CN1545728A - 半导体器件及其制造方法、以及电镀液 - Google Patents

半导体器件及其制造方法、以及电镀液 Download PDF

Info

Publication number
CN1545728A
CN1545728A CNA028157907A CN02815790A CN1545728A CN 1545728 A CN1545728 A CN 1545728A CN A028157907 A CNA028157907 A CN A028157907A CN 02815790 A CN02815790 A CN 02815790A CN 1545728 A CN1545728 A CN 1545728A
Authority
CN
China
Prior art keywords
semiconductor device
copper
wiring
alloy
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028157907A
Other languages
English (en)
Other versions
CN1329972C (zh
Inventor
井上裕章
木村宪雄
王新明
松本守治
金山真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001319839A external-priority patent/JP4076335B2/ja
Priority claimed from JP2001337851A external-priority patent/JP2003133316A/ja
Priority claimed from JP2001338953A external-priority patent/JP2003142487A/ja
Priority claimed from JP2001341051A external-priority patent/JP2003142427A/ja
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of CN1545728A publication Critical patent/CN1545728A/zh
Application granted granted Critical
Publication of CN1329972C publication Critical patent/CN1329972C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1619Apparatus for electroless plating
    • C23C18/1632Features specific for the apparatus, e.g. layout of cells and of its equipment, multiple cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • C23C18/1653Two or more layers with at least one layer obtained by electroless plating and one layer obtained by electroplating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76864Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76871Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers
    • H01L21/76874Layers specifically deposited to enhance or enable the nucleation of further layers, i.e. seed layers for electroless plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76883Post-treatment or after-treatment of the conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53242Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being a noble metal, e.g. gold
    • H01L23/53252Additional layers associated with noble-metal layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明涉及半导体器件及其制造方法,其具有埋入布线结构,并利用保护膜来保护裸露布线的表面;上述埋入布线结构是通过在设于半导体基片等表面上的布线用的微细凹部中,埋入铜或银等导电体而构成的。本发明的半导体器件的特征在于,在具有埋入布线结构的半导体器件的裸露布线表面,形成表面平坦化的保护膜。

Description

半导体器件及其制造方法、以及电镀液
技术领域
本发明涉及半导体器件及其制造方法,特别涉及一种具有埋入布线结构的半导体器件及其制造方法,其利用保护膜来保护裸露的布线表面,上述埋入布线结构是通过在设于半导体基片等表面上的布线用的微细凹部中,埋入铜或银等导电体而构成的。
本发明还涉及电镀液,它用于在设于半导体基片等基片表面上的布线用微细凹部中埋入导电体而形成埋入布线,或用于形成对如上形成的布线的表面进行保护的保护膜。
背景技术
作为半导体器件的布线形成方法,有一种所谓镶嵌(Damascene)处理方法正被实际利用,该镶嵌处理方法是将金属(导电体)埋入在布线槽和接触孔中。这种处理技术是,将铝、近年来将铜或银等金属,埋入预先形成在层间绝缘膜上的布线槽或接触孔中,然后将多余的金属通过化学机械研磨(CMP)方法去除,使其表面平坦。
作为在半导体基片上形成布线电路的金属材料,铝或铝合金被广泛使用,但近几年来,使用铜的趋势逐渐增强。这是由于,铜的电阻率为1.72μΩcm,比铝的电阻率要低将近40%,因此不仅有利于改善信号延迟现象,而且铜的抗电迁移能力也比通用的铝有着显著的提高,不仅如此,比起使用铝的情况,可以更容易地进行双镶嵌处理,所以相对廉价地制造结构复杂的微细多层布线结构的可能性也大大提高。
使这种布线结构表面平坦以后,其布线表面会暴露在外部,而在其上形成埋入布线时,由于,例如在下一工序的层间绝缘膜成形处理中的形成SiO2时的表面氧化、以及为了形成通孔(via hole)而进行SiO2蚀刻等时候,从通孔底部露出的布线的蚀刻剂或抗蚀剂的脱落等,都有可能引起表面污染。
因此,在过去,为了防止布线的蚀刻剂等污染,一般不仅在表面露出的布线形成部,而且在半导体基片的整个表面也都形成SiN等布线保护膜。
然而,若在半导体基片的整个表面上形成SiN等布线保护膜,则在具有埋入布线结构的半导体器件中,层间绝缘膜的电容率(介电常数)上升,而引发布线延迟,即使使用铜或银这样的低电阻材料作为布线材料,也会对半导体器件的能力提高造成妨害。
因此,提出一种保护布线的方法,即,利用与铜或银等布线材料的结合能力强,而且电阻率(ρ)低的材料,例如,通过无电解电镀获得的Co(钴)及Co合金、或者Ni(镍)及Ni合金来制成保护膜,将该保护膜有选择地覆盖在露出布线的表面来保护布线。特别是,将无电解电镀获得的Co-W-B、Co-W-P等Co-W合金制成的保护膜有选择地覆盖在布线表面,以防止布线的表面污染以及热扩散。
但是,如图31所示,在由SiO2制成的绝缘膜2的内部所形成的布线用的槽4的内部,例如进行埋入铜、CMP处理以形成铜布线8,在该铜布线8的裸露表面上,通过无电解电镀,有选择地形成例如由Ni-B制成的保护膜20,以保护铜布线8的裸露表面,由此,该保护膜20的厚度很难达到均匀,因此保护膜20的厚度偏差增大。而且,这样一来,保护膜20的厚度偏差一旦增大,在其上进行层间绝缘膜的淀积进行多层布线化的情况下,就会出现无法确保层间绝缘膜表面的充分平坦度的问题。此外,还有可能出现由于图形(pattern)密度不同而产生的问题,如在图形密度大的地方,绝缘膜上就会出现保护膜突出(overhanging)的现象。
而且,根据图形密度以及布线宽度,即使在布线之外的绝缘膜上,用于形成保护膜的电镀材料也被进行成膜处理。例如,在绝缘膜内部形成的布线用凹部中,埋入铜而形成铜布线的情况下,一般铜的元素级较高,特别是图形密的地方,由于绝缘膜上的铜污染物,无电解电镀的电镀材料与该绝缘膜上的铜进行反应,在此而形成膜。
这里,要求这种布线保护膜(覆盖构件)具有较强的抗电迁移性。电迁移,被认为是使电流集中而产生的焦耳热的起因,将布线保护膜内的薄壁部或者针孔作为起点而产生的。因此,对应于该问题,尽量避免产生局部薄壁部或针孔,并使膜厚均匀连续,例如在50nm以下,最好是将由厚度约为10~30nm的薄膜制成的布线保护膜,均匀地覆盖于裸露布线的表面。
但是,如图44所示,在由SiO2等形成的绝缘膜10的内部埋入铜所形成的铜布线8的表面,例如,若是形成通过无电解电镀获得的由Co-W-B合金制成的、具有厚度在50nm以下的晶相的布线保护膜(薄膜)20,由于该膜是具有多结晶取向的多结晶膜,因此构成铜布线8的铜受到该结晶取向的影响,例如在面方位(111)的铜结晶8a上,生长(外延生长)面方位(111)的Co-W-B合金结晶20a,在面方位(222)的铜结晶8b上,生长面方位(222)的Co-W-B合金结晶20b。而且,这些面方位不同的Co-W-B合金结晶20a、20b的生长速度也不相同,因此,产生难于得到膜厚均匀、连续的布线保护膜(薄膜)的问题。
也就是说,若是在铜表面生长具有晶相的布线保护膜(覆盖构件),则该膜会与作为基质(基底)的铜的结晶面结合,因而无法得到均匀且连续的薄膜,也不能获得充分的抗电迁移性能。
此外,若由无电解电镀获得的Co合金或Ni合金制成布线保护膜,再由该保护膜有选择地覆盖在布线表面以保护布线,则由于Co合金或Ni合金是一般性磁体,因此该布线保护膜的磁性会使半导体特性产生劣化。
而且,若由无电解电镀获得Co-W-B、Co-W-P合金等具有W(钨)的保护膜(覆盖构件),再由该保护膜有选择地覆盖在埋入布线表面来保护布线,这样就可以有效防止布线的热扩散(具有优异的防止热扩散效果),如图55所示,若电镀液中的W浓度(W的含有率)增加,则因为电镀速度随着W浓度的增加而下降,因此其电镀速度降低。而且,镀膜的膜厚很容易对基质(布线)的膜质状态产生影响,例如,会引起结晶取向的差异而造成镀膜的厚度的显著差异,无法在亚微米的布线上形成均匀的镀膜。
另一方面,若将由非晶质Co-B合金等不具有W的Co合金形成的保护膜(覆盖构件)有选择地覆盖埋入布线表面来保护布线,则电镀速度加快,而且不会影响基质(布线)的膜质的状态,因此即使在亚微米的布线上也可以形成均匀厚度的镀膜,但不能有效防止布线的热扩散(防止热扩散的效果降低)。
也就是说,存在难以使利用具有优良的防止布线热扩散效果的材料作为保护膜、及保护膜具有一定的厚度这两者同时成立。这里所谓保护膜是具有下述功能的薄膜,即,具有防止埋入布线材料热扩散的功能、且具有在形成淀积布线时的氧化环境下可防止布线材料氧化的功能,特别是具有耐蚀刻剂的性能。
而且,在布线材料只使用铜而形成的铜布线,与铝制布线相比,不仅具有更高的抗电迁移性能以及抗应力迁移能力,而且布线的电阻率不会随着半导体器件的高速化、高集成化而增大,可以使抗电迁移性能以及抗应力迁移能力得到更大提高。此外,若将由无电解电镀获得的Co及Co合金膜有选择地覆盖布线表面来保护布线,则因为Co及Co合金与铜相比可具有更高的电阻率(ρ),因此有望更进一步降低其电阻率(ρ)。
发明内容
本发明是鉴于上述问题而提出来的,其第1目的是提供一种半导体器件及其制造方法,可改善覆盖埋入布线裸露表面以进行保护的保护膜的膜厚不均匀问题,在需要多层布线的情况下,也可以确保层间绝缘膜表面的充分的平坦度。
本发明的第2发明目的是提供一种半导体器件及其制造方法,可防止用于形成保护膜的电镀材料在绝缘膜上成膜,且可有选择地只在布线的裸露表面形成保护膜。
本发明的第3个目的在于提供一种半导体器件及其制造方法,可将连续的布线保护膜(薄膜)以均匀的厚度有选择地覆盖在埋入布线的裸露表面上来保护布线,而且,可防止用于保护该布线的布线保护膜的半导体特性劣化。
本发明的第4个发明目的在于提供一种半导体器件及其制造方法,可将具有优良的防止布线热扩散效果的保护膜以所定的厚度有选择地只覆盖着埋入布线的表面,可以有效的防止布线的热扩散。
本发明的第5个发明目的在于提供一种电镀液、以及使用该电镀液而形成的半导体器件及其制造方法,上述电镀液用于形成电阻率不变大、且抗电迁移特性及抗应力迁移特性更高的布线,或用于形成由低电阻材料构成、并有选择地覆盖在布线表面以进行保护的保护膜。
本发明的半导体器件的特征在于,其在具有埋入布线结构的半导体器件的裸露布线表面有选择地形成表面平坦的保护膜。这样,可以使通常难以达到厚度均匀的保护膜的表面平坦,从而可以改善保护膜的膜厚不均的问题,并可去除其突出部分。
上述保护膜是例如Co、Co合金、Ni、或Ni合金中的至少一种。上述Co合金可例举Co-W-P、Co-W-B、Co-P、Co-B,上述Ni合金可以例举Ni-B、Ni-P、Ni-W-P、Ni-W-B。
本发明的其他半导体器件的特征在于,在具有埋入布线结构的半导体器件的裸露布线表面,有选择地形成具有非晶相的布线保护膜。因此,可将不会影响作为基质的布线的结晶取向的、均匀且连续的具有非晶相的布线保护膜(覆盖构件)有选择地覆盖在裸露布线表面,以对布线进行保护。例如,如图32所示,在由SiO2等构成的绝缘膜10的内部埋入铜而形成的布线(铜布线)8的表面上,由无电解电镀获得的具有非晶相的布线保护膜(薄膜)20,该布线保护膜20由Co-W-B合金构成,且其厚度不超过50nm,则即使构成铜布线8的铜是具有多个结晶取向的多晶膜,也不会影响其结晶取向,例如在面方位(111)的铜晶体8a和面方位(222)的铜晶体8b上,均匀生长着Co-W-B合金20c,由此,可得到厚度均匀且连续的布线保护膜(薄膜)20。
上述布线保护膜是由例如Ni合金、Co合金或者Cu合金构成。Cu合金可以是Cu-B合金等。布线材料可以使用铜、铜合金、银或银合金等低电阻材料,由此可望实现半导体器件的高速化及高密化。
本发明的又一半导体器件的特征在于,在具有埋入布线结构的半导体器件的裸露表面上,有选择地形成由非磁性膜构成的布线保护膜。上述具有非晶相的布线保护膜,具有与晶体不同的非三维无定形(非晶性)结构,这种无定形结构的合金一般为非磁性(不产生强磁性)。由于布线保护膜为无定形结构,因此由各合金成分构成的布线保护膜为非磁性膜。
本发明的又一半导体器件的特征在于,在具有埋入布线结构的半导体器件的裸露布线的表面,进行用于布线保护膜成膜的预处理,然后在实施了预处理的布线表面上有选择地形成保护膜。这样,在半导体器件的表面,实施例如用于防止布线热扩散的保护膜成膜的预处理,预先使基质的膜质均匀,然后,形成具有一定膜厚的保护膜(覆盖构件),该保护膜具有Co-W-B合金等W,且防止热扩散效果优异,因此可有效防止埋入布线的热扩散。
由于通过上述预处理,在上述裸露布线表面上,有选择地形成在下一工序中起到无电解电镀的催化剂作用的晶种层,并在该晶种层的表面上有选择地形成上述保护膜,由此可以在用作催化剂的晶种层的表面,以所定厚度形成具有优良的防止热扩散效果的保护膜(覆盖构件)。
上述晶种层是由例如非晶质Co-B合金构成,上述保护膜是由例如非晶质Co-W-B合金或非晶质Co-W-P合金构成。因此,首先,形成不会影响基质的结晶取向、厚度均匀的、且由均匀膜质的非晶质Co-B合金构成的晶种层,然后可以在该晶种层的表面,形成厚度均匀且具有优良的防止热扩散效果的、由非晶质Co-W-B、非晶质Co-W-P合金等构成的保护膜。
本发明的又一半导体器件的特征在于,通过在设于基片表面上的布线用的微细凹部内,埋入铜合金而形成布线,上述铜合金由铜和非固溶金属构成。由此,与单纯由铜构成布线的情况相比,可得到由电阻率不变大、且抗电迁移特性及抗应力迁移特性更高的铜合金构成的布线。这里,所谓的“由铜和固溶金属构成的铜合金”是指例如铜-银类的铜合金等、多种物质(例如铜和银)等不形成一个晶格(例如不是将铜和银相互混合而成的晶体),而是各种物质的晶体(例如,铜晶体和银晶体)的混合体。
上述保护膜的厚度在例如0.1~500nm的范围内。上述由铜和非固溶金属构成的铜合金,可以是例如铜-银类合金、铜-钴类合金、铜-锡类合金、或者铜-硼类合金。这些铜合金中的铜的含量一般为90%~99.99at%。
本发明的又一半导体器件的特征在于,将由铜和非固溶金属构成的铜合金所制成的保护膜,有选择地形成在具有埋入布线结构的半导体器件的裸露布线的至少一部分上。这样,与银或铜的结合力增强,且电阻率(ρ)较低,用由铜和非固溶金属构成的铜合金所制成的保护膜有选择地覆盖在布线的表面以保护布线,由此可以制造出布线电阻不会上升的半导体器件。
本发明的半导体器件的制造方法的特征在于,在具有埋入布线结构的半导体器件的裸露布线的表面,通过无电解电镀有选择地形成保护膜,然后使形成有上述保护膜的半导体器件的表面平坦。若是通过无电解电镀形成保护膜,虽然通常难以使其膜厚均匀,但这样可以在无电解电镀之后使保护膜平坦,从而改善保护膜厚度不匀的问题,并可去除突出部分。
例如,在具有埋入布线结构的半导体器件表面所设置的布线用凹部内,通过电镀埋入导体,对该导体进行热处理,通过研磨使该半导体器件的表面平坦,通过无电解电镀在该半导体器件的裸露布线表面上有选择地形成保护膜,通过研磨使该半导体器件的表面平坦。形成保护膜以后的研磨是例如在提供含有氧化剂和研磨粒的浆液的同时使用研磨垫进行的,上述研磨垫是由无纺布、海绵或树脂材料(例如泡沫聚亚胺酯)构成的。因此,保护膜是通过由氧化剂氧化了的浆液中所含的研磨粒来进行研磨的。此外,也可以使用预先加入研磨粒的研磨石进行研磨。
在通过无电解电镀有选择地形成上述保护膜之前,根据需要,也可以进行电镀预处理。该电镀预处理可以是,例如施加Pd催化剂的催化剂处理,或者是去除附着在裸露布线表面的氧化膜的氧化膜去除处理。
这里,也可以在设于基片表面上的布线用凹部中,通过电镀埋入导体,对该导体进行热处理,通过研磨使经过热处理的基片表面平坦,清洗被整平的基片表面,通过无电解电镀在上述清洗后的基片的裸露布线表面有选择地形成保护膜。在清洗过程中,最好是在使基片表面的绝缘膜上的导体污染在小于5×105atoms/cm2的状态下进行绝缘膜上面的清洗。这样,就可以防止在通过随后的无电解电镀有选择地形成保护膜时,由于绝缘膜上的铜污染,无电解电镀的电镀材料与该绝缘膜上的铜发生反应,而在该位置成膜。这里,在上述那样清洗基片表面时,最好在绝缘膜的上表面清洁时进行电镀,例如在5分钟以内进行电镀。
本发明的又一半导体器件的制造方法的特征在于,在具有埋入布线结构的半导体器件的表面进行无电解电镀,在裸露布线表面有选择地形成具有非晶相的布线保护膜。
例如,在具有埋入布线结构的半导体器件表面所设置的布线用凹部内,通过电镀埋入导体,对该导体进行热处理,通过化学机械研磨使该半导体器件的表面平坦,通过无电解电镀在该半导体器件的裸露布线表面上有选择地形成具有非晶相的布线保护膜。
本发明提供的另一种半导体器件的制造方法的特征在于,在具有埋入布线结构的半导体器件的表面进行无电解电镀,在裸露布线表面有选择地形成由非磁性膜构成的布线保护膜。
例如,在具有埋入布线结构的半导体器件表面所设置的布线用凹部内,通过电镀埋入导体,对该导体进行热处理,通过化学机械研磨使该半导体器件的表面平坦,通过无电解电镀在该半导体器件的裸露布线表面上有选择地形成由非磁性膜构成的布线保护膜。
本发明的又一半导体器件的制造方法的特征在于,在具有埋入布线结构的半导体器件的表面有选择地进行用于保护膜成膜的预处理,通过无电解电镀在进行过预处理的布线表面有选择地形成保护膜。
这里,通过上述预处理,在裸露布线表面上有选择地形成由例如非晶质Co-B合金构成的晶种层,该晶种层在Co合金电镀(例如Co-W-B或Co-W-P合金电镀)中起到催化剂的作用。在该晶种层的表面上,有选择地形成由例如Co-W-B或Co-W-P合金构成的保护膜。
例如,在具有埋入布线结构的半导体器件表面所设置的布线用凹部内,通过电镀埋入导体,对该导体进行热处理,通过化学机械研磨使该半导体器件的表面平坦,在该半导体器件的裸露布线表面进行用于布线保护膜成膜的预处理,通过无电解电镀,在进行了上述预处理的布线表面上有选择地形成保护膜。
本发明又一半导体器件的制造方法的特征在于,在基片表面进行电镀,将由铜和非固溶金属构成的铜合金,埋入在设于基片表面上的布线用的微细凹部内以形成布线。
本发明又一半导体器件的制造方法的特征在于,在具有埋入布线结构的半导体器件的表面进行电镀,在裸露布线的至少一部分上有选择地形成由铜和非固溶金属构成的铜合金制成的保护膜。
本发明的半导体器件的制造装置的特征在于,具有,第1电镀单元,用于对导体埋入设于基片表面上的布线用凹部中;第1研磨单元,用于对埋有上述导体的基片的表面进行研磨;第2电镀单元,用于在上述研磨后的基片上暴露的布线的表面,有选择地形成保护膜;第2研磨单元,用于将形成有上述保护膜的基片表面进行研磨。
还具有热处理单元,用于对埋入基片的导体进行热处理,还具有第3电镀单元,用于预先由第2电镀单元在布线表面上有选择地形成保护膜,再在上述布线表面有选择地形成用作催化剂的晶种层。
此外,还具备清洗单元,用于将被第1研磨单元整平的基片表面进行清洗,最好由上述清洗单元对基片表面进行清洗,使上述表面的绝缘膜上的导体污染小于5×105atoms/cm2
本发明提供一种电镀液,被用于对由铜和非固溶金属构成的上述铜合金进行电镀,其特征在于,含有:铜离子、得到由铜和非固溶金属构成的铜合金的金属的金属离子、配位剂、以及不含碱金属的还原剂。通过使用上述电镀液而进行电镀,可得到一种电镀膜,由铜和非固溶金属构成的铜合金构成,具有与铜大致相同的电阻率,且与铜相比具有更高的抗电迁移性和抗应力迁移性。
上述金属离子例如是银离子、钴离子和锡离子。还原剂可以是烷基胺硼烷,由此,还原剂使用的是不含钠的烷基胺硼烷,因此可防止半导体器件被碱金属所污染。烷基胺硼烷也可以是二甲胺硼烷、二乙胺硼烷、三甲胺硼烷等。
还具有稳定剂或者表面活性剂中的至少一种,上述稳定剂为硫化物、氮化物或重金属化合物中的1种或者不少于1种。
最好使用不含有碱金属的pH调整剂,将pH值调整为5~14,这样,因为使用不含有碱金属的pH调整剂进行pH值的调整,因此可防止在电镀溶液中含有钠等。pH调整剂可以是例如氨水或氢氧化四甲基铵(TMAH),电镀液的pH值最好为7~13。
附图说明
图1A至1C为半导体器件的铜布线形成实例中的、到CMP处理为止的工序顺序图。
图2A至2C为本发明实施方式中半导体器件的铜布线形成实例中的、经过CMP处理后的工序图。
图3为表示本发明实施方式中电镀方法的工序顺序框图。
图4为表示本发明实施方式中半导体器件的制造装置的平面配置图。
图5表示本发明另一实施方式中半导体器件的制造装置的平面配置图。
图6表示图4或图5所示的半导体器件的制造装置中基片的流程图。
图7表示在电镀时,作为第1电镀单元的电镀装置的整体结构的剖视图。
图8表示图7所示的电镀装置中的电镀液流动状态的电镀液流动图。
图9表示在非电镀时(更换基片时),图7所示的电镀装置中的整体结构的剖视图。
图10表示图7所示的电镀装置在维护时的整体结构的剖视图。
图11为图7所示的电镀装置的剖视图,其是说明在基片更换时,支架、按压环以及基片之间关系的剖视图。
图12表示图11的局部放大图。
图13A至图13D为表示图7所示的电镀装置在电镀处理时以及非电镀处理时,电镀液流动情况的说明图。
图14为表示图7所示的电镀装置的定心机构的放大剖面图。
图15为表示图7所示的电镀装置的供电触点(探针)的剖面图。
图16为表示作为第1电镀单元的电镀装置又一实施例的平面图。
图17为图16中A-A线的剖面图。
图18为图16所示的电镀装置的基片支撑部以及阴极部的剖面图。
图19为图16所示的电镀装置的电极臂部的剖面图。
图20为图16所示的电镀装置的电极臂部的除去支架的平面图。
图21为表示图16所示的电镀装置的阳极与电镀液浸渍材料的概要图。
图22为将无电解电镀装置作为第1电镀单元以及/或者第2电镀单元而使用的一实例的结构说明图。
图23为将无电解电镀装置作为第1电镀单元以及/或者第2电镀单元而使用的另一实例的结构说明图。
图24为表示研磨装置一实例的概要结构图。
图25为铜膜厚检测单元中的反转机附近的概要正视图。
图26为铜膜厚度检测单元中的反转臂的局部平面图。
图27为表示清洗单元一实施例的概要结构图。
图28为表示退火单元一实施例的纵剖面正视图。
图29为图28的平面剖视图。
图30是在以保护膜保护铜布线,并且以CMP对保护膜的表面进行研磨时,将其状态的SEM照片以图像表示的状态图。
图31是在以保护膜保护铜布线时,将其状态的SEM照片以图像表示的状态图。
图32表示将具有非晶相的合金所构成的薄膜在铜布线上进行堆积(生长)时的状态模式图。
图33为表示本发明又一实施方式的半导体器件的剖面图。
图34为表示本发明又一实施方式的电镀方法的工序顺序的框图。
图35为表示本发明又一实施方式的通过无电解电镀而形成布线保护膜的布线装置的整体配置图。
图36为表示本发明又一实施方式的形成布线保护膜的电镀装置的平面结构图。
图37为表示图36所示的电镀装置内的气流流动的说明图。
图38为表示图36所示的电镀装置的各区域间的空气流动的说明图。
图39为表示将图36所示的电镀装置配置在清洁室内的一实例的外观图。
图40A以及图40B为实施例2中实施电镀处理前后的样本的SEM照片。
图41为表示实施例2中的进行电镀处理之后,进行X射线衍射时的衍射强度与2θ之间的关系的图表。
图42A以及图42B是表示比较例1中的进行电镀处理前后的样本的SEM照片。
图43为表示比较例1中的进行电镀处理之后,进行X射线衍射时的衍射强度与2θ之间的关系的图表。
图44表示将具有晶相的合金所构成的薄膜在铜布线上进行堆积(生长)时的状态模式图。
图45A至图45C为表示本发明又一实施方式的半导体器件中形成铜布线的实例的、进行CMP处理后的工序顺序的图。
图46为表示本发明又一实施方式的半导体器件的制造装置的平面配置图。
图47为表示本发明又一实施方式的电镀方法的工序的流程图。
图48是将实施例3以及比较例2、3所提供的样本的SEM照片图像化的说明图。
图49是将进行实施例3中的处理的样本的SEM照片图像化后的说明图。
图50是将进行比较例2中的处理的样本的SEM照片图像化后的说明图。
图51是将进行比较例3中的处理的样本的SEM照片图像化后的说明图。
图52是将进行了实施例3中的处理的样本的退火前后的进行二次离子质量分析时的数据图表。
图53是将进行了比较例2中的处理的样本的退火前后的进行二次离子质量分析时的数据图表。
图54是将进行了比较例3中的处理的样本的退火前后的进行二次离子质量分析时的数据图表。
图55是表示使用含有钨(W)的Co合金电镀液进行电镀时的W浓度与电镀速度关系的图表。
图56A至图56C是表示本发明又一实施方式的半导体器件中形成铜合金布线的工序图。
图57A至图57D是表示在本发明又一实施方式的半导体器件的埋入布线的裸露表面上,有选择地形成由铜合金构成的保护膜以对布线进行保护这一实例的工序图。
具体实施方式
以下,说明本发明的实施方式。
图1A至图1C表示半导体器件的铜布线形成实例工序图。如图1A所示,在形成半导体元件的半导体基材1的导电层1a上,淀积例如由SiO2构成的绝缘膜2,在该绝缘膜2内部,通过例如光刻技术来形成接触孔3和布线用槽4,在其上形成由Ta或者TaN等构成的阻挡层(势垒层)5,再在其上通过溅射等形成作为电解电镀的供电层的铜晶种层6。
而且,如图1B所示,通过在半导体基片W的表面镀铜,在半导体基片W的接触孔3以及槽4内填充铜的同时,在绝缘膜2上淀积铜层7。然后,通过化学机械研磨(CMP),去除绝缘膜2上的铜层7以及阻挡层5,并使充填在接触孔3及布线用槽4中的铜层7的表面、与绝缘膜2的表面大体在同一平面。这样,如图1C所示,在绝缘膜2内部形成由铜晶种层6和铜层7所构成的布线(铜布线)8。
如图2A至图2C所示,本发明的半导体器件的结构为多层布线结构,如上所述,将保护膜20有选择地覆盖在基片W上形成的布线8的裸露表面,然后进行CMP处理,使保护膜20表面平坦以后,再在基片W的表面淀积例如由SiO2和SiOF等所构成的绝缘膜22。这时的部分工序如图3所示。在该例中,首先,通过例如电镀进行铜的埋入,清洗、干燥以后,根据需要进行热处理(退火)来进行CMP处理,然后清洗经过CMP处理的基片W。而且,在进行过例如施加Pd催化剂的催化处理等电镀预处理以后,在基片W的表面上进行无电解电镀,如图2A所示,在露出于布线8外部的裸露表面,有选择地形成由Co合金构成的保护膜20。此外,将基片清洗干燥以后,如图2B所示,对基片W的表面进行CMP处理,以使保护膜20的表面平坦。接着,在将基片清洗干燥后,如图2C所示,使绝缘膜22淀积在该基片上。
这样,通过将保护膜20有选择地覆盖布线8的裸露表面,可以对布线8进行保护。而且,若通过无电解电镀形成保护膜20,则一般难于使膜厚均匀,但如果如上述这样,在无电解电镀之后,通过对保护膜20的表面进行CMP处理而使其平坦,就会改善保护膜20的厚度不均的问题,因此,就可以确保在其上淀积的绝缘膜22的表面具有充分的平坦度。
这里,在CMP之后的清洗时,最好使图1C所示的绝缘膜2上的铜污染小于5×105atoms/cm2,在该条件下对基片W的表面进行清洗。这样,通过使绝缘膜2上的铜污染小于5×105atoms/cm2,在其后的通过无电解电镀有选择地形成保护膜20时,就可以防止下述问题,即,由于绝缘膜2上的铜污染,会造成无电解电镀的电镀材料与该绝缘膜2上的铜反应而成膜。也就是说,由于在铜的表面进行无电解电镀时,无论是否进行催化处理,电镀材料都会与铜元素产生反应而成膜,但通过去除绝缘膜2上面的铜,就可以防止在绝缘膜上电镀材料与铜发生反应而成膜的问题。这样,最好在清洗过基片W的表面时,绝缘膜2上面仍然干净的状态下进行无电解电镀,例如最好在5分钟以内。
此外,在有选择地形成保护膜20时,会因为布线图形的集成密度而受到影响。也就是说,布线图形稀疏的部分比起布线图形紧密的部分更难附膜,因此,若是在布线图形稀疏的部分充分形成保护膜20,则在布线图形紧密的部分所形成的保护膜20就会较厚,这时,保护膜20就会不仅形成在裸露布线8的表面,还会形成在绝缘膜2的表面。在这种情况下,由于通过CMP处理同时地使形成于裸露布线8的表面上的保护膜20和形成于绝缘膜2的表面上的保护膜20平坦,因此可以改善保护膜20不均的问题。整平处理(平坦化处理)也可以在保护膜20稍高出绝缘膜2的表面的状态下停止,但最好在使其被整平到与绝缘膜2的表面一致的状态停止,这样容易确保被淀积在保护膜20上的绝缘膜2的表面的充分平坦度。
这里,在本例中,作为保护膜20使用的是Co-W-P合金。也就是说,在将基片W浸渍在例如PdCl2+HCl的溶液中一分钟,加入钯催化剂进行电镀预处理,然后,通过将基片W的表面浸渍到含有钴离子、配位剂、pH缓冲剂、pH调整剂、还原剂以及含钨化合物的电镀溶液中,来形成保护膜(Co-W-P合金层)20。
在该电镀液中,根据需要,还可以添加作为稳定剂的重金属化合物或硫化物中的一种或多种,或者添加表面活性剂的至少一种,或者使用氢氧化钠等pH调整剂,将pH值调整到例如10。电镀液的温度为例如90℃(摄氏度)。
作为电镀液中钴离子的供给源,可以使用硫酸钴、氯化钴、乙酸钴等钴盐。作为配位剂可以选择例如乙酸等羧酸及其盐类、或者例如酒石酸、柠檬酸等氧代羧酸及其盐类、氨基乙酸等氨基羧酸及其盐类。而且,可以单独使用也可以同时使用多种。
作为pH缓冲剂可以选择例如硫酸铵、氯化铵及硼酸。还原剂可以选择次磷酸钠等。作为含钨化合物,可以选择例如钨酸及其盐类、或者例如钨磷酸(例如H3(PW12P40)nH2O)等杂多酸及其盐类等。
此外,在本例中,虽然使用Co-W-P合金作为保护膜20,但也可以使用Co单体,Co-W-B合金、Co-P合金或者Co-B合金。
作为保护膜20也可以使用Ni-B合金。也就是说,也可以使用含有下述物质、且将pH调整为例如8~12的无电解电镀溶液,通过将基片W表面浸渍到该电镀溶液中,来形成保护膜(Ni-B合金层)20,上述物质分别为镍离子、镍离子的配位剂、作为镍离子的还原剂的烷基胺硼烷或硼氢化合物、以及氨离子。电镀液的温度例如是50~90℃,最好是55~75℃。
这里,作为镍离子的配位剂,可以选择例如苹果酸或氨基乙酸等,作为硼氢化合物,可以选择例如NaBH4。而且,作为保护膜20还可以使用Ni单体、Ni-P合金、Ni-W-B合金、或Ni-W-P合金等。
而且,作为布线材料,虽然说明了使用铜的例子,也可以使用铜以外的铜合金、银及银合金等。
图4为表示本发明实施方式中半导体器件的制造装置的平面配置图。该制造装置如下配置:在整体呈长方形的地板上的空间的一端,左右相面对地设置着第1研磨单元24a和第2研磨单元24b,另一端设置着一对装卸部,该装卸部放置分别容纳着半导体晶片等基片W的基片盒26a、26b。而且,在研磨单元24a、24b与装卸部的连线上设置着2台搬运机械手28a、28b。此外,沿着运输线的一侧,设置有埋入铜用的第1电镀单元30、具备反转机的铜膜厚检测单元32、以及具备反转机的电镀预处理单元34,在另一侧,设置有冲洗/干燥装置36、用于形成保护膜的第2电镀单元38以及具备海绵卷的清洗单元39。在研磨单元24a、24b的运输线侧面,设有可将基片W在研磨单元24a、24b之间上下自由移动的推动器42。
这里,如图5所示,例如在与第1电镀单元30相邻的位置设置有退火单元(热处理单元)814,由此可以连续地进行由第1电镀单元进行的导体(铜)的埋入、由退火单元814对导体(铜)进行的热处理(退火)、以及由研磨单元24a或24b所进行的研磨作业。
图7至图15表示的是构成具有图4及图5中所具备的第1电镀单元30的电镀装置。该电镀单元(电镀装置)30,如图7所示,主要由电镀处理槽46以及头部47所构成的,该电镀处理槽大致呈圆筒状,在内部容纳有电镀液45,该头部47被配置在该电镀处理槽46的上方,固定(保持)着基片W。而且,图7表示的是由头部47固定着基片W,使电镀液45的液面上升到电镀位置时的状态。
在上述电镀处理槽46中,具有上方开放、且在底部设有阳极48的电镀室49,该电镀室49内具有可存放电镀液45的电镀槽50。在电镀槽50的内壁上,沿圆周方向等距离设有朝向电镀室49中心、并水平突出的电镀液喷嘴53,该电镀液喷嘴53与在电镀槽50内部上下延伸的电镀液供应管路相连通。
此外,在本例中,在电镀室49内的阳极48的上方位置,设有凸模接头(punch plate)220,该凸模接头220上设有多个例如3mm左右的孔,由此,可防止在阳极48表面所形成的黑膜被电镀液45卷起而流出。
在电镀槽50中,设有:第1电镀液排出口57,其可将电镀室49内的电镀液45从该电镀室49的底部周边抽出;第2电镀液排出口59,其可将从设于电镀槽50上端的堰构件58溢出的电镀液45排出;第3电镀液排出口120,其可将溢出上述堰构件58之前的电镀液45排出。此外,在堰构件58下部,如图13A至图13C所示,每隔一定间隔设有一定宽度的开口222。
由此,在电镀处理过程中,当电镀液供应量较大时,在将电镀液从第3电镀液排出口120排出到外部的同时,如图13A所示,使其溢出堰构件58,然后通过开口222,从第2电镀液排出口59排出到外部。此外,在电镀处理过程中,当电镀液供应量较小时,在将电镀液从第3电镀液排出口120排出到外部的同时,如图13B所示,使其通过开口222,从第2电镀液排出口59排出到外部,由此,可以容易地根据电镀液供应量的大小进行处理。
此外,由图13D所示,将连通电镀室49和第2电镀液排出口59的液面控制用的通孔224,设置于电镀液喷嘴53的上方,并沿圆周方向以一定间隔距离来设置,由此,在非电镀时,可将电镀液通过通孔224,从第2电镀液排出口59排出到外部,以此来控制电镀液的液面。此外,该通孔224在电镀处理时可以作为控制电镀液流量的孔。
如图8所示,第1电镀液排出口57通过电镀液排出管60a与储液器226连接,并在该电镀液排出管60a中间安装流量调整器61a。第2电镀液排出口59和第3电镀液排出口120在电镀槽50内部汇合之后,通过电镀液排出管60b直接与储液器226连接。
进入上述储液器226的电镀液45,通过泵228从储液器226进入到电镀液调整箱40内。该电镀液调整箱40中,设有温度控制器230、以及可将样本液取出并进行分析的电镀液分析单元232,随着单个泵234的驱动,电镀液45从电镀液调整箱40通过过滤器236被提供到电镀单元30的电镀喷嘴53中。在从该电镀液调整箱40延伸至电镀单元30的电镀液供应管55的途中,设有具有一定次级压力的控制阀56。
回到图7,在位于电镀室49内部的周边附近,设有垂直整流环62和水平整流环63。该垂直整流环62使在该电镀室49内电镀液45被分为上下两股,上股电镀液将电镀液面的中心部分向上挤压,这时,下股电镀液流动平稳,并且电流密度分布更均匀,垂直整流环62和水平整流环63的外周端部固定在电镀槽50上,
另一方面,在头部47上具备支架70和按压杆242,上述支架70可自由旋转、呈有底圆柱形且向下开口,并在周壁上设有开口94,上述按压杆242可在上下方向移动自如,并在底部设有按压环240。如图11和12所示,在支架70的底部,设有向内突出的环形基片支撑部件72。在该基片支撑部件72上镶嵌有向内突出的环形密封构件244,该密封构件244的上表面的前端向上突出呈尖塔状。另外,在该密封构件244的上方设有阴极触点76。在基片支撑部件72上以沿圆周等间隔的方式设有通风孔75,该通风孔75在水平方向向外延伸,并进一步朝外向上倾斜地向外延伸。
由此,如图9所示,电镀液45的液面较低,如图11和12所示,基片W由吸附爪H等固定,以插入支架70内部,并放置在基片支撑部件72的密封构件244的上面。此后,吸附爪H从支架70中抽回后,使按压环240下降。由此,把基片W的周边部分夹持在密封构件244和该按压环240的下面,以固定基片W,而且,在固定基片W时,将基片W的下表面和密封构件244压接以保证密封。同时,对基片W和阴极电极触点76通电。
回到图7,支架70连接到电机246的输出轴248上,并通过电机246的驱动而旋转。而且,按压杆242沿着环形支撑架258的圆周方向垂直设置在预定的位置上,该支撑架258通过轴承256被旋转自如的支撑在滑动器254的下端。上述滑动器254通过导引气缸252的作动可上下移动,该气缸252被固定在电机246周围所设置的支座250上。通过这种构造,上述按压杆242可以在气缸252的作动下上下移动,另外,在将基片W固定住以后,上述按压杆242可以随支架70整体旋转。
支座250安装在连接有滚珠螺杆261且可上下移动的滑动基座262上,该滚珠螺杆261可通过电机260带动而旋转,而且,支座250被上部支架264包围着,并可通过电机260带动而随着上部支架264上下移动。另外,在电镀时,包围在支架70周围的下部支架257被安装在电镀槽50的上面。
通过这种构造,如图10所示,可以在使支座250和上部支架264抬升的状态下进行维护。虽然电镀液的晶体可附着在堰构件58的内圆周表面,但在支座250和上部支架264成抬升状态时,会流出大量的电镀液并溢出堰构件58,因此可以防止电镀液的晶体附着在堰构件58的内圆周表面。而且,虽然在电镀槽50内一体设置有覆盖在电镀时所溢出的电镀液的上方的防止电镀液飞溅盖50b,但在该防止电镀液飞溅盖50b的下面,覆盖超级防水性材料如HIREC(NTT AdvanceTechnology公司制造),可以阻止电镀液的晶体附着在此。
在本实施中,位于支架70的基片支撑部件72上面的用于基片W定心的基片定心机构270,被设置在沿着圆周方向的4个位置。图14是基片定心机构270的详图。该基片定心机构270包含固定在支架70上的门形托座272、和设置在该托座272内的定位块274。该定位块274通过固定在其上部、且位于托座272水平方向的支撑轴276,可摆动自如的被支撑着。另外,在支架70和定位块274之间设置有压缩螺旋弹簧278。由此,定位块274通过压缩螺旋弹簧278被施加力,以使其下部以支撑轴276为中心向内突出。定位块274的上表面274a,与具有制动作用的托座272的上部下表面272a接触(搭接),从而限制定位块274的移动。另外,定位块274的内表面是向上方并向外扩展的锥形面274b。
由此,基片被例如搬运机械手等吸附爪固定,送进支架70,并放置在基片支撑部件72的上面,这时,当基片的中心从基片支撑部件72的中心偏离时,定位块274向外旋转以抵抗压缩螺旋弹簧278的弹力,一旦基片被搬运机械手等吸附爪放开,定位块274在压缩螺旋弹簧278的弹力作用下返回初始位置,通过该复位动作,可以对基片进行定心。
图15显示供电触点(探针)77,其用来供电给对阴极触点76的阴极电极板208。该供电触点77由柱塞组成,并被延伸到阴极电极板208的圆柱保护构件280包围,由此来保护该供电触点77不受电镀液的侵蚀。
下面,说明由第一电镀单元(电镀装置)30所进行的电镀处理。
首先,当将基片传送到电镀单元30时,将如图4和5所示的搬运机械手28b的吸附爪和被此吸附爪吸附固定且表面朝下的基片W,从支架70的开口94插入其内部,接着该吸附爪向下移动,此后,解除真空吸附,而将基片W放置到支架70的基片支撑部件72上。然后,使吸附爪向上移动而从支架70中收回。接着,使按压环240下降,而将基片W的周边部分夹持在基片支撑部件72和按压环240下面之间,以此来固定基片W。
在将电镀液45从电镀液喷嘴53中喷射出来的同时,使支架70和固定在该支架70上的基片W以中速旋转,将电镀液45填充到预定量时,再经过几秒,使支架70的旋转速度降低到低速旋转(例如100min-1)。接着,对阳极48和作为阴极的基片电镀表面通电,从而进行电镀。
如图13D所示,在通电结束后,只能允许电镀液通过位于电镀液喷嘴53的上面的用于控制液面的通孔224流出到外部,由此来降低电镀液的供应量,由此,使支架70和被其固定的基片W从电镀液的液面上露出。该支架70和被其固定的基片W位于液面上方的位置,并以高速度(例如500-800min-1)旋转,从而通过离心力的作用排除电镀液。排除完成后,将支架70的旋转停止,以使该支架70停在预定的方向上。
在支架70完全停止后,使按压环240向上移动。接着,将搬运机械手28b的吸附爪以吸引面向下的状态从支架70的开口94插入其内部,接着将吸附爪降低到能吸住基片的位置。而且,通过吸附爪对基片进行真空吸附,将吸附爪移动到支架70的开口94上方的位置,接着将吸附爪与被其固定的基片从支架70的开口94一起收回。
若采用上述电镀单元30,则可以使头部47的结构紧凑、简单。另外,当电镀处理槽46中的电镀液45的液面,处于电镀液面时进行电镀处理,处于基片搬运液面时可进行基片的脱水及搬运处理,而且,可防止在阳极48表面所生成的黑膜被干燥及氧化。
图16至21表示的是构成第一电镀单元30的其他电镀装置。在该镀膜装置(电镀装置)30上,如图16所示,设有可进行电镀处理以及附属处理的基片处理部2-1,并设有与该基片处理部2-1相邻,可存留电镀液的电镀液盘2-2。而且,具备设有电极部2-5的电极臂部2-6,上述电极部2-5被设在可以旋转轴2-3为中心摆动的摆动臂2-4的前端,且可在基片处理部2-1与电镀液盘2-2之间摆动。
此外,还设有位于基片处理部2-1侧面的预涂/回收臂2-7、和固定喷嘴2-8,该固定喷嘴2-8可向基片喷射纯水、离子液等化学制剂、还有气体。在该例中,设有3个固定喷嘴2-8,其中的一个用于供应纯水。如图17和18所示,基片处理部2-1具备:基片固定部(基片保持部)2-9,其位于电镀面之上,用于固定基片;以及阴极部2-10,其在上述基片固定部2-9上方,被配置成围绕该基片固定部2-9周边部的状态。此外,还设置有可通过气缸2-12上下移动自如的杯部2-11,该杯部2-11大致呈有底圆筒状,且围绕在基片固定部2-9的周围,以防止处理过程中各种化学制剂的飞溅。
这里,基片固定部2-9被设置成,可以通过气缸2-12在下方的基片搬运位置A、上方的电镀位置B、上述二者之间的预处理/清洗位置C各位置之间升降,而且,基片固定部2-9通过旋转电机2-14以及传送带2-15能够以任意加速度或速度,与上述阴极部2-10一体旋转。在与该基片搬运位置A相面对、电镀装置的框架侧面的搬运机械手28a(参照图4及图5)一侧位置,设有基片搬运出入口(图未示),当基片固定部2-9在电镀位置B处上升时,在固定基片固定部2-9的基片W的周边部,下述阴极部2-10的密封部件2-16和阴极电极2-17相接触。另一方面,杯部2-11的上端位于上述基片搬运出入口的下方,如图18的虚线所示,该杯部2-11在上升时可到到阴极部2-10的上方。
基片固定部2-9在上升时直到电镀位置B,在由该基片固定部2-9所固定的基片W的周边部按压安装着阴极电极2-17,以对基片W通电。与此同时,密封部件2-16的内周端部与基片W的周边上面以一定压力相接触,形成水密封状态,可防止在基片W上面所提供的电镀液从基片W的端部渗漏,并可防止电镀液对阴极电极2-17的污染。
电极臂部2-6的电极部2-5,如图19所示,在摆动臂2-4的自由端,设有支架2-18、包围着该支架2-18周围的中空支撑架2-19、以及以支架2-18与支撑架2-19所夹持固定的阳极2-20。阳极2-20覆盖着支架2-18的开口部,在支架2-18内部形成吸引腔2-21。而且,如图20及图21所示,在吸引腔2-21内,将电镀液导入、排出的电镀液导入管2-28和电镀液排出管(图未示)连接起来。此外,在阳极2-20设有横跨其整体表面、且上下相连通的多个通孔2-20b。
在该例中,在阳极2-20的下面,安装有覆盖着该阳极2-20整体表面的、由保水性材料制成的电镀液浸渍材料2-22,使电镀液含于该电镀液浸渍材料2-22中,通过使阳极2-20表面湿润,来防止黑膜的基片电镀面的脱落,同时,在向基片的被电镀面和阳极2-20之间注入电镀液时,可以很容易地向外部排气。该电镀液浸渍材料2-22可以由至少包括聚乙烯、聚丙烯、聚酯、乙烯聚合物、聚氯乙烯、聚四氟乙烯、聚乙烯醇、聚亚胺酯及其衍生物等材料中的一种纺织物、无纺布、或海绵状结构体、或者多孔陶瓷构成。
下面进行的是电镀液浸渍材料2-22的阳极2-20的安装。也就是说,将在下端具有头部的多个固定销2-25设置成下述状态,即,将其头部装入电镀液浸渍材料2-22内部以使其不能从上方脱落,并使其轴部贯穿阳极2-20的内部,该固定销2-25通过U形板簧2-26向上方施加力,由此依靠板簧2-26的弹力,来使电镀液浸渍材料2-22被安装成与阳极2-20下面紧密连接的状态。通过这样的结构,随着电镀的进行,即使阳极2-20的厚度慢慢变薄,也可以确保电镀液浸渍材料2-22与阳极2-20下面紧密地接合。因此,可以防止由于在阳极2-20的下面和电镀液浸渍材料2-22之间混入空气而导致的电镀不良。
此外,也可以将例如直径为2mm左右的柱状PVC(聚氯乙烯)或者PET(聚对苯二甲酸乙二醇酯)制销配制成从阳极的上面贯穿阳极的状态,然后将粘结剂涂敷在从阳极下面所露出的该销的前端面上,以使其与电镀液浸渍材料粘结固定。虽然可以将阳极与电镀液浸渍材料相接触来使用,但也可以在阳极和电镀液浸渍材料之间设置间隙,并使电镀液被保持在该间隙中,在此状态下进行电镀处理。该间隙可以选择在不大于20mm的范围内,最好为0.1~10mm,1~7mm更佳。特别是,在使用溶解性阳极的情况下,由于阳极从下开始溶解,因此阳极与电镀液浸渍材料的间隙随时间推移而增大,该间隙可达到0~20mm左右。
而且,上述电极部2-5,当基片固定部2-9处于电镀位置B(参照图18)时,被基片固定部2-9所固定的基片W与电镀液浸渍材料2-22的间隙下降至0.1~10mm左右,最好在0.3~3mm之间,0.5~1mm更佳,该状态下,从电镀液供应管供应电镀液,在使电镀液浸渍材料2-22含有电镀液的同时,将基片W的上面(被电镀面)与阳极2-20之间充满电镀液,并通过电镀电源在基片W的上面(被电镀面)和阳极2-20之间施加电压,由此对基片W的被电镀面进行电镀。
下面,说明由该电镀单元(电镀装置)30所进行的电镀处理。
首先,将电镀处理前的基片W由搬运机械手28b(如图4和图5所示)搬运到位于基片搬运位置A的基片固定部2-9处,并放置在基片固定部2-9上。接着,使杯部2-1上升,同时将基片固定部2-9上升至预处理/清洗位置C。在该状态下,将位于退避位置的预涂/回收臂2-7移动至与基片W相面对的位置,将例如由表面活性剂所制成的预涂液,从在该预涂/回收臂2-7前端所设置的预涂嘴,间歇地喷涂至基片W的被电镀面。这时,由于基片固定部2-9旋转,预涂液遍布基片的整个表面。接着,将预涂/回收臂2-7返回到退避位置,并增加基片固定部2-9的旋转速度,通过离心力的作用,可以清除基片W的被电镀面上的预涂液,而使其干燥。
接下来,将电极臂部2-6在水平方向旋转,使电极部2-5从电镀液盘2-2上方移至实施电镀位置的上方位置,在该位置,使电极部2-5向阴极部2-10下降。在电极部2-5下降结束的时刻,对阳极2-20和阴极部2-10施加电镀电压,向电极部2-5内部提供电镀液,通过贯通阳极2-20的电镀液供应口,将电镀液提供给电镀液浸渍材料2-22。此时,电镀液浸渍材料2-22不与基片W的被电镀面接触,而是形成相互距离0.1~10mm左右的状态,该距离若为0.3~3mm左右为好,0.5~1mm更好。
若继续提供电镀液,则含有从电镀液浸渍材料2-22渗出的铜离子的电镀液,被充满在电镀液浸渍材料2-22和基片W的被电镀面之间的间隙中,对基片W的被电镀面进行镀铜。此时,基片固定部2-9也可以低速旋转。
电镀处理完成以后,使电极臂部2-6上升后旋转,以使电极部2-5回到电镀液盘2-2的上方,并使其向通常位置下降。接着,将预涂/回收臂2-7从退避位置向与基片W相面对的位置移动,并使其下降,以从电镀液回收喷嘴(图未示)吸收基片W上的电镀液残留部分。在该电镀液残留部分的回收结束以后,使预涂/回收臂2-7回到退避位置,并向基片W的中央部喷出纯水,同时对基片固定部2-9进行加速并旋转,以使基片W的表面上的电镀液与纯水进行置换。
在结束上述冲洗处理之后,使基片固定部2-9从电镀位置B向预处理/清洗位置C下降,在由纯水用的固定喷嘴2-8提供纯水的同时,旋转基片固定部2-9以及阴极部2-10以进行水洗。此时,向阴极部2-10直接提供纯水,或者利用从基片W的表面飞溅出来的纯水对密封部件2-16、阴极电极2-17与基片W同时进行清洗。
在进行水洗过后,停止固定喷嘴2-8的纯水供应,进一步增加基片固定部2-9以及阴极部2-10的旋转速度,通过离心力清除基片W表面的纯水以使其干燥。而且,也对密封部件2-16以及阳极电极2-17进行干燥。上述干燥结束后就停止基片固定部2-9及阴极部2-10的旋转,并将基片固定部2-9下降至基片搬运位置A。
图22表示的是图4及图5所示的构成第2电镀单元38的无电解电镀装置。此外,该例中,虽然表示的是由电镀装置构成第1电镀单元30的例子,但第1电镀单元30也可以由无电解电镀装置构成。第2电镀单元(无电解电镀装置)38设有:固定构件311,其可将基片W固定在其上面;堰构件331,与被固定构件311所固定的基片W的被电镀面(上面)的周边部相接触,以此将该周边部密封;喷头341,可将电解液(无电解电镀处理液)提供给周边部被堰构件331密封的基片W的被电镀面。无电解电镀装置还具备:清洗液供给部件351,其可将清洗液提供至被设置在固定构件311的上部外周附近的基片W的被电镀面上;回收容器361,用于回收被排出的清洗液等(电镀废液);电镀液回收嘴365,用于吸引回收保留在基片W上的电镀液;以及电机M(旋转驱动装置),用于旋转驱动上述固定构件311。
固定构件311具有基片装载部313,可将基片W装载在其上面并固定。该基片装载部313具有装载基片W并使其固定的结构,具体来说就是具备图未示的真空吸附器,可在基片W的反面真空吸附基片W。另一方面,在基片装载部313的背面,设有平面状的背面加热器315,其可从下面对基片W的被电镀面进行加热并保温。该背面加热器315是由例如橡胶加热器或陶瓷加热器构成。该固定构件311通过电机M旋转驱动,同时通过图未示的升降机构上下移动。
堰构件331设置有筒状的密封部333,可在其下部将基片W的外周边密封,并被设置成不能在图示位置上下移动。
由于喷头341在前端设有多个喷嘴,因此可将所提供的电镀液如淋浴一样分散,由此可以大致均匀地将电镀液提供给基片W的被电镀面。而且,清洗液供给部件351的结构是可以从喷嘴353喷出清洗液。
电镀液回收嘴356被构成可上下移动且可旋转的结构,其前端下降至基片W的上面边缘部的堰构件331内侧,以吸引基片W上的电镀液。
下面说明无电解电镀装置的动作。首先,如图所示的状态,将固定构件311下降,并与堰构件331之间留有一定尺寸的间隙,将基片W装载/固定到基片装载部313上。作为基片W的种类,可以是例如直径(Φ)6英寸晶片、直径8英寸晶片、或者直径12英寸晶片。
接着,如图22所示,使固定构件311上升,并使其上面与堰构件331下面相接触,同时通过堰构件331的密封部333将基片W的外周密封。这时,极板W的表面呈开放状态。
接着,通过背面加热器315直接对基片W本身加热,从喷头341喷出电镀液,并使电镀液降落到基片W大致整个表面。这时,也可以将电镀液加温,进行温度控制。由于基片W的表面,被堰构件331所包围,因此所注入的电镀也可以全部被基片W的表面所保持。所提供的电镀液的量,可以是在基片W的表面1mm(大约30ml)左右厚度。而且,被电镀面上所保持的电镀液的深度只要小于10mm即可,本例中的1mm也可以。若所提供的电镀液的量较少即可达到要求,则可以使用于加热电镀液的加热装置小型化。
若像上述那样构成为将基片W本身加热的结构,则由于不必为了加热而消耗大量电能来使电镀液温度升至很高,因此可以降低电能的消耗,并可防止电镀液变质。此外,基片W本身的加热所需消耗的电能很小即可,而且基片W上所滞留的电镀液的量也很少,因此很容易通过背面加热器315进行基片W的保温,由此由于背面加热器315容量较小,而使得该装置的结构紧凑。而且,若使用将基片W本身直接冷却的方法,则可以在电镀过程中切换加热/冷却,由此来改变电镀条件。由于基片上所保持的电镀液的量较少,因此可以进行灵敏度较高的温度控制。而且,由于单元整体为框架体,因此可以将其内部环境设为所定温度,例如控制在70~80℃。
而且,通过电机M使基片W瞬间旋转,以使被电镀面均匀地布满液体,并在该基片W静止的状态下对被电镀面进行电镀。具体来说就是,将基片W只在1秒内以低于100rpm的速度旋转,以在基片W的被电镀面上,均匀地散布电镀液,然后使其静止,并在一分钟内进行无电解电镀。此外,瞬间旋转的时间长度设置在10秒以下即可。
上述电镀处理完成后,将电镀液回收嘴265的前端下降到基片W的表面周边部的堰构件331内侧附近,以吸入电镀液。这时,若使基片W以例如100rpm以下的速度旋转,则基片W上所残存的电镀液就会由于离心力的作用而被集中到基片W的周边部的堰构件331的部分上,从而可进行高效、高回收率的电镀液的回收。而且,将固定构件311下降,而使基片W离开堰构件331,然后开始基片W的旋转,并通过清洗液供给部件351的喷嘴353向基片W的表面喷射清洗液(超纯水),在使被电镀面冷却的同时,通过稀释/清洗而使无电解电镀反应停止。这时,从喷嘴353喷射的清洗液也到达堰构件331,因此也可以同时进行堰构件331的清洗。这时的电镀液被回收至回收容器361,并被废弃。
此外,曾经使用过的电镀液不能再利用,要将其丢弃。如上述那样在本装置中所使用的电镀液的量与从前相比减少很多,因此,即使不能进行循环使用,被废弃的电镀液的量也很少。而且,根据这种情况,也可以不设置电镀液回收嘴365,将使用后的电镀液与清洗液一起作为电镀废液回收到回收容器361中也可。
而且,通过电机M,将基片W高速旋转甩干以后,将其从固定构件311中取出。
图23为构成图4所示的第2电镀单元38(以及第1电镀单元30)的另一无电解电镀装置的结构示意图。在图23中,与图22所示的无电解电镀装置的不同点在于,在固定构件311的上方设置光照加热器317,来取代设置在固定构件311内的背面加热器315,且上述光照加热器317与喷头341-2为整体结构。也就是说,例如,将多个半径不同的环形光照加热器设置成同心圆的状态,再使喷头341-2的多个喷嘴343-2从光照加热器317之间的间隙开口呈环形。此外,作为光照加热器317,也可以被构成为一个漩涡状的光照加热器,还可以被构成为除上述以外的各种结构的光照加热器。并且在基片背面设置温度传感器,通过光照加热器的ON/OFF(开/关)来控制基片的温度。
即使是上述的结构,也可以将电镀液从各个喷嘴343-2如淋浴般地、大致均匀地供应至基片W的被电镀面上,而且,还可以通过光照加热器317对基片W直接进行均匀的加热/保温。在使用光照加热器317的情况下,除基片W和电镀液之外,其周围的空气也被加热,因此可有效地进行基片W的保温。
而且,通过光照加热器317,对基片W直接进行加热,必须使用消耗较多电能的光照加热器317,因此,也可以将耗电量较小的光照加热器317与上述图22所示的背面加热器315一同使用,基片W主要通过背面加热器315进行加热,而电镀液及周围空气的保温主要依靠光照加热器317来进行。而且,也可以设置可将基片W直接或间接冷却的装置,以进行温度控制。
图24表示的是构成图4及图5所示的研磨单元24a、24b的CMP装置的一例。该研磨单元(CMP装置)24a、24b具备:研磨台422,其具有贴敷着研磨布(研磨垫)420的研磨面;顶环424,可将基片W固定成使其被研磨面面向研磨台422的状态。而且,使研磨台422和顶环424分别自传后,通过研磨台422的上方所设置的研磨剂喷嘴426,来提供研磨剂,同时通过顶环424将基片W以一定压力按压在研磨台422的研磨布420上,由此来对基片W的表面进行研磨。这里,在研磨保护膜20(参照图2A)时,使用下述研磨剂和研磨布(研磨垫420)来进行CMP处理,作为从研磨剂喷嘴426所提供的研磨剂,使用的是含有例如氧化剂及研磨颗粒的浆液;而研磨布(研磨垫)420使用的是由无纺布、海绵或者例如发泡聚亚胺酯等树脂材料构成的。由此,保护膜20通过氧化剂而被氧化,并通过浆液中所含的研磨颗粒进行研磨。而且,作为研磨垫,也可以是采用了预先加入研磨颗粒的固定研磨颗粒方式的研磨垫。
若使用这样的CMP装置来继续研磨作业,则虽然研磨布420的研磨面的研磨能力低下,但为了恢复其研磨能力,而设置修整机428,通过该修整机428,可在更换所研磨的基片W时进行研磨布420的修整。在该修整处理时,将修整器428的修整面(修整部件)按压在研磨台422的研磨布420上,同时使上述二者分别自转,由此来清除附着在研磨面上的研磨剂和碎屑,同时还可以进行研磨面的整平与修整,从而更新研磨面。此外,还可以在研磨台422上安装用于监视基片表面的状态的监视器,其可当场(in situ)检测研磨终点(endpoint),也可以安装可以当场(in situ)检测基片完成状态的监视器。
图25及图26表示的是图4及图5所示的具备反转机的铜膜厚度检测单元32。如该图所示,该铜膜厚度检测单元32具备反转机439,该反转机439具有反转臂453、453。该反转臂453、453的功能在于,可将基片W的外周夹在其左右两侧之间而固定,并可使其反转180度。而且,该反转臂453、453(反转架)正下方设有圆形的安装台455,按状态455上设有多个膜厚传感器S。安装台455通过驱动机构457可上下自由移动。
而且基片W反转时,安装台455在基片W下方的实线位置待机,在反转前或后上升至虚线所示位置,并由反转臂453、453把持着膜厚传感器S并靠近基片W,从而检测其膜厚。
若采用本例,则由于不受搬运机械手的臂部等限制,因此可以在安装台455上的任意位置设置膜厚传感器S。而且,安装台455具有可上下自由移动的结构,因此在检测时,可以调整基片W和传感器之间的距离。而且,可根据检测目的的不同安装多种传感器,并根据各种传感器的每次测量,来改变基片W和各传感器之间的距离。但是由于安装台455可上下移动,因此还需要少量的测量时间。
这里,作为膜厚传感器S,可使用例如涡流传感器。涡流传感器可产生涡流电流,使基片W通电来检测返回电流的频率及损耗,由此来检测膜厚,在非接触状态下使用。而且,作为膜厚传感器S也可以使用光学传感器。光学传感器可对样品照射光线,根据反射光的信息来直接测定膜厚,不仅可以检测金属膜还可以检测氧化膜等绝缘膜的厚度。膜厚传感器S的设置位置在图中并未限定,可以在需要检测的地方设置任意个。
图27表示的是图4及图5中所具有的清洗单元39的示意图。该清洗单元39是擦洗单元,其具有:多个旋转用辊子9-1,用于将基片W固定在水平面内进行旋转;两个由PVA等构成的海绵卷9-2、9-2;以及用于喷洒清洗液的清洗液喷嘴9-4。而且,通过旋转用辊子9-1将基片W固定并旋转,再由清洗液喷嘴9-4向基片W正反两面喷射清洗液,同时使用海绵卷9-2、9-2擦洗基片W的正反两面,以将其擦洗干净。这里,作为从清洗液喷嘴9-4喷射出的清洗液,可以使用CS-10(和光制药(株)制造)或KS-3700(花王(株)制造)等碱性表面活性剂,因此如上所述,可在使图1C所示的绝缘膜2上的铜污染小于5×105atoms/cm2的状态下,将基片W的表面清洗干净。
图28及图29表示的是图5中所具有的退火单元814。该退火单元814上下分别设有热托盘1004和冷托盘1006,上述热托盘1004位于腔体1002的内部,该腔体1002具有可供半导体基片W出入的门1000,而该热托盘可将半导体基片W加热到例如400℃;上述冷托盘1006通过例如流动的冷却液将基片W冷却。而且,还设有可升降自如的多个升降销(插脚)1008,其贯穿冷托盘1006内部并在上下方向延伸,在其上端可装载固定半导体基片W。此外,在夹持着热托盘1004而相互面对的位置上设有气体导入管1010和气体排放管1012,该气体导入管1010,用于在退火时,将防氧化气体导入基片W和热托盘1004之间;而上述气体排放管1012,用于将被上述气体导入管1010导入,并流经半导体基片W和热托盘1004之间的气体排出。
气体导入管1010与混合气体导入通路1022相连接,该混合气体导入通路1022通过混合器1020将流过在内部具有过滤器1014a的N2气体导入通路1016内的N2气体、与流过在内部具有过滤器1014b的H2气体导入通路1018内的H2气体混合,并使在该混合器1020混合的气体流通。
由此,将通过门1000并被搬入腔体1002内部的半导体基片W,由升降销1008固定,将升降销1008上升至下述位置,即,与被升降销1008所固定的半导体基片W和热托盘1004之间的距离为,例如0.1~1.0mm左右的位置。在该状态下,通过热托盘1004将半导体基片W加热到例如400℃的温度,同时从气体导入管1010导入用于防氧化的气体,流过半导体基片W和热托盘1004之间以后,从气体排放管1012排出。由此,可以在防止氧化的同时,将半导体基片W进行退火,并可使该退火作业持续例如几十秒~60秒左右,然后结束退火。基片的加热温度选择在100~600℃之间。
退回结束后,将升降销1008下降至与被该升降销1008固定的半导体基片W和冷托盘1006的距离为例如0~0.5mm左右的位置上。在该状态下,将冷却液导入冷托盘1006内,由此可在10~60秒左右的时间内,将半导体基片W冷却到100℃以下的温度,然后将结束了该冷却作业的半导体基片搬运至下一工序。
而且,在本例中,作为用于防止氧化的气体,虽然使用的是将N2气体和数%的H2气体进行混合的混合气体,但也可以只使用N2气体。
接着,参照图6,说明通过由上述构成的半导体器件的制造装置,在形成了晶种层6的基片上形成铜布线的一系列处理。
首先,用搬运机械手28a,将在表面形成有晶种层6的基片W,一片一片的从基片盒26a、26b取出,并搬运至第1电镀单元30。而且,在该第1电镀单元30中,如图1B所示,在基片W表面淀积铜层7,以进行铜的埋入。铜层7首先进行基片W表面的亲水处理,然后进行铜电镀。铜层7形成以后,在铜电镀单元30进行冲洗或清洗。如果时间充足还可以进行干燥。
这里,如图5所示,在具备退火单元814的情况下,将埋入有铜的基片W搬运至退火单元814,在该退火单元814进行铜的热处理(退火)。
此外,埋入上述铜,再将根据需要进行过热处理(退火)的基片W搬运至铜膜厚度检测单元32,在此检测铜层7的厚度,再根据需要,由反转机将基片进行反转,然后由搬运机械手28b,将其搬运至第1研磨单元24a的推动器42。
在第1研磨单元24a中,将推动器42上的基片W通过顶环424进行吸附并将其固定,再将其移动至研磨台422上。并且,使顶环424下降,将基片W的被研磨面以一定压力按压在旋转的研磨台422的研磨布420上,同时提供研磨液进行研磨。作为研磨条件,在对形成在基片W上的铜层7进行研磨时,使用铜研磨用的浆液。当表面凹凸不平时,虽然可以在按压力设定的较低且旋转速度较快的情况下进行研磨,但这样整个加工速度将会放慢。因此,也可以进行多阶段研磨,即,在将顶环按压力设定在40kPa、顶环旋转速度在70min-1的条件下,研磨一段时间,在进行一定程度的加工以后,在将按压力降为20kPa、顶环旋转速度变为50min-1的条件下进行研磨。这样,可以对整体进行有效的整平处理。
而且,例如在由检测基片完成情况的监视器检测到终点(endpoint)时,结束研磨,再通过顶环424使结束了该研磨的基片W重新返回到推动器42上,并通过纯水喷雾将其清洗干净。接着,由搬运机械手28b将基片W搬运至清洗单元39,例如使用海绵卷将其清洗干净。由此,如图1C所示,在绝缘膜2内部形成由晶种层6和铜层7所构成的布线(铜布线)8。这时,在使图1C所示的绝缘膜2上的铜污染t小于5×105atoms/cm2的状态下,将基片W的表面清洗干净。
接着,将该基片搬运至电镀预处理单元34,这里,进行的是Pd催化剂处理和去除氧化膜处理等预处理,再搬运至第2电镀单元38,在该第2电镀单元38中进行无电解电镀处理。由此,如图2A所示,在研磨后所露出的布线8的表面上,进行无电解Co-W-P电镀,在布线8的向外部露出的表面上,有选择地形成由Co-W-P合金膜构成保护膜(电镀膜)20来保护布线8。该保护膜20的膜厚在0.1~500nm左右,1~200nm左右为好,10~100nm左右更佳。
无电解电镀结束后,使基片W高速旋转以进行甩干,然后将其从第2电镀单元38中取出,经过推动器42搬运至第2研磨单元24b。而且,在该第2研磨单元24b中,与第1研磨单元24a相同,由顶环424将基片W吸附固定,再移动至研磨台422上,使顶环424下降,在旋转的研磨台422的研磨布420上,将基片W的被研磨面以所定压力按压,同时提供研磨剂进行研磨。由此,如图2B所示,研磨保护膜20的表面以使其平坦。这时,可以使用例如含有氧化剂和研磨颗粒的浆液作为研磨剂,并使用无纺布、海绵或例如发泡聚亚胺酯等树脂材料作为研磨垫来进行研磨。由此,通过被氧化所剂氧化的浆液中所含的研磨颗粒,来研磨保护膜20。而且,也可以使用预先加入研磨颗粒的研磨石进行研磨。
此外,在通过检测基片完成情况的监视器检测到终点(endpoint)时,结束研磨,再使结束该研磨的基片W通过顶环424再次返回到推动器42上,并用纯水喷雾将其清洗干净。接着,通过搬运机械手28b将基片W搬运至清洗单元39,例如由海绵卷将基片洗净,并且,通过搬运机械手28a将基片搬运至冲洗/干燥装置36中。而且,在该冲洗/干燥装置36中将基片进行冲洗干燥以后,将基片返回至原来的基片盒26a、26b的初始位置。
此外,本例中虽然表示的是使用铜作为布线材料的例子,但除了该铜以外,还可以使用铜合金、银及银合金等。
(实施例1)
将进行了铜电镀以后又进行了CMP处理的形成埋入了铜布线的基片,浸渍到PdCl2(0.005g/L)+HCl(0.2ml/L)、25℃的溶液中一分钟,以进行施加钯的电镀预处理,并将表面洗净。然后,通过图21所示的无电解电镀装置,使用下述表1所示的成分组成的无电解液,进行两分钟的无电解电镀,在样品(基片)的表面淀积Co-W-P合金层。
[表1]
  CoSO4·7H2O          (g/L)     14.1
  Na2WO4·2H2O        (g/L)     48.0
  Na3C6H5O7·2H2O   (g/L)     88.0
  (NH4)2SO4           (g/L)     66.0
  NaH2PO2·H2O        (g/L)     21.2
  PH                      (-)     用NaOH,pH=10
接着,在将表面洗净干燥以后,使用图24所示的研磨装置,对保护膜20的表面进行研磨,然后清洗干燥。并对此时的状态进行了SEM观察。这时的SEM照片以图形表示的图像由图30所示。从图30可以看出,在绝缘膜2的内部所形成的布线用槽4的内部埋入形成的布线(铜布线)8的裸露表面上,有选择地形成有保护膜20,而且通过对保护膜20的表面进行研磨,可以改善保护膜20的膜厚的不均匀。而且,图31是将对该保护膜20进行研磨之前的状态下的SEM照片以图形表示的状态图。
如上所述,若采用本例,可以使一般难于实现膜厚均匀的保护膜20的表面平坦,以改善保护膜20厚度不均的问题,由此,能在实现多层布线的同时,确保层间绝缘膜表面充分的平坦度。
下面,参照图32及图33说明本发明实施方式的半导体器件的其它例子。图33表示的是具有2层埋入布线结构的半导体器件的剖面结构。本例中,使用铜作为布线材料。如图33所示,在半导体基片10上淀积例如SiO2而形成的绝缘膜122的内部,通过例如光刻技术,形成了布线用的微细凹部124,其上形成有由TaN等构成的阻挡层126。而且,凹部124的内部通过埋入铜形成有第1层的铜布线128,将该铜布线128的裸露表面有选择地覆盖着布线保护膜130,并将由SiN等形成的保护膜132覆盖在整个表面,由此而构成第1层的布线结构。
这里,该铜布线128的形成如下所述,即,在半导体基片W的表面进行铜电镀,在凹部124内部填充铜的同时,在绝缘膜122上淀积铜,然后通过化学机械研磨(CMP),去除绝缘膜122上的铜及阻挡层,并使在凹部124内填充有铜的表面与绝缘膜122的表面大致在同一平面。
此外,在具有第1层布线结构的基片W的上面,淀积由例如SiO2形成的绝缘膜134,在该绝缘膜134内部,通过光刻技术形成可达到布线保护膜130的布线用的微细凹部136,在其上形成由TaN所构成的阻挡层138。而且,在凹部136内部,通过埋入铜而形成第2层铜布线140,并将布线保护膜142有选择地覆盖在该铜布线140的裸露表面,并使由SiN等构成的保护膜144覆盖整个表面而构成第2层布线结构。而且,该铜布线140的形成与上述相同,在半导体基片10的表面进行铜电镀以后,进行化学机械研磨(CMP)。
这里,将铜布线128、140的裸露表面有选择地覆盖以保护该铜布线128、140的布线保护膜130、142的结构是,具有非晶相、例如由Co-W-B合金构成的膜厚在50nm以下、最好为10~30nm(本例中为20nm)的结构。具有该非晶相的布线保护膜130、142通过无电解电镀形成。这样,将布线保护膜130、142以具有非晶相的Co-W-B合金构成,因此即使该薄膜厚度只有20nm,也不会受到作为基质的铜布线128、140的铜的结晶取向的影响,可以形成均匀且连续的膜。
也就是说,如上述图44所示,若在布线(铜布线)8的表面形成具有晶相的布线保护膜(薄膜)20,则可以不受构成铜布线8的铜的结晶取向的影响,例如,虽然在面方位(111)的铜晶体8a上,生长(外延生长)面方位(111)的Co-W-B合金结晶20a,在面方位(222)的铜结晶8b上,生长着面方位(222)的Co-W-B合金结晶20b,但如图32所示,在铜布线8的表面上形成有具有非晶质的布线保护膜(薄膜)20,因此,即使例如构成铜布线8的铜是具有多个结晶取向的多结晶膜,也不会受到该结晶取向的影响,例如在面方位(111)的铜结晶8a及面方位(222)的铜结晶8b上,同样生长着Co-W-B合金20c,由此,可得到厚度均匀且连续的布线保护膜(薄膜)20。
这样,在不受作为基质的铜布线128、140的铜的结晶取向的影响的情况下,用均匀且连续的具有非晶相的布线保护膜(覆盖构件)130、142,对铜布线128、140的表面有选择地进行覆盖,以对铜布线128、140进行保护,因此可得到充分的抗电迁移特性。
而且,具有非晶相的布线保护膜130、142具有与晶体不同的不具有三维规律性的无定形结构,该无定形结构的合金一般为非磁性(不产生强磁性),因此布线保护膜130、142为非磁性膜,可防止磁性对半导体器件的影响。
图35表示的是,在通过无电解电镀形成该布线保护膜130、142的工序图34中,进行该无电解电镀的电镀装置的整体结构。电镀装置具备:装卸部150、进行电镀预处理的电镀预处理槽152、进行电镀处理和活化处理的电镀槽154、以及在它们之间进行基片搬运的搬运机械手156。这里,电镀预处理槽152具有清洗功能,而电镀槽154具有洗净/干燥功能。
首先,将容纳在基片盒内的埋入有铜等导体并对该导体进行了热处理(退火)、及CMP处理基片搬运进装卸部150,由搬运机械手156将一片基片从盒中取出,并搬运至电镀预处理槽152中。在该电镀预处理槽152中对作为基质的铜布线128、140的表面进行电镀预处理(表面清洗)、进行水洗。然后,将该电镀预处理以后的基片搬运至电镀槽154,这里,采用活化液进行活化处理,紧接着在基片的表面进行无电解电镀,在铜布线128、140向外部露出的表面上有选择地形成由Co-W-B合金构成的、具有非晶相的布线保护膜130、142,然后,进行水洗和干燥。而且,让经过该干燥以后的基片返回至装卸部150的盒中。
这里,本例中使用Co-W-B合金作为布线保护膜130、142。也就是说,使用含有Co离子、配位剂、pH缓冲剂、pH调整剂、还原剂(例如烷基胺硼烷)、以及含钨化合物的电镀液,将基片表面浸渍到该电镀液中,由此形成由Co-W-B合金构成的布线保护膜130、142。
这里,B相对于Co的含量为5~50at%,因此可以得到由具有非晶相的Co-W-B合金构成布线保护膜130、142。这与Co-B合金相同。而且,P相对于Co的含量为5~50at%,因此可以得到由具有非晶相的Co-P或者Co-W-P合金构成的布线保护膜。此外,B相对于Ni或者P的含量为5~50at%,因此可以得到由具有非晶相的Ni-B、Ni-W-B、Ni-P、或Ni-W-P合金构成的布线保护膜。该电镀液的其他成分与前述相同。
并且,在本例中,虽然是使用Co-W-B合金作为布线保护膜130、142,但也可以使用Co-B、Co-P、Co-W-P、Ni-B、Ni-W-B、Ni-P或Ni-W-P合金来构成布线保护膜。而且,虽然表示的是使用铜作为布线材料的例子,但也可以使用除了铜以外的铜合金、银及银合金等。
图36表示电镀装置的其他实例。如图36所示,该电镀装置具备:可对容纳有半导体基片的基片盒进行搬运的搬入/搬出区域520、可对半导体基片进行处理的处理区域530、可将进行处理后的半导体基片进行清洗及干燥的清洗/干燥区域540。清洗/干燥区域540设置在搬入/搬出区域520和处理区域530之间。搬入/搬出区域520和清洗/干燥区域540上设有间隔壁521,清洗/干燥区域540和处理区域530之间设有间隔壁523。
在间隔壁521上设有用于在搬入/搬出区域520和清洗/干燥区域540之间运送半导体晶片的通道(图未示出),还设有用于开关该通道的闸门522。而且,在间隔壁523上也设有用于在清洗/干燥区域540和处理区域530之间运送半导体基片的通道(图未示),还设有用于开关该通道的闸门524。清洗/干燥区域540和处理区域530可以独立地进行给排气。
如上述构成的电镀装置被设置在清洁室内部,将各区域的压力设置为(搬入/搬出区域520的压力)>(清洗/干燥区域540的压力)>(处理区域530的压力),而且,要将搬入/搬出区域520的压力设置得比清洁室内部的压力低。由此,空气不会从处理区域530流出至清洗干燥区域540,也不会从清洗干燥区域540流出至搬入/搬出区域520,更不会从搬入/搬出区域520流出至清洁室内部。
搬入/搬出区域520中设置有装载单元520a和卸载单元520b,可容纳收容半导体基片的基片盒。在清洗/干燥区域540中,设置有用于对进行过电镀处理后的基片进行处理的2个水洗部541、干燥部542,同时还设有进行半导体基片的搬运的搬运部(搬运机械手)543。这里,作为水洗部541,使用的是例如在前端贴附有海棉层的铅笔型清洗器、或者是在其外周具有海棉层的辊子型清洗器。作为干燥部542,使用的是例如可使半导体基片高速旋转以进行脱水、干燥的干燥器。
在处理区域530内部,具有可进行半导体基片的电镀预处理的预处理槽531、可进行铜电镀处理的电镀槽532,同时还设有进行半导体基片的运送的搬运部(搬运机械手)560。
图37表示的是电镀装置内部的气流的流动。清洗干燥区域540中,通过管道546导入新鲜的外部空气,再利用风扇将其压进高性能过滤器544并通过,然后作为从天棚540a向下流动的洁净空气被供给至水洗部541和干燥部542周围。所提供的大部分的清洁空气如下循环:从地板540b通过循环管道545回到天棚540a,再通过高性能过滤器544利用风扇将其压入,然后进入到清洗/干燥区域540内。一部分的气流通过管道552从水洗单元541和干燥单元542被排出。
尽管处理区域530是潮湿区域,也不允许有微小颗粒附着在半导体晶片的表面。因此在处理区域530内,通过风扇将洁净的空气从天棚530a压入高性能过滤器533并通过其中,通过这样的向下流动,可以防止半导体基片上微小颗粒的附着。
但是,如果所有的形成向下流动的洁净空气都依靠外部供应的话,则需要极大的给排气量。因此,只需要在保证室内负压的情况下通过管道553进行外部排气,并将向下流动的大部分洁净空气通过循环管道534、535进行循环流通。
在作为循环气流的情况下,由于通过处理区域530的洁净空气含有药液烟雾或气体,因此使其通过刷洗器536和烟雾分离器537、538而被除去。由此,回到天棚530a的循环管道534的气体不再含有药液烟雾或气体,就可以通过风扇将其再次压进高性能过滤器533并使其通过其中,就可作为洁净空气在处理区域530内循环。
经过处理区域530内部的一部分空气,从地板530b通过管道553排出至外部,含有药液烟雾或气体的空气通过管道553排出到外部。从天棚530a的管道539提供与其排气量相当的新鲜空气,以保证处理区域530内部为负压状态。
如上所述,搬入/搬出区域520、清洗/干燥区域540以及处理区域530的压力分别被设定为:(搬入/搬出区域520的压力)>(清洗/干燥区域540的压力)>(处理区域530的压力)。因此,若将闸门522、524(参照图36)打开,这些区域之间的空气流动如图38所示,按照搬入/搬出区域520、清洗/干燥区域540、处理区域530的顺序流动。而且,通过管道552、553进行排气后,如图39所示,最后汇集至集中排气管道554。
图39是表示被配置在清洁室内的该电镀装置一实例的外观图。搬入/搬出区域520的具有盒搬运口555和操作面板556的侧面,从被间隔壁557分隔的清洁室的清洁度高的工作区露出,其他侧面则被容纳在清洁度低的有效区(utility zone)559内。
如上所述,将清洗/干燥区域540配置在搬入/搬出区域520和处理区域530之间,在搬入/搬出区域520和清洗/干燥区域540之间、以及清洗/干燥区域540和处理区域530之间分别设有间隔壁521,因此在干燥状态下从工作区558通过盒搬运口555而被搬运到电镀装置内的半导体基片,在电镀装置内进行电镀处理,并在清洗/干燥过的状态下被搬出工作区558,因而半导体基片的表面不会附着微小颗粒,而且清洁室内的清洁度高的工作区558,也不会被微小颗粒、药液、清洗液烟雾等污染。
此外,在图36及图37中,虽然表示的是在电镀装置中具备搬入/搬出区域520、清洗/干燥区域540、处理区域530的一实例,但也可以在处理区域530内或与处理区域530相邻的位置,设置具有CMP装置的区域,并在该处理区域530或设置CMP装置的区域、与搬入/搬出区域520之间设置清洗/干燥区域540。而且,也可以使半导体基片在电镀装置中以干燥状态被搬入,并将进行过电镀处理的半导体基片清洗干净,再以干燥状态被搬出。
(实施例2)
所准备的样品是,在硅基片上淀积TaN,在其上通过溅射法淀积10nm的铜,通过电解铜电镀法淀积700nm的铜,在350℃的N2环境下,进行一小时的退火(热处理)。而且在进行电镀预处理、水洗、活化处理以后,使用无电解电镀装置进行无电解电镀处理,在该处理过程中使用的是由下述表2所示成分构成的无电解电镀液,样品(基片)的表面淀积大约50nm的Co-W-B合金(布线保护膜)。然后,将样品清洗干燥。该膜中的各种成分含量为Co:85at%、W:1.5at%、B:13.5at%。
[表2]
  CoSO4·7H2O   (g/L)     28.1
  柠檬酸铵         (g/L)     45.2
  H2WO4         (g/L)     1.0
  DMAB            (g/L)     15.0
  27%TMAH        (ml/L)     145
           PH     8.0
          液温     70℃
Co:85at% W:1.5at% B:13.5at% 50nm
(比较例1)
作为比较例1,在与上述相同的样品表面,使用由表3所示成分构成的无电解电镀液来进行无电解电镀处理,淀积大约50nm的Co-W-B合金。然后,对样品进行水洗使其干燥。该膜(Co-W-B合金)中的各成分含量为:Co:89.5at%、W:10at%、B:0.5at%。
[表3]
  CoSO4·7H2O   (g/L)     28.1
  柠檬酸铵        (g/L)     45.2
  H2WO4         (g/L)     5.0
  DMAB            (g/L)     6.0
  27%TMAH        (ml/L)     155
           PH     9.0
          液温     70℃
Co:89.5at% W:10at% B:0.5at% 50nm
在该实施例2中,将电镀处理前的样品的表面用SEM(扫描电子显微镜)所拍摄的照片示于图40A,将电镀处理后的照片示于图40B,将进行X射线衍射的衍射强度和2θ的关系图表示于图41。从该图40B可知,可得到均匀连续的由Co-W-B合金构成的薄膜,且不受图40A所示的基质铜的结晶取向的影响。而且,从图41不能明显的观察到Co(111)、Co(222)的峰值,因此可知该由Co-W-B合金构成的薄膜具有非晶相。
与此相对应,在比较例1中,将电镀处理前的样品的表面用SEM(扫描电子显微镜)所拍摄的照片示于图42A,将电镀处理后的照片示于图42B,将进行X射线衍射的衍射强度和2θ的关系图表示于图43。从该图42B可知,得到了不均匀不连续的由Co-W-B合金构成的薄膜,且与图42A所示的基质铜的结晶取向相匹配。而且,从图43可以明显的观察到Co(111)、Co(222)的峰值,因此可知该由Co-W-B合金构成的薄膜具有晶相。
下面,与前述相同,图45A至图45C表示半导体器件的其他实例,该半导体器件是由保护膜20对在基片W上形成的布线(铜布线)8的裸露表面进行保护。该半导体器件将布线8的裸露表面,用例如具有优良的防止热扩散效果的保护膜20有选择地进行覆盖,由此,在防止布线8热扩散的同时,可保护布线8不受污染,此外,在基片W的表面,淀积例如SiO2或SiOF等绝缘膜22,以构成多层结构。作为用于形成保护膜的预处理,首先在布线8上有选择地形成易于附着、且具有催化效果的晶种层12,再在该晶种层12的表面有选择地形成上述保护膜20。
制造该半导体器件时使用的制造装置如图46所示,此时的部分工序图如图47所示。如该图46所示的半导体器件的制造装置,是在图5所示的制造装置上附加了第3电镀单元33而构成的,该第3电镀单元33用于有选择地在事先通过第2电镀装置38形成了保护膜20的布线8的表面上,形成具有催化效果的晶种层12。上述第3电镀单元33由例如上述的图22及图23所示的无电解电镀装置构成,其他结构都与图5相同。
本例中,在经过CMP处理后的基片W的作为基质的布线8的表面,进行预处理(基质预处理),经水洗后,在基片W的表面进行保护膜成膜用的预处理。也就是说,在结束了埋入铜、热处理(退火)及研磨以后,将基片搬运至第3电镀单元33,在此对其进行第一阶段的无电解电镀。如图45A所示,在布线8的露出到外部的表面上,有选择地形成例如由非晶质Co-B合金等不含有W的Co合金构成的晶种层12。接着,根据需要将基片W水洗以后,搬运至第2电镀单元38,在这里进行第二阶段的电镀处理,如图45B所示,在晶种层12的表面有选择地形成例如由Co-W-B合金或Co-W-P合金构成的具有优良的防止热扩散效果的保护膜20。而且,在水洗干燥后,如图45C所示,在其上淀积绝缘膜22。
这样,在布线8的裸露表面,有选择地覆盖着保护膜20以保护布线8,该保护膜20具有优良的防止热扩散效果,且由Co-W-B合金或Co-W-P合金等含有W的合金构成,由此,可有效防止布线8的热扩散。而且,可预先形成不影响基质的膜质即布线8的状态的晶种层12,其膜质均匀、且厚度一定,并由非晶质Co-B合金构成,然后在该晶种层12的表面有选择地形成由Co-W-B合金构成的保护膜20,由此可使该保护膜20的厚度均匀。
这里,本例中,作为保护膜20使用的是Co-W-B合金。也就是说,使用含有钴离子、配位剂、pH缓冲剂、pH调整剂、还原剂(例如烷基胺硼烷)、以及含钨化合物的电镀液,将基片W表面浸渍到该电镀液中,由此形成由Co-W-B合金构成的布线保护膜20。
在该电镀液中,根据需要,添加作为稳定剂的重金属化合物或者硫化物的一种或多种、或者表面活性剂二者的任意一者,而且使用氨水或氢氧化铵等pH调整剂,将pH值调整到5~14,若为6~10更佳。电镀液的温度为例如30~90℃,最好在40~80℃之间。
作为电镀液的钴离子来源可以是例如硫酸钴、氯化钴、乙酸钴等钴盐类。钴离子的添加量,在0.001~1mol/L左右,最好在0.01~0.3mol/L左右。
作为配位剂,可以是例如乙酸等羧酸及其盐类、或者例如酒石酸、柠檬酸等氧代羧酸及其盐类、氨基乙酸等氨基羧酸及其盐类。而且,可以单独使用也可以同时使用多种。配位剂的添加量在0.001~1.5mol/L左右,最好为0.01~1.0mol/L左右。
作为pH缓冲剂可以选择例如硫酸铵、氯化铵及硼酸等。pH缓冲剂的添加量在0.01~1.5mol/L左右,最好在0.1~1mol/L左右。
作为pH调整剂可以是例如氨水或氢氧化四甲基铵(TMAH),pH值调整在5~14左右,最好在6~10左右。
作为还原剂的烷基胺硼烷,可以是二甲胺硼烷(DMAB)、二乙胺硼烷等,还原剂的添加量在例如0.01~1mol/L左右,最好为0.01~0.5mol/L左右。
作为含钨化合物,可以选择例如钨酸及其盐类、或者例如钨磷酸(例如H3(PW12P40)·nH2O)等杂多酸及其盐类等。含钨化合物的添加量在0.001~1mol/L左右,最好在0.01~0.1mol/L左右。
在该电镀液中,也可以添加上述成分以外的公知添加剂。作为该添加剂,包括例如作为浴稳定剂的铅化物等重金属化合物或例如硫氰化物的等硫化物等一种或多种,以及阴离子类、阳离子类、或者无电解质类的表面活性剂。
而且,作为晶种层12使用的是非晶质Co-B合金。也就是说,使用的是从上述Co-W-B合金用的电镀液中除去含W化合物以后的电镀液,将基片W的表面浸渍在该电镀液中,由此,形成由非晶质Co-B合金构成的晶种层12。因此,经过连续的无电解电镀处理可以形成均匀的保护膜20。
(实施例3)
所准备的样品是,在硅基片上淀积40nm的TaN,在其上通过溅射法淀积150nm的铜,通过电解铜电镀法淀积500nm的铜,再在经过热处理的表面进行CMP处理。而且,使用如图22所示的无电解电镀装置,在样品表面进行基质预处理,再经过水洗之后,使用由下述表4所示成分构成的无电解电镀液,进行大约5秒钟的无电解电镀,样品(基片)的表面淀积了大约10nm的非晶质Co-B合金(晶种层)。
[表4]
  CoSO4·7H2O  (g/L)     28.1
  柠檬酸铵       (g/L)     45.2
  (NH4)2SO4   (g/L)     39.6
  27%TMAH       (ml/L)     6.0
  27%TMAH       (ml/L)     142
    PH     9.0
   温度          (℃)     70
Co:92.0at% B:8.0at%
下面,根据需要将样品表面水洗之后,使用由下述表5所示成分构成的无电解电镀液,连续进行大约1分钟的无电解电镀,淀积了大约40nm的Co-W-B合金(保护膜)。然后,对样品进行水洗干燥。
[表5]
  CoSO4·7H2O    (g/L)     28.1
 柠檬酸铵          (g/L)     45.2
 (NH4)2SO4      (g/L)     39.6
 H2WO4           (g/L)     5.0
 DMAB              (g/L)     6.0
 27%TMAH          (ml/L)     159
 PH     9.0
 温度              (℃)     70
Co:89.0at% W:10.0at% B:1.0at%
(比较例2、3)
比较例2、3分别是:在与前述相同的样品的表面,使用由表5所示成分构成的无电解电镀液,进行大约一分钟的无电解电镀处理,淀积大约40nm的Co-W-B合金(比较例2);在与前述相同的样品表面,使用由表4所示成分构成的无电解电镀液,进行大约15秒的无电解电镀处理,淀积大约40nm的Co-B合金(比较例3)。
将这些经过CMP处理后的电镀前的上述的样品的表面,通过SEM(扫描电子显微镜)拍摄下来的照片图示于图48中,在经过实施例3、比较例2、3中的电镀处理后的样品表面,通过SEM(扫描电子显微镜)拍摄下来的照片图示于图49~图51中。而且,将在实施例3、比较例2、3中进行过电镀处理后的样品上所形成的电镀膜,在压力为3.6×10-4Pa、温度为450℃的状态下,进行2小时的退火、并将退火前后的次级离子进行质量分析(SIMS),此时的数据说明图示于图52~图54中。此外,在这些图52~54中,实线表示退火前的状态,虚线表示退火后的状态。
通过这些检测结果可知,在比较例2中,虽然如图53所示具有优良的防止热扩散效果,但如图48所示,如果铜的结晶取向存在差异,则由于该差异的存在,则如图50所示,膜厚就会产生较大的不均匀。而且,对于比较例3,如图48所示,即使存在铜的结晶取向差异,也可以如图51所示得到厚度均匀的电镀膜,但如图54所示,防止热扩散效果较差。与此相对,在实施例3中,如图48所示,即使存在铜的结晶取向差异,也可如图49所示得到厚度均匀的电镀膜,而且如图52所示,还可得到优良的防止热扩散效果。
接着,参照图56A至图56C说明使用本发明的电镀液,来形成半导体器件的铜合金布线的实例。首先,如图56A所示,在形成半导体元件的半导体基材1上的导电层1a上,淀积由SiO2所构成的绝缘膜2,在该绝缘膜2的内部,通过光刻技术形成接触孔3和布线用槽4,并在其上通过溅射形成由TaN等构成的阻挡层5、再在该阻挡层5上形成晶种层6。
而且,如图56B所示,在半导体基片W的表面,进行无电解铜合金电镀,因此,在将铜合金填充到半导体基片W的接触孔3以及槽4内的同时,还可以在绝缘膜2上淀积铜合金层17。然后,通过化学机械研磨(CMP),除去绝缘膜2上的铜合金层17以及晶种层6,使填充于接触孔3及布线用槽4中的铜合金层17的表面与绝缘膜2的表面大致处于同一平面。由此,如图56C所示,在绝缘膜2的内部形成由晶种层6和铜合金层17构成的布线18。
这里,铜合金层17由铜和与其不相溶的金属构成的铜合金所构成,在本例中由铜-银类合金构成。该铜合金中铜的含量为例如98%。这样,通过埋入由铜和非固溶金属构成的铜合金所构成的铜合金层17来形成布线18,由此,与单独由铜形成布线的情况相比,可以得到由电阻率较低、抗电迁移性及抗应力迁移性更高的铜合金层17所构成的布线18。也就是说,铜-银类的铜合金不是铜和银形成一个晶格,即,不是铜和银互相混合的晶体,而是铜晶体和银晶体相互的混合体。由此,由于大量存在铜晶体,因此与铜单体相比可防止其电阻率增大,而且,由于是铜晶体和银晶体的混合体,因此与铜单体相比,其抗电迁移性及抗应力迁移性也更高。
而且,由铜和非固溶金属所构成的铜合金虽然在本例中使用的是铜-银类合金,但也可以使用铜-钴类合金或铜-锡类合金,来代替铜-银类合金。而且,这些铜合金中铜的含量最好为90%~99.99at%。
由铜-银类合金构成的该铜合金层17是使用含有下述成分的无电解铜合金电镀液,并将基片W的表面浸渍到上述电镀液中而得到的,该电镀液包含:铜离子、得到由铜和非固溶金属所构成的铜合金的银的银离子、配位剂、以及不含有碱金属的还原剂。
作为该电镀液的铜离子的来源,可以是例如硫酸铜、氯化铜等铜盐类。铜离子的添加量为0.001~1mol/L左右,最好为0.001~0.1mol/L左右。银离子的来源可以是例如硝酸银、硫酸银灯的银盐类。而且,银离子的添加量为0.001~1mol/L左右,最好为0.001~0.1mol/L左右。
作为配位剂,可以是,例如乙酸、酒石酸等有机酸及其盐类,EDTA等氨基羧酸及其盐类,例如乙二胺(ethylenediamine)、乙二胺(quadrol)等胺及其盐类,例如甘油、甘露糖醇等多元醇,以及硫代硫酸、硫脲等硫化物等。而且,可以单独使用也可以同时使用多种。配位剂的添加量为0.001~2mol/L左右,最好为0.01~1mol/L左右。
作为pH调整剂可以是不含有钠等碱金属的物质,也可以选择,例如氨水、氢氧化四甲基铵(TMAH),将pH值调整为5~14,最好为7~13。
作为还原剂必须是不含有碱金属的物质,最好是烷基胺硼烷。作为烷基胺硼烷,可以是例如二甲基胺硼烷(DMAB)、二乙基胺硼烷等。还原剂的添加量为0.001~1mol/L左右,最好为0.01~0.5mol/L左右。
在本电镀液中,也可以添加除上述成分之外的公知添加剂。该添加剂可以是浴稳定剂和表面活性剂,浴稳定剂可以是联砒啶等氮化物、巯基乙酸等硫化物、铅化物等重金属化合物、或其混合物,表面活性剂可以是阴离子、阳离子、或非离子物质。可以将浴稳定剂和表面活性剂单独使用,也可以同时使用。电镀液的温度在例如20~90℃,最好在20~70℃。
此外,作为构成铜合金层17的铜合金在本例中虽然使用的是铜-银类合金,但如上所述,也可以使用铜-钴类合金或铜-锡类合金代替铜-银类合金。使用铜-钴类合金的情况下,作为电镀液的钴离子的来源,可以是例如硫酸钴、氯化钴、乙酸钴等钴盐。钴离子的添加量为0.001~1mol/L左右,最好为0.005~0.5mol/L左右。
图57A至图57D表示的是,在本发明实施方式的半导体器件的配设布线的裸露表面,有选择地形成由铜合金构成的保护膜,以保护布线的实例的工序图。如图57A所示,在形成半导体元件的半导体基材1的导电层1a上,淀积例如由SiO2所构成的绝缘膜2,在该绝缘膜2的内部,通过光刻技术形成接触孔3和布线用槽4,并在其上通过溅射等形成由TaN等构成的阻挡层5、再在该阻挡层5上形成晶种层6。
而且,如图57B所示,在半导体基片W的表面进行铜电镀,因此,在将铜合金填充到半导体基片W的接触孔3以及槽4内的同时,还可以在绝缘膜2上淀积铜层7。然后,通过化学机械研磨(CMP),除去绝缘膜2上的铜层7以及阻挡层5,使填充于接触孔3及布线用槽4中的铜层7的表面与绝缘膜2的表面大致处于同一平面。由此,如图57C所示,在绝缘膜2的内部形成由晶种层6和铜层7构成的布线(铜布线)8。
下面,在形成了上述布线8的基片W表面上,进行无电解铜合金电镀,由此,如图57D所示,在布线8的裸露表面有选择地形成由铜合金形成的保护膜20,以保护布线8。该保护膜20的厚度为0.1~500nm,1~200nm较佳,10~100nm更佳。而且,作为布线材料虽然可使用在本例中所示的铜,但也可以使用除铜以外的铜合金、银及银合金。
这里,保护膜20由铜和非固溶金属构成的铜合金所形成,本例中是由铜-银类合金所形成的。该铜合金中的铜的含量为例如98%。这样,银和铜的结合力强,且电阻率(ρ)低,可以得到由铜和非固溶金属构成的铜合金,通过在布线8的裸露表面有选择地覆盖由上述铜合金所形成的保护膜20,就可以制造出布线电阻不会升高的半导体器件。
此外,使用由铜-银类合金等、铜及非固溶金属所构成的铜合金而形成的电镀液及无电解电镀装置,与前述相同,在此省略其说明。
而且,在上述例中,虽然说明的是适用于无电解电镀的实例,当然也适用于通过将浸渍在电镀液中的阴极和阳极之间流过电流而进行的电解电镀。
产业上的可利用性
本发明的半导体器件及其制造方法适用于半导体器件及其制造方法,该半导体器件具有通过在半导体基片等表面所设置的布线用的微细凹部中埋入铜或银等导体而形成的埋入布线结构,用保护膜来保护裸露布线的表面,上述埋入布线结构是。

Claims (48)

1.一种半导体器件,其特征在于,在具有埋入布线结构的半导体器件的裸露布线表面,形成表面平坦的保护膜。
2.如权利要求1所述的半导体器件,其特征在于,上述保护膜由Co、Co合金、Ni或Ni合金中的至少一种构成。
3.一种半导体器件,其特征在于,在具有埋入布线结构的半导体器件的裸露布线表面,有选择地形成具有非晶相的布线保护膜。
4.如权利要求3所述的半导体器件,其特征在于,上述布线保护膜由通过无电解电镀形成的Ni合金、Co合金或Cu合金构成。
5.如权利要求3所述的半导体器件,其特征在于,具有将铜、铜合金、银或银合金作为布线材料的埋入布线结构。
6.一种半导体器件,其特征在于,在具有埋入布线结构的半导体器件的裸露布线表面上,有选择地形成由非磁性膜构成的布线保护膜。
7.如权利要求6所述的半导体器件,其特征在于,上述布线保护膜由通过无电解电镀形成的Ni合金、Co合金或Cu合金构成。
8.如权利要求6所述的半导体器件,其特征在于,具有将铜、铜合金、银或银合金作为布线材料的埋入布线结构。
9.一种半导体器件,其特征在于,在具有埋入布线结构的半导体器件的裸露布线的表面,有选择地进行用于布线保护膜成膜的预处理,在实施了上述预处理的布线表面上有选择地形成保护膜。
10.如权利要求9所述的半导体器件,其特征在于,通过上述预处理,在上述裸露布线表面上有选择地形成在下一工序中起到无电解电镀的催化剂作用的晶种层,并在该晶种层的表面上有选择地形成上述保护膜。
11.如权利要求4所述的半导体器件,其特征在于,上述晶种层由非晶质Co-B合金构成,上述保护膜由非晶质Co-W-B合金或非晶质Co-W-P合金构成。
12.一种半导体器件,其特征在于,在设于基片表面上的布线用的微细凹部内,埋入由铜和非固溶金属构成的铜合金来形成布线。
13.如权利要求12所述的半导体器件,其特征在于,上述由铜和非固溶金属构成的铜合金是铜-银类合金、铜-钴类合金、铜-锡类合金、或铜-硼类合金。
14.如权利要求13所述的半导体器件,其特征在于,上述铜合金中铜的含量为90%~99.99at%。
15.一种半导体器件,其特征在于,将由铜和非固溶金属构成的铜合金所制成的保护膜,有选择地形成在具有埋入布线结构的半导体器件的裸露布线的至少一部分上。
16.如权利要求15所述的半导体器件,其特征在于,上述由铜和非固溶金属构成的铜合金是铜-银类合金、铜-钴类合金、铜-锡类合金、或铜-硼类合金。
17.如权利要求16所述的半导体器件,其特征在于,上述铜合金中铜的含量为90%~99.99at%。
18.一种半导体器件的制造方法,其特征在于,在具有埋入布线结构的半导体器件的裸露布线的表面,通过无电解电镀有选择地形成保护膜,然后使形成有上述保护膜的半导体器件的表面平坦。
19.如权利要求18所述的半导体器件的制造方法,其特征在于,在具有埋入布线结构的半导体器件表面所设置的布线用凹部内,通过电镀埋入导体,对该导体进行热处理,通过研磨使上述半导体器件的表面平坦,通过无电解电镀在上述半导体器件的裸露布线表面上有选择地形成保护膜,通过研磨使该半导体器件的表面平坦。
20.如权利要求19所述的半导体器件的制造方法,其特征在于,在通过无电解电镀有选择地形成上述保护膜之前,进行电镀预处理。
21.如权利要求19所述的半导体器件的制造方法,其特征在于,在基片表面所设置的布线用凹部内,通过电镀埋入导体,对该导体进行热处理,通过研磨使经过热处理的基片表面平坦,清洗上述被整平的基片表面,通过无电解电镀在上述清洗后的基片的裸露布线表面有选择地形成保护膜。
22.如权利要求21所述的半导体器件的制造方法,其特征在于,对上述基片表面进行清洗,以使该表面的绝缘膜上的导体污染小于5×105atoms/cm2
23.一种半导体器件的制造方法,其特征在于,在具有埋入布线结构的半导体器件的表面进行无电解电镀,在裸露布线表面有选择地形成具有非晶相的布线保护膜。
24.如权利要求23所述的半导体器件的制造方法,其特征在于,上述布线保护膜由Ni合金、Co合金或Cu合金构成。
25.如权利要求23所述的半导体器件的制造方法,其特征在于,在具有埋入布线结构的半导体器件表面所设置的布线用凹部内,通过电镀埋入导体,对该导体进行热处理,通过化学机械研磨使上述半导体器件的表面平坦,通过无电解电镀在上述半导体器件的裸露布线表面上有选择地形成具有非晶相的布线保护膜。
26.一种半导体器件的制造方法,其特征在于,在具有埋入布线结构的半导体器件的表面进行无电解电镀,在裸露布线表面有选择地形成由非磁性膜构成的布线保护膜。
27.如权利要求26所述的半导体器件的制造方法,其特征在于,上述布线保护膜由Ni合金、Co合金或Cu合金构成。
28.如权利要求26所述的半导体器件的制造方法,其特征在于,在具有埋入布线结构的半导体器件表面所设置的布线用凹部内,通过电镀埋入导体,对该导体进行热处理,通过化学机械研磨使上述半导体器件的表面平坦,通过无电解电镀在上述半导体器件的裸露布线表面上有选择地形成由非磁性膜构成的布线保护膜。
29.半导体器件的制造方法,其特征在于,在具有埋入布线结构的半导体器件的表面,有选择地进行用于保护膜成膜的预处理,通过无电解电镀在进行过预处理的布线表面有选择地形成保护膜。
30.如权利要求29所述的半导体器件的制造方法,其特征在于,通过上述预处理,在上述裸露布线表面上有选择地形成起到催化剂作用的晶种层,在该晶种层的表面上有选择地形成上述保护膜。
31.如权利要求30所述的半导体器件的制造方法,其特征在于,上述晶种层由非晶质Co-B合金构成,上述保护膜由非晶质Co-W-B合金或非晶质Co-W-P合金构成。
32.如权利要求29所述的半导体器件的制造方法,其特征在于,在具有埋入布线结构的半导体器件表面所设置的布线用凹部内,通过电镀埋入导体,对该导体进行热处理,通过化学机械研磨使该半导体器件的表面平坦,在该半导体器件的裸露布线表面进行用于布线保护膜成膜的预处理,通过无电解电镀,在进行了上述预处理的布线表面上有选择地形成保护膜。
33.一种半导体器件的制造方法,其特征在于,在基片表面进行电镀,将由铜和非固溶金属构成的铜合金,埋入在设于基片表面上的布线用的微细凹部内以形成布线。
34.如权利要求33所述的半导体器件的制造方法,其特征在于,上述由铜和非固溶金属构成的铜合金是铜-银类合金、铜-钴类合金、铜-锡类合金、或铜-硼类合金。
35.如权利要求34所述的半导体器件的制造方法,其特征在于,上述铜合金中铜的含量为90%~99.99at%。
36.一种半导体器件的制造方法,其特征在于,在具有埋入布线结构的半导体器件的表面进行电镀,在裸露布线的至少一部分上有选择地形成由铜和非固溶金属构成的铜合金所制成的保护膜。
37.如权利要求36所述的半导体器件的制造方法,其特征在于,上述由铜和非固溶金属构成的铜合金是铜-银类合金、铜-钴类合金、铜-锡类合金、或铜-硼类合金。
38.如权利要求37所述的半导体器件的制造方法,其特征在于,上述铜合金中铜的含量为90%~99.99at%。
41.一种半导体器件的制造装置,其特征在于,具有,
第1电镀单元,用于将导体埋入设于基片表面上的布线用凹部;
第1研磨单元,用于对埋有上述导体的基片的表面进行研磨;
第2电镀单元,用于在上述研磨后的基片露出的布线表面,有选择地形成保护膜;以及
第2研磨单元,用于对形成有上述保护膜的基片表面进行研磨。
42.如权利要求41所述的半导体器件的制造方法,其特征在于,还具有热处理单元,用于对埋入基片中的导体进行热处理。
43.一种半导体器件的制造装置,其特征在于,还具有第3电镀单元,其可预先由第2电镀单元在布线表面上有选择地形成保护膜,再在上述布线表面有选择地形成起到催化剂作用的晶种层。
44.如权利要求41所述的半导体器件的制造方法,其特征在于,还具备清洗单元,可对由第1研磨单元进行研磨后的基片表面进行清洗。
45.如权利要求44所述的半导体器件的制造装置,其特征在于,由上述清洗单元对基片表面进行清洗,使上述表面的绝缘膜上的导体污染小于5×105atoms/cm2
46.一种电镀液,其特征在于,含有:铜离子、得到由铜和非固溶金属构成的铜合金的金属的金属离子、配位剂、以及不含碱金属的还原剂。
47.如权利要求46所述的电镀液,其特征在于,上述金属离子是银离子、钴离子和锡离子。
48.如权利要求46所述的电镀液,其特征在于,上述还原剂是烷基胺硼烷。
49.如权利要求46所述的电镀液,其特征在于,还具有稳定剂或表面活性剂中的至少一种,上述稳定剂为硫化物、氮化物及重金属化合物中的1种或不少于1种。
50.如权利要求46所述的电镀液,其特征在于,使用不含有碱金属的pH调整剂,将pH值调整为5~14。
CNB028157907A 2001-08-13 2002-08-12 半导体器件及其制造方法 Expired - Fee Related CN1329972C (zh)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP245655/2001 2001-08-13
JP2001245655 2001-08-13
JP2001319839A JP4076335B2 (ja) 2001-10-17 2001-10-17 半導体装置及びその製造方法
JP319839/2001 2001-10-17
JP2001337851A JP2003133316A (ja) 2001-08-13 2001-11-02 半導体装置及びその製造方法
JP337851/2001 2001-11-02
JP2001338953A JP2003142487A (ja) 2001-11-05 2001-11-05 半導体装置及びその製造方法
JP338953/2001 2001-11-05
JP341051/2001 2001-11-06
JP2001341051A JP2003142427A (ja) 2001-11-06 2001-11-06 めっき液、半導体装置及びその製造方法

Publications (2)

Publication Number Publication Date
CN1545728A true CN1545728A (zh) 2004-11-10
CN1329972C CN1329972C (zh) 2007-08-01

Family

ID=27531978

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028157907A Expired - Fee Related CN1329972C (zh) 2001-08-13 2002-08-12 半导体器件及其制造方法

Country Status (5)

Country Link
US (3) US7060618B2 (zh)
EP (1) EP1418619A4 (zh)
KR (1) KR20040018558A (zh)
CN (1) CN1329972C (zh)
WO (1) WO2003017359A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411165C (zh) * 2004-12-27 2008-08-13 台湾积体电路制造股份有限公司 集成电路及其制造方法
CN102822992A (zh) * 2010-02-15 2012-12-12 小林光 半导体装置的制造方法、半导体装置的制造装置、半导体装置、以及转印用组件
CN103563056A (zh) * 2011-04-15 2014-02-05 富士纺控股株式会社 研磨垫及其制造方法

Families Citing this family (228)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7338908B1 (en) 2003-10-20 2008-03-04 Novellus Systems, Inc. Method for fabrication of semiconductor interconnect structure with reduced capacitance, leakage current, and improved breakdown voltage
JP2003142427A (ja) * 2001-11-06 2003-05-16 Ebara Corp めっき液、半導体装置及びその製造方法
US6905622B2 (en) * 2002-04-03 2005-06-14 Applied Materials, Inc. Electroless deposition method
US20030190426A1 (en) * 2002-04-03 2003-10-09 Deenesh Padhi Electroless deposition method
US6899816B2 (en) * 2002-04-03 2005-05-31 Applied Materials, Inc. Electroless deposition method
US20030207206A1 (en) * 2002-04-22 2003-11-06 General Electric Company Limited play data storage media and method for limiting access to data thereon
US7001641B2 (en) * 2002-09-23 2006-02-21 Intel Corporation Seed layer treatment
US6821909B2 (en) * 2002-10-30 2004-11-23 Applied Materials, Inc. Post rinse to improve selective deposition of electroless cobalt on copper for ULSI application
US20040108217A1 (en) * 2002-12-05 2004-06-10 Dubin Valery M. Methods for forming copper interconnect structures by co-plating of noble metals and structures formed thereby
US7297190B1 (en) * 2006-06-28 2007-11-20 Lam Research Corporation Plating solutions for electroless deposition of copper
US7306662B2 (en) * 2006-05-11 2007-12-11 Lam Research Corporation Plating solution for electroless deposition of copper
JP2004266212A (ja) * 2003-03-04 2004-09-24 Tadahiro Omi 基板の処理システム
US7223694B2 (en) * 2003-06-10 2007-05-29 Intel Corporation Method for improving selectivity of electroless metal deposition
US7883739B2 (en) * 2003-06-16 2011-02-08 Lam Research Corporation Method for strengthening adhesion between dielectric layers formed adjacent to metal layers
US20050048768A1 (en) * 2003-08-26 2005-03-03 Hiroaki Inoue Apparatus and method for forming interconnects
US7654221B2 (en) 2003-10-06 2010-02-02 Applied Materials, Inc. Apparatus for electroless deposition of metals onto semiconductor substrates
US7827930B2 (en) * 2004-01-26 2010-11-09 Applied Materials, Inc. Apparatus for electroless deposition of metals onto semiconductor substrates
US7465358B2 (en) * 2003-10-15 2008-12-16 Applied Materials, Inc. Measurement techniques for controlling aspects of a electroless deposition process
US7064065B2 (en) * 2003-10-15 2006-06-20 Applied Materials, Inc. Silver under-layers for electroless cobalt alloys
US20070111519A1 (en) * 2003-10-15 2007-05-17 Applied Materials, Inc. Integrated electroless deposition system
WO2005038084A2 (en) * 2003-10-17 2005-04-28 Applied Materials, Inc. Selective self-initiating electroless capping of copper with cobalt-containing alloys
US20050095830A1 (en) * 2003-10-17 2005-05-05 Applied Materials, Inc. Selective self-initiating electroless capping of copper with cobalt-containing alloys
US7972970B2 (en) 2003-10-20 2011-07-05 Novellus Systems, Inc. Fabrication of semiconductor interconnect structure
US7531463B2 (en) * 2003-10-20 2009-05-12 Novellus Systems, Inc. Fabrication of semiconductor interconnect structure
US8372757B2 (en) 2003-10-20 2013-02-12 Novellus Systems, Inc. Wet etching methods for copper removal and planarization in semiconductor processing
US8158532B2 (en) * 2003-10-20 2012-04-17 Novellus Systems, Inc. Topography reduction and control by selective accelerator removal
US8530359B2 (en) * 2003-10-20 2013-09-10 Novellus Systems, Inc. Modulated metal removal using localized wet etching
US7205233B2 (en) * 2003-11-07 2007-04-17 Applied Materials, Inc. Method for forming CoWRe alloys by electroless deposition
US7193323B2 (en) * 2003-11-18 2007-03-20 International Business Machines Corporation Electroplated CoWP composite structures as copper barrier layers
US20060003570A1 (en) * 2003-12-02 2006-01-05 Arulkumar Shanmugasundram Method and apparatus for electroless capping with vapor drying
US6984587B2 (en) * 2004-01-08 2006-01-10 Cabot Microelectronics Corporation Integrated polishing and electroless deposition
EP1717344A4 (en) * 2004-01-23 2008-08-20 Ebara Corp PROCESS FOR PROCESSING A SUBSTRATE, CATALYST PROCESS LIQUID, AND SUBSTRATE PROCESSING DEVICE
US7256111B2 (en) * 2004-01-26 2007-08-14 Applied Materials, Inc. Pretreatment for electroless deposition
US20050181226A1 (en) * 2004-01-26 2005-08-18 Applied Materials, Inc. Method and apparatus for selectively changing thin film composition during electroless deposition in a single chamber
US20050161338A1 (en) * 2004-01-26 2005-07-28 Applied Materials, Inc. Electroless cobalt alloy deposition process
US20050170650A1 (en) * 2004-01-26 2005-08-04 Hongbin Fang Electroless palladium nitrate activation prior to cobalt-alloy deposition
US20060033678A1 (en) * 2004-01-26 2006-02-16 Applied Materials, Inc. Integrated electroless deposition system
US20050230350A1 (en) 2004-02-26 2005-10-20 Applied Materials, Inc. In-situ dry clean chamber for front end of line fabrication
JP4270457B2 (ja) * 2004-03-10 2009-06-03 大日本スクリーン製造株式会社 有機物除去装置および膜厚測定装置
US20050253268A1 (en) * 2004-04-22 2005-11-17 Shao-Ta Hsu Method and structure for improving adhesion between intermetal dielectric layer and cap layer
DE102004021239B4 (de) * 2004-04-30 2017-04-06 Infineon Technologies Ag Lange getemperte integrierte Schaltungsanordnungen und deren Herstellungsverfahren
US7696089B1 (en) * 2004-05-11 2010-04-13 Johnson Research & Development Co., Inc. Passivated thin film and method of producing same
US7636234B2 (en) * 2004-08-09 2009-12-22 Lam Research Corporation Apparatus configurations for affecting movement of fluids within a microelectric topography processing chamber
JP2006093357A (ja) * 2004-09-22 2006-04-06 Ebara Corp 半導体装置及びその製造方法、並びに処理液
SE0403042D0 (sv) * 2004-12-14 2004-12-14 Polymer Kompositer I Goeteborg Improved stabilization and performance of autocatalytic electroless process
JP4876215B2 (ja) * 2005-01-21 2012-02-15 独立行政法人産業技術総合研究所 Cmp研磨方法、cmp研磨装置、及び半導体デバイスの製造方法
US20060240187A1 (en) * 2005-01-27 2006-10-26 Applied Materials, Inc. Deposition of an intermediate catalytic layer on a barrier layer for copper metallization
US7438949B2 (en) * 2005-01-27 2008-10-21 Applied Materials, Inc. Ruthenium containing layer deposition method
US20060162658A1 (en) * 2005-01-27 2006-07-27 Applied Materials, Inc. Ruthenium layer deposition apparatus and method
US7651934B2 (en) 2005-03-18 2010-01-26 Applied Materials, Inc. Process for electroless copper deposition
US20060246699A1 (en) * 2005-03-18 2006-11-02 Weidman Timothy W Process for electroless copper deposition on a ruthenium seed
US20060246217A1 (en) * 2005-03-18 2006-11-02 Weidman Timothy W Electroless deposition process on a silicide contact
TW200707640A (en) * 2005-03-18 2007-02-16 Applied Materials Inc Contact metallization scheme using a barrier layer over a silicide layer
JP4790297B2 (ja) * 2005-04-06 2011-10-12 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US20070048991A1 (en) * 2005-08-23 2007-03-01 Taiwan Semiconductor Manufacturing Co., Ltd. Copper interconnect structures and fabrication method thereof
JP4519037B2 (ja) * 2005-08-31 2010-08-04 東京エレクトロン株式会社 加熱装置及び塗布、現像装置
US7563704B2 (en) * 2005-09-19 2009-07-21 International Business Machines Corporation Method of forming an interconnect including a dielectric cap having a tensile stress
WO2007035880A2 (en) * 2005-09-21 2007-03-29 Applied Materials, Inc. Method and apparatus for forming device features in an integrated electroless deposition system
US7605082B1 (en) 2005-10-13 2009-10-20 Novellus Systems, Inc. Capping before barrier-removal IC fabrication method
US20070099806A1 (en) * 2005-10-28 2007-05-03 Stewart Michael P Composition and method for selectively removing native oxide from silicon-containing surfaces
US7780772B2 (en) * 2005-11-25 2010-08-24 Lam Research Corporation Electroless deposition chemical system limiting strongly adsorbed species
US7752996B2 (en) * 2006-05-11 2010-07-13 Lam Research Corporation Apparatus for applying a plating solution for electroless deposition
US7727885B2 (en) * 2006-08-29 2010-06-01 Texas Instruments Incorporated Reduction of punch-thru defects in damascene processing
JP4913517B2 (ja) * 2006-09-26 2012-04-11 株式会社ディスコ ウエーハの研削加工方法
US20080163900A1 (en) * 2007-01-05 2008-07-10 Douglas Richards Ipa delivery system for drying
US20080254205A1 (en) * 2007-04-13 2008-10-16 Enthone Inc. Self-initiated alkaline metal ion free electroless deposition composition for thin co-based and ni-based alloys
US7867900B2 (en) * 2007-09-28 2011-01-11 Applied Materials, Inc. Aluminum contact integration on cobalt silicide junction
US20100258142A1 (en) * 2009-04-14 2010-10-14 Mark Naoshi Kawaguchi Apparatus and method for using a viscoelastic cleaning material to remove particles on a substrate
US8823176B2 (en) 2008-10-08 2014-09-02 International Business Machines Corporation Discontinuous/non-uniform metal cap structure and process for interconnect integration
US8597461B2 (en) 2009-09-02 2013-12-03 Novellus Systems, Inc. Reduced isotropic etchant material consumption and waste generation
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
JP5352542B2 (ja) 2010-07-15 2013-11-27 エル エス エムトロン リミテッド リチウム二次電池の集電体用銅箔
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8771539B2 (en) 2011-02-22 2014-07-08 Applied Materials, Inc. Remotely-excited fluorine and water vapor etch
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8771536B2 (en) 2011-08-01 2014-07-08 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US8679982B2 (en) 2011-08-26 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and oxygen
US8679983B2 (en) 2011-09-01 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and nitrogen
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8808563B2 (en) 2011-10-07 2014-08-19 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
WO2013070436A1 (en) 2011-11-08 2013-05-16 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8765574B2 (en) 2012-11-09 2014-07-01 Applied Materials, Inc. Dry etch process
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9496145B2 (en) 2014-03-19 2016-11-15 Applied Materials, Inc. Electrochemical plating methods
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
JP6399417B2 (ja) * 2014-06-16 2018-10-03 インテル・コーポレーション 金属相互接続のシーム修復
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9355862B2 (en) 2014-09-24 2016-05-31 Applied Materials, Inc. Fluorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9758896B2 (en) 2015-02-12 2017-09-12 Applied Materials, Inc. Forming cobalt interconnections on a substrate
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9859124B2 (en) * 2015-04-17 2018-01-02 Taiwan Semiconductor Manufacturing Company Ltd Method of manufacturing semiconductor device with recess
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US9911698B1 (en) * 2016-08-25 2018-03-06 International Business Machines Corporation Metal alloy capping layers for metallic interconnect structures
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
TWI772364B (zh) * 2017-02-09 2022-08-01 韓商印可得股份有限公司 利用種子層的電路形成方法及用於選擇性蝕刻種子層的蝕刻液組合物
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
GB2574177B (en) * 2018-01-25 2021-07-14 Semsysco Gmbh Method and device for plating a recess in a substrate
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI766433B (zh) 2018-02-28 2022-06-01 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US11805704B2 (en) * 2020-05-08 2023-10-31 International Business Machines Corporation Via interconnects for a magnetoresistive random-access memory device

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5656542A (en) 1993-05-28 1997-08-12 Kabushiki Kaisha Toshiba Method for manufacturing wiring in groove
US6042889A (en) * 1994-02-28 2000-03-28 International Business Machines Corporation Method for electrolessly depositing a metal onto a substrate using mediator ions
US6090701A (en) * 1994-06-21 2000-07-18 Kabushiki Kaisha Toshiba Method for production of semiconductor device
KR100232506B1 (ko) * 1995-06-27 1999-12-01 포만 제프리 엘. 전기적 접속을 제공하는 배선 구조 및 도체와 그 도체형성방법
JP3516558B2 (ja) * 1996-08-26 2004-04-05 シャープ株式会社 半導体装置の製造方法
US5695810A (en) * 1996-11-20 1997-12-09 Cornell Research Foundation, Inc. Use of cobalt tungsten phosphide as a barrier material for copper metallization
US6037257A (en) * 1997-05-08 2000-03-14 Applied Materials, Inc. Sputter deposition and annealing of copper alloy metallization
TW405158B (en) * 1997-09-17 2000-09-11 Ebara Corp Plating apparatus for semiconductor wafer processing
JP3545177B2 (ja) * 1997-09-18 2004-07-21 株式会社荏原製作所 多層埋め込みCu配線形成方法
JP3040745B2 (ja) * 1998-01-12 2000-05-15 松下電子工業株式会社 半導体装置及びその製造方法
US6181012B1 (en) * 1998-04-27 2001-01-30 International Business Machines Corporation Copper interconnection structure incorporating a metal seed layer
US6395152B1 (en) * 1998-07-09 2002-05-28 Acm Research, Inc. Methods and apparatus for electropolishing metal interconnections on semiconductor devices
TW428223B (en) * 1998-10-05 2001-04-01 Ebara Corp Apparatus for plating a substrate
JP3979750B2 (ja) * 1998-11-06 2007-09-19 株式会社荏原製作所 基板の研磨装置
US6121141A (en) * 1998-11-24 2000-09-19 Advanced Micro Devices, Inc. Method of forming a void free copper interconnects
US6136163A (en) * 1999-03-05 2000-10-24 Applied Materials, Inc. Apparatus for electro-chemical deposition with thermal anneal chamber
US6350687B1 (en) * 1999-03-18 2002-02-26 Advanced Micro Devices, Inc. Method of fabricating improved copper metallization including forming and removing passivation layer before forming capping film
JP2001164375A (ja) * 1999-12-03 2001-06-19 Sony Corp 無電解メッキ浴および導電膜の形成方法
CN1319130C (zh) * 1999-12-24 2007-05-30 株式会社荏原制作所 半导体基片处理装置及处理方法
JP3907151B2 (ja) * 2000-01-25 2007-04-18 株式会社東芝 半導体装置の製造方法
TW476134B (en) * 2000-02-22 2002-02-11 Ibm Method for forming dual-layer low dielectric barrier for interconnects and device formed
JP3979791B2 (ja) * 2000-03-08 2007-09-19 株式会社ルネサステクノロジ 半導体装置およびその製造方法
US6291082B1 (en) * 2000-06-13 2001-09-18 Advanced Micro Devices, Inc. Method of electroless ag layer formation for cu interconnects
TW571005B (en) * 2000-06-29 2004-01-11 Ebara Corp Method and apparatus for forming copper interconnects, and polishing liquid and polishing method
US6387806B1 (en) * 2000-09-06 2002-05-14 Advanced Micro Devices, Inc. Filling an interconnect opening with different types of alloys to enhance interconnect reliability
JP2002226974A (ja) * 2000-11-28 2002-08-14 Ebara Corp 無電解Ni−Bめっき液、電子デバイス装置及びその製造方法
US6953392B2 (en) * 2001-01-05 2005-10-11 Asm Nutool, Inc. Integrated system for processing semiconductor wafers
US6709874B2 (en) * 2001-01-24 2004-03-23 Infineon Technologies Ag Method of manufacturing a metal cap layer for preventing damascene conductive lines from oxidation
US6573606B2 (en) * 2001-06-14 2003-06-03 International Business Machines Corporation Chip to wiring interface with single metal alloy layer applied to surface of copper interconnect
US6528409B1 (en) * 2002-04-29 2003-03-04 Advanced Micro Devices, Inc. Interconnect structure formed in porous dielectric material with minimized degradation and electromigration

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411165C (zh) * 2004-12-27 2008-08-13 台湾积体电路制造股份有限公司 集成电路及其制造方法
CN102822992A (zh) * 2010-02-15 2012-12-12 小林光 半导体装置的制造方法、半导体装置的制造装置、半导体装置、以及转印用组件
US9076916B2 (en) 2010-02-15 2015-07-07 Hikaru Kobayashi Method and device for manufacturing semiconductor devices, semiconductor device and transfer member
CN102822992B (zh) * 2010-02-15 2015-12-09 小林光 半导体装置的制造方法、半导体装置的制造装置、半导体装置、以及转印用组件
CN103563056A (zh) * 2011-04-15 2014-02-05 富士纺控股株式会社 研磨垫及其制造方法

Also Published As

Publication number Publication date
CN1329972C (zh) 2007-08-01
WO2003017359A1 (en) 2003-02-27
KR20040018558A (ko) 2004-03-03
US20080011228A1 (en) 2008-01-17
EP1418619A1 (en) 2004-05-12
EP1418619A4 (en) 2010-09-08
US7060618B2 (en) 2006-06-13
US20030075808A1 (en) 2003-04-24
US20060040487A1 (en) 2006-02-23
US7279408B2 (en) 2007-10-09

Similar Documents

Publication Publication Date Title
CN1545728A (zh) 半导体器件及其制造方法、以及电镀液
CN1633520A (zh) 镀膜装置和方法
CN1260778C (zh) 基片加工方法
CN1341277A (zh) 半导体基片处理装置及处理方法
CN1280452C (zh) 铜镀液、用其镀覆基板的方法以及基板处理单元
CN1265425C (zh) 基片处理装置
CN1187481C (zh) 电解处理装置
CN1685080A (zh) 基板处理装置和基板处理方法
CN1253606C (zh) 镀铜溶液、镀敷方法和镀敷装置
CN1639840A (zh) 无电淀积设备和方法
CN1653597A (zh) 衬底加工设备和衬底加工方法
CN100346009C (zh) 电解加工装置和方法
CN1572911A (zh) 用于镀敷基片的装置和方法
CN1623012A (zh) 一旦进入金属沉积用来倾斜基片的方法和相关设备
CN1463467A (zh) 电解处理装置和衬底处理设备
CN1900358A (zh) 用于将金属无电镀沉积到半导体衬底上的装置
JP2002541326A (ja) ワークピースを電気化学的に処理するためのシステム
CN1933143A (zh) 无电电镀溶液及半导体器件
CN1531028A (zh) 电镀方法
WO2004057060A2 (en) Multi-chemistry electrochemical processing system
CN1833314A (zh) 基片处理装置、基片处理方法和基片固定装置
US20050023149A1 (en) Plating apparatus, plating method and substrate processing apparatus
CN1742119A (zh) 电镀装置和电镀方法
CN1280872C (zh) 电镀装置
CN1309876C (zh) 用于阳极氧化的设备及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070801

Termination date: 20210812

CF01 Termination of patent right due to non-payment of annual fee