JP2004200595A - Misトランジスタおよびその製造方法 - Google Patents

Misトランジスタおよびその製造方法 Download PDF

Info

Publication number
JP2004200595A
JP2004200595A JP2002370423A JP2002370423A JP2004200595A JP 2004200595 A JP2004200595 A JP 2004200595A JP 2002370423 A JP2002370423 A JP 2002370423A JP 2002370423 A JP2002370423 A JP 2002370423A JP 2004200595 A JP2004200595 A JP 2004200595A
Authority
JP
Japan
Prior art keywords
diffusion layer
boron
insulating film
mis transistor
gate insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002370423A
Other languages
English (en)
Inventor
Atsuhiro Kinoshita
下 敦 寛 木
Daisuke Hagishima
島 大 輔 萩
Yuichiro Mitani
谷 祐一郎 三
Hideki Satake
竹 秀 喜 佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002370423A priority Critical patent/JP2004200595A/ja
Publication of JP2004200595A publication Critical patent/JP2004200595A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/512Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being parallel to the channel plane

Abstract

【課題】NBT劣化を根本的に抑止したP型MISトランジスタおよびその製造方法を提供する。
【解決手段】P型MISトランジスタ100は、半導体基板10と、半導体基板10の表面上に形成されたゲート絶縁膜40と、ゲート絶縁膜40上に形成されたゲート電極60と、ボロンを含有し、ゲート電極60の下のチャネル領域80を挟むように半導体基板10の表面に設けられたソース拡散層31およびドレイン拡散層32と、ゲート絶縁膜60と半導体基板10との間の界面近傍における活性化ボロン濃度および総ボロン濃度が、チャネル領域80側にあるソース拡散層31の端部近傍またはチャネル領域80側にあるドレイン拡散層32の端部近傍において同程度である。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明はP型MISトランジスタおよびP型MISトランジスタの製造方法に関する。
【0002】
【従来の技術】
P型MISトランジスタは、仕様に適合した条件のもとで動作させている場合であっても、閾値が次第にシフトしてしまうことがある。この現象を引き起こす原因の1つにNBT(Negative Bias Temperature)劣化がある。
【0003】
NBT劣化に対処するために、ゲート酸化膜とシリコン基板との間の界面近傍に重水素やフッ素などの元素を導入する公知技術がある(例えば、非特許文献1参照)。
【0004】
また、シリコン窒化酸化膜から成るゲート絶縁膜の上部の窒素濃度を高くすることによって、ゲート電極中のボロンがゲート絶縁膜を突き抜けることを防止する公知技術がある (例えば、特許文献1参照) 。
【0005】
【非特許文献1】
Chuan H. Liu等による“薄膜ゲート誘電体を有するpMOSFETのNBT劣化のメカニズムおよびプロセス依存性(Mechanism and Process Dependence of Negative Bias Temperature Instability (NBTI) for pMOSFETs with Ultrathin Gate Dielectrics)”,IEDM(International Electron Devices Meeting) 2001 , 01-861〜864,提供者:Electronic Devices Society of IEEE
【特許文献1】
特開2002−222941
【0006】
【発明が解決しようとする課題】
非特許文献1によれば、ゲート酸化膜とシリコン基板との間の界面近傍に重水素やフッ素等を導入することによって、ゲート酸化膜とシリコン基板との結合力を強くすることができる。これによりNBT劣化をある程度抑制することはできる。しかし、非特許文献1に記載された技術では、NBT劣化を根本から解決することはできない。
【0007】
特許文献1によれば、ゲート絶縁膜の下部における窒素濃度を低下させることによってデバイス特性の悪化を防止し、尚且つ、ゲート絶縁膜の上部の窒素濃度を高くすることによってゲート電極中のボロンがゲート絶縁膜を突き抜けることを防止する。しかし、特許文献1に記載された技術も、NBT劣化を根本的に解決することはできない。
【0008】
そこで、本発明の目的は、NBT劣化を根本的に抑止したP型MISトランジスタおよびその製造方法を提供することである。
【0009】
【課題を解決するための手段】
本発明に従った実施の形態によるMISトランジスタは、半導体基板と、前記半導体基板の表面上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成されたゲート電極と、ボロンを含有し、前記ゲート電極の下のチャネル領域を挟むように前記半導体基板の表面に設けられたソース拡散層およびドレイン拡散層とを備え、前記ゲート絶縁膜と前記半導体基板との間の界面近傍における活性化ボロン濃度および総ボロン濃度が、前記チャネル領域側にある前記ソース拡散層の端部近傍または前記チャネル領域側にある前記ドレイン拡散層の端部近傍においてほぼ等しい。
【0010】
本発明に従った実施の形態によるMISトランジスタの製造方法は、半導体基板の表面上にゲート絶縁膜を形成するステップと、前記ゲート絶縁膜上にゲート電極を形成するステップと、前記ゲート電極の両側にある前記半導体基板の表面にボロンを注入するステップと、該ボロンを拡散しソース拡散層およびドレイン拡散層を形成するステップと、ボロンと水素との結合を切断する温度以上かつボロンの拡散が生じる温度未満の温度で熱処理をするステップとを具備する。
【0011】
本発明に従った他の実施の形態によるMISトランジスタの製造方法は、半導体基板の表面上にゲート絶縁膜を形成するステップと、前記ゲート絶縁膜上にゲート電極を形成するステップと、前記ゲート電極の両側にある前記半導体基板の表面にボロンを注入するステップと、該ボロンを拡散しソース拡散層およびドレイン拡散層を形成するステップと、前記ソース拡散層の端部近傍または前記ドレイン拡散層の端部近傍に5メガボルト/センチメートル以上の電界を印加するステップとを具備する。
【0012】
【発明の実施の形態】
以下、図面を参照し、本発明による実施の形態を説明する。これらの実施の形態は本発明を限定するものではない。
【0013】
本発明による実施の形態は、ボロンの不活性領域がソースの端部近傍またはドレインの端部近傍に生成することを防止し、それによって、NBT劣化を根本的に抑制するものである。
【0014】
(第1の実施の形態)
図1(A)は、本発明に係る第1の実施の形態に従ったP型MISトランジスタ100の断面図である。P型MISトランジスタ100は、半導体基板10、素子分離領域20、ソース拡散層31、ドレイン拡散層32、ゲート絶縁膜40、側壁70およびゲート電極60を備えている。
【0015】
ソース拡散層31とドレイン拡散層32との間にチャネル領域80が設けられている。ソース拡散層31およびドレイン拡散層32はボロン(B)を含むP型の拡散層である。ボロンの不活性領域51および52が、ソース拡散層31およびドレイン拡散層32のそれぞれの周囲に沿って存在する。図1(A)では、不活性領域51および52を破線で示している。不活性領域は、ソース拡散層31の端部またはドレイン拡散層32の端部から不活性ボロンの最大拡散位置までの領域をいう。
【0016】
半導体基板10の導電型はN型またはP型のいずれでもよいが、チャネル領域80の導電型がN型になるように、半導体基板10には必要に応じてN型のウェル拡散層(図示せず)が設けられる。
【0017】
また、半導体基板10の裏面にシリコン窒化膜(図示せず)を設けてもよい。これにより、ゲート絶縁膜40へ水素が拡散することを防止し得る。
【0018】
図1(B)は、P型MISトランジスタ100のチャネル領域80の側にあるソース拡散層31の端部近傍またはドレイン拡散層32の端部近傍におけるボロン濃度を示したグラフである。このグラフは、ゲート絶縁膜40と半導体基板10との間の界面近傍bにおける活性化ボロン濃度、水素−ボロン結合(水素化ホウ素(B)濃度および総ボロン濃度を示す。界面近傍bは、半導体基板10の表面近傍およびゲート絶縁膜40の底面近傍の両方を含む。
【0019】
水素−ボロン結合濃度は、イオン注入されたボロンのうち水素と結合して不活性化されたボロン濃度である。よって、活性化ボロン濃度および水素−ボロン結合濃度の和は総ボロン濃度にほぼ等しい。また、図1(B)に示すグラフの総ボロン濃度の曲線と活性化ボロン濃度の曲線との間の斜線領域Sは不活性ボロン濃度を示す。
【0020】
図1(B)に示すグラフの横軸はソース拡散層31またはドレイン拡散層32の端部近傍における横方向の距離を示す。例えば、図1(A)の界面近傍bにおけるソース拡散層31の端部xは、図1(B)に示す横軸上の“x”に対応する。図1(A)の界面近傍bにおける不活性領域51の端部yは、図1(B)に示す横軸上の“y”に対応する。横方向は、シリコン基板10の表面に対して水平方向である。
【0021】
本実施の形態によれば、水素−ボロン結合濃度が非常に少なく、注入されたボロンのほとんどが活性化ボロンであるので、図1(A)に示す不活性領域51、52および図1(B)に示す斜線領域Sが非常に小さい。即ち、総ボロン濃度および活性化ボロン濃度が同程度である。
【0022】
具体的には、チャネル長Lが約60nm、並びに、ソース拡散層31およびドレイン拡散層32の深さxが約20nmであるP型MISトランジスタの場合、端部xと端部yとの間の距離は約2nmである。
【0023】
図2(A)および図2(B)には、上述の第1の実施の形態と比較するために、従来のP型MISトランジスタ101の断面図およびそのボロン濃度のグラフが図示されている。図2(A)に示すボロンの不活性領域53および54は、図1(A)に示す不活性領域51および52に比較して大きい。これは、従来のMISトランジスタ101の水素−ボロン結合濃度が第1の実施の形態のMISトランジスタ100のそれよりも大きいことを意味する。
【0024】
図2(B)に示すように、水素−ボロン結合濃度がソース拡散層31またはドレイン拡散層32の端部近傍において大きくなっているので、水素―斜線領域Sは、図1(B)に示す第1の実施の形態の斜線領域Sに比較して大きい。
【0025】
具体的には、チャネル長Lが約60nm、並びに、ソース拡散層31およびドレイン拡散層32の深さxが約20nmであるP型MISトランジスタの場合、端部xと端部yとの間の距離は約10nmである。
【0026】
尚、図2(A)の界面近傍bにおけるソース拡散層31の端部xは、図2(B)に示す横軸上の“x”に対応する。図2(A)の界面近傍bにおける不活性領域53の端部yは、図2(B)に示す横軸上の“y”に対応する。
【0027】
このように、本発明に従った実施の形態において、従来よりも水素−ボロン結合濃度を低下させた理由およびその効果は次のとおりである。
【0028】
水素―ボロン結合は、ソース拡散層およびドレイン拡散層中のボロンを活性化するための熱処理によって生成する。本発明の発明者は、この水素―ボロン結合がNBT劣化を引き起すことを発見した。
【0029】
より詳細には、P型MISトランジスタを動作させたときに、水素―ボロン結合が、チャネル領域を移動するホールと相互作用する。これにより、水素―ボロン結合が切断され、正電荷が発生する。この正電荷がP型MISトランジスタの閾値をシフトさせ、その結果、NBT劣化が生じる。
【0030】
図3(A)および図3(B)を参照することにより、NBT劣化と水素―ボロン結合濃度との関係がさらに明確になる。図3(A)は、従来のP型MISトランジスタに電圧ストレスを作用させた結果を示すグラフである。図3(B)は、N型MISトランジスタに電圧ストレスを作用させた結果を示すグラフである。これらのグラフの縦軸は、閾値の変化量ΔVthを示し、横軸は、ソース−ドレイン間およびソース−ゲート間に電圧を印加することによってMISトランジスタを動作させた時間(以下、ストレス時間という)を示す。
【0031】
P型およびN型MISトランジスタのゲート絶縁膜の厚さTOXは約6.11nmであり、それらのチャネル幅Wは約20μmであり、それらのチャネル長Lは約0.5μmである。P型およびN型MISトランジスタの動作時のソース−ドレイン間電圧は−0.1Vである。P型およびN型MISトランジスタの動作時にゲート絶縁膜に印加する電界Estは、−5.0MV/cm、−7.5MV/cmおよび−9.0MV/cmに変更させ、尚且つ、P型およびN型MISトランジスタの動作時の環境温度Tstは、室温(約25℃)、70℃および140℃に変更させている。図3(A)および図3(B)は、このような条件のもとで実施した実験結果である。
【0032】
図3(B)によれば、N型MISトランジスタの閾値は、ストレス時間、電界Estおよび環境温度Tstに依存せず、ほぼ一定である。一方で、図3(A)によれば、P型MISトランジスタの閾値は、ストレス時間、電界Estおよび環境温度Tstに依存してシフトする。特に、電界Estの絶対値および環境温度Tstが大きい条件のもとでP型MISトランジスタを長時間動作させることによって、その閾値は大きく低下する。
【0033】
このように、従来のP型MISトランジスタは電圧ストレスによってNBT劣化を生じ、一方で、N型MISトランジスタ電圧ストレスによってNBT劣化を生じない。これの理由は次のとおりである。N型MISトランジスタのソースまたはドレイン拡散層には、N型不純物としてリン(P)または砒素(As)が用いられるので、水素―ボロン結合が発生しない。一方で、P型MISトランジスタのソースまたはドレイン拡散層には、P型不純物としてボロンが用いられるので、水素―ボロン結合がソース拡散層の端部またはドレイン拡散層の端部に発生する。従って、P型MISトランジスタのみにNBT劣化が生じる。
【0034】
この考察により、NBT劣化を本質的に抑制するためには、P型MISトランジスタの閾値に影響する領域における水素―ボロン結合濃度を低下させることが有効であることが明らかになった。即ち、図2(B)に示す斜線領域S(不活性領域53および54)を小さくすることがNBT劣化の抑制に有効であることが明らかになった。
【0035】
図1(A)および図1(B)に示す第1の実施の形態によれば、ソース拡散層の端部近傍またはドレイン拡散層の端部近傍における斜線領域S(不活性領域51および52)が従来よりも極めて小さい。よって、第1の実施の形態はNBT劣化を本質的に抑制することができる。尚、P型MISトランジスタの閾値に影響する領域は、ゲート絶縁膜と半導体基板との間の界面近傍とチャネル領域側にあるソース拡散層の端部近傍またはチャネル領域側にあるドレイン拡散層の端部近傍とを含む。
【0036】
次に、本実施の形態の製造方法について説明する。水素―ボロン結合濃度を低下させるためには、水素―ボロン結合自体の生成を防止する方法、または、一旦生じた水素―ボロン結合を予め切断する方法がある。
【0037】
図4(A)から図4(C)は、第1の実施の形態によるP型MISトランジスタの第1の製造方法を工程順に示した素子断面図である。この製造方法は、一旦生じた水素―ボロン結合を予め切断する方法を採用する。
【0038】
図4(A)を参照し、まず、面方位が(100) であり、比抵抗が約4から6Ω・cmであるN型シリコン基板10を準備する。RIE等の反応性イオンエッチングによって、シリコン基板10に素子分離用の溝を形成し、続いて、例えば、LP−TEOS膜を埋め込むことによって素子分離領域20を形成する。
【0039】
次に、酸化膜生成法により、シリコン基板10の表面上に膜厚が約1nmから約500nmのシリコン酸化膜を形成する。さらに、シリコン酸化膜上にポリシリコンを堆積する。ポリシリコンおよびシリコン酸化膜をパターニングすることによってゲート絶縁膜40およびゲート電極60が形成される。
【0040】
本実施の形態において、ゲート絶縁膜40は、シリコン酸化膜から成るが、シリコン酸化膜に代えてシリコン酸窒化膜を用いてもよい。この場合、酸化膜窒化法により、シリコン酸化膜をシリコン酸窒化膜に変質させてもよい。または、酸窒化膜生成法により、シリコン酸窒化膜をシリコン基板10の表面上に直接堆積してもよい。尚、酸化膜生成法、酸化膜窒化法および酸窒化膜生成法の具体例は後述する。
【0041】
図4(B)を参照し、次に、ボロンのイオン注入を行う。イオン注入の条件は、例えば、加速電圧が約10 keVであり、ドーズ量が1×1015 cm 2である。
【0042】
さらに、ボロンを活性化させる熱処理(以下、ボロン活性化アニールという)を行うことで、ソース拡散層31aおよびドレイン拡散層32aが形成される。このボロン活性化アニールの工程において多くのボロン−水素結合が生じる。
【0043】
図4(C)を参照し、次に、例えば、CVD法によりシリコン窒化膜を堆積し、CDE法により等方性エッチングを行うことによって、シリコン窒化膜から成る側壁層70が形成される。
【0044】
次に、再度、ボロンのイオン注入を行う。このときのイオン注入の条件は、加速電圧が約10keV、ドーズ量が約1×1016 cm-2 である。次に、ボロン活性化アニールを行うことでP型のソース拡散層31bおよびドレイン拡散層32bが形成される。ソース拡散層31aおよびソース拡散層31bはソース拡散層31を構成し、ドレイン拡散層32aおよびドレイン拡散層32はドレイン拡散層32を構成する。
【0045】
次に、ボロンと水素との結合を切断する温度以上かつボロンの拡散が生じる温度未満の温度で熱処理(以下、切断アニールという)を施す。より詳細には、約300℃から約700℃の温度の窒素雰囲気中において約30分間熱処理する。この工程により、ソース拡散層31aおよびドレイン拡散層32aに影響を与えることなく、ボロン活性化アニール等によって生じた水素―ボロン結合を切断できる。切断アニールは、ボロン活性化アニールよりも後の工程であるので、水素−ボロン結合を再度生成させることがない。
【0046】
切断アニールの後、中間絶縁膜、金属配線および保護膜(いずれも図示せず)等を形成し、本実施の形態によるP型MISトランジスタが完成する。
【0047】
尚、切断アニールの工程は、ボロン活性化アニールの工程の後、金属配線を形成する工程より前であればどの工程で行ってもよい。例えば、図5(C)に示すソース拡散層31bおよびドレイン拡散層32bの形成後であってもよい。また、切断アニールは、ボロン活性化アニールと同じ熱処理工程においてボロン活性化アニールに続いて連続して行ってもよい。金属の拡散を防止するために、金属配線を形成する直前に切断アニールを行うことが好ましい。
【0048】
ソース拡散層31およびドレイン拡散層32の形状が図4(C)と図1(A)との間で異なる。これは、図1(A)に示す装置は本発明の評価のために簡素化されているためである。好ましくは、図4(C)に示すようなLDD(Lightly Diffused Drain)構造を備えた装置が形成される。
【0049】
ゲート絶縁膜40に用いられるシリコン酸化膜の形成後、シリコン基板10の裏面にシリコン窒化膜(図示せず)をCVD法等により堆積してもよい。これにより、ゲート絶縁膜40へ水素が拡散することを防止し得る。
【0050】
次に、本実施の形態によるP型MISトランジスタの第2の製造方法を説明する。尚、この第2の製造方法の図面は図4(A)から図4(C)と同様であるので省略する。第2の製造方法は、一旦生じた水素―ボロン結合を予め切断する方法を採用する。第2の製造方法は、約5MV/cm2以上の電界をソース拡散層の端部近傍またはドレイン拡散層の端部近傍に、例えば、約30分間印加する(以下、電界印加工程という)。第2の製造方法は、第1の製造方法における切断アニールに代えて、若しくは、これと共に、電界印加工程が施される点で異なる。それ以外の第2の製造方法の各工程は、第1の製造方法の各工程と同様でよい。この電界印加工程によって、水素―ボロン結合を切断することができる。
【0051】
電界印加工程は、ボロン活性化アニールよりも後の工程である。それによって、水素−ボロン結合を再度生成させることがない。電界印加工程は、金属を拡散させることがないので、金属配線を形成後に行ってもよい。
【0052】
図5(A)から図5(C)は、第1の実施の形態によるP型MISトランジスタの第3の製造方法を工程順に示した素子断面図である。第3の製造方法は、切断アニールおよび/または電界印加工程を用いる。
【0053】
第3の製造方法は、ソース拡散層31aおよびドレイン拡散層32aを形成するときに、マスクとしてダミー絶縁膜42を用いる点で第1および第2の製造方法と異なる。第3の製造方法の他の工程は、第1または第2の製造方法の工程と同じでよい。
【0054】
図5(A)を参照して、酸化膜生成法により、約1nmから約500nmの厚さのダミー絶縁膜42を形成する。ダミー絶縁膜42をマスクとしてボロンをイオン注入し、ボロンの活性化アニールを行う。それにより、ソース拡散層31aおよびドレイン拡散層32aが形成される。ダミー絶縁膜42は、シリコン酸化膜またはシリコン酸窒化膜でよい。ボロンのイオン注入および活性化アニールの条件は、第1または第2の製造方法におけるそれらの条件と同様である。
【0055】
次に、ダミー絶縁膜42をエッチングすることによって剥離する。
【0056】
次に、図5(B)に示すように、再度、酸化膜生成法により、シリコン酸化膜を形成する。これをパターニングすることによってゲート絶縁膜40が設けられる。さらに、ゲート電極60が形成される。
【0057】
第3の製造方法によれば、このようにボロンの活性化アニール後にゲート絶縁膜40が形成される。よって、ソース拡散層31aの端部近傍およびドレイン拡散層32aの端部近傍におけるゲート絶縁膜40中には、水素―ボロン結合がほぼ存在しない。
【0058】
ここで、ゲート絶縁膜40へ水素が拡散することを防止するために、シリコン基板10の裏面にシリコン窒化膜等を堆積してもよい。
【0059】
図5(C)に示すように、側壁7を形成後、ボロンをイオン注入し、これを活性化アニールする。それにより、P型のソース拡散層31bおよびドレイン拡散層32bが形成される。
【0060】
その後、中間絶縁膜、金属配線および保護膜(いずれも図示せず)等を形成し、第1の実施の形態によるP型MISトランジスタが完成する。
【0061】
(第2の実施の形態)
図6(A)は、本発明に係る第2の実施の形態に従ったP型MISトランジスタ200の断面図である。MISトランジスタ200は、ゲート絶縁膜44の一部に拡散防止層90を備えている点で第1の実施の形態と異なる。MISトランジスタ200の他の構成要素は、第1の実施の形態と同様である。
【0062】
拡散防止層90は、ゲート絶縁膜44中の半導体基板10の表面近傍に設けられ、尚且つ、ソース拡散層31およびドレイン拡散層32のチャネル領域側の端部近傍を被覆するように設けられている。拡散防止層90は、例えば、シリコン窒化膜またはシリコン酸窒化膜から成る。
【0063】
拡散防止層90は、ボロンがソース拡散層31またはドレイン拡散層32からゲート絶縁膜44へ拡散することを防止し、尚且つ、水素が外部からソース拡散層31またはドレイン拡散層32のチャネル領域側の端部近傍へ拡散することを防止する。これにより、拡散層31および32のチャネル領域側の端部近傍において、ボロン−水素結合が生成することを防止する。その結果、NBT劣化を防止することができる。
【0064】
一方で、ゲート絶縁膜の下部における窒素濃度が大きい場合には、ゲート絶縁膜とシリコン基板との間の界面の平坦性が劣化する。それによりデバイス特性が悪化しまうという問題がある(特許文献1参照)。
【0065】
本実施の形態は、この問題に対処するために、拡散防止層90をゲート絶縁膜44の下部全体に設けることなく、拡散防止層90をゲート絶縁膜44の下部の一部分に設けている。特に、本実施の形態によれば、拡散防止層90は、MISトランジスタ200の閾値に大きく影響する領域、即ち、ソース拡散層31およびドレイン拡散層32のチャネル領域側の端部近傍に設けられている。それによって、ゲート絶縁膜とシリコン基板との間の界面の平坦性を劣化させることなく、不活性領域の生成を抑制することができる。
【0066】
尚、半導体基板10の裏面にシリコン窒化膜(図示せず)を設けてもよい。これにより、ゲート絶縁膜44へ水素が拡散することを防止し得る。
【0067】
次に、MISトランジスタ200の製造方法を説明する。
【0068】
図7(A)から図7(D)は、第2の実施の形態によるP型MISトランジスタの第1の製造方法を工程順に示した素子断面図である。この第1の製造方法は水素−ボロン結合自体の生成を防止する方法を採用している。
【0069】
図7(A)を参照して、図4(A)に示した製造方法と同様に、N型シリコン基板10を準備し、さらに、シリコン基板10に素子分離領域20、ゲート絶縁膜44およびゲート電極60を形成する。ゲート絶縁膜44は、その下部、即ち、シリコン基板10の近傍がシリコン酸化膜から成り、上部へ移行するに従って、即ち、ゲート電極60へ近づくに従って窒素濃度が高くなるように形成されている。
【0070】
図7(B)を参照して、次に、ゲート絶縁膜44の下部を絶縁膜エッチング法によりエッチングする。絶縁膜エッチング法の具体的条件は後述する。このとき、ゲート絶縁膜44の下部はシリコン酸化膜から成り、その上部へ移行するに従って窒素濃度が高くなっているので、ゲート絶縁膜44の下部のみをエッチングすることができる。次に、酸化膜窒化法または酸窒化膜生成法を用いて、シリコン窒化膜またはシリコン酸窒化膜をエッチングされたゲート絶縁膜44の下部に形成する。このように拡散防止層90が形成される。
【0071】
尚、拡散防止層90の形成工程は、ボロン活性化アニールより前の時点であればいずれの工程で行ってもよい。また、絶縁膜への水素の拡散を防止するために、シリコン基板10の裏面にシリコン窒化膜等を形成してもよい。
【0072】
図7(C)を参照し、図4(B)に示した製造方法と同様に、ソース拡散層31aおよびドレイン拡散層32aが形成される。さらに、図7(D)を参照し、図4(C)に示した製造方法と同様に、ソース拡散層31bおよびドレイン拡散層32bが形成される。その後、中間絶縁膜、金属配線および保護膜(いずれも図示せず)等を形成することによって、MISトランジスタ200が完成する。
【0073】
本実施の形態によれば、ゲート絶縁膜44の下部がシリコン酸化膜から成り、その上部がシリコン窒化膜またはシリコン酸窒化膜から成る。従って、図6(A)に示すように、拡散防止層90はゲート絶縁膜44の下部のみに形成される。しかし、ゲート絶縁膜44は、シリコン酸化膜のみから形成されていてもよい。この場合には、図6(B)に示すように拡散防止層90は、ゲート絶縁膜44の膜厚とほぼ同じ膜厚でソース拡散層31およびドレイン拡散層32のチャネル領域側の端部近傍を被覆するように設けられる。図6(B)に示すMISトランジスタ200’も図6(A)に示した実施の形態と同様の効果を得ることができる。
【0074】
図8(A)から図8(D)は、第2の実施の形態によるP型MISトランジスタの第2の製造方法を工程順に示した素子断面図である。この第2の製造方法も、水素−ボロン結合自体の生成を防止する方法を採用している。
【0075】
図8(A)を参照し、図4(A)に示した製造方法と同様に、N型シリコン基板10を準備し、さらに、シリコン基板10に素子分離領域20を形成する。
【0076】
次に、酸窒化膜生成法により、シリコン窒化膜またはシリコン酸窒化膜をシリコン基板10の表面上に形成する。シリコン窒化膜またはシリコン酸窒化膜の膜厚は、約1nmから約500nmである。このシリコン窒化膜またはシリコン酸窒化膜をパターニングする。
【0077】
図8(B)を参照し、酸化膜生成法によりシリコン酸化膜を堆積し、続いて、例えば、CVD法などによってポリシリコン膜を堆積する。
【0078】
次に、シリコン酸化膜およびポリシリコン膜をパターニングすることによって、ゲート電極60およびゲート絶縁膜44が形成される。さらに、ゲート電極60およびゲート絶縁膜44をマスクとしてシリコン窒化膜またはシリコン酸窒化膜をエッチングする。それによって、拡散防止層90が形成される。
【0079】
尚、ゲート絶縁膜44は、酸化膜窒化法または酸窒化膜生成法によりシリコン酸窒化膜にしてもよい。
【0080】
絶縁膜への水素の拡散を防止するために、シリコン基板10の裏面にシリコン窒化膜等を堆積してもよい。
【0081】
図8(C)を参照し、図7(C)および図7(D)に示した製造方法と同様に、ソース拡散層31a、31bおよびドレイン拡散層32a、32bが形成される。その後、中間絶縁膜、金属配線および保護膜(いずれも図示せず)等を形成することによって、MISトランジスタ200が完成する。
【0082】
図8(A)から図8(D)に示す製造方法において、拡散防止層90およびゲート絶縁膜44の膜厚を等しくすることによって、図6(B)に示すMISトランジスタ200’が製造される。
【0083】
MISトランジスタ200の第1および第2の製造方法の変形例として、これらの製造方法に切断アニールおよび/または電界印加工程を追加してもよい。例えば、図7(A)から図7(D)に示す第1の製造方法において、ボロン活性化アニールから金属配線までのいずれかの時点で、切断アニールおよび/または電界印加工程を追加する。図8(A)から図8(C)に示す第2の製造方法において、ボロン活性化アニールから金属配線までのいずれかの時点で、切断アニールおよび/または電界印加工程を追加する。
【0084】
これらの変形例によれば、ボロン−水素結合の生成が抑制されるばかりでなく、ボロン−水素結合が生成された場合にこのボロン−水素結合を切断することができる。従って、MISトランジスタ200のNBT劣化をより確実に防止することができる。
【0085】
以下、酸化膜生成法、窒化膜生成法、酸窒化膜生成法、酸化膜窒化法および絶縁膜エッチング法の具体例を示す。
【0086】
酸化膜生成法の具体例は次のとおりである。
(1)酸素ガスを含む雰囲気中において、例えば、約900 ℃ で加熱する(直接酸化法)。
(2)酸素ラジカル雰囲気中において、例えば、 室温(25℃)から800度で加熱する(ラジカル酸化法)。
(3)SiHCl4−x−y−z (x、y、zは、4−x−y−zが負にならないような0から4の任意の正の整数)、若しくは、SiCl6−x−y−z (x、y、zは、6−x−y−zが負にならない0から6の任意の正の整数)と、O、O、NO、NO若しくは酸素ラジカルとを反応させることによってシリコン酸化膜を生成する(CVD法)。
【0087】
窒化膜生成法または酸窒化膜生成法の具体例は次のとおりである。
(1)NH1−x−y (x、yは、1−x−yが負にならないような0から3の任意の正の整数) の雰囲気中において、例えば、約900℃に加熱する(直接窒化法)。
(2)窒素ラジカル雰囲気中において、例えば、室温(25℃)から約800℃に加熱する(ラジカル窒化法)。
(3)SiHCl4−x−y−z (x、y、zは、4−x−y−zが負にならないような0から4の任意の正の整数)若しくはSiCl6−x−y−z (x、y、zは、6−x−y−zが負にならないような0から6の任意の正の整数)と、NH1−x−y (x、yは、1−x−yが負とならないような0から3の任意の正の整数)若しくは窒素ラジカルとを反応させることによって、シリコン窒化膜またはシリコン酸窒化膜を生成する(CVD法)。
(4)SiHとOまたはOラジカルと窒素ラジカルとを用いてシリコン窒化膜またはシリコン酸窒化膜を生成する(CVD法)。
【0088】
酸化膜窒化法の具体例は次のとおりである。
(1)シリコン酸化膜を、NH1−x−y (x、yは、1−x−yが負にならないような0から3の任意の正の整数) の雰囲気中において、例えば、約900℃に加熱する(直接窒化法)。
(2)シリコン酸化膜を、窒素ラジカル雰囲気中において、例えば、室温(25℃)から約800℃に加熱する(ラジカル窒化法)。
(3)シリコン酸化膜をアンモニア、NO、NO等で窒化する(窒化法)。
(4)SiHCl4−x−y−z (x、y、zは、4−x−y−zが負にならないような0から4の任意の正の整数)若しくはSiCl6−x−y−z (x、y、zは、6−x−y−zが負にならないような0から6の任意の正の整数)と、NH1−x−y (x、yは、1−x−yが負にならないような0から3の任意の正の整数)若しくは窒素ラジカルとを反応させてシリコン酸窒化膜を生成する(CVD法)。
(5)レーザーアブレーション法
(6)スパッタ法、反応性スパッタ法
(7)単原子層逐次堆積法(アトミック・レイヤー・デポジッション法)
【0089】
絶縁膜エッチング法の具体例は次のとおりである。
(1)CF、F、C等のガスから生じるフッ素ラジカルを用いたRIEまたはCDE等のドライエッチング法。
(2)熱燐酸溶液によるウエットエッチング法
尚、シリコン酸化膜またはシリコン酸窒化膜をエッチングする場合には、フッ酸(HF)溶液を用いる。
ただし、水または酸素に晒すことが好ましくないMISトランジスタには、(1)のドライエッチング法を用いることが好ましい。
【0090】
上述の実施の形態は、一般的なP型MISトランジスタに関して記載したが、本発明は、ポケットインプランテーション構造を含むMISトランジスタ、FinFET、ダブルゲートトランジスタ等にも応用できる。
【0091】
ゲート電極60は金属であってもよい。
【0092】
ゲート絶縁膜40、44は、シリコン酸化膜のほか、アルミナ等の高誘電体材料(high−k材料)であってもよい。シリコン酸化膜は、ハフニウム、ジルコニウム、ランタン、セレン等を含んでいてもよい。
【0093】
拡散防止層90は、水素とボロンのいずれかまたは両方の拡散を防止できる任の材料である。例えば、拡散防止層90は、ハフニウム、ジルコニウム、ランタンまたはセレン等を含むシリコン窒化膜、若しくは、ハフニウム、ジルコニウム、ランタンまたはセレン等を含むシリコン酸窒化膜であってもよい。さらに、拡散防止層90は、窒化アルミニウム、酸窒化アルミニウム等であってもよい。
一般に、シリコン基板10へのストレスの観点やシリコン基板10とゲート絶縁膜40、44との界面の平坦性の観点から、拡散防止層90はゲート絶縁膜40、44により近い元素から成る材料であることが好ましい。但し、拡散防止層90は、ゲート絶縁膜40、44よりも水素またはボロンの拡散を効果的に防止することができる材料である。
【0094】
【発明の効果】
本発明に従ったP型MISトランジスタによれば、ソース拡散層の端部近傍またはドレイン拡散層の端部近傍におけるボロン−水素結合濃度が低いので、NBT劣化が防止される。よって、本発明に従ったP型MISトランジスタは、長期間使用することに対する信頼性が高い。
【0095】
本発明に従ったP型MISトランジスタの製造方法によれば、ソース拡散層の端部近傍またはドレイン拡散層の端部近傍におけるボロン−水素結合濃度が低いP型MISトランジスタを製造することができる。
【図面の簡単な説明】
【図1】本発明に係る第1の実施の形態の断面図およびそのボロン濃度を示したグラフ。
【図2】従来のP型MISトランジスタの断面図およびそのボロン濃度を示したグラフ。
【図3】従来のMISトランジスタに電圧ストレスを作用させた結果を示すグラフ。
【図4】第1の実施の形態によるP型MISトランジスタの第1の製造方法を工程順に示した素子断面図。
【図5】第1の実施の形態によるP型MISトランジスタの第3の製造方法を工程順に示した素子断面図。
【図6】本発明に係る第2の実施の形態およびその変形例の断面図。
【図7】第2の実施の形態によるP型MISトランジスタの第1の製造方法を工程順に示した素子断面図。
【図8】第2の実施の形態によるP型MISトランジスタの第2の製造方法を工程順に示した素子断面図。
【符号の説明】
100、200 P型MISトランジスタ
10 半導体基板
20 素子分離領域
31 ソース拡散層
32 ドレイン拡散層
40、44 ゲート絶縁膜
70 側壁
60 ゲート電極
80 チャネル領域
90 拡散防止層
51、52 不活性領域

Claims (8)

  1. 半導体基板と、
    前記半導体基板の表面上に形成されたゲート絶縁膜と、
    前記ゲート絶縁膜上に形成されたゲート電極と、
    ボロンを含有し、前記ゲート電極の下のチャネル領域を挟むように前記半導体基板の表面に設けられたソース拡散層およびドレイン拡散層とを備え、
    前記ゲート絶縁膜と前記半導体基板との間の界面近傍における活性化ボロン濃度および総ボロン濃度が、前記チャネル領域側にある前記ソース拡散層の端部近傍または前記チャネル領域側にある前記ドレイン拡散層の端部近傍においてほぼ等しいことを特徴とするMISトランジスタ。
  2. 前記半導体基板の表面近傍にある前記ゲート絶縁膜の一部分に設けられ、ボロンまたは水素の一方または両方の拡散を防止する第1の拡散防止膜とを備えたことを特徴とする請求項1に記載のMISトランジスタ。
  3. 前記第1の拡散防止膜は、前記チャネル領域側にある前記ソース拡散層の端部近傍または前記チャネル領域側にある前記ドレイン拡散層の端部近傍を被覆することを特徴とする請求項2に記載のMISトランジスタ。
  4. 前記第1の拡散防止膜は、前記ゲート電極の端部から横方向へ前記ソース拡散層または前記ドレイン拡散層の最大拡散領域上を被覆することを特徴とする請求項2に記載のMISトランジスタ。
  5. 前記第1の拡散防止膜は窒化膜であることを特徴とする請求項2に記載のMISトランジスタ。
  6. 前記半導体基板の裏面に水素の拡散を防止する第2の拡散防止膜をさらに備えたことを特徴とする請求項1または請求項2に記載のMISトランジスタ。
  7. 半導体基板の表面上にゲート絶縁膜を形成するステップと、
    前記ゲート絶縁膜上にゲート電極を形成するステップと、
    前記ゲート電極の両側にある前記半導体基板の表面にボロンを注入するステップと、
    該ボロンを拡散しソース拡散層およびドレイン拡散層を形成するステップと、ボロンと水素との結合を切断する温度以上かつボロンの拡散が生じる温度未満の温度で熱処理をするステップとを具備するMISトランジスタの製造方法。
  8. 半導体基板の表面上にゲート絶縁膜を形成するステップと、
    前記ゲート絶縁膜上にゲート電極を形成するステップと、
    前記ゲート電極の両側にある前記半導体基板の表面にボロンを注入するステップと、
    該ボロンを拡散しソース拡散層およびドレイン拡散層を形成するステップと、前記ソース拡散層の端部近傍または前記ドレイン拡散層の端部近傍に5メガボルト/センチメートル以上の電界を印加するステップとを具備するMISトランジスタの製造方法。
JP2002370423A 2002-12-20 2002-12-20 Misトランジスタおよびその製造方法 Abandoned JP2004200595A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002370423A JP2004200595A (ja) 2002-12-20 2002-12-20 Misトランジスタおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002370423A JP2004200595A (ja) 2002-12-20 2002-12-20 Misトランジスタおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2004200595A true JP2004200595A (ja) 2004-07-15

Family

ID=32766355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002370423A Abandoned JP2004200595A (ja) 2002-12-20 2002-12-20 Misトランジスタおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2004200595A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203038A (ja) * 2005-01-21 2006-08-03 Fujitsu Ltd 窒化膜の形成方法、半導体装置の製造方法、キャパシタの製造方法及び窒化膜形成装置
JP2006211494A (ja) * 2005-01-31 2006-08-10 Matsushita Electric Ind Co Ltd クロック供給回路、半導体システムおよびその設計方法
JP2007335784A (ja) * 2006-06-19 2007-12-27 Renesas Technology Corp 半導体装置および半導体装置の製造方法
JP2009076731A (ja) * 2007-09-21 2009-04-09 Renesas Technology Corp 半導体装置およびその製造方法
WO2010095186A1 (ja) * 2009-02-23 2010-08-26 パナソニック株式会社 半導体装置及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006203038A (ja) * 2005-01-21 2006-08-03 Fujitsu Ltd 窒化膜の形成方法、半導体装置の製造方法、キャパシタの製造方法及び窒化膜形成装置
US7696107B2 (en) 2005-01-21 2010-04-13 Fujitsu Microelectronics Limited Nitride film forming method, semiconductor device fabrication method, capacitor fabrication method and nitride film forming apparatus
JP4554378B2 (ja) * 2005-01-21 2010-09-29 富士通セミコンダクター株式会社 窒化膜の形成方法、半導体装置の製造方法及びキャパシタの製造方法
US7951727B2 (en) 2005-01-21 2011-05-31 Fujitsu Semiconductor Limited Capacitor fabrication method
JP2006211494A (ja) * 2005-01-31 2006-08-10 Matsushita Electric Ind Co Ltd クロック供給回路、半導体システムおよびその設計方法
JP4575795B2 (ja) * 2005-01-31 2010-11-04 パナソニック株式会社 クロック供給回路、半導体システムおよびその設計方法
JP2007335784A (ja) * 2006-06-19 2007-12-27 Renesas Technology Corp 半導体装置および半導体装置の製造方法
JP2009076731A (ja) * 2007-09-21 2009-04-09 Renesas Technology Corp 半導体装置およびその製造方法
WO2010095186A1 (ja) * 2009-02-23 2010-08-26 パナソニック株式会社 半導体装置及びその製造方法

Similar Documents

Publication Publication Date Title
US8390080B2 (en) Transistor with dopant-bearing metal in source and drain
US7301208B2 (en) Semiconductor device and method for fabricating the same
US6410938B1 (en) Semiconductor-on-insulator device with nitrided buried oxide and method of fabricating
US7671426B2 (en) Metal insulator semiconductor transistor using a gate insulator including a high dielectric constant film
US7582934B2 (en) Isolation spacer for thin SOI devices
US8816448B2 (en) Semiconductor device and manufacturing method thereof
JP2000332237A (ja) 半導体装置の製造方法
WO2011021316A1 (ja) 半導体装置及びその製造方法
US6756647B2 (en) Semiconductor device including nitride layer
US7015107B2 (en) Method of manufacturing semiconductor device
JP2004200595A (ja) Misトランジスタおよびその製造方法
JP5108408B2 (ja) 半導体装置及びその製造方法
US7550357B2 (en) Semiconductor device and fabricating method thereof
US20100123200A1 (en) Semiconductor device and method of manufacturing the same
JP3166911B2 (ja) 半導体装置の製造方法
US20050127446A1 (en) Semiconductor device and method for manufacturing semiconductor device
US6720224B2 (en) Method for forming transistor of semiconductor device
JP2968548B2 (ja) 半導体装置及びその製造方法
KR100685602B1 (ko) 반도체소자의 게이트전극 형성방법
KR101231229B1 (ko) 반도체 소자의 트랜지스터 제조 방법
JP2931568B2 (ja) 半導体装置およびその製造方法
JP2004207613A (ja) 半導体装置及びその製造方法
JP2006190800A (ja) 半導体装置とその製造方法
JP2004288886A (ja) 半導体装置及びその製造方法
JPH11154650A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050826

A762 Written abandonment of application

Effective date: 20051013

Free format text: JAPANESE INTERMEDIATE CODE: A762