CN1532896A - 半导体器件的制造方法 - Google Patents

半导体器件的制造方法 Download PDF

Info

Publication number
CN1532896A
CN1532896A CNA2004100313568A CN200410031356A CN1532896A CN 1532896 A CN1532896 A CN 1532896A CN A2004100313568 A CNA2004100313568 A CN A2004100313568A CN 200410031356 A CN200410031356 A CN 200410031356A CN 1532896 A CN1532896 A CN 1532896A
Authority
CN
China
Prior art keywords
dielectric film
mentioned
plasma treatment
semi
organosiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2004100313568A
Other languages
English (en)
Inventor
吉江彻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Semiconductor Leading Edge Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Leading Edge Technologies Inc filed Critical Semiconductor Leading Edge Technologies Inc
Publication of CN1532896A publication Critical patent/CN1532896A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02137Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising alkyl silsesquioxane, e.g. MSQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02203Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen
    • H01L21/02216Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and oxygen the compound being a molecule comprising at least one silicon-oxygen bond and the compound having hydrogen or an organic group attached to the silicon or oxygen, e.g. a siloxane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/312Organic layers, e.g. photoresist
    • H01L21/3121Layers comprising organo-silicon compounds
    • H01L21/3122Layers comprising organo-silicon compounds layers comprising polysiloxane compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76826Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76828Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76835Combinations of two or more different dielectric layers having a low dielectric constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明的课题是提供一种使用与氧化硅膜的粘附性良好、而且介电常数低的绝缘膜的半导体器件制造方法。该方法具有:在半导体基底材料1上形成以有机硅氧烷为主成分、包含与该有机硅氧烷没有化学键的有机成分的绝缘膜4的工序;以及通过对该绝缘膜4进行等离子体处理,除去有机成分,同时在绝缘膜4的表面上形成改性层5的工序。等离子体处理能够使用从由氧、氢及氮构成的元素组中选择的至少包含一种元素的气体进行。另外,有机硅氧烷能够采用在分子内具有烷基或者烯丙基的有机硅氧烷。

Description

半导体器件的制造方法
技术领域
本发明涉及半导体器件的制造方法,更详细地说涉及具有低介电常数绝缘膜的半导体器件的制造方法。
背景技术
近年来,半导体器件的高速化进展显著,因多层布线部中的布线电阻和布线间、布线层间的寄生电容引起的信号传输速度的降低而产生的传输延迟成为问题。由于随着半导体器件的高集成化及与之相伴的布线宽度及布线间隔的微细化,布线电阻上升而且寄生电容增大,该问题存在日益显著的趋势。
与以往相比,为了防止基于这样的布线电阻及寄生电容的增大的信号延迟,导入铜布线代替铝布线进行布线,同时作为层间绝缘膜一直在尝试使用低介电常数的绝缘膜材料。具体地说,可以举出在分子内导入了氟和有机基的氧化硅膜。特别是,由于把氧化硅膜的Si-O键的一部分置换成Si-CH3键的MSQ(甲基硅倍半噁烷)的介电常数低达2.7左右,被认为是一种有希望的低介电常数的绝缘膜材料。但是,由于MSQ与在它上面形成的氧化硅膜之间缺乏粘附性,通过使用包含氧的气体进行等离子体处理,在表面上形成改性层以求改善粘附性。
另一方面,面向设计规则取得更微细化进展的时代的半导体器件,要求介电常数进一步降低。对此,一直进行绝缘膜多孔化的研究。例如,通过使MSQ多孔化,能够谋求介电常数的进一步降低。
但是,当在多孔化了的MSQ上进行上述等离子体处理时,MSQ整体被氧化,显示出亲水性。因此,使膜中大量包含水分的结果是,存在介电常数上升的问题。
发明内容
本发明是鉴于存在上述问题而进行的,其目的在于:提供一种使用了与氧化硅膜的粘附性好而且介电常数低的绝缘膜的半导体器件的制造方法。
本发明的其他目的及优点将从下述说明中逐渐明了。
本发明中的第1半导体器件的制造方法的特征在于,具有以下工序:在半导体基底材料上形成以有机硅氧烷为主成分,包含与该有机硅氧烷没有化学键的有机成分的绝缘膜的工序;以及通过对上述绝缘膜进行等离子体处理,除去上述有机成分,同时在上述绝缘膜的表面上形成改性层的工序。
在第1半导体器件的制造方法中,形成上述绝缘膜的工序可以是用CVD法的工序。
另外,在第1半导体器件的制造方法中,形成上述绝缘膜的工序也可以具有以下工序:将包含上述有机硅氧烷及上述有机成分的绝缘膜组成物涂敷在上述半导体基底材料上的工序;以及在100℃~200℃的温度下对上述绝缘膜组成物进行加热处理的工序。
在第1半导体器件的制造方法中,上述等离子体处理可以使用从由氧、氢及氮构成的元素组中选择的至少包含一种元素的气体进行。
在第1半导体器件的制造方法中,上述有机硅氧烷最好在分子内具有烷基或者烯丙基。在这种情况下,上述有机硅氧烷可以是MSQ。
第1半导体器件的制造方法可以进一步具有在上述等离子体处理后,在250℃~450℃的温度下对上述绝缘膜进行加热处理的工序。
另外,第1半导体器件的制造方法可以进一步具有在上述等离子体处理后,在400℃~450℃的温度下对上述绝缘膜进行加热处理的工序。
本发明中的第2半导体器件的制造方法的特征在于,具有以下工序:在半导体基底材料上形成由有机硅氧烷构成的绝缘膜的工序;以及通过对上述绝缘膜进行等离子体处理,从上述有机硅氧烷除去有机基,同时在上述绝缘膜的表面上形成改性层的工序。
在第2半导体器件的制造方法中,形成上述绝缘膜的工序是用CVD法的工序。
另外,在第2半导体器件的制造方法中,形成上述绝缘膜的工序也可以具有以下工序:将包含上述有机硅氧烷的绝缘膜组成物涂敷在上述半导体基底材料上的工序;以及在100℃~200℃的温度下对上述绝缘膜组成物进行加热处理的工序。
在第2半导体器件的制造方法中,上述等离子体处理能够使用从由氧、氢及氮构成的元素组中选择的至少包含一种元素的气体进行。
在第2半导体器件的制造方法中,上述有机硅氧烷最好在分子内具有烷基或者烯丙基。在这种情况下,上述有机硅氧烷可以是苯基甲基硅氧烷。
第2半导体器件的制造方法可以进一步具有在上述等离子体处理后,在250℃~450℃的温度下对上述绝缘膜进行加热处理的工序。
另外,第2半导体器件的制造方法可以进一步具有在上述等离子体处理后,在400℃~450℃的温度下对上述绝缘膜进行加热处理的工序。
附图说明
图1(a)~(g)是表示本实施例中的布线形成工序的剖面图。
图2(a)~(d)是表示本实施例中的绝缘膜形成工序的剖面图。
图3(a)~(d)是本实施例中的等离子体处理后的绝缘膜的红外线吸收光谱。
图4(a)~(d)是本实施例中的热处理后的绝缘膜的红外线吸收光谱。
图5是表示在本实施例中绝缘膜的膜厚及折射率相对于等离子体处理时间的变化。
图6是表示在本实施例中绝缘膜的介电常数相对于等离子体处理时间的变化。
图7是表示在本实施例中绝缘膜的接触角相对于等离子体处理时间的变化。
图8(a)~(d)是现有的等离子体处理后的绝缘膜的红外线吸收光谱。
图9是表示现有的绝缘膜的膜厚及折射率相对于等离子体处理时间的变化。
具体实施方式
以下,参照附图详细说明本发明的实施方式。
图1(a)~(g)是表示用波纹法的布线形成工序的剖面图。首先,如图1(a)所示,准备在硅衬底2上形成了第1绝缘膜3的衬底作为半导体基底材料1。例如能够使用碳化硅(SiC)膜或者氮化硅(SiN)膜作为第1绝缘膜3。这些膜能够用等离子体CVD(Chemical VaporDeposition,化学气相淀积)法在硅衬底上形成。
其次,第2绝缘膜在半导体基底材料上形成。在本实施例中,第2绝缘膜称为具有空位的有机硅氧烷系的低介电常数绝缘膜。
用图2(a)~(d)说明第2绝缘膜的形成。此外,标有与图1相同符号的部位表示是相同的部分。
首先,如图2(a)所示,在第1绝缘膜3上形成以有机硅氧烷为主成分、包含与有机硅氧烷没有化学键的有机成分的绝缘膜4。
有机硅氧烷例如能够采用在分子内具有烷基或者烯丙基的硅氧烷。具体地说,在氧化硅膜中,最好使用将Si-O键的一部分置换成Si-CH3的MSQ(甲基硅倍半噁烷)。
以绝缘膜多孔化为目的使用本发明中的有机成分。例如,能够使用在比构成有机硅氧烷的有机基的分解温度低的温度下分解、蒸发的物质作为有机成分。这样的有机成分通过蒸发,从硅氧烷骨架中逃逸,能够在绝缘膜中形成许多空位。此外,有机成分只要是在分解后气化,从硅氧烷骨架中逃逸的物质即可。因此,有机成分不限于分解-蒸发的物质,也可以是分解-升华的物质。
另外,绝缘膜4也可以是由有机硅氧烷构成的膜。在这种情况下,有机硅氧烷需要具有能够分解并从硅氧烷骨架中逃逸的有机基。例如,用加热使有机基分解,该有机基通过成为低分子量的气体,从硅氧烷骨架逃逸,与上述情况同样地能够形成空位。这里,由于将有机基作为不与硅直接键合的物质,即使因分解而有机基偏离,也能够保持硅氧烷骨架。作为这样的有机硅氧烷的示例,能够举出式1所示的物质。
(式1)
Figure A20041003135600071
以有机硅氧烷为主成分、包含与该有机硅氧烷没有化学键的有机成分的绝缘膜的形成,例如,能够用将有机成分与有机硅烷的混合气体作为反应气体的CVD法进行。
另外,上述绝缘膜的形成也能够用涂敷法进行。例如,将有机成分及有机硅氧烷溶解在适当的有机溶剂中,调整绝缘膜组成物,用旋转涂敷法等方法将绝缘膜组成物涂敷在半导体基底材料上。这里,本发明中的有机硅氧烷最好是进行了交联的有机聚硅氧烷,通过除去溶剂,成为聚合物膜。涂敷后,通过用加热炉等进行加热处理,形成涂敷膜。加热温度最好在100℃~200℃范围内。据此,能够将溶剂从绝缘膜组成物中除去,同时能够使有机成分的一部分分解-气化,形成空位。此外,在该处理中,溶剂的除去只要达到不影响以后工序中的处理的程度即可,即使不完全除去也可。
另一方面,具有由能够分解-除去的有机基的有机硅氧烷组成的绝缘膜的形成也能够用CVD法及涂敷法的任何一种方法进行。
其次,如图2(b)所示,对绝缘膜4的表面进行等离子体处理。
本发明的等离子体处理使用从由氧(O)、氢(H)及氮(N)组成的气体群中选择的至少包含1种元素的气体进行。即,可以用氧(O2)气、氢(H2)气及氮(N2)气内的1种气体进行,也可以用使2种或者3种气体组合的混合气体进行。另外,也可以使用将氧、氢及氮内的至少一种作为结构元素的气体进行。具体地说,能够举出一氧化二氮(N2O)气体等。进而,也可以在这些气体中包含氩(Ar)等惰性气体作为稀释气体。
等离子体处理能够使用通用的等离子体处理装置进行。例如,在设置在等离子体处理装置的真空室内的对置电极之间,放置形成了绝缘膜的半导体基底材料。其次,使真空室内达到规定的真空度后,例如以规定的流量将氧气导入该真空室中。如在对置电极间施加高频电力,则能够产生等离子体,对绝缘膜进行等离子体处理。
当使用氧气或者包含以氧为结构元素的气体进行等离子体处理时,等离子体中的氧与作为绝缘膜的有机硅氧烷膜中的甲基的碳置换。据此,如图2(C)所示,在绝缘膜4的表面上形成富含Si-O键的改性层5。另外,通过进行等离子体处理,包含在绝缘膜中的有机成分分解。分解了的有机成分气化,从绝缘膜中逃逸,从而在以后形成空位6。此外,在绝缘膜4是具有能够分解除去的有机基的有机硅氧烷的情况下,通过等离子体处理,有机硅氧烷在有机基部分分解,该有机基通过从硅氧烷骨架中逃逸,形成空位6。
一方面,在使用不包含氧的气体进行等离子体处理的情况下,同样地发生有机成分的分解-气化(或者有机硅氧烷的分解),在绝缘膜4中形成空位。另一方面,绝缘膜4中的碳原子与氧以外的元素置换。例如,在使用氢气进行等离子体处理的情况下,通过碳与氢置换,在绝缘膜的表面上形成富含Si-H键的改性层。
在本发明中,在等离子体处理结束后,也可以在250℃~450℃范围的温度下进一步进行加热处理。据此,如图2(d)所示,使包含在绝缘膜中的残留有机成分进一步分解-气化,能够在绝缘膜4中形成大量的空位6。另外,在绝缘膜4是具有能够分解除去的有机基的有机硅氧烷的情况下,通过该热处理,能够进一步促进有机基的分解。但是,在用等离子体处理能够确保足够的空位率的情况下,没有必要进行该加热处理。
另外,在本发明中,在等离子体处理结束后,也可以在400℃~450℃范围的温度下进一步进行加热处理。据此,也能够使绝缘膜中的硅烷醇基(-SiOH)缩聚。关于此事将在下面详述。
例如,在用包含氧的气体进行等离子体处理的情况下,由于绝缘膜中的碳与氧置换形成Si-O键,在等离子体处理后的绝缘膜中存在大量亲水性的硅烷醇基(-SiOH)。另外,在用不含氧的气体进行等离子体处理的情况下,生成Si-H键或者生成具有悬挂键的Si。这些Si-H键或者具有悬挂键的Si容易与包含在绝缘膜中的水分反应,变成硅烷醇基。由于当硅烷醇基在绝缘膜中大量存在时,吸湿性增高,介电常数上升,需要将硅烷醇基从绝缘膜中除去。
在等离子体处理后通过在400℃~450℃的温度下进行加热处理,引起硅烷醇基的缩聚反应,能够将硅烷醇基从绝缘膜中除去。另外,通过进行该加热处理,也能够将包含在绝缘膜中的水分除去。因此,能够防止绝缘膜中的Si-O键和Si-H键与水反应成为硅烷醇基。
另外,通过在400℃~450℃的温度下进行加热处理,能够同时促进包含在绝缘膜中的有机成分的分解-气化(或者有机硅氧烷的分解)。
因此,在以同时进行增加绝缘膜中的空位率和硅烷醇基的聚合反应这两者为目的的情况下,最好在等离子体处理后在400℃~450℃的温度下进行加热处理。另一方面,在仅仅以增加绝缘膜中的空位率为目的的情况下,最好在250℃~450℃的温度下进行加热处理。此外,在不进行增加空位率及硅烷醇基的聚合反应中的任何一种的情况下,没有必要在等离子体处理后进行加热处理。
这样,通过在等离子体处理工序及加热处理工序2道工序中进行有机成分的分解-气化,与仅仅在加热处理工序中进行有机成分的分解-气化的情况相比,能够更完全地将有机成分从绝缘膜中除去。此事与将具有能够分解-除去的有机基的有机硅氧烷作为绝缘膜使用的情况相同。膜中的空位率越大,介电常数就越降低,从而能够作为更低介电常数的绝缘膜。
另外,通过分2阶段进行有机成分的分解-气化(或者有机硅氧烷的分解),能够使加热处理工序中的温度比现有的处理温度低。通过降低加热温度,能够防止因加热引起的半导体器件的特性降低,同时能够谋求成本降低。
如图1(b)所示,用以上的工序,能够在第1绝缘膜3上形成第2绝缘膜4。第2绝缘膜4的表面上具有改性层5。
其次,如图1(c)所示,在改性层5上形成第3绝缘膜7。作为第3绝缘膜7能够使用氧化硅膜,能够用涂敷法或者CVD法等方法形成。
还有,在第3绝缘膜7上形成抗蚀剂膜(没有图示),用光刻法形成具有所希望的布线图形的抗蚀剂图形8(图1(d))。然后,以抗蚀剂图形作为掩模,刻蚀第3绝缘膜7、第2绝缘膜4及第1绝缘膜3,形成布线沟槽9(图1(e))。
还有,在第3绝缘膜7及布线沟槽9中,用溅射法形成钽膜10。钽膜10也可以是氮化钽膜。随后,用溅射法在钽膜10上形成铜膜11。其后,用电镀法等形成铜膜12,以便填埋布线沟槽9(图1(f))。最后,用化学机械研磨法除去位于布线沟槽9以外部分的铜膜12、铜膜11及钽膜10,成为图1(g)所示的结构。
用以上的工序,能够形成具有低介电常数绝缘膜的布线结构。
以下,就用本实施方式形成第2绝缘膜的情况的一个实例进行说明。
在形成于硅基底上的氮化硅膜上,用涂敷法形成包含有机成分的MSQ膜。在200℃左右的温度下进行加热处理后,用N2O气体进行等离子体处理。例如,在压力1,000Pa的真空室内,导入在N2O气体中混合了Ar气作为稀释气体的混合气体。这时,N2O气体的流量为200ccm,Ar气的流量为1,000ccm。在对置电极之间施加13.56MHz的高频、200W的电力,能够对MSQ膜进行等离子体处理。此外,等离子体处理时基底的温度为250℃左右。
图3是对在200℃下加热处理后的MSQ膜及等离子体处理后的MSQ膜测得的红外线吸收光谱的结果。图3(a)是加热处理后的光谱,图3(b)、(c)、(d)是等离子体处理时间分别为5秒钟、10秒钟、15秒钟情况下的光谱。
在图3中,2,800cm-1~3,000cm-1附近的吸收是由包含在MSQ膜中的有机成分引起的。加热处理后的吸收最强,可知等离子体处理时间越长吸收就越减弱。另外,3,500cm-1附近的吸收是由水引起的,可知因等离子体处理而吸收减弱。
其次,对等离子体处理后的MSQ膜,在450℃左右的温度下进行加热处理。图4是表示对图3的样品进行加热处理后的红外线吸收光谱。图4(a)是在200℃下加热处理后,不进行等离子体处理,而在450℃进行加热处理的样品的光谱。图4(b)、(c)、(d)是在200℃下加热处理后,分别进行5秒钟、10秒钟、15秒钟的等离子体处理,在450℃下进行加热处理的样品的光谱。
由图4可知,2,800cm-1~3,000cm-1附近的有机成分的吸收消失。另外,由于在(b)、(c)、(d)的光谱中没有看到大的变化,由此可知即使等离子体处理时间是15秒钟在膜中也不至产生大的损伤。
图5表示对图4的样品进行膜厚及折射率相对于等离子体处理时间的变化进行了比较的结果。此外,测量是用分光椭圆法、假定为单层膜的条件下进行的。由图可知,通过进行等离子体处理,引起膜厚的增加及折射率的减小。但是,当等离子体处理时间为15秒钟时,相反,一方面膜厚急剧减小,而另一方面折射率却显著增大。
图6是以图5的膜厚测量结果为基础,对由电容测量求出的介电常数进行比较的结果。由图可知,通过进行等离子体处理,介电常数减小。据认为,这是由于通过等离子体处理MSQ膜中的有机成分被分解-除去的结果,与仅仅进行加热处理的情况加以比较,膜中的空位率增大的缘故。另一方面,当等离子体处理时间为15秒钟时,介电常数上升。据认为,这是由于在等离子体处理后生成的硅烷醇基的量增多,在加热处理后也残存于膜中的缘故。
图7是就图5的样品进行接触角比较的结果。从该结果可知,当等离子体处理时间大于10秒钟时,表现出完全的亲水性。据认为,这是由于MSQ膜中的碳被氧置换,在表面上形成改性层的缘故。通过形成这样的亲水性改性层,在上层形成氧化硅膜的情况下,能够确保足够的粘附性。
其次,为了比较,示出了现有的绝缘膜形成方法。
在形成于硅衬底上的氮化硅膜上,用涂敷法形成包含有机成分的MSQ膜。在450℃左右的温度下进行加热处理后,用N2O气体进行等离子体处理。例如,在压力1,000Pa的真空室内,导入在N2O气体内混合了Ar气体作为稀释气体的混合气体。这时,N2O气体的流量为200ccm,Ar气体的流量为1,000ccm。通过在对置电极之间施加13.56MHz的高频、200W的电力,能够对MSQ膜进行等离子体处理。此外,等离子体处理时的衬底温度是250℃左右。
图8是对等离子体处理后的MSQ膜测得的红外线吸收光谱的结果。图8(a)是等离子体处理后的光谱,图8(b)、(c)、(d)是等离子体处理时间分别为5秒钟、10秒钟、15秒钟情况下的光谱。
在图8中,1,200cm-1附近的吸收是由甲基引起的。由图可知,吸收随等离子体处理时间而减弱。这是甲基的碳与等离子体中的氧置换的结果。另一方面,3,500cm-1附近的吸收是由水引起的,吸收因等离子体处理而增强。
图9是表示对图8的样品,比较了膜厚及折射率相对于等离子体处理时间的变化的结果。此外,测量是用分光椭圆法、假定为单层膜的条件下进行的。通过进行等离子体处理,一方面膜厚急剧减小,而另一方面折射率却增加。
根据本实施方式,通过进行等离子体处理,在绝缘膜的表面上形成改性层,能够提高与氧化硅膜的粘附性。因此,由于能够降低膜剥离等不良情况,能够提高半导体制造工序中的成品率,制造可靠性优秀的半导体器件。
另外,根据本实施例,通过在等离子体处理工序及其后续的加热处理工序中、进行有机成分的分解-气化(或者有机硅氧烷的分解),包含在绝缘膜中的有机成分的绝大部分能够被除去。据此,能够提高膜的空位率,谋求降低介电常数。因此,能够大幅降低半导体器件的寄生电容,抑制伴随微细化产生的信号延迟。
进而,根据本实施例,通过用加热处理使等离子体处理后生成的硅烷醇基反应,能够降低膜的吸湿性、防止介电常数的上升。
此外,在本实施例中,就绝缘膜被使用于布线形成工序的情况作了说明,但是本发明不限于这种情况。只要是以形成与无机膜的粘附性好的多孔膜为目的,也能应用本发明。
(发明的效果)
根据本发明,能够形成与氧化硅膜的粘附性良好、且低介电常数的绝缘膜。因此,能够降低半导体器件的寄生电容、抑制伴随微细化引起的信号延迟。另外,由于能够降低膜剥离等不良情况,能够提高半导体制造工序中的成品率,制造可靠性优秀的半导体器件。

Claims (16)

1.一种半导体器件的制造方法,其特征在于:
具有以下工序:
在半导体基底材料上形成以有机硅氧烷为主成分,包含与该有机硅氧烷没有化学键的有机成分的绝缘膜的工序;以及
通过对上述绝缘膜进行等离子体处理,除去上述有机成分,同时在上述绝缘膜的表面上形成改性层的工序。
2.如权利要求1所述的半导体器件制造方法,其特征在于:
形成上述绝缘膜的工序是用CVD法的工序。
3.如权利要求1所述的半导体器件制造方法,其特征在于:
形成上述绝缘膜的工序具有以下工序:将包含上述有机硅氧烷及上述有机成分的绝缘膜组成物涂敷在上述半导体基底材料上的工序;以及在100℃~200℃温度下对上述绝缘膜组成物进行加热处理的工序。
4.如权利要求1所述的半导体器件制造方法,其特征在于:
上述等离子体处理使用从由氧、氢及氮构成的元素组中选择的至少包含1种元素的气体进行。
5.如权利要求1所述的半导体器件制造方法,其特征在于:
上述有机硅氧烷在分子内具有烷基或者烯丙基。
6.如权利要求5所述的半导体器件制造方法,其特征在于:
上述有机硅氧烷是MSQ。
7.如权利要求1所述的半导体器件制造方法,其特征在于:
在上述等离子体处理后,进一步具有在250℃~450℃的温度下对上述绝缘膜进行加热处理的工序。
8.如权利要求1所述的半导体器件制造方法,其特征在于:
在上述等离子体处理后,进一步具有在400℃~450℃的温度下对上述绝缘膜进行加热处理的工序。
9.一种半导体器件制造方法,其特征在于:
具有以下工序:
在半导体基底材料上形成由有机硅氧烷构成的绝缘膜的工序;以及
通过对上述绝缘膜进行等离子体处理,从上述有机硅氧烷除去有机基,同时在上述绝缘膜的表面上形成改性层的工序。
10.如权利要求9所述的半导体器件制造方法,其特征在于:
形成上述绝缘膜的工序是用CVD法的工序。
11.如权利要求9所述的半导体器件制造方法,其特征在于:
形成上述绝缘膜的工序具有以下工序:将包含上述有机硅氧烷的绝缘膜组成物涂敷在上述半导体基底材料上的工序;以及在100℃~200℃的温度下对上述绝缘膜组成物进行加热处理的工序。
12.如权利要求9所述的半导体器件制造方法,其特征在于:
上述等离子体处理使用从由氧、氢及氮构成的元素组中选择的至少包含1种元素的气体进行。
13.如权利要求9所述的半导体器件制造方法,其特征在于:
上述有机硅氧烷在分子内具有烷基或者烯丙基。
14.如权利要求13所述的半导体器件制造方法,其特征在于:
上述有机硅氧烷是苯基甲基硅氧烷。
15.如权利要求9所述的半导体器件制造方法,其特征在于:
在上述等离子体处理后,进一步具有在250℃~450℃的温度下对上述绝缘膜进行加热处理的工序。
16.如权利要求9所述的半导体器件制造方法,其特征在于:
在上述等离子体处理后,进一步具有在400℃~450℃的温度下对上述绝缘膜进行加热处理的工序。
CNA2004100313568A 2003-03-25 2004-03-25 半导体器件的制造方法 Pending CN1532896A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP82766/2003 2003-03-25
JP2003082766A JP2004296476A (ja) 2003-03-25 2003-03-25 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
CN1532896A true CN1532896A (zh) 2004-09-29

Family

ID=33094930

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2004100313568A Pending CN1532896A (zh) 2003-03-25 2004-03-25 半导体器件的制造方法

Country Status (4)

Country Link
US (1) US20040198068A1 (zh)
JP (1) JP2004296476A (zh)
KR (1) KR20040084737A (zh)
CN (1) CN1532896A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030737B2 (en) 2007-03-07 2011-10-04 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN105633006A (zh) * 2014-10-30 2016-06-01 中芯国际集成电路制造(上海)有限公司 互连结构及其制作方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6913796B2 (en) * 2000-03-20 2005-07-05 Axcelis Technologies, Inc. Plasma curing process for porous low-k materials
JP2006179515A (ja) * 2004-12-20 2006-07-06 Oki Electric Ind Co Ltd 半導体素子の製造方法、及びエッチング方法
WO2007080944A1 (ja) * 2006-01-13 2007-07-19 Tokyo Electron Limited 多孔質膜の成膜方法およびコンピュータ可読記録媒体
JP4778018B2 (ja) * 2008-04-23 2011-09-21 富士通セミコンダクター株式会社 絶縁膜形成方法
US8334204B2 (en) 2008-07-24 2012-12-18 Tokyo Electron Limited Semiconductor device and manufacturing method therefor
JP5654794B2 (ja) * 2010-07-15 2015-01-14 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US9214335B2 (en) 2014-04-24 2015-12-15 International Business Machines Corporation Surface plasma modification of porous thin-films to optimize pore filling

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723978A (en) * 1985-10-31 1988-02-09 International Business Machines Corporation Method for a plasma-treated polysiloxane coating
US5270259A (en) * 1988-06-21 1993-12-14 Hitachi, Ltd. Method for fabricating an insulating film from a silicone resin using O.sub.
US5472913A (en) * 1994-08-05 1995-12-05 Texas Instruments Incorporated Method of fabricating porous dielectric material with a passivation layer for electronics applications
US6528426B1 (en) * 1998-10-16 2003-03-04 Texas Instruments Incorporated Integrated circuit interconnect and method
JP3888794B2 (ja) * 1999-01-27 2007-03-07 松下電器産業株式会社 多孔質膜の形成方法、配線構造体及びその形成方法
US6759098B2 (en) * 2000-03-20 2004-07-06 Axcelis Technologies, Inc. Plasma curing of MSQ-based porous low-k film materials

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8030737B2 (en) 2007-03-07 2011-10-04 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US8486836B2 (en) 2007-03-07 2013-07-16 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN105633006A (zh) * 2014-10-30 2016-06-01 中芯国际集成电路制造(上海)有限公司 互连结构及其制作方法
CN105633006B (zh) * 2014-10-30 2019-01-22 中芯国际集成电路制造(上海)有限公司 互连结构及其制作方法

Also Published As

Publication number Publication date
KR20040084737A (ko) 2004-10-06
US20040198068A1 (en) 2004-10-07
JP2004296476A (ja) 2004-10-21

Similar Documents

Publication Publication Date Title
CN1144286C (zh) 半导体器件及制造该半导体器件的方法
JP4090740B2 (ja) 集積回路の作製方法および集積回路
CN1211842C (zh) 从聚碳硅烷形成的低介电常数聚有机硅涂料
TWI425569B (zh) 多孔低k值介電薄膜之紫外光輔助孔洞密封
CN1171290C (zh) 多孔性绝缘材料及其制备方法
JP5567588B2 (ja) 酸素含有前駆体を用いる誘電体バリアの堆積
KR100251819B1 (ko) 실리카 함유 세라믹 피복물을 기질 위에 형성시키는 방법
JP5065054B2 (ja) 制御された二軸応力を有する超低誘電率膜および該作製方法
CN1189927C (zh) 绝缘膜形成材料,绝缘膜,形成绝缘膜的方法及半导体器件
CN101048857A (zh) 用作金属间电介质的低k和超低k有机硅酸盐膜的疏水性的恢复
KR20150022677A (ko) 유기아미노실란 어닐링을 이용한 SiOCH 막의 형성 방법
KR20110014540A (ko) 전자 디바이스 제조
CN1204143A (zh) 半导体器件及其制造方法
CN1645608A (zh) 低k和超低k SiCOH介质膜及其制作方法
JP2013520841A (ja) プラズマ化学気相堆積による、有機官能基と共にシリコンを含有するハイブリッド前駆体を使用する超低誘電材料
CN1741254A (zh) 修复低k介电膜中的碳损耗
CN1669130A (zh) 用于低介电常数材料的夹层增粘剂
KR20090027675A (ko) 다공질막의 전구체 조성물 및 그 조제 방법, 다공질막 및 그 제조 방법, 그리고 반도체 장치
US6399210B1 (en) Alkoxyhydridosiloxane resins
JP2008527757A5 (zh)
CN101045820A (zh) 形成绝缘膜的组合物以及制造半导体器件的方法
JPH10284486A (ja) 層間絶縁膜の形成方法
JP2008274365A (ja) Si含有膜形成材料、Si含有膜及びその製造方法、並びに半導体デバイス
TW202012419A (zh) 矽化合物及使用其沉積膜的方法
JP5007511B2 (ja) 露光光遮蔽膜形成用材料、多層配線及びその製造方法、並びに半導体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
ASS Succession or assignment of patent right

Owner name: OKI ELECTRIC INDUSTRY CO., LTD.

Free format text: FORMER OWNER: ADUANCED SEMICONDUCTOR SCIENCE AND TECHNOLOGY CO., LTD.

Effective date: 20050729

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20050729

Address after: Tokyo, Japan

Applicant after: Oki Electric Industry Co., Ltd.

Address before: Ibaraki

Applicant before: Semiconductor Leading Edge Tec

C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication