CN1933143A - 无电电镀溶液及半导体器件 - Google Patents

无电电镀溶液及半导体器件 Download PDF

Info

Publication number
CN1933143A
CN1933143A CN200610132035.6A CN200610132035A CN1933143A CN 1933143 A CN1933143 A CN 1933143A CN 200610132035 A CN200610132035 A CN 200610132035A CN 1933143 A CN1933143 A CN 1933143A
Authority
CN
China
Prior art keywords
plating
semiconductor substrate
electroless
alloy
interconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200610132035.6A
Other languages
English (en)
Inventor
井上裕章
中村宪二
松本守治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of CN1933143A publication Critical patent/CN1933143A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02082Cleaning product to be cleaned
    • H01L21/0209Cleaning of wafer backside
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/6723Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one plating chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/901Printed circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • Y10T428/24917Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.] including metal layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemically Coating (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明涉及用于形成保护膜的无电电镀液,该保护膜用于选择性保护半导体器件暴露互连的表面,而半导体器件具有如下的嵌入互连结构,其中电导体,如铜或银,嵌入在精细的凹槽内用于在半导体衬底表面上形成互连。本发明还涉及一种半导体器件,其中暴露互连的表面用保护膜选择性地加以保护。无电电镀液含有钴离子、络合剂和不含碱金属的还原剂。

Description

无电电镀溶液及半导体器件
本申请是申请日为2002年5月30日的中国专利申请02811119.2的分案申请。
技术领域
本发明涉及无电电镀(electroless-plating)溶液和半导体器件。更明确地讲,本发明涉及用于形成保护膜的无电电镀溶液,该保护膜用于选择性保护半导体器件暴露的互连的表面,而半导体器件具有如下的嵌入互连结构,其中电导体,如铜或银,嵌入在精细的凹槽内用于在半导体衬底或类似物的表面上形成互连。本发明还涉及一种半导体器件,其中暴露的互连的表面用保护膜选择性加以保护。
背景技术
作为用于在半导体器件内形成互连的处理,即所谓的“镶嵌处理”(damascene process),已经有了实际的应用,其包括用金属(电导体)填充互连的沟槽和接触孔。根据该处理,铝,或者更近期使用的金属如铜或银,嵌入在互连的沟槽和接触孔内,其预先形成于半导体衬底的级间(interlevel)电介质内。之后通过化学机械抛光(CMP)除去多余的金属从而使衬底表面平整。
近些年来,出现了一个明显的趋势,就是不再使用铝或铝合金作为在半导体衬底上形成互连电路的材料,而是使用具有低电阻和高电迁移阻抗的铜(Cu)。铜互连通常通过用铜填充形成于衬底表面内的精细凹槽而形成。已知有多种用于制造该铜互连的方法,包括CVD、溅射和电镀。根据这些技术中的任何一种,铜膜在衬底的几乎整个表面上形成,接着通过CMP除去不需要的铜。
在通过该种处理形成互连的实例中,嵌入互连在平整处理之后具有暴露表面。当另外的嵌入互连在这种半导体衬底的互连-暴露表面上形成时,可能会遇到如下的问题。例如,在下一个级间电介质形成处理中形成新的SiO2期间,先形成连接的暴露表面可能会氧化。进一步,在腐蚀SiO2层形成互连孔时,暴露在互连孔底部上的先形成互连可能会被腐蚀剂、剥落的抗蚀剂等污染。
为了避免这些问题,传统的做法是不仅在暴露互连的半导体衬底表面区域上,而且在衬底的整个表面上都形成SiN或类似物的保护层,借此防止暴露互连被腐蚀剂等污染。
然而,在具有嵌入互连结构的半导体器件内,在半导体衬底的整个表面上都提供SiN或类似物的保护膜会提高级间电介质的介电常数,从而导致即使使用低电阻材料如铜或银制造互连也会使互连延迟,结果减弱半导体器件的性能。
有鉴于此,有人提出了选择性覆盖暴露互连的表面,用对互连材料如铜或银具有高粘附性且电阻率(ρ)低的合金膜来保护互连。合金膜通过例如无电电镀而获得。
然而,通过无电电镀来提供该保护合金膜会有如下的与通常用作无电电镀还原剂的次磷酸钠相联系的问题:
1)还原剂中含有钠会导致半导体器件被碱金属污染。
2)当用次磷酸钠作为还原剂时,就不可能对铜或类似物施加氧化性电流。这就必须向铜或类似物提供钯催化剂,从而增加了处理步骤降低了产量。
3)向铜或类似物提供钯催化剂,原理上,铜或类似物的下方互连会被钯所替代,从而导致形成无用的互连,结果降低了互连的稳定性。
4)因为钯具有向铜或类似物扩散的性质,提供钯催化剂会提高互连的电阻。
5)除了在形成互连的区域上,镀膜可能还会沉积在绝缘膜上,使得难以执行所预期的选择性镀膜。
发明内容
本发明是鉴于相关技术中的上述缺点而制得的。因此本发明的目的在于提一种无电电镀溶液,其能够形成只选择性覆盖互连的表面从而保护互连的镀膜(保护膜),而不会导致任何碱金属污染及无用互连的形成,并且提供一种半导体器件,其中暴露互连选择性地用保护膜加以保护。
为了获得上述目的,本发明提供了一种无电电镀液,用于在半导体器件,其具有嵌入互连结构,在暴露的互连的表面上选择性形成镀膜,该无电电镀液包括钴离子、络合剂(complexing agent)和无碱金属的还原剂。
使用无碱金属还原剂能够避免半导体器件被碱金属污染。
烷基胺硼烷(alkylamine borane)可以用作无碱金属的还原剂。使用这种还原剂就可能对铜或铜合金,银或银合金施加氧化电流,从而能够直接进行无电电镀。进一步,使用无碱金属的烷基胺硼烷能够防止半导体器件被碱金属污染,此外还有可能在不使用钯催化剂的条件下进行无电电镀。
烷基胺硼烷的特别实例可以包括二甲基胺硼烷、二乙基胺硼烷和三甲基胺硼烷。
无电电镀液可以进一步含有至少一种稳定剂,其从一种或多种重金属化合物和硫化物中选择,和表面活性剂。
无电电镀液的pH值优选地用无碱金属的pH调节剂调节在5-14的范围内。使用无碱金属的pH调节剂,如氨水或氢氧化季铵,能够保持无电电镀溶液无碱金属。镀液的pH值优选地为6-10。
本发明进一步提供了用于在半导体器件暴露互连的表面上选择性形成镀膜的无电电镀液,该半导体器件具有嵌入互连结构,该无电电镀溶液包括钴离子、络合剂、含有难熔金属的化合物和无碱金属的还原剂。
钨和钼的至少一种可以用作难熔金属。还原剂可以是烷基胺硼烷。通过使用该种化合物,无电电镀液可以提供Co-W-B合金、Co-Mo-B合金或Co-Mo-W-B合金的保护膜以覆盖暴露互连的表面。
本发明进一步提供了一种半导体器件,其具有铜或铜合金、或者银或银合金互连的嵌入互连结构,其中暴露互连的表面用保护膜选择性加以覆盖,保护膜用无电电镀液通过无电电镀处理而形成,无电电镀液包括钴离子、络合剂和无碱金属的还原剂。
通过这样选择性地覆盖互连表面和用对银或铜具有高粘附性且电阻率(ρ)低的合金保护膜保护互连,便能够抑制半导体器件,其具有嵌入互连结构,级间电介质介电常数的增加。进一步,使用低电阻材料如银或铜作为互连材料,能够实现半导体的加速和增浓。
本发明进一步提供了一种具有嵌入互连结构的半导体器件,其中暴露互连的表面用含钴金属的保护膜选择性地加以覆盖。金属膜的厚度优选地为0.1-500nm。
本发明进一步提供了一种具有嵌入互连结构的半导体器件,其中暴露互连的表面用含钴和难熔金属的合金选择性地加以覆盖。难熔金属优选地为钨和钼中的至少一种。
本发明提供了一种用于制造半导体器件的方法,包括:用无电电镀液在具有嵌入互连结构的半导体衬底上进行无电电镀从而在该半导体衬底互连的表面上选择性形成镀膜保护层;其中无电电镀液包括钴离子、络合剂和无碱金属的还原剂。
本发明进一步提供了一种用于制造半导体器件的方法,包括:用无电电镀液在具有嵌入互连结构的半导体衬底上进行无电电镀从而在该半导体衬底互连的表面上选择性形成镀膜保护层;其中无电电镀液包括钴离子、络合剂、含有难熔金属的化合物和无碱金属的还原剂。
合金的实例包括Co-B合金、Co-P合金、Co-W-B合金、Co-W-P合金、Co-Mo-B合金、Co-Mo-P合金、Co-W-Mo-B合金、Co-W-Mo-P合金、Co-Ti-B合金、Co-Ti-P合金、Co-Ta-B合金、Co-Ta-P合金、Co-Ti-Ta-B合金、Co-Ti-Ta-P合金、Co-Ti-W-B合金、Co-Ti-W-P合金、Co-Ti-Mo-B合金、Co-Ti-Mo-P合金、Co-Ti-Ta-B合金、Co-Ti-Ta-P合金、Co-Ta-W-B合金、Co-Ta-W-P合金、Co-Ta-Mo-B合金、Co-Ta-Mo-P合金、Co-Ti-W-Mo-B合金、Co-Ti-W-Mo-P合金、Co-Ta-W-Mo-B合金、Co-Ta-W-Mo-P合金、Co-Ti-Ta-W-Mo-B合金和Co-Ti-Ta-W-Mo-P合金。
附图说明
图1A-C按照处理顺序图解了根据本发明在半导体器件中形成铜互连的实例;
图2是无电电镀器件实例的概图;
图3是无电电镀器件另一个实例的概图;
图4是根据本发明用于制造半导体器件的半导体制造装置实例的平面图;
图5是根据本发明用于制造半导体器件的半导体制造装置另一个实例的平面图;
图6是根据本发明用于制造半导体器件的半导体制造装置再一个实例的平面图;
图7A和7B是在示例中获得的测试样品SEM图象的简图;和
图8A和8B是在对照示例中获得的测试样品SEM图象的简图。
具体实施方式
现在参考附图说明本发明的优选实施例。
图1A-2C按照处理步骤的顺序图解了根据本发明在半导体器件中形成铜互连的实例。如图1A所示,SiO2绝缘膜2沉积在导电层1a上,其形成于承受半导体器件的半导体基部上。互连的接触孔3和沟槽4通过光刻/蚀刻技术形成于绝缘膜2内。之后,TaN或类似物的阻挡层(barrier layer)在整个表面上形成,作为电镀电供应层的铜籽晶层(copper seed layer)6通过溅射或类似方法而在阻挡层5上形成。
而后,如图1B所示,在半导体衬底W的表面上进行铜镀从而用铜填充接触孔3和沟槽4,同时在绝缘膜2上沉积铜膜7。之后,绝缘层2上的铜膜7和阻挡层5通过化学机械抛光(CMP)而去除,从而使填充互连接触孔3和沟槽4的铜膜7的表面和绝缘膜2的表面基本上位于同一平面。由铜籽晶层6和铜膜7构成的互连8,如图1C所示,便形成于绝缘层2内。
接着,在半导体衬底W的表面上进行无电电镀,从而在互连8的暴露表面上选择性地形成由合金膜构成的保护膜9,借此保护互连8。保护膜9的厚度通常为0.1-500nm,优选地为1-200nm,更优选地为10-100nm。
保护膜通过例如使用含钴离子、络合剂、pH缓冲液、pH调节剂和用作还原剂的烷基胺硼烷的无电电镀液而形成,或者用进一步含有难熔(高熔点)金属如钨和钼的镀液,并将半导体衬底W表面浸泡在镀液中。
如果需要,镀液可以进一步含有至少一种稳定剂,其从一种或多种重金属化合物和硫化物中选择,和表面活性剂。进一步,用pH调节剂如氨水或氢氧化季铵将镀液的pH值优选地调节在5-14,更优选地为6-10。镀液的温度通常为30-90℃,优选地为40-80℃。
通过提供保护性膜9来保护互连8,则在其上形成另外的嵌入互连结构时,能够在下一个级间电介质形成处理中形成新的SiO2期间防止互连表面发生氧化,并防止在腐蚀SiO2层时互连被腐蚀剂、剥落的抗蚀剂等污染。
使用含钴离子、络合剂、pH缓冲液、pH调节剂和用作还原剂的烷基胺硼烷的镀液,提供了由Co-B合金膜构成的保护膜9。使用进一步含有难熔金属,如钨和钼,的镀液,提供了由Co-W-B合金膜、Co-Mo-B合金膜或Co-Mo-W-B合金膜构成的保护膜。
通过选择性覆盖互连8的表面和用保护膜9保护互连8,其中保护膜9由对作为互连材料的铜具有高粘附性且具有低电阻率(ρ)的合金膜构成,能够抑制半导体器件级间电介质介电常数的提高,其中该半导体器件具有嵌入互连结构。进一步,使用低电阻材料铜作为互连材料能够实现半导体的加速和增浓。
尽管该实例显示的是使用铜作为互连材料,但铜合金、银或银合金也可以使用。
镀液中所含的钴离子可以由钴盐提供,例如硫酸钴、氯化钴或醋酸钴。钴离子的含量通常为0.001-1mol/L,优选地为0.01-0.3mol/L。
络合剂特别的实例可以包括羧酸,例如醋酸,及其盐;氢氧基羧酸(oxycarboxylic acid),例如酒石酸和柠檬酸,及其盐;胺基羧酸(aminocarboxylic acid),例如氨基乙酸,及其盐。这些化合物可以单独使用或者作为两种或两种以上的混合物使用。络合剂的总量通常为0.001-1.5mol/L,优选地为0.01-1.0mol/L。
关于pH缓冲液,任何不含钠或任何其他碱金属的缓冲液都可以使用。硫酸铵、氯化铵和硼酸可以作为特别的实例。所用pH缓冲液的含量通常为0.01-1.5mol/L,优选地为0.1-1mol/L。
关于pH调节剂,任何不含钠或任何其他碱金属的pH调节剂都可以使用。氨水和氢氧化四甲基铵(TMAH)可以作为特别的实例。通过使用pH调节剂,镀液的pH通常可以调节在5-14,优选地为6-10。
同样地,还原剂也应当不含钠或任何其他的碱金属。优选地是使用烷基胺硼烷。作为烷基胺硼烷,会提到的是二甲基胺硼烷(DMAB)和二乙基胺硼烷。所用还原剂的含量通常为0.01-1mol/L,优选地为0.01-0.5mol/L。
含难熔金属的化合物的实例可以包括钨酸、钼酸及其盐;和杂多酸(heteropoly acid),例如磷钨酸(例如H3(PW12P40)·nH2O),及其盐。当保护膜不是用无电电镀形成时也可以使用Ti或Ta。所用含难熔金属的化合物的含量通常为0.001-1mol/L,优选地为0.01-0.1mol/L。钴/难熔金属合金的实例包括Co-B合金、Co-P合金、Co-W-B合金、Co-W-P合金、Co-Mo-B合金、Co-Mo-P合金、Co-W-Mo-B合金、Co-W-Mo-P合金、Co-Ti-B合金、Co-Ti-P合金、Co-Ta-B合金、Co-Ta-P合金、Co-Ti-Ta-B合金、Co-Ti-Ta-P合金、Co-Ti-W-B合金、Co-Ti-W-P合金、Co-Ti-Mo-B合金、Co-Ti-Mo-P合金、Co-Ti-Ta-B合金、Co-Ti-Ta-P合金、Co-Ta-W-B合金、Co-Ta-W-P合金、Co-Ta-Mo-B合金、Co-Ta-Mo-P合金、Co-Ti-W-Mo-B合金、Co-Ti-W-Mo-P合金、Co-Ta-W-Mo-B合金、Co-Ta-W-Mo-P合金、Co-Ti-Ta-W-Mo-B合金和Co-Ti-Ta-W-Mo-P合金。其中,根据本发明,在无电电镀中特别优选地使用含钨和/或钼的合金。因为不含有碱金属,含硼或磷的合金也属于可用范围。含Ti或Ta的合金在非无电电镀处理中使用。
除了上面所提到的化合物,其它已知的添加剂也可以加入到镀液中。可用添加剂的实例包括镀液稳定剂(bath stabilizer),其可以是重金属化合物,例如铅化合物、硫化合物如硫氰酸盐、或其混合物,和阴离子、阳离子或非离子型表面活性剂。
如上所述,优选地使用无钠的烷基胺硼烷作为还原剂。使用烷基胺硼烷使得有可能对铜、铜合金、银或银合金施加氧化电流,从而避免钯催化剂的使用,从而能够直接进行无电电镀,并且能够防止半导体器件被碱金属污染。因此,无电电镀液,其使用烷基胺硼烷作为还原剂,使得有可能通过将半导体器件表面浸入镀液中而进行无电电镀,而无须施加钯催化剂。这能够减少所需要的处理步骤从而提高产量,防止由于钯替代而导致的铜互连内无用互连的形成和避免由钯扩散所导致的互连阻抗的提高。
进一步地,已经发现在使用含以烷基胺硼烷作为还原剂的镀液进行无电电镀时,镀膜选择性地沉积在铜或银上。这便能够选择性地只镀覆互连区域。
图2是无电电镀装置的概要结构图。如图2所示,该无电电镀装置包括固定装置11,其用于将半导体衬底W固定在其上表面;坝阻部件(dam member)(镀液承载机构)31,其用于接触由固定装置11固定的半导体衬底W待镀覆表面(上表面)的外周边缘部分以密封该外周边缘部分;和喷头(无电电镀液(散射)供应装置)41,其用于向待镀覆表面提供镀液(无电电镀液),其中待镀覆表面属于外周边缘部分用坝阻部件31密封的半导体衬底W。无电电镀装置进一步包括清洗液供应装置51,其设置在固定装置的上侧外周边缘附近用于向半导体衬底W的待镀覆表面供应清洗液;回收容器61,其用于回收释放的清洗液或类似物(镀废液);镀液回收喷嘴65,其用于吸入和回收保留在半导体衬底W上的镀液;和电动机(旋转驱动装置)M,其用于旋转驱动固定装置11。
固定装置11在其上表面上具有用于置放和固定半导体衬底W的衬底置放部分13。衬底置放部分13适合于引入和固定半导体衬底W。特别地,衬底置放部分13具有真空吸引机构(未显示),用于通过真空吸力将半导体衬底W吸引在其背部。平面状的背部加热器(加热装置)15对半导体衬底W的待镀覆表面从底部进行加热以保持其温暖,并且安装在半导体置放部分13的背面。背部加热器15由例如橡胶加热器构成。该固定装置11通过电动机M进行旋转,并通过提升装置(未显示)而实现垂直运动。
坝阻部件31呈圆柱形,在其下部安装有密封部分33用于密封半导体衬底W的外周边缘,安装坝阻部件是为了避免发生从图示位置的垂直移动。
喷头41是如下的一种结构,在其前端安装有许多适合于以淋浴形式散射所提供的镀液、并适合于将镀液基本上均匀地提供到半导体衬底W待镀覆表面的喷嘴。清洗液供应装置51具有适合于从喷嘴53喷射清洗液的结构。
镀液回收喷嘴65适合于向上、向下和摇摆运动,镀液回收喷嘴65的前端适合于向内降低,从而低于位于半导体衬底W边缘部分上表面上的坝阻部件31,并适合于吸入半导体衬底W上的镀液。
下面说明无电电镀装置的操作。首先,固定装置11从图示位置降低从而在固定装置11和坝阻部件31之间提供具有预先确定尺寸的缝隙,半导体衬底W位于并固定于衬底置放部分13上。例如用8英寸的晶片作为半导体衬底W。
然后,提升固定装置11并使其上表面与坝阻部件31的下表面相接触,如图2所示,且半导体衬底W的外周边缘用坝阻部件31的密封部分33加以密封。此时,半导体衬底W的表面处于开放状态。
然后,半导体衬底W本身通过背部加热器15而直接加热,同时从喷头41注入镀液并将镀液倾倒于半导体衬底W的基本整个表面上。因为半导体衬底W的表面被坝阻部件31包围,倾倒的镀液都会保留在半导体衬底W的表面上。所提供镀液的量可以为小量,在半导体衬底W的表面上为1mm厚(大约30ml)。保留在待镀表面上的镀液深度可以为10mm或者更少,甚至和本实施例一样为1mm。如果提供少量的镀液就已足够,用于加热镀液的加热装置可以为小尺寸。
如果半导体衬底W本身适合于被加热,那么需要大量电能消耗进行加热的镀液温度就不需要提升到这么高。这是优选的,因为能够减少电能消耗,并且能够防止镀液性能的改变。用于加热半导体W本身的电能消耗可以较小,储存在半导体衬底W上的镀液量也较小。这样,就能够容易地通过背部加热器15对半导体衬底W进行加保温,且背部加热器15的容积可以较小,装置能够制得紧凑。如果使用直接冷却半导体衬底W本身的装置,就可以在镀覆期间进行加热与冷却的转换以改变镀覆条件。因为半导体衬底上保留的镀液的量较小,温度控制可以具有很高的灵敏性。
半导体衬底W瞬时用电动机M加以旋转,从而对待镀表面进行均匀的液体润湿,然后在如下条件下对待镀表面进行镀覆,即半导体衬底W处于静止状态。特别地,半导体衬底W以100rpm或者更低的转速旋转1秒钟,从而使镀液均匀地润湿半导体衬底W的待镀覆表面。然后保持半导体衬底W处于静止,进行1分钟的无电电镀。瞬时旋转时间最长为10秒或者更少。
完成镀覆处理之后,镀液回收喷嘴65的前端降低到接近位于半导体衬底W的外周边缘部分的坝阻部件31的内部区域,以吸入镀液。此时,如果半导体衬底W以例如100rpm或者更低的旋转速度加以旋转,保留在半导体衬底W上的镀液能够在离心力的作用下聚集在坝阻部件31部分内,其位于半导体衬底W的外周边缘部分,从而能够以良好的效率和较高的回收速度进行镀液回收。降低固定装置11以分离半导体衬底W与坝阻部件31。半导体衬底W开始旋转时,清洗液(超纯水)从清洗液供应装置51的喷嘴53喷射到半导体衬底W的镀覆表面上以冷却镀覆表面,并同时进行稀释和清洗,借此停止无电电镀反应。此时,从喷嘴53喷射的清洗液可以供应到坝阻部件31从而同时对坝阻部件31进行清洗。此时,镀覆废液回收到回收容器61内并释放。
镀液一旦使用便不再重新利用,而是丢掉。如上所述,该装置所使用的镀液量与先前技术相比可以非常地小。这样,所释放的镀液量也很小甚至无须重新使用。在一些情况下,可以不安装镀液回收喷嘴65,所使用的镀液可以作为镀废液而与清洗液一起回收在回收容器61内。
然后,半导体衬底W用电动机M以高速加以旋转从而利用自旋脱水,然后将半导体衬底W从固定装置11上移开。
图3是另一个无电电镀装置的概要结构图。图3的实例与前述图2所示的无电电镀装置不同之处在于,不在固定装置11内安装背部加热器15,而是在固定装置11的上面安置灯加热器(加热装置)17,灯加热器17和淋浴头41-1整合在一起。例如同心地安装多个具有不同半径的环状灯加热器17,淋浴头41-2的许多喷嘴43-2从灯加热器17之间的缝隙呈环状开放。灯加热器17可以由单一的螺旋形灯加热器构成,或者可以由其它具有各种结构和排列的灯加热器构成。
利用该结构,镀液能够从每个喷嘴43-2基本上均匀地以淋浴形式供应到半导体衬底W的待镀覆表面。进一步,半导体衬底W的加热和保温能够通过灯加热器17直接均匀地加以执行。灯加热器17不仅加热半导体衬底W和镀液,还加热周围空气,从而在半导体衬底W上显示保温效应。
通过灯加热器17直接加热半导体衬底W需要功率消耗相对较大的灯加热器。在该灯加热器17的位置,功率消耗相对较小的灯加热器17和图2所示的背部加热器15可以联合使用从而主要用背部加热器加热半导体衬底W,并主要用灯加热器17对镀液和周围空气进行保温。通过与上述实施例相同的方式,可以安装用于直接和或间接冷却半导体衬底W的装置执行温度控制。
图4是半导体制造装置实例的平面图,其用于制造根据本发明的半导体器件。半导体制造装置包括容纳盒(cassette)201-1的加载/卸载部分201、第一镀覆设备202、第一机器人(robot)203、回收设备205和206、第二清洗设备207、第二机器人208、第一清洗设备209、第二镀覆设备227、第一抛光设备210和第二抛光设备211。进一步,在第一机器人203附近安装有前/后镀膜厚度测量设备212,其用于在镀覆前后测量镀膜的厚度,和干燥状态膜厚度测量设备213,其用于在抛光后测量半导体衬底W上干燥状态的膜的厚度。
第一抛光设备210具有抛光台210-1、顶圈(top ring)210-2、顶圈头210-3、膜厚度测量设备210-4和推动器210-5。第二抛光设备211具有抛光台211-1、顶圈211-2、顶圈头211-3、膜厚度测量设备211-4和推动器211-5。
下面说明该装置内的处理步骤。
首先,将容纳半导体衬底W的盒201-1放置于装载/卸载部分201的装载部分上,其中在每个半导体衬底W上形成铜籽晶层6(见图1A)。半导体衬底用第一机器人203取出,并通过第一镀覆设备202形成铜膜7(见图1B)。铜膜7的形成是通过对半导体衬底W的表面进行亲水性处理然后再镀铜而执行的。然后进行漂洗或清洗。如果空闲一些时间则可以进行干燥。当半导体衬底W用第一机器人203取出时,镀铜膜7的膜厚度用镀前和镀后膜厚度测量装置212加以测量。将测量结果作为记录数据记录在半导体衬底W上并用于判断第一镀覆设备202的异常。测量膜厚度之后,第一机器人203将半导体衬底W传递到翻转设备205,在其中对半导体衬底W加以翻转。
然后,第二机器人208从翻转设备205携取半导体衬底W,并将其放置在推动器210-5或211-5上。然后顶圈210-2或211-2通过吸取而固定半导体衬底,并将其传递到抛光台210-1或211-1上,然后将其压向抛光台210-1或211-1的抛光表面从而执行抛光。
完成抛光之后,顶圈210-2或211-2将半导体衬底W返回到推动器210-5或211-5。第二机器人208携取半导体衬底W,并将其携带到第一清洗设备209内。此时,可以向推动器210-5或211-5上的半导体衬底W的表面和背面喷射化学液以去除颗粒或使得颗粒难以粘附在上面。
在第一清洗设备209中擦净和清洗半导体衬底W的表面和背面。通过PVA轧辊海绵用含纯水的清洗水擦净和清洗半导体衬底W的表面和背面,这主要是为了除去颗粒,其中纯水内加入了表面活性剂、螯合剂或pH调节剂。强化学液如DHF射向半导体衬底W的背面以腐蚀扩散的铜。如果不存在铜扩散的问题,半导体衬底W的背面通过PVA轧辊海绵用与处理表面相同的化学液擦净和清洗。
清洗后,第二机器人208携取半导体衬底W,并将其传递到翻转设备206,在该处翻转半导体衬底W。第二机器人208再次携取半导体衬底W并将其传递到第二镀覆设备227,其由例如图2或图3所示的无电电镀设备构成。在第二镀覆设备227中,半导体衬底W的表面浸没在镀液中,例如上述的无电电镀液,从而合金保护膜9选择性地在互连8的暴露表面上形成(见图1C)。之后,第二机器人208携取半导体衬底W,并将其传递到翻转设备206,在该处翻转半导体衬底W,然后将半导体衬底传递到第二清洗设备207。在第二清洗设备中207中,将施加了超音速振动的兆声水(megasonicwater)射向半导体衬底W的表面以清洗表面。此时,表面可以通过笔型海绵用含纯水的清洗液加以清洗,纯水中添加有表面活性剂、螯合剂或pH调节剂。之后,通过离心脱水干燥半导体衬底W。
然后第二机器人208携取半导体衬底W并不加处理地将其传递到翻转设备206。第一机器人203将半导体衬底W携取到翻转设备206。在如下的情况下,即在用安装在抛光台210-1或211-1附近的膜厚度测量装置210-4或211-4测量完膜厚度之后,半导体衬底W通过放置在装载卸载部分201卸载部分内的盒201-1加以接收。在需要测量多层膜膜厚度的情况下,需要进行干燥状态下的测量。这样,膜的厚度便用干燥状态膜厚度测量装置213测量一次。
图5是半导体制造装置另一个实例的平面图,其用于根据本发明制造半导体衬底。利用图4的衬底处理装置,该半导体制造装置执行的衬底制造包括如下步骤:在其上有籽晶层6的半导体衬底W上形成铜膜7,抛光衬底,在互连8上选择性形成保护膜9,借此提供电路互连,其中互连8用保护膜选择性地加以保护。
在该半导体制造装置中,推动器分度器(pusher indexer)225布置在靠近第一抛光装置210和第二抛光装置211,衬底放置台221、222分别布置在第二清洗设备207和第二镀覆设备227附近,而机器人223(下文称之为第二机器人223)布置在第二镀覆设备227和第一镀覆设备202附近。进一步,机器人224(下文称之为第三机器人224)布置在第一清洗设备209和第二清洗设备207附近,而干燥状态膜厚度测量装置213布置在装载/卸载部分201和第一机器人203附近。
第一机器人203从放置在装载/卸载部分201装载部分上的盒201-1内携取其上具有籽晶层6的半导体衬底W,并将其放置在衬底放置台221上。然后,第二机器人223将半导体衬底W传递到第一镀覆设备202,在该处形成铜膜7(见图1B)。第二机器人223传递其上形成有铜膜7的半导体衬底W,并用镀覆前和镀覆后膜厚度测量装置212测量铜膜7的厚度。测量膜厚度之后,将半导体衬底携带到推动器分度器225。
顶圈210-2或211-2通过吸取将半导体衬底W固定在推动器分度器225上,并将其传递到抛光台210-1或211-1进行抛光。抛光之后,顶圈210-2或211-2将半导体衬底2传递到膜厚度测量装置210-4或211-4测量膜厚度。然后,顶圈210-2或211-2将半导体衬底W传递到推动器分度器225并将其放在上面。
然后,第三机器人224从推动器分度器225携取半导体衬底W,并将其携带到第一清洗设备209。在第一清洗单元209中清洗之后,第三机器人223携取已清洗的半导体衬底W,并将其带到第二镀覆设备227,在该处通过例如无电电镀在互连8的表面上选择性形成保护膜9,借此保护互连8(见图1C)。之后,第三机器人224将半导体衬底W携带到第二清洗设备207内进行清洗和干燥,并将已清洗的半导体衬底W放置在衬底放置台222上。接着,第一机器人203携取半导体衬底W并将其携带到干燥状态膜厚度测量装置213,在该处测量膜的厚度,然后将衬底放到盒201-1内,其位于装载/卸载部分201的卸载部分上。
图6是用于根据本发明制造半导体器件的半导体制造装置另一个实例的平面图。在该半导体制造装置中安装有阻挡层形成单元111、籽晶层形成单元112、镀膜形成单元113、退火单元114、第一清洗单元115、斜面和背面清洗单元116、具有例如如图2或图3所示无电电镀设备的盖帽涂镀单元(cap plating unit)117、第二清洗单元118、第一校准器和膜厚度测量装置141、第二校准器和膜厚度测量装置142、第一衬底翻转设备143、第二衬底翻转设备144、衬底暂时放置台145、第三膜厚度测量装置146、装载/卸载单元120、第一抛光装置121、第二抛光装置122、第一机器人131、第二机器人132、第三机器人133和第四机器人134。膜厚度测量装置141、142和146是正面尺寸与其他单元(镀覆、清洗、退火单元和类似单元)相同的单元,因此可以互换。
在本实施例中,无电Ru镀装置能够用作阻挡层形成单元111,无电铜镀装置能够用作籽晶层形成单元112,而一个电镀装置用作镀膜形成单元113。
下面说明该装置内的处理步骤。
首先,用第一机器人131将半导体衬底从放置于装载/卸载单元120上的盒120a中取出,并以待镀覆表面朝上的状态放置在第一校准器和膜厚度测量单元141内。为了给进行膜厚度测量的位置设定参考点,对膜厚度测量进行凹口校准(notch alignment),然后获得铜膜形成之前的半导体衬底上的膜厚度数据。
然后,用第一机器人131将半导体衬底传递到阻挡层形成单元111。阻挡层形成单元111是用于通过无电Ru镀在半导体衬底上形成阻挡层的装置,而阻挡层形成单元111形成Ru膜作为用于阻止铜向半导体器件层间绝缘膜(例如SiO2)扩散的膜。清洗和干燥步骤之后卸下的半导体衬底通过第一机器人131而传递到第一校准器和膜厚度测量单元141,在该处测量半导体衬底的膜厚度,例如阻挡层的膜厚度。
经过膜厚度测量之后的半导体衬底通过第二机器人132携带到籽晶层形成单元112,籽晶层6(见图1A)通过无电Cu镀而在阻挡层上形成。清洗和干燥步骤之后卸下的半导体衬底通过第二机器人132传递到第二校准器和膜厚度测量单元142,用于在半导体衬底传递到镀膜形成单元113之前确定凹口位置,然后对铜镀覆进行凹口校准。如果需要,在铜膜形成之前可以再次于膜厚度测量装置142内测量半导体衬底的膜厚度。
完成凹口校准的半导体衬底通过第三机器人133传递到镀膜形成单元113,在该处对半导体衬底进行铜镀。清洗和干燥步骤之后卸下的半导体衬底通过第三机器人传递到斜面和背面清洗单元116,在该处除去半导体衬底周围部分不需要的铜膜(籽晶层)。在斜面和背面清洗单元116中,斜面在预先设定的时间进行腐蚀,并用化学液如氢氟酸清洗粘附于半导体衬底背面的铜。此时,在将半导体衬底传递到斜面和背面清洗单元116之前,用第二校准器和膜厚度测量装置142测量半导体衬底的膜厚度,从而根据所获得结果获得镀覆形成的铜膜厚度值,斜面腐蚀时间可以任意地加以改变而进行腐蚀。斜面腐蚀所腐蚀的区域是相应于衬底周围边缘部分的区域,且其中没有电流形成,或者是虽然形成了电流但不用作最终芯片的区域。斜面部分就被包含在该区域内。
在斜面和背面清洗单元116中的清洗和干燥步骤之后卸下的半导体衬底,通过第三机器人133传递到衬底翻转设备143。在通过衬底翻转设备143翻转半导体衬底使得镀覆表面直接朝下之后,便通过第四机器人134将半导体衬底引入到退火单元144内,借此稳定互连部分。退火处理之前和/或之后,将半导体衬底携带到第二校准器和膜厚度测量单元142,在该处测量形成于半导体衬底上的铜膜7(见图1B)的膜厚度。然后,通过第四机器人134将半导体衬底携带到第一抛光装置121内,对铜膜7和半导体衬底的籽晶层6(见图1A)进行抛光。
此时使用的是希望的研磨颗粒或类似物,但是也可以使用固定的研磨剂,从而防止凹陷并提高表面的平整度。完成主抛光之后,便通过第四机器人134将半导体衬底传递到第一清洗单元115,在该处对其进行清洗。该清洗为洗擦清洗,其中长度与半导体衬底直径相同的轧辊放置于半导体衬底的表面和背面,旋转半导体衬底和轧辊,同时流过纯水或去离子水,借此对半导体衬底进行清洗。
在完成主抛光之后,半导体衬底通过第四机器人134传递到第二抛光装置122,在该处对半导体衬底上的阻挡层5进行抛光。此时使用的是希望的研磨的颗粒,但也可以使用固定的研磨剂以阻止凹陷,并提高表面的平整度。完成第二抛光之后,用第四机器人134将半导体衬底再次传递到第一清洗单元115,在该处进行洗擦清洗。完成清洗之后,通过第四机器人134将半导体衬底传递到第二衬底翻转设备144,在该处翻转半导体衬底使得已镀覆表面直接朝上,然后通过第三机器人133将半导体衬底放置在衬底暂时放置台145上。
用第二机器人132将半导体衬底从衬底暂时放置台145传递到盖帽涂镀单元117,在该处对互连8的表面进行例如镍硼镀覆(盖帽涂镀),以防止铜因大气而氧化。半导体衬底(其中在互连8的表面上通过盖帽涂镀形成了保护膜9(见图1C)以保护互连8)通过第二机器人132而传递到第三膜厚度测量设备146,在该处测量铜膜的厚度。之后,半导体衬底通过第一机器人131而传递到第二清洗单元118,在该处用纯水或去离子水清洗衬底。经过清洗的半导体衬底返回到装载/卸载单元120内的盒120a。
实例
在绝缘膜内以预先确定的斜度形成尺寸为Φ0.5μm×0.5μm深(高宽比:1.0)的孔洞。用铜填充该孔洞之后,通过CMP处理以平整该表面而制备出尺寸为3cm×4cm(具有6图形构造(6-patternformation))的样品(半导体晶片)。样品用镀液以200ml/芯片的镀液装载量进行无电电镀涂覆,镀液的组成如下表1所示。
         表1
  CoSO4·7H2O   28.1g/L
  L-酒石酸   82.5g/L
  (NH4)2SO4   39.6g/L
  DMAB   1.5g/L
  TMAH(27%)   455ml/L
  H2WO4   5.0g/L
  pH   9.0
  温度   80℃
完成无电电镀之后,清洗和干燥样品。当样品在SEM下进行观察时,发现镀的Co-W-B膜选择性地在形成图案的区域内生长。镀膜的生长速度大约为100nm/min;镀膜分析如下:
Co:大约98.4at%,W:大约1.0at%,B:大约0.6at%。
图7A和7B是样品的SEM图象的简图。如图所示,在铜膜14,其嵌入在形成于绝缘层10内的孔12内,内没有形成空隙。进一步,只有铜膜14的表面,例如互连的表面,才被由镀的Co-W-B膜构成的保护膜覆盖,在绝缘膜10的表面上没有沉积Co-W-B膜,表明镀覆具有高度的选择性。
对比实例
制备了与实例中所使用的相同的样品。该样品首先浸没在25℃的PdCl2(0.005g/L)+HCl(0.2ml/L)溶液中保留1分钟,从而向样品提供钯催化剂。接着,将提供了钯催化剂的样品浸没在90℃的镀液中,其成分如下图2所示,且以200ml/芯片的镀液装载量(bath load)进行无电镀覆。
表2
  CoCl2·6H2O(g/L)   30
  (NH4)2·WO4(g/L)   10
  Na3C6H5O7·2H2O(g/L)   80
  NaH2PO2·H2O(g/L)   20
  PH   pH=10,含NaOH
完成无电电镀之后,对样品进行冲洗和干燥。当样品在SEM下观察时,发现镀的Co-W-P膜选择性地在形成了图案的区域内生长。镀膜的生长速度为大约70nm/min;镀膜分析如下:
Co:大约89at%,W:大约5at%,P:大约6at%。
图8A和8B是样品的SEM图象的简图。如附图所示,空隙V形成于铜膜14,其嵌入在形成于绝缘层10内的孔12内。进一步,不仅铜膜14的表面,例如互连的表面,被由镀的Co-W-P合金膜构成的保护膜16覆盖,而且合金膜16a也沉积在围绕孔洞12的绝缘膜10的表面上,其是不需保护的区域,从而表明镀覆的选择性不好。
根据本发明,如上文所述,使用无钠的烷基胺硼烷作为还原剂使得有可能向例如铜、铜合金、银或银合金施加氧化电流,借此避免了提供钯催化剂的需要,从而能够进行直接电镀,并能够防止半导体器件被碱金属污染。这能够减少所需的处理步骤从而提高产量,防止空隙在互连内形成,借此提高稳定性,并避免由于钯扩散而导致的互连阻抗的提高。
而且,使用含有用作还原剂的烷基胺硼烷的镀液能够选择性地仅镀覆互连区域。
工业应用
本发明涉及用于形成选择性保护半导体器件暴露互连表面的保护膜的无电电镀液,该半导体器件具有如下嵌入互连结构,其中电导体如铜或银嵌入在形成于如半导体衬底的衬底表面内的互连的精细凹槽内。本发明还涉及一种半导体器件,其中互连的暴露表面选择性地用保护膜加以保护。

Claims (9)

1.一种半导体器件,包括:
由铜、铜合金、银或银合金制成的互连,嵌入在绝缘膜的表面的沟槽中,其中所述沟槽被阻挡层覆盖;以及
保护膜,具有0.1-500nm的厚度,所述保护膜选择性地覆盖所述互连的暴露的表面,所述保护膜用无电电镀液而不使用钯通过无电电镀处理形成,所述无电电镀液包含:
(i)钴离子;
(ii)络合剂;和
(iii)无碱金属的烷基胺硼烷。
2.根据权利要求1的半导体器件,其中所述无电电镀液进一步包括下列中的至少一种:
(i)从一种或多种重金属化合物和硫化物中选出的稳定剂,和
(ii)表面活性剂。
3.根据权利要求1的半导体器件,其中所述无电电镀液具有无碱金属的pH调节剂。
4.根据权利要求1的半导体器件,其中所述保护膜具有10nm-100nm的厚度。
5.一种半导体器件,包括:
由铜、铜合金、银或银合金制成的互连,嵌入在绝缘膜的表面的沟槽中,其中所述沟槽被阻挡层覆盖;以及
保护膜,具有0.1-500nm的厚度,所述保护膜选择性地覆盖所述互连的暴露的表面,所述保护膜用无电电镀液而不使用钯通过无电电镀处理形成,所述无电电镀液包含:
(i)钴离子;
(ii)络合剂;
(iii)含难熔金属的化合物;和
(iv)无碱金属的烷基胺硼烷。
6.根据权利要求5的半导体器件,其中所述难熔金属包括钨和钼中的至少一种。
7.根据权利要求5的半导体器件,其中所述无电电镀液进一步包括下列中的至少一种:
(i)从一种或多种重金属化合物和硫化物中选出的稳定剂,和
(ii)表面活性剂。
8.根据权利要求5的半导体器件,其中所述无电电镀液具有无碱金属的pH调节剂。
9.根据权利要求5的半导体器件,其中所述保护膜具有10nm-100nm的厚度。
CN200610132035.6A 2001-06-01 2002-05-30 无电电镀溶液及半导体器件 Pending CN1933143A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001167355 2001-06-01
JP2001167355 2001-06-01
JP2001179341 2001-06-13

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB028111192A Division CN1285764C (zh) 2001-06-01 2002-05-30 无电电镀溶液

Publications (1)

Publication Number Publication Date
CN1933143A true CN1933143A (zh) 2007-03-21

Family

ID=19009751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610132035.6A Pending CN1933143A (zh) 2001-06-01 2002-05-30 无电电镀溶液及半导体器件

Country Status (2)

Country Link
US (2) US6717189B2 (zh)
CN (1) CN1933143A (zh)

Families Citing this family (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6640151B1 (en) 1999-12-22 2003-10-28 Applied Materials, Inc. Multi-tool control system, method and medium
US6708074B1 (en) 2000-08-11 2004-03-16 Applied Materials, Inc. Generic interface builder
JP2002226974A (ja) * 2000-11-28 2002-08-14 Ebara Corp 無電解Ni−Bめっき液、電子デバイス装置及びその製造方法
US7188142B2 (en) 2000-11-30 2007-03-06 Applied Materials, Inc. Dynamic subject information generation in message services of distributed object systems in a semiconductor assembly line facility
US7160739B2 (en) 2001-06-19 2007-01-09 Applied Materials, Inc. Feedback control of a chemical mechanical polishing device providing manipulation of removal rate profiles
US7698012B2 (en) 2001-06-19 2010-04-13 Applied Materials, Inc. Dynamic metrology schemes and sampling schemes for advanced process control in semiconductor processing
US7077880B2 (en) * 2004-01-16 2006-07-18 Dupont Air Products Nanomaterials Llc Surface modified colloidal abrasives, including stable bimetallic surface coated silica sols for chemical mechanical planarization
US6645567B2 (en) * 2001-12-19 2003-11-11 Intel Corporation Electroless plating bath composition and method of using
US20030199112A1 (en) 2002-03-22 2003-10-23 Applied Materials, Inc. Copper wiring module control
US6905622B2 (en) * 2002-04-03 2005-06-14 Applied Materials, Inc. Electroless deposition method
US20030190426A1 (en) * 2002-04-03 2003-10-09 Deenesh Padhi Electroless deposition method
US6899816B2 (en) * 2002-04-03 2005-05-31 Applied Materials, Inc. Electroless deposition method
JP4052868B2 (ja) * 2002-04-26 2008-02-27 Necエレクトロニクス株式会社 半導体装置の製造方法
JP3810718B2 (ja) * 2002-08-30 2006-08-16 富士通株式会社 半導体装置の製造方法
US6821909B2 (en) * 2002-10-30 2004-11-23 Applied Materials, Inc. Post rinse to improve selective deposition of electroless cobalt on copper for ULSI application
CN1720490B (zh) 2002-11-15 2010-12-08 应用材料有限公司 用于控制具有多变量输入参数的制造工艺的方法和系统
US6911067B2 (en) * 2003-01-10 2005-06-28 Blue29, Llc Solution composition and method for electroless deposition of coatings free of alkali metals
US7534967B2 (en) * 2003-02-25 2009-05-19 University Of North Texas Conductor structures including penetrable materials
JP4286025B2 (ja) * 2003-03-03 2009-06-24 川崎マイクロエレクトロニクス株式会社 石英治具の再生方法、再生使用方法および半導体装置の製造方法
US6902605B2 (en) * 2003-03-06 2005-06-07 Blue29, Llc Activation-free electroless solution for deposition of cobalt and method for deposition of cobalt capping/passivation layer on copper
RU2374359C2 (ru) * 2003-05-09 2009-11-27 Басф Акциенгезельшафт Составы для обесточенного осаждения тройных материалов для промышленности полупроводников
US20040248403A1 (en) * 2003-06-09 2004-12-09 Dubin Valery M. Method for forming electroless metal low resistivity interconnects
US7883739B2 (en) 2003-06-16 2011-02-08 Lam Research Corporation Method for strengthening adhesion between dielectric layers formed adjacent to metal layers
US20050048768A1 (en) * 2003-08-26 2005-03-03 Hiroaki Inoue Apparatus and method for forming interconnects
US7827930B2 (en) * 2004-01-26 2010-11-09 Applied Materials, Inc. Apparatus for electroless deposition of metals onto semiconductor substrates
US7654221B2 (en) * 2003-10-06 2010-02-02 Applied Materials, Inc. Apparatus for electroless deposition of metals onto semiconductor substrates
US20050085031A1 (en) * 2003-10-15 2005-04-21 Applied Materials, Inc. Heterogeneous activation layers formed by ionic and electroless reactions used for IC interconnect capping layers
US20070111519A1 (en) * 2003-10-15 2007-05-17 Applied Materials, Inc. Integrated electroless deposition system
US7064065B2 (en) * 2003-10-15 2006-06-20 Applied Materials, Inc. Silver under-layers for electroless cobalt alloys
US7465358B2 (en) * 2003-10-15 2008-12-16 Applied Materials, Inc. Measurement techniques for controlling aspects of a electroless deposition process
US20050095830A1 (en) * 2003-10-17 2005-05-05 Applied Materials, Inc. Selective self-initiating electroless capping of copper with cobalt-containing alloys
WO2005038084A2 (en) * 2003-10-17 2005-04-28 Applied Materials, Inc. Selective self-initiating electroless capping of copper with cobalt-containing alloys
US7205233B2 (en) * 2003-11-07 2007-04-17 Applied Materials, Inc. Method for forming CoWRe alloys by electroless deposition
US20060003570A1 (en) * 2003-12-02 2006-01-05 Arulkumar Shanmugasundram Method and apparatus for electroless capping with vapor drying
US20050181226A1 (en) * 2004-01-26 2005-08-18 Applied Materials, Inc. Method and apparatus for selectively changing thin film composition during electroless deposition in a single chamber
US20050161338A1 (en) * 2004-01-26 2005-07-28 Applied Materials, Inc. Electroless cobalt alloy deposition process
US7256111B2 (en) * 2004-01-26 2007-08-14 Applied Materials, Inc. Pretreatment for electroless deposition
US20050170650A1 (en) * 2004-01-26 2005-08-04 Hongbin Fang Electroless palladium nitrate activation prior to cobalt-alloy deposition
US20060033678A1 (en) * 2004-01-26 2006-02-16 Applied Materials, Inc. Integrated electroless deposition system
US20050230350A1 (en) 2004-02-26 2005-10-20 Applied Materials, Inc. In-situ dry clean chamber for front end of line fabrication
US20050253268A1 (en) * 2004-04-22 2005-11-17 Shao-Ta Hsu Method and structure for improving adhesion between intermetal dielectric layer and cap layer
US7268074B2 (en) * 2004-06-14 2007-09-11 Enthone, Inc. Capping of metal interconnects in integrated circuit electronic devices
US7714441B2 (en) * 2004-08-09 2010-05-11 Lam Research Barrier layer configurations and methods for processing microelectronic topographies having barrier layers
US7176133B2 (en) 2004-11-22 2007-02-13 Freescale Semiconductor, Inc. Controlled electroless plating
WO2006073140A1 (en) * 2005-01-06 2006-07-13 Ebara Corporation Substrate processing method and apparatus
US20060240187A1 (en) * 2005-01-27 2006-10-26 Applied Materials, Inc. Deposition of an intermediate catalytic layer on a barrier layer for copper metallization
US20060188659A1 (en) * 2005-02-23 2006-08-24 Enthone Inc. Cobalt self-initiated electroless via fill for stacked memory cells
WO2006102180A2 (en) * 2005-03-18 2006-09-28 Applied Materials, Inc. Contact metallization methods and processes
US20060246699A1 (en) * 2005-03-18 2006-11-02 Weidman Timothy W Process for electroless copper deposition on a ruthenium seed
WO2006102318A2 (en) * 2005-03-18 2006-09-28 Applied Materials, Inc. Electroless deposition process on a contact containing silicon or silicide
US7651934B2 (en) 2005-03-18 2010-01-26 Applied Materials, Inc. Process for electroless copper deposition
US20060280860A1 (en) * 2005-06-09 2006-12-14 Enthone Inc. Cobalt electroless plating in microelectronic devices
US7686874B2 (en) * 2005-06-28 2010-03-30 Micron Technology, Inc. Electroless plating bath composition and method of use
US7410899B2 (en) * 2005-09-20 2008-08-12 Enthone, Inc. Defectivity and process control of electroless deposition in microelectronics applications
US20070099806A1 (en) * 2005-10-28 2007-05-03 Stewart Michael P Composition and method for selectively removing native oxide from silicon-containing surfaces
KR100859259B1 (ko) * 2005-12-29 2008-09-18 주식회사 엘지화학 캡층 형성을 위한 코발트 계열 합금 무전해 도금 용액 및이를 이용하는 무전해 도금 방법
US8193087B2 (en) 2006-05-18 2012-06-05 Taiwan Semiconductor Manufacturing Co., Ltd. Process for improving copper line cap formation
JP4740329B2 (ja) * 2006-06-26 2011-08-03 東京エレクトロン株式会社 基板処理方法および基板処理装置
US20080121276A1 (en) * 2006-11-29 2008-05-29 Applied Materials, Inc. Selective electroless deposition for solar cells
US20080254205A1 (en) * 2007-04-13 2008-10-16 Enthone Inc. Self-initiated alkaline metal ion free electroless deposition composition for thin co-based and ni-based alloys
US7709400B2 (en) * 2007-05-08 2010-05-04 Lam Research Corporation Thermal methods for cleaning post-CMP wafers
US7867900B2 (en) * 2007-09-28 2011-01-11 Applied Materials, Inc. Aluminum contact integration on cobalt silicide junction
US8736057B2 (en) * 2007-12-17 2014-05-27 Nippon Mining & Metals Co., Ltd. Substrate and manufacturing method therefor
US9048088B2 (en) * 2008-03-28 2015-06-02 Lam Research Corporation Processes and solutions for substrate cleaning and electroless deposition
KR101028327B1 (ko) 2010-04-15 2011-04-12 엘지이노텍 주식회사 발광소자, 발광소자 제조방법 및 발광소자 패키지
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
US8632628B2 (en) * 2010-10-29 2014-01-21 Lam Research Corporation Solutions and methods for metal deposition
US8779589B2 (en) * 2010-12-20 2014-07-15 Intel Corporation Liner layers for metal interconnects
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8771539B2 (en) 2011-02-22 2014-07-08 Applied Materials, Inc. Remotely-excited fluorine and water vapor etch
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US8771536B2 (en) 2011-08-01 2014-07-08 Applied Materials, Inc. Dry-etch for silicon-and-carbon-containing films
US8679982B2 (en) 2011-08-26 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and oxygen
US8679983B2 (en) 2011-09-01 2014-03-25 Applied Materials, Inc. Selective suppression of dry-etch rate of materials containing both silicon and nitrogen
US8927390B2 (en) 2011-09-26 2015-01-06 Applied Materials, Inc. Intrench profile
US8808563B2 (en) 2011-10-07 2014-08-19 Applied Materials, Inc. Selective etch of silicon by way of metastable hydrogen termination
WO2013070436A1 (en) 2011-11-08 2013-05-16 Applied Materials, Inc. Methods of reducing substrate dislocation during gapfill processing
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9034770B2 (en) 2012-09-17 2015-05-19 Applied Materials, Inc. Differential silicon oxide etch
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9390937B2 (en) 2012-09-20 2016-07-12 Applied Materials, Inc. Silicon-carbon-nitride selective etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8765574B2 (en) 2012-11-09 2014-07-01 Applied Materials, Inc. Dry etch process
US8969212B2 (en) 2012-11-20 2015-03-03 Applied Materials, Inc. Dry-etch selectivity
US8980763B2 (en) 2012-11-30 2015-03-17 Applied Materials, Inc. Dry-etch for selective tungsten removal
US9064816B2 (en) 2012-11-30 2015-06-23 Applied Materials, Inc. Dry-etch for selective oxidation removal
US9111877B2 (en) 2012-12-18 2015-08-18 Applied Materials, Inc. Non-local plasma oxide etch
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US8801952B1 (en) 2013-03-07 2014-08-12 Applied Materials, Inc. Conformal oxide dry etch
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US8895449B1 (en) 2013-05-16 2014-11-25 Applied Materials, Inc. Delicate dry clean
US9114438B2 (en) 2013-05-21 2015-08-25 Applied Materials, Inc. Copper residue chamber clean
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US8956980B1 (en) 2013-09-16 2015-02-17 Applied Materials, Inc. Selective etch of silicon nitride
US8951429B1 (en) 2013-10-29 2015-02-10 Applied Materials, Inc. Tungsten oxide processing
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9236265B2 (en) 2013-11-04 2016-01-12 Applied Materials, Inc. Silicon germanium processing
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9117855B2 (en) 2013-12-04 2015-08-25 Applied Materials, Inc. Polarity control for remote plasma
US9263278B2 (en) 2013-12-17 2016-02-16 Applied Materials, Inc. Dopant etch selectivity control
US9287095B2 (en) 2013-12-17 2016-03-15 Applied Materials, Inc. Semiconductor system assemblies and methods of operation
US9190293B2 (en) 2013-12-18 2015-11-17 Applied Materials, Inc. Even tungsten etch for high aspect ratio trenches
US9287134B2 (en) 2014-01-17 2016-03-15 Applied Materials, Inc. Titanium oxide etch
US9396989B2 (en) 2014-01-27 2016-07-19 Applied Materials, Inc. Air gaps between copper lines
US9293568B2 (en) 2014-01-27 2016-03-22 Applied Materials, Inc. Method of fin patterning
US9385028B2 (en) 2014-02-03 2016-07-05 Applied Materials, Inc. Air gap process
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299575B2 (en) 2014-03-17 2016-03-29 Applied Materials, Inc. Gas-phase tungsten etch
US9496145B2 (en) 2014-03-19 2016-11-15 Applied Materials, Inc. Electrochemical plating methods
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9299538B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9136273B1 (en) 2014-03-21 2015-09-15 Applied Materials, Inc. Flash gate air gap
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9269590B2 (en) 2014-04-07 2016-02-23 Applied Materials, Inc. Spacer formation
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9378969B2 (en) 2014-06-19 2016-06-28 Applied Materials, Inc. Low temperature gas-phase carbon removal
US9406523B2 (en) 2014-06-19 2016-08-02 Applied Materials, Inc. Highly selective doped oxide removal method
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9378978B2 (en) 2014-07-31 2016-06-28 Applied Materials, Inc. Integrated oxide recess and floating gate fin trimming
US9159606B1 (en) 2014-07-31 2015-10-13 Applied Materials, Inc. Metal air gap
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9165786B1 (en) 2014-08-05 2015-10-20 Applied Materials, Inc. Integrated oxide and nitride recess for better channel contact in 3D architectures
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355856B2 (en) 2014-09-12 2016-05-31 Applied Materials, Inc. V trench dry etch
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9368364B2 (en) 2014-09-24 2016-06-14 Applied Materials, Inc. Silicon etch process with tunable selectivity to SiO2 and other materials
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US9299583B1 (en) 2014-12-05 2016-03-29 Applied Materials, Inc. Aluminum oxide selective etch
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US9343272B1 (en) 2015-01-08 2016-05-17 Applied Materials, Inc. Self-aligned process
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9373522B1 (en) 2015-01-22 2016-06-21 Applied Mateials, Inc. Titanium nitride removal
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI766433B (zh) 2018-02-28 2022-06-01 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3929483A (en) * 1971-10-22 1975-12-30 Horizons Inc Metal-plated images formed by bleaching silver images with alkali metal hypochlorite prior to metal plating
US3917464A (en) 1973-07-20 1975-11-04 Us Army Electroless deposition of cobalt boron
US4632857A (en) * 1974-05-24 1986-12-30 Richardson Chemical Company Electrolessly plated product having a polymetallic catalytic film underlayer
USH325H (en) * 1980-07-30 1987-09-01 Richardson Chemical Company Electroless deposition of transition metals
US4659587A (en) * 1984-10-11 1987-04-21 Hitachi, Ltd. Electroless plating process and process for producing multilayer wiring board
US5203911A (en) 1991-06-24 1993-04-20 Shipley Company Inc. Controlled electroless plating
US5240497A (en) 1991-10-08 1993-08-31 Cornell Research Foundation, Inc. Alkaline free electroless deposition
EP0564673B1 (en) * 1992-04-06 1995-10-11 International Business Machines Corporation Process for providing catalytically active metal layers of a metal selected from the platinum metals group
US5624479A (en) * 1993-04-02 1997-04-29 International Business Machines Corporation Solution for providing catalytically active platinum metal layers
US5695810A (en) 1996-11-20 1997-12-09 Cornell Research Foundation, Inc. Use of cobalt tungsten phosphide as a barrier material for copper metallization
JP3492204B2 (ja) * 1997-08-13 2004-02-03 富士通株式会社 表示装置用電極及びその製造方法

Also Published As

Publication number Publication date
US6821902B2 (en) 2004-11-23
US20020185658A1 (en) 2002-12-12
US20040157441A1 (en) 2004-08-12
US6717189B2 (en) 2004-04-06

Similar Documents

Publication Publication Date Title
CN1933143A (zh) 无电电镀溶液及半导体器件
JP3979464B2 (ja) 無電解めっき前処理装置及び方法
US6811658B2 (en) Apparatus for forming interconnects
US20040234696A1 (en) Plating device and method
US20030141018A1 (en) Electroless deposition apparatus
US20030140988A1 (en) Electroless deposition method over sub-micron apertures
US6706422B2 (en) Electroless Ni—B plating liquid, electronic device and method for manufacturing the same
KR20040018558A (ko) 반도체장치와 그 제조방법 및 도금액
US20030143837A1 (en) Method of depositing a catalytic layer
CN1285764C (zh) 无电电镀溶液
WO2002101822A2 (en) Interconnection in semiconductor device and method for manufacturing the same
US20040170766A1 (en) Electroless plating method and device, and substrate processing method and apparatus
US7413983B2 (en) Plating method including pretreatment of a surface of a base metal
JP3821709B2 (ja) 無電解めっきの前処理方法
JP3998455B2 (ja) 無電解めっき装置及び無電解めっき方法
JP2003306793A (ja) めっき装置及び方法
US20040186008A1 (en) Catalyst-imparting treatment solution and electroless plating method
JP2003034876A (ja) 触媒処理液及び無電解めっき方法
JP2010116601A (ja) 電解処理装置
JP2003213438A (ja) めっき装置及びめっき方法
JP2005229121A (ja) 配線形成装置及びその方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication