CN1510760A - 晶体管器件及其制造方法 - Google Patents

晶体管器件及其制造方法 Download PDF

Info

Publication number
CN1510760A
CN1510760A CNA2003101215661A CN200310121566A CN1510760A CN 1510760 A CN1510760 A CN 1510760A CN A2003101215661 A CNA2003101215661 A CN A2003101215661A CN 200310121566 A CN200310121566 A CN 200310121566A CN 1510760 A CN1510760 A CN 1510760A
Authority
CN
China
Prior art keywords
insulator
gate electrode
metal oxide
district
transistor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003101215661A
Other languages
English (en)
Other versions
CN1292488C (zh
Inventor
L��A�������Ľ�
L·A·克莱文杰
L·L·休
C·J·拉登斯
Сл�õ�
J·F·小谢泼德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Core Usa Second LLC
GlobalFoundries Inc
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1510760A publication Critical patent/CN1510760A/zh
Application granted granted Critical
Publication of CN1292488C publication Critical patent/CN1292488C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/3003Hydrogenation or deuterisation, e.g. using atomic hydrogen from a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76823Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. transforming an insulating layer into a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种晶体管器件的结构和形成方法,包括在衬底中形成源区、漏区和沟槽区,在衬底上形成第一绝缘体,在第一绝缘体上形成栅电极,邻接电极形成一对绝缘间隔层,将部分第一绝缘体转化成金属膜,将金属膜转化成硅化物和自对准硅化物膜中的一种,在沟槽区上形成互连区,在第一绝缘体、沟槽区、栅电极以及该对绝缘间隔层上形成蚀刻终止层,在蚀刻终止层上形成第二绝缘体,以及在第二绝缘体中形成接触。第一绝缘体包括金属氧化物材料,该金属氧化物材料包括HfOx和ZrOx中的一种。

Description

晶体管器件及其制造方法
技术领域
本发明一般地涉及微电子集成电路,更具体地涉及金属氧化物半导体场效应晶体管(MOSFET)器件及其制造方法。
背景技术
新一代的微电子集成电路使用具有介电常数大于二氧化硅和氧氮化硅材料的栅极绝缘材料的金属氧化物半导体场效应晶体管(MOSFET)器件。现已提出HfOx和ZrOx材料作为高k栅极绝缘材料。实际上,需要将这些栅极绝缘材料引入到互补n沟道和p沟道MOSFET(CMOS)工艺内。此外,这些高k材料已用做蚀刻终止(etch-stop)膜,其中开始蚀刻之后,通过专门的退火过程,MOSFET器件连接区中的终止膜被转化成金属。
例如,在对淀积在硅衬底上的ZrO2和Zr硅化物(Zr27Si10O63)栅极介质效果的研究中,这些高k材料显示出9.9埃(ZrO2)和9.6埃(Zr27Si10O63)的极好的等效氧化物厚度(EOT),和分别为20mA/cm2和23mA/cm2的很低的漏泄电流(C.H.Lee等人的“MOS Characteristics of Ultra Thin RapidThermal CVD ZrO2 and Zr Silicate Gate Dielectrics”IEEE Tech.Dig.,2000,在此引入其全部内容作为参考)。在另一研究中,HfO2同样显示出具有10.4埃的EOT和0.23mA/cm2的漏泄电流(S.J.Lee等人的“HighQuality Ultra Thin CVD HfO2 Gate Stack with Poly-Si Gate Electrode”,IEEE Tech.Dig.,2000,在此引入其全部内容作为参考)。
然而,由于对MOSFET器件性能要求不断增加,且没有能够满足性能规范的常规器件,因此需要一种能够达到集成电路技术的目前和将来技术规范的高性能MOSFET器件的新的改进结构和其制造方法。
发明内容
本发明被设计用来提供一种高性能MOSFET器件的结构及其制造方法。本发明提供一种结构,该结构以自对准方式集成了高介电常数的栅极绝缘体以及低电阻的金属硅化物源/漏区的组合,而不需要额外的处理成本。本发明提供一种方法,该方法相对于常规的MOSFET器件,减少了制造具有高介电常数栅极绝缘体和低电阻硅化物(自对准硅化物)源/漏区的MOSFET器件所用的处理步骤数量。本发明提供一种用于在选定的源/漏区中将金属氧化物薄膜转化成金属薄膜,以使随后的退火过程将金属膜转化成硅化物(自对准硅化物)膜,以便改进器件的串联电阻的方法。
根据本发明的一个方面,提供一种新的自对准和低成本硅化处理过程。当使用如HfOx或ZrOx的适当金属氧化物形成具有高k栅极介质的MOS器件,源/漏区中暴露到空气中的剩余高k介质转化成金属。本过程的一个特征为能够使用帽介质层阻挡直接接触栅极导体的高k介质。随后的硅化过程仅在源/漏区中形成硅化物合金,以减少器件的串联电阻。通过控制金属转化处理步骤,也可以最小化由具有高k介质的栅极和源/漏重叠造成的重叠电容。绝缘衬底顶面上的高k介质也可用于形成电阻器。简而言之,本公开中教授了一种集成很高性能有源和无源器件的低成本制造方法。
具体地说,根据本发明,公开的晶体管器件及其形成方法包括在衬底中形成源区、漏区和沟槽区。然后,第一绝缘体被形成在衬底上。接下来,栅电极被形成在第一绝缘体上。完成该步骤之后,邻接该电极形成一对绝缘间隔层。接下来,部分第一绝缘体被转化成金属膜。然后,至少部分金属膜转化成硅化物和自对准硅化物膜中的一种。
该方法还包括在沟槽区上形成互连区以及在第一绝缘体、沟槽区、栅电极以及该对绝缘间隔层上形成蚀刻终止层。接下来,第二绝缘体形成在蚀刻终止层上,最后,接触形成在第二绝缘体中。第一绝缘体包括金属氧化物材料,具体地说,包括HfOx和ZrOx中的一种。
在将部分第一绝缘体转化成金属膜的步骤中,该部分第一绝缘体包括衬底的源和漏区上的区域。此外,将金属膜转化成硅化物和自对准硅化物膜中的一种的步骤发生在衬底的源和漏区上的区域中。此外,通过在还原气氛环境中退火进行将部分第一绝缘体转化成金属膜的步骤。此外,通过退火过程和湿蚀刻过程中的一种进行将金属膜转化成硅化物和自对准硅化物膜中的一种的步骤。
还有,公开的晶体管器件包括其上具有金属氧化物膜的衬底、金属氧化物膜上的栅电极以及与栅电极邻接的间隔层。金属氧化物膜具有栅电极下面的第一区,以及没有被栅电极保护的第二区。此外,当与第一区相比,第二区的氧含量减少。还有,第二区部分地延伸到间隔层下面。第二部分中的晶体管器件包括硅化物区,还包括第二区下的衬底中的源和漏区。最后,第一区包括栅极绝缘体。
根据本发明,MOSFET器件的性能是受薄栅极绝缘体的介质特性以及晶体管的源/漏区的串联电阻影响的。此外,通过引入高介电常数栅极绝缘体,器件的跨导增加。
此外,根据本发明,通过在源/漏区的表面上引入金属硅化物可以减小晶体管的源/漏区串联电阻。还有,使用自对准的处理方案,通过使重叠区最小,减少栅极到源/漏的重叠电容。
附图说明
从下面参考附图对本发明优选实施例的详细说明中,可以更好地理解本发明,其中:
图1为根据本发明的部分完成的金属氧化物半导体场效应晶体管器件的剖面示意图;
图2为根据本发明的部分完成的金属氧化物半导体场效应晶体管器件的剖面示意图;
图3为根据本发明的部分完成的金属氧化物半导体场效应晶体管器件的剖面示意图;
图4为根据本发明的部分完成的金属氧化物半导体场效应晶体管器件的剖面示意图;
图5为根据本发明的部分完成的金属氧化物半导体场效应晶体管器件的剖面示意图;
图6为根据本发明的完成的金属氧化物半导体场效应晶体管器件的剖面示意图;
图7为表示本发明的优选方法的流程图;以及
图8为表示本发明的优选方法的流程图。
具体实施方式
如上面提到的,需要一种能够达到集成电路技术的目前和将来技术规范的高性能MOSFET器件的改进结构和其制造方法。根据本发明,公开了一种高性能MOSFET器件的新的改进结构和其制造方法。
现在参考附图,更具体地说参考图1到8,示出了根据本发明的方法和结构的优选实施例。具体地说,图1到5示出了根据本发明的部分完成的金属氧化物半导体场效应晶体管器件,图6示出了根据本发明的完成的金属氧化物半导体场效应晶体管器件。本发明的优选方法显示在图7和8中。
图1示出了部分完成的MOSFET器件1,包括衬底10,形成在衬底10中的浅沟槽隔离(STI)区20和源/漏扩散区40,STI区20、衬底10、源/漏扩散区40上的栅极绝缘体25,设置在栅极绝缘体25上的栅电极30,以及栅电极30和栅极绝缘体25上的绝缘层50。
衬底10优选包括杂质掺杂阱,例如硅晶片或绝缘体上硅晶片。通过常规的处理形成STI区20,该常规的处理例如光刻构图、本领域技术人员公知的干蚀刻到随后处理步骤中形成的半导体结下一定深度、氧化物填充淀积以及如化学机械抛光(CMP)的平面化。
栅极绝缘体25包括如HfOx或ZrOx的高介电常数材料,并通过化学汽相淀积(CVD)或物理溅射到1nm-5nm的等效氧化物厚度(EOT)形成。栅电极材料30优选包括厚度为5nm-100nm的LPCVD多晶硅或TiN。此外,通过常规的光刻和干蚀刻技术构图栅电极30。此外,通过离子注入形成源/漏扩展扩散区40。
图2示出了进行了蚀刻过程之后的器件1,其中蚀刻绝缘层50以在栅电极30的两侧上形成一对栅极侧壁间隔层50。栅电极30和间隔层50形成保护帽(protective cap)。优选通过低压化学汽相淀积(LPCVD)2nm到20nm厚度的SiN以及例如对于高k栅极介质25是可选的但对于层50不是可选的含氟等离子体的各向异性干蚀刻,形成间隔层50。也就是,蚀刻过程从栅电极30上除去层50,并从除邻接每侧栅电极30的侧壁间隔层区50之外的高k介质层25上的所有其它区域除去层50。这基本上没有影响介质25或栅极30。由此,蚀刻过程没有除去栅电极30或高k介质层25。由此,根据本发明,除去了源/漏区顶上的层50,露出了下面的高k介质。
图3示出了将没有被栅电极30和侧壁间隔层50形成的保护帽阻挡的区域中的栅极绝缘体25转化成高导电性的金属材料90。此外,也示出了嵌在衬底10中的深的高掺杂注入的源/漏区60。转化优选包括如H2的还原气氛中的热退火过程和/或真空中的退火过程,以使氧扩散到金属氧化膜之外,即还原了金属氧化物。该过程使器件1的重叠电容最小。
重叠电容最佳地显示在图3-6中,其中可以看出在间隔层50(两侧)下延伸的部分高k介质25产生了重叠电容,由此使器件1的开关效应变慢。换句话说,如果金属形成在间隔层下面,那么将存在电容器结构,该电容器结构将降低晶体管的开关速度。理论上,通过从间隔层50下面除去所有多余的高k介质材料25,从而仅有高k介质设置在栅电极30下面,可以消除重叠电容。然而,这很可能会导致金属膜90接触栅电极30,造成器件失效。由此,为安全起见高k介质材料25延伸到间隔层50下面。然而,与常规的器件相反,通过非常精确地用帽(间隔层50和栅极30)控制金属转化步骤(将高k介质材料25转化为金属氧化物90),本发明减小了器件1中的重叠电容。由此,由于层25的金属和绝缘部分的位置是自对准的并且用帽(间隔层50和栅极30)精确地控制,因此在间隔层50下面没有产生电容器,并且避免了重叠电容。
图4示出了通过使金属合金100形成在下面的衬底层10上的附加热步骤,从至少部分金属材料(金属氧化物)90的转化中形成自对准的硅化物(自对准硅化物)100。通过在还原气氛H2环境中退火使金属氧化物90转化成金属100。此外,也可以通过湿蚀刻过程形成自对准硅化物100。由此,例如包括HfOx的金属氧化物90转化成Hf金属100,或类似地,包括ZrOx的金属氧化物90转化成该过程中的Zr金属100。
然而可以借助额外的掩模步骤使用浅沟槽隔离区顶部的高k材料90形成电阻器部件。绝缘衬底顶面上的退火的高k介质的表面电阻可以在千欧姆/平方单位到百万欧姆/平方单位的范围内。这些电阻器对许多应用都很有用。例如,其可用于形成SRAM单元的上拉器件、分阻器或模拟RC部件。也使用如湿溶液的含氯各向同性蚀刻从STI 20上选择性地除去非合金的金属材料。由于这是自对准过程,消除了至少一个金属淀积过程。因此,本方法减少了器件的制造成本。
在图5中,示出了MOSFET器件1的剖面图,该MOSFET器件1具有淀积在包括合金100、栅电极30、侧壁间隔层50以及STI区20的结构上的、如2nm到30nm厚度的LPCVD SiN的衬里材料130。衬里材料130用作随后处理步骤的蚀刻终止层。如硼和磷掺杂的玻璃(BPSG)的层间介质150淀积在衬里材料130上。还有,由常规的光刻、干蚀刻、金属淀积以及平面化技术形成的接触过孔200形成在层间介质150中,并连接到合金100。
图6示出了包括STI区20上的局部互连区210的有创造性的器件1。局部互连区210在自对准硅化物形成过程期间由附加掩模层(level)界定。此外,互连210可用于扩散区之间的桥接,不必使用扩散接触200。互连区210包括金属材料(金属氧化物)90。
可用常规的处理随后形成互连(未示出)。对于本领域技术人员来说显然可以利用本发明中教授的方法和结构通过将杂质掺杂到,例如离子注入到结构和衬底的选定区域来制备互补n沟道和p沟道MOSFET(CMOS)器件。
图7示出了根据本发明形成高性能MOSFET器件1的整个过程流程图。该方法包括在衬底10中形成源区和漏区40,以及沟槽区20(700)。然后,第一绝缘体25被形成在衬底10上(710)。接下来,栅电极30被形成在第一绝缘体25上(720)。此后,介质层50被淀积在栅电极30和第一绝缘体25上(730)。完成该步骤之后,邻接电极30形成一对绝缘间隔层50(740)。还有,附加的高掺杂剂注入源和漏区60可以被形成在衬底10中(750)。接下来,部分第一绝缘体90被转化成金属膜25(760)。然后金属膜90被转化成硅化物和自对准硅化物膜100中的一种(770)。
该方法还包括在沟槽区20上形成互连区210(780),以及在第一绝缘体25、沟槽区20、栅电极30以及该对绝缘间隔层50上形成蚀刻终止层130(790)。接下来,第二绝缘体150被形成在蚀刻终止层130上(795),最后,接触200被形成在第二绝缘体150中(799)。
如图8所示,根据本发明,对于使用Hr氧化物和Zr氧化物材料形成高k CMOS栅极介质25包括用于氢封闭的(hydrogen-terminated)表面的最终氢氟酸(HF)清洁过程800。然后,进行例如在含NH3的环境中的高温步骤的热氮化过程810,以形成5埃到15埃并优选8埃的氮化(和/或氮氧化)硅层。接下来,进行金属氧化物材料的CVD过程820(原子层CVD或金属有机CVD)。最后,在淀积栅极多晶硅之前,进行例如CVD硅或可选地具有TiN或其它金属阻挡层的硅的栅电极淀积(830)。
本发明提供了新的自对准和低成本的硅化过程。当使用如HfOx或ZrOx的适当金属氧化物形成具有高k栅极介质的MOS器件时,源/漏区中暴露到空气中的剩余高k介质转化成金属。本过程的一个特征是能够通过使用介质间隔层50阻止高k介质直接接触栅极导体。随后的硅化过程仅在源/漏区形成硅化物合金,以减少器件的串联电阻。通过控制金属转化处理步骤,也可以最小化由具有高k介质的栅极和源/漏重叠造成的重叠电容。绝缘衬底顶面上的高k介质也可用于形成电阻器。简而言之,本公开中教授了一种集成很高性能的有源和无源器件的低成本制造方法。
虽然就优选的实施例介绍了本发明,但本领域技术人员应认识到本发明可以以在所附的权利要求书的精神和范围内的修改进行实施。

Claims (23)

1.一种晶体管器件,包括:
衬底;
所述衬底上的金属氧化物膜;
所述金属氧化物膜上的栅电极;以及
与所述栅电极邻接的间隔层;
其中所述金属氧化物膜具有所述栅电极和所述间隔层下面的第一区,以及没有被所述栅电极或所述间隔层保护的第二区,并且其中当与所述第一区相比,所述第二区的氧含量减少。
2.根据权利要求1的晶体管器件,其特征在于:所述金属氧化物膜包括HfOx和ZrOx中的一种。
3.根据权利要求1的晶体管器件,其特征在于:所述第二区包括硅化物区。
4.根据权利要求1的晶体管器件,还包括在所述第二区下的所述衬底中的源和漏区。
5.根据权利要求1的晶体管器件,其特征在于:所述第一部分包括栅极绝缘体。
6.一种晶体管器件,包括:
衬底;
所述衬底上的金属氧化物膜;以及
所述金属氧化物膜上的栅电极,其中所述金属氧化物膜具有所述栅电极下面的第一区,以及没有被所述栅电极保护的第二区,其中与所述第一区相比,所述第二区的氧含量减少。
7.根据权利要求6的晶体管器件,其特征在于:所述第二区包括硅化物区。
8.根据权利要求6的晶体管器件,其特征在于:还包括在所述第二区下的所述衬底中的源和漏区。
9.根据权利要求6的晶体管器件,其特征在于:所述第一区包括栅极绝缘体。
10.一种形成晶体管器件的方法,所述方法包括:
在衬底上形成绝缘体;
在所述绝缘体上形成栅电极;
邻接所述栅电极形成一对绝缘间隔层;以及
将部分所述绝缘体转化成金属膜;
其中所述转化过程仅将所述栅电极和所述绝缘间隔层没有保护的所述绝缘体的区域转化成所述金属膜。
11.根据权利要求10的方法,其特征在于:所述绝缘体包括金属氧化物膜,并且所述转化过程包括将所述晶体管器件退火以从所述金属氧化物膜中除去氧,留下所述金属膜。
12.根据权利要求10的方法,其特征在于:所述在衬底上形成绝缘体的步骤中,所述绝缘体包括金属氧化物材料。
13.根据权利要求12的方法,其特征在于:所述金属氧化物材料包括HfOx和ZrOx中的一种。
14.根据权利要求10的方法,其特征在于:在所述转化步骤中,所述绝缘体的所述部分包括在所述衬底的源和漏区上的区域。
15.根据权利要求10的方法,还包括硅化所述金属膜,其中所述硅化步骤发生在所述衬底的源和漏区上的区域中。
16.根据权利要求15的方法,其特征在于:通过退火过程和湿蚀刻过程之一进行所述硅化步骤。
17.根据权利要求10的方法,其特征在于:通过在还原气氛环境中退火进行所述转化步骤。
18.一种形成晶体管器件的方法,所述方法包括:
在衬底上形成金属氧化物膜;
在所述金属氧化物膜上形成栅电极;
邻接所述栅电极形成一对绝缘间隔层;
退火所述晶体管器件以从没有被所述栅电极和所述绝缘间隔层保护的所述金属氧化物膜的露出的区域中驱除氧,以在所述露出的区域中制备金属膜;以及
将所述金属膜转化成硅化物和自对准硅化物膜的一种。
19.根据权利要求18的方法,其特征在于:所述金属氧化物膜包括HfOx和ZrOx中的一种。
20.根据权利要求18的方法,其特征在于:所述露出的区域包括在所述衬底的源和所述漏区上的区域。
21.根据权利要求18的方法,其特征在于:在所述露出的区域中进行将所述金属膜转化成硅化物和自对准硅化物膜中的一种的所述步骤。
22.根据权利要求18的方法,其特征在于:在还原气氛环境中进行所述退火过程。
23.根据权利要求18的方法,其特征在于:通过第二退火过程和湿蚀刻过程之一进行所述转化步骤。
CNB2003101215661A 2002-12-23 2003-12-22 晶体管器件及其制造方法 Expired - Lifetime CN1292488C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/328,650 US6794721B2 (en) 2002-12-23 2002-12-23 Integration system via metal oxide conversion
US10/328,650 2002-12-23

Publications (2)

Publication Number Publication Date
CN1510760A true CN1510760A (zh) 2004-07-07
CN1292488C CN1292488C (zh) 2006-12-27

Family

ID=32594539

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2003101215661A Expired - Lifetime CN1292488C (zh) 2002-12-23 2003-12-22 晶体管器件及其制造方法

Country Status (2)

Country Link
US (2) US6794721B2 (zh)
CN (1) CN1292488C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100466195C (zh) * 2006-09-21 2009-03-04 联华电子股份有限公司 移除间隙壁的方法、金氧半导体晶体管元件及其制造方法
CN101356639B (zh) * 2006-01-06 2010-12-08 日本电气株式会社 半导体器件及其制造工艺
CN106298885A (zh) * 2015-06-29 2017-01-04 台湾积体电路制造股份有限公司 半导体结构及其形成方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6855639B1 (en) * 2003-08-01 2005-02-15 Intel Corporation Precise patterning of high-K films
US7241705B2 (en) * 2004-09-01 2007-07-10 Micron Technology, Inc. Methods of forming conductive contacts to source/drain regions and methods of forming local interconnects
US7932111B2 (en) 2005-02-23 2011-04-26 Cree, Inc. Substrate removal process for high light extraction LEDs
US7868361B2 (en) * 2007-06-21 2011-01-11 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with both I/O and core components and method of fabricating same
JP5487625B2 (ja) * 2009-01-22 2014-05-07 ソニー株式会社 半導体装置
US8697517B2 (en) * 2010-03-16 2014-04-15 Taiwan Semiconductor Manufacturing Company, Ltd. Reduced substrate coupling for inductors in semiconductor devices
US20120119302A1 (en) 2010-11-11 2012-05-17 International Business Machines Corporation Trench Silicide Contact With Low Interface Resistance
US9219059B2 (en) 2012-09-26 2015-12-22 International Business Machines Corporation Semiconductor structure with integrated passive structures

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273934A (ja) * 1989-04-17 1990-11-08 Oki Electric Ind Co Ltd 半導体素子およびその製造方法
JPH03183132A (ja) * 1989-12-13 1991-08-09 Toshiba Ceramics Co Ltd 半導体装置の製造方法
JPH10189966A (ja) * 1996-12-26 1998-07-21 Toshiba Corp 半導体装置及びその製造方法
US6100173A (en) * 1998-07-15 2000-08-08 Advanced Micro Devices, Inc. Forming a self-aligned silicide gate conductor to a greater thickness than junction silicide structures using a dual-salicidation process
US6300202B1 (en) * 2000-05-18 2001-10-09 Motorola Inc. Selective removal of a metal oxide dielectric
US6576967B1 (en) * 2000-09-18 2003-06-10 Motorola, Inc. Semiconductor structure and process for forming a metal oxy-nitride dielectric layer
US6531368B1 (en) * 2001-04-03 2003-03-11 Advanced Micro Devices, Inc. Method of fabricating a semiconductor device having a metal oxide high-k gate insulator by localized laser irradiation and a device thereby formed
US6657244B1 (en) * 2002-06-28 2003-12-02 International Business Machines Corporation Structure and method to reduce silicon substrate consumption and improve gate sheet resistance during silicide formation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101356639B (zh) * 2006-01-06 2010-12-08 日本电气株式会社 半导体器件及其制造工艺
CN100466195C (zh) * 2006-09-21 2009-03-04 联华电子股份有限公司 移除间隙壁的方法、金氧半导体晶体管元件及其制造方法
CN106298885A (zh) * 2015-06-29 2017-01-04 台湾积体电路制造股份有限公司 半导体结构及其形成方法
CN106298885B (zh) * 2015-06-29 2019-11-05 台湾积体电路制造股份有限公司 半导体结构及其形成方法

Also Published As

Publication number Publication date
US6933189B2 (en) 2005-08-23
US20040119128A1 (en) 2004-06-24
US6794721B2 (en) 2004-09-21
CN1292488C (zh) 2006-12-27
US20040224471A1 (en) 2004-11-11

Similar Documents

Publication Publication Date Title
US6894357B2 (en) Gate stack for high performance sub-micron CMOS devices
EP1433196B1 (en) Apparatus to prevent lateral oxidation in a transistor utilizing an ultra thin oxygen-diffusion barrier
CN101292334B (zh) 源极区和漏极区之间具有box层的应变硅mos器件
US5712208A (en) Methods of formation of semiconductor composite gate dielectric having multiple incorporated atomic dopants
US5885877A (en) Composite gate electrode incorporating dopant diffusion-retarding barrier layer adjacent to underlying gate dielectric
US20060211184A1 (en) Ultra-thin Si channel MOSFET using a self-aligned oxygen implant and damascene technique
JP3600476B2 (ja) 半導体装置の製造方法
CN1292488C (zh) 晶体管器件及其制造方法
JP2006344836A (ja) 半導体装置及びその製造方法
JP2003249657A (ja) 半導体装置の製造方法
CN101114646A (zh) 半导体装置及其制造方法
JP2009181978A (ja) 半導体装置およびその製造方法
TWI389203B (zh) 製造半導體元件之方法
US6524938B1 (en) Method for gate formation with improved spacer profile control
US6157063A (en) MOS field effect transistor with an improved lightly doped diffusion layer structure and method of forming the same
KR100843230B1 (ko) 금속층을 가지는 게이트 전극을 구비한 반도체 소자 및 그제조 방법
US6200846B1 (en) Semiconductor device with capacitor formed on substrate and its manufacture method
JP3264262B2 (ja) 半導体装置及びその製造方法
JP4405458B2 (ja) 半導体装置
JP3779556B2 (ja) 電界効果トランジスタ
JP2004200595A (ja) Misトランジスタおよびその製造方法
JP3808702B2 (ja) 半導体装置の製造方法
TWI255553B (en) Silicon on partial insulator MOSFET and method for manufacturing the same
JP2968548B2 (ja) 半導体装置及びその製造方法
KR100685602B1 (ko) 반도체소자의 게이트전극 형성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20171030

Address after: Grand Cayman, Cayman Islands

Patentee after: GLOBALFOUNDRIES INC.

Address before: American New York

Patentee before: Core USA second LLC

Effective date of registration: 20171030

Address after: American New York

Patentee after: Core USA second LLC

Address before: American New York

Patentee before: International Business Machines Corp.

TR01 Transfer of patent right
CX01 Expiry of patent term

Granted publication date: 20061227

CX01 Expiry of patent term