另外,在晶片处理过程中,要求铁氧体基体不能因为机械冲击或热冲击而开裂,如图2a-2j所示,薄膜共模滤波器和薄膜共模滤波器阵列一起在铁氧体基体上形成。开裂的阻力依赖于基体的抗弯强度,因此铁氧体基体需要有较高的抗弯强度。特别地,为了提高开裂的阻力,基体尺寸越大,基体所需要的抗弯强度越大。
再者,如上面提到的,在薄膜共模滤波器和薄膜共模滤波器阵列的生产过程中,铁氧体基体上形成薄膜显微图,因此基体上涂覆的薄膜不能由于基体粗糙的表面而起波纹,并且显微图不能变形。通常,在执行薄膜处理时要求基体表面的粗糙度要小于涂覆的薄膜厚度。例如,在涂聚酰亚胺膜时,基体表面粗糙度Rmax等于或大于6μm时,图形化是很难进行的。
图4为通过上面提到方法制作的薄膜共模滤波器的共模特性曲线,即,频率依赖于固有阻抗Z。
从图4可以看出,使用由100到1400的不同渗透性μ的铁氧体材料制成的基体,共模滤波器几乎获得相同的共模特性。
图5为铁氧体基体中Fe2O3、NiO和ZnO成分与渗透性μ之间的关系图。
正如图5阐明的,为了满足图4中共模滤波器的共模阻抗特性,要求铁氧体基体包含的成分在以下范围内:Fe2O3:40-70摩尔%,NiO:5-35摩尔%,ZnO:10-40摩尔%。
图6给出Fe2O3含量不同的铁氧体基体刚烧结后表面绝缘电阻的测量值。图7给出铁氧体基体烧结后经表面研磨,表面绝缘电阻的测量值。
从图6可以看出,刚烧结后的NiZn铁氧体基体,在Fe2O3成分范围为30-65摩尔%时,显示了很高的表面绝缘电阻,为1012Ω或更高。并且,烧结的基体经过表面研磨后,维持了很高的表面绝缘电阻。
图8给出图7所示Fe2O3含量不同的铁氧体基体经过在绝缘层固化温度(400℃)的退火处理(5次)后,表面绝缘电阻的测量值。图9给出铁氧体基体经过1000℃的真空退火处理后,表面绝缘电阻的测量值。
从图8可以看出,基体在绝缘层固化温度重复退火处理后,表面绝缘性能下降,表面绝缘电阻降到109Ω的数量级。并且,从图9可以看出,基体经过真空退火处理后,表面绝缘性能下降,表面绝缘电阻降到108Ω的数量级。
图10给出图9所示经过真空退火处理的铁氧体基体,表面研磨5μm或更多时,表面绝缘电阻的测量值。
从图10可以看出,通过表面研磨,基体重新获得了很高的表面绝缘电阻。从这一事实可以明白,电阻的下降和铁氧体基体的表面状况有关。
图11给出研磨量与表面绝缘电阻之间关系的测量结果。
从图11可以看出,研磨量超过5μm时,表面电阻急剧升高。因此,优选的表面研磨量应设在5μm或5μm以上。
图12给出图10所示表面研磨的铁氧体基体经过5次在绝缘层固化温度(大约400℃)的真空退火后,表面绝缘电阻的测量值。
比较图12和图8可以证实,研磨量为5μm或更多时,为固化绝缘层进行退火的铁氧体基体,表面绝缘电阻下降较小。特别是,当Fe2O3的含量为55摩尔%或小于55摩尔%时,基体显示了高的表面绝缘电阻值,为1010Ω或更高。Fe2O3成分高于此范围,绝缘电阻急剧下降。
因此,为了保证至少2×1010Ω的电阻值,基体的Fe2O3成分应当为55摩尔%或低于55摩尔%。再者,根据图5显示的渗透性μ的测量结果,更优选的,基体成分应为Fe2O3:40-55摩尔%,NiO:15-30摩尔%,ZnO:20-40摩尔%。
图13给出图12所示铁氧体基体和在基本成分Fe2O3、NiO和ZnO中加入Bi2O3形成的NiZn铁氧体基体的表面绝缘电阻测量值。线a对应加入Bi2O3的基体,线b对应未加Bi2O3的基体,两种基体都经过1000℃的真空退火处理,然后表面研磨8μm。
可以看到,加入Bi2O3,表面绝缘电阻增加。
图14给出含有55摩尔%Fe2O3的铁氧体基体,Bi2O3的加入量与绝缘电阻之间关系的测量值。
从图14可以看出,加入150ppm或者更多的Bi2O3,绝缘电阻大大提高。
图15给出含有55摩尔%Fe2O3的铁氧体基体,Bi2O3的加入量与铁氧体基体抗弯强度之间关系的测量结果。测量基于JIS横断实验。测量样品的跨距为1.4mm,加载速率为30mm/min。
从图15可以看出,加入750ppm或者更多的Bi2O3,抗弯强度急剧下降。
如上所述,可以明白作为基体成分的第一个例子,加入150-750ppm的Bi2O3,可以使绝缘电阻和抗弯强度共同得到优化。
图16给出在基本成分Fe2O3、NiO和ZnO中加入CuO形成的NiZn铁氧体基体,其抗弯强度与CuO加入量之间关系的测量结果。
从图16可以看出,随着CuO加入量从5摩尔%到10摩尔%,抗弯强度升高。
图17给出图16所示成分中加入MnO2得到的基体,渗透性μ与MnO2加入量之间关系的测量结果。图18给出图16所示成分中加入MnO2得到的基体,绝缘电阻与MnO2加入量之间关系的测量结果。
从图17可以看出,随着MnO2加入量从0.5摩尔%到5摩尔%,渗透性μ增大。然而,MnO2加入量等于或大于2摩尔%时,基体绝缘电阻急剧下降,如图18所示。
因此,作为基体成分的第二个例子,通过加入5-10摩尔%CuO和0.5-2摩尔%MnO2,就可以在绝缘电阻不下降的情况下,使抗弯强度和渗透性μ共同得到提高。
图19给出传统热压方法(HP)得到的铁氧体基体与根据本发明的热等静压得到的铁氧体基体中,绝缘电阻与Bi2O3加入量之间关系的测量结果。图20给出由热压和热等静压得到的铁氧体基体中,抗弯强度与Bi2O3加入量之间关系的测量结果。
从图19可以看出,由热压、热等静压得到的铁氧体基体,其绝缘电阻之间的差异很小。然而,从图20可以看出,热等静压得到的铁氧体基体比热压得到的铁氧体基体的抗弯强度大1.5倍。即,热等静压得到的铁氧体基体难以开裂。随着晶片尺寸的增大,这种趋势变得更加显著。
图21给出热等静压的压力与基体抗弯强度之间关系的测量结果。图22给出热压的压力与基体抗弯强度之间关系的测量结果。热压和热等静压的处理温度都是1200℃。
从图21可以看出,基体经过压力等于或大于0.5t/cm2的热等静压后,获得高的抗弯强度。另一方面,基体经受热压,随着压力的增加,不能获得如此高的抗弯强度,如图22所示。
表1给出热压得到的3英寸和6英寸(2mm厚)的铁氧体基体以及热等静压得到的3英寸和6英寸的铁氧体基体中,裂纹出现频率的观察结果,其中二者都重复地经历110℃下10次的热冲击以及搬运过程中10次的吸引和分离。样品数量为20。
热等静压得到的3英寸基体的裂纹出现频率低于热压得到的样品。在6英寸基体中,热压和热等静压得到的铁氧体基体的裂纹出现频率存在大的差别。
              表1
第一次 第二次 第三次 第四次 第五次 第六次 第七次 第八次 第九次 第十次
3英寸晶片 热压 0 0 1 1 1 2 2 2 2 2
热等静压 0 0 0 0 0 0 0 0 0 0
6英寸晶片 热压 1 4 6 6 8 9 12 15 18 19
热等静压 0 0 0 0 0 0 0 0 0 1
图23是表示热压得到的铁氧体基体和热等静压得到的铁氧体基体(二者都基本由Fe2O3、NiO和ZnO组成)中,密度与施加的压力之间关系的测量结果曲线。
从图23可以看出,对基体进行热等静压提高了基体密度。
图24是表示热压得到的铁氧体基体和热等静压得到的铁氧体基体(二者都基本由Fe2O3、NiO和ZnO组成)中,表面粗糙度与所用抛光粉的筛目数之间关系的测量结果曲线。两种铁氧体基体的晶粒尺寸都是5μm,使用#2000的SiC作为抛光粉,用于研磨这两种基体。
从图24可以看出,使用热等静压的基体,其表面粗糙度大大下降。此外,使用热压的基体,随着抛光粉变细即筛目数从#1200到#2000再到#4000,其表面粗糙度变化很小。而热等静压的基体的表面粗糙度随着抛光粉变细而改善。
图25给出由热等静压得到的基体,经过#6000金刚石研磨,其表面的光学显微镜照片(×220)。图26给出由热压得到的基体,经过#6000金刚石研磨,其表面的光学显微镜照片(×220)。图27给出由薄板制造方法生产的基体,经过#6000金刚石研磨,其表面的光学显微镜照片(×220)。所有铁氧体基体的晶粒尺寸都是5-6μm。
热等静压得到的铁氧体基体表面,如图25所示,几乎没有孔;而传统热压得到的铁氧体基体或者薄板制造方法后热压得到的铁氧体基体,其表面有一些孔,如图26所示。此外,由薄板制造方法生产的铁氧体基体,如图27所示,其表面有一些大的孔洞,铁氧体颗粒由此处脱落了。
所有上述的实施例仅是为了说明本发明,并不是用于限制。在不偏离本发明精神和范围的条件下,可以对本发明做出很多不同的变换和修改。因此,本发明仅受到权利要求及其等同物的限制。

Claims (24)

1.一种用于薄膜电感器的铁氧体基体,包含铁氧体的成分为:三氧化二铁:40-55摩尔%,氧化镍:5-35摩尔%,氧化锌:10-40摩尔%,三氧化二铋:150-750ppm,并且具有通过热等静压形成的致密的晶体结构。
2.如权利要求1所述的铁氧体基体,其特征在于所述铁氧体成分为:三氧化二铁:40-55摩尔%,氧化镍:15-30摩尔%,氧化锌:20-40摩尔%,三氧化二铋:150-750ppm。
3.如权利要求1所述的铁氧体基体,其特征在于所述基体是直径等于或大于3英寸的晶片。
4.一种用于薄膜电感器的铁氧体基体,包含铁氧体的成分为,三氧化二铁:40-55摩尔%,氧化镍:5-35摩尔%,氧化锌:10-40摩尔%,氧化铜:5-10摩尔%和二氧化锰:0.5-2摩尔%;并且具有通过热等静压形成的致密的晶体结构。
5.如权利要求4所述的铁氧体基体,其特征在于所述铁氧体的成分是:三氧化二铁:40-55摩尔%,氧化镍:15-30摩尔%,氧化锌:20-40摩尔%,氧化铜:5-10摩尔%和二氧化锰:0.5-2摩尔%。
6.如权利要求4所述的铁氧体基体,其特征在于所述基体是直径等于或大于3英寸的晶片。
7.一种使用铁氧体基体的薄膜共模滤波器,所述铁氧体基体包含铁氧体的成分为,三氧化二铁:40-55摩尔%,氧化镍:5-35摩尔%,氧化锌:10-40摩尔%,三氧化二铋:150-750ppm;并且所述基体具有通过热等静压形成的致密的晶体结构。
8.如权利要求7所述的薄膜共模滤波器,其特征在于所述铁氧体成分为:三氧化二铁:40-55摩尔%,氧化镍:15-30摩尔%,氧化锌:20-40摩尔%,三氧化二铋:150-750ppm。
9.如权利要求7所述的薄膜共模滤波器,其特征在于所述基体是直径等于或大于3英寸的晶片。
10.一种使用铁氧体基体的薄膜共模滤波器,所述铁氧体基体包含铁氧体的成分为,三氧化二铁:40-55摩尔%,氧化镍:5-35摩尔%,氧化锌:10-40摩尔%,氧化铜:5-10摩尔%和二氧化锰:0.5-2摩尔%;并且所述基体具有通过热等静压形成的致密的晶体结构。
11.如权利要求10所述的薄膜共模滤波器,其特征在于所述铁氧体成分为:三氧化二铁:40-55摩尔%,氧化镍:15-30摩尔%,氧化锌:20-40摩尔%,氧化铜:5-10摩尔%和二氧化锰:0.5-2摩尔%。
12.如权利要求10所述的薄膜共模滤波器,其特征在于所述基体是直径等于或大于3英寸的晶片。
13.一种使用铁氧体基体的薄膜共模滤波器阵列,所述铁氧体基体包含铁氧体的成分为,三氧化二铁:40-55摩尔%,氧化镍:5-35摩尔%,氧化锌:10-40摩尔%,三氧化二铋:150-750ppm;并且所述基体具有通过热等静压形成的致密的晶体结构。
14.如权利要求13所述的薄膜共模滤波器阵列,其特征在于所述铁氧体成分为,三氧化二铁:40-55摩尔%,氧化镍:15-30摩尔%,氧化锌:20-40摩尔%,三氧化二铋:150-750ppm。
15如权利要求13所述的薄膜共模滤波器阵列,其特征在于所述基体是直径等于或大于3英寸的晶片。
16.一种使用铁氧体基体的薄膜共模滤波器阵列,所述铁氧体基体包含铁氧体的成分为:三氧化二铁:40-55摩尔%,氧化镍:5-35摩尔%,氧化锌:10-40摩尔%,氧化铜:5-10摩尔%和二氧化锰:0.5-2摩尔%;并且所述基体具有通过热等静压形成的致密的晶体结构。
17.如权利要求16所述的薄膜共模滤波器阵列,其特征在于所述铁氧体的成分为:三氧化二铁:40-55摩尔%,氧化镍:15-30摩尔%,氧化锌:20-40摩尔%,氧化铜:5-10摩尔%和二氧化锰:0.5-2摩尔%。
18.如权利要求16所述的薄膜共模滤波器阵列,其特征在于所述基体是直径等于或大于3英寸的晶片。
19.一种用于薄膜电感器的铁氧体基体的制造方法,包括以下步骤:
将原材料混合,以满足如下成分:三氧化二铁:40-55摩尔%,氧化镍:5-35摩尔%,氧化锌:10-40摩尔%,三氧化二铋:150-750ppm;
将混合的材料成形;
将成形的材料烧结;以及
将烧结的产品进行热等静压。
20.如权利要求19所述的制造方法,其特征在于所述混合步骤包括混合原材料,以满足如下成分:三氧化二铁:40-55摩尔%,氧化镍:15-30摩尔%,氧化锌:20-40摩尔%,三氧化二铋:150-750ppm。
21.如权利要求19所述的制造方法,其特征在于所述方法还包括如下步骤:将热等静压后的烧结产品进行退火处理;以及对退火产品进行表面研磨,且研磨量至少5μm。
22.一种用于薄膜电感器的铁氧体基体的制造方法,包括以下步骤:
将原材料混合,以满足如下成分:三氧化二铁:40-55摩尔%,氧化镍:5-35摩尔%,氧化锌:10-40摩尔%,氧化铜:5-10摩尔%和二氧化锰:0.5-2摩尔%;
将混合的材料成形;
将成形的材料烧结;以及
将烧结的产品进行热等静压。
23.如权利要求22所述的制造方法,其特征在于所述混合步骤包括混合原材料,以满足如下成分:三氧化二铁:40-55摩尔%,氧化镍:15-30摩尔%,氧化锌:20-40摩尔%,氧化铜:5-10摩尔%和二氧化锰:0.5-2摩尔%。
24.如权利要求22所述的制造方法,其特征在于所述方法还包括如下步骤:将热等静压后的烧结产品进行退火处理;以及对退火产品进行表面研磨,且研磨量至少5μm。
CNA2004100592301A 2003-06-09 2004-06-09 薄膜电感器的铁氧体基体及共模滤波器、阵列和制造方法 Pending CN1574124A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP163563/2003 2003-06-09
JP2003163563A JP4370817B2 (ja) 2003-06-09 2003-06-09 フェライト基板の製造方法

Publications (1)

Publication Number Publication Date
CN1574124A true CN1574124A (zh) 2005-02-02

Family

ID=33487576

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004100592301A Pending CN1574124A (zh) 2003-06-09 2004-06-09 薄膜电感器的铁氧体基体及共模滤波器、阵列和制造方法

Country Status (3)

Country Link
US (2) US7387847B2 (zh)
JP (1) JP4370817B2 (zh)
CN (1) CN1574124A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006838A (zh) * 2007-09-13 2011-04-06 Deru股份公司 内置式假肢部件
CN101477869B (zh) * 2008-09-23 2011-09-14 彭亦瑜 镍锌软磁铁氧体及其制造工艺方法
CN101685699B (zh) * 2008-09-09 2012-05-09 通用汽车环球科技运作公司 使用混合电感器芯材的燃料电池应用的dc-dc变换器
CN108022715A (zh) * 2016-11-01 2018-05-11 三星电机株式会社 薄膜电感器及制造该薄膜电感器的方法
CN111205075A (zh) * 2019-10-23 2020-05-29 横店集团东磁股份有限公司 一种镍锌铁氧体材料及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591689B2 (ja) * 2005-04-28 2010-12-01 Tdk株式会社 Lc複合部品の製造方法
JP2007091539A (ja) * 2005-09-29 2007-04-12 Tdk Corp 非磁性Znフェライトおよびこれを用いた複合積層型電子部品
ES2570975T3 (es) * 2008-08-07 2016-05-23 Link Waldemar Gmbh Co Procedimiento para producir un componente cerámico
WO2010015414A1 (de) * 2008-08-07 2010-02-11 Deru Gmbh Verfahren zum herstellen eines keramikbauteils
EP2544200B1 (en) 2010-03-05 2020-08-26 Murata Manufacturing Co., Ltd. Ceramic electronic component and method for producing ceramic electronic component
US9356503B2 (en) 2011-04-27 2016-05-31 Mte Corporation Combined active and passive harmonic mitigation devices and applications thereof
JP5761609B2 (ja) 2011-09-02 2015-08-12 株式会社村田製作所 セラミック電子部品、及びセラミック電子部品の製造方法
CN102982965B (zh) 2011-09-02 2015-08-19 株式会社村田制作所 共模扼流线圈及其制造方法
KR101853137B1 (ko) * 2011-12-22 2018-05-02 삼성전기주식회사 코일 부품 및 그 제조방법
KR101771741B1 (ko) * 2012-11-13 2017-09-05 삼성전기주식회사 필터 칩 부품 및 이의 제조방법
CN108558383B (zh) * 2018-04-04 2021-10-15 全球能源互联网研究院有限公司 NiZn铁氧体材料及制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155100A (en) * 1980-05-02 1981-12-01 Ngk Insulators Ltd Production of single crystal of ferrite
JPS61117805A (ja) 1984-11-14 1986-06-05 Sumitomo Special Metals Co Ltd Ni―Zn系ソフトフェライト及びその製造方法
JPH0616451B2 (ja) 1986-05-06 1994-03-02 三菱電機株式会社 低損失酸化物磁性材料
JP3601619B2 (ja) 1995-01-23 2004-12-15 株式会社村田製作所 コモンモードチョークコイル
JP3615024B2 (ja) 1997-08-04 2005-01-26 株式会社村田製作所 コイル部品
JP2001244123A (ja) * 2000-02-28 2001-09-07 Kawatetsu Mining Co Ltd 表面実装型平面磁気素子及びその製造方法
JP2002198212A (ja) * 2000-12-27 2002-07-12 Fdk Corp 低損失酸化物磁性材料
EP1364927B1 (en) * 2001-03-01 2008-10-15 TDK Corporation Magnetic oxide sinter and high-frequency circuit part employing the same
JP2003109814A (ja) 2001-09-28 2003-04-11 Nec Tokin Corp 酸化物磁性材料
KR20050014884A (ko) * 2002-06-25 2005-02-07 타이코 일렉트로닉스 코포레이션 데이터 버스 인터페이스에 과전류와 과전압 보호 및 공통모드 필터링을 제공하는 집적 장치

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102006838A (zh) * 2007-09-13 2011-04-06 Deru股份公司 内置式假肢部件
CN102006838B (zh) * 2007-09-13 2014-07-23 Deru股份公司 内置式假肢部件
CN101685699B (zh) * 2008-09-09 2012-05-09 通用汽车环球科技运作公司 使用混合电感器芯材的燃料电池应用的dc-dc变换器
CN101477869B (zh) * 2008-09-23 2011-09-14 彭亦瑜 镍锌软磁铁氧体及其制造工艺方法
CN108022715A (zh) * 2016-11-01 2018-05-11 三星电机株式会社 薄膜电感器及制造该薄膜电感器的方法
US10553346B2 (en) 2016-11-01 2020-02-04 Samsung Electro-Mechanics Co., Ltd. Thin film inductor and method of manufacturing the same
CN111205075A (zh) * 2019-10-23 2020-05-29 横店集团东磁股份有限公司 一种镍锌铁氧体材料及其制备方法

Also Published As

Publication number Publication date
US7425376B2 (en) 2008-09-16
JP4370817B2 (ja) 2009-11-25
JP2005001894A (ja) 2005-01-06
US20070077458A1 (en) 2007-04-05
US7387847B2 (en) 2008-06-17
US20040246088A1 (en) 2004-12-09

Similar Documents

Publication Publication Date Title
CN1574124A (zh) 薄膜电感器的铁氧体基体及共模滤波器、阵列和制造方法
CN1245728C (zh) 层叠型电子器件的制造方法
CN1163920C (zh) 陶瓷电感器元件以及使用陶瓷电感器的复合元件
CN1272281C (zh) 陶瓷材料及使用它的压电元件
CN1941233A (zh) 叠层型陶瓷电子部件的制造方法
KR101475566B1 (ko) 페라이트 자기 조성물, 세라믹 전자 부품, 및 세라믹 전자 부품의 제조 방법
CN1289427C (zh) 介电陶瓷组合物和介电陶瓷
CN1162876C (zh) 软磁性铁氧体粉末的制造方法和层压芯片电感器的制造方法
CN1330371A (zh) 介质陶瓷和电子元件
CN1405799A (zh) 高频磁性材料和使用该材料的高频电路元件
CN1292362A (zh) 压电陶瓷及使用该压电陶瓷的压电器件
CN1303104A (zh) 陶瓷糊浆组合物和制造陶瓷坯料片及多层电子元件的方法
CN1518012A (zh) 噪声滤波器
CN1169166C (zh) 铁氧体磁性材料
CN1507634A (zh) 迭层型陶瓷电子元件的制造方法
CN1155024C (zh) 锰-锌铁氧体及制造方法
CN1426383A (zh) 磁性氧化物烧结体及使用该烧结体的高频电路部件
CN1694197A (zh) 用于形成电介质的合成物及具有该合成物的产品
CN1258495C (zh) 低温燃烧的铁氧体材料及该材料制成的铁氧体部件
CN100336771C (zh) 氧化物陶瓷材料、陶瓷基片、陶瓷层压设备和功率放大器模块
CN1701400A (zh) 磁性元件
CN1604247A (zh) 电介质陶瓷组合物以及电子部件
CN1812944A (zh) 磁性铁氧体和含有所述铁氧体的磁性装置
CN1212627C (zh) 软磁性六方晶系铁氧体复合颗粒和用其制造的生胚及烧结陶瓷
CN1721365A (zh) 低温燃烧的铁氧体材料及该材料制成的铁氧体部件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20050202