CN1478292A - 移动式镀覆系统及方法 - Google Patents

移动式镀覆系统及方法 Download PDF

Info

Publication number
CN1478292A
CN1478292A CNA018198546A CN01819854A CN1478292A CN 1478292 A CN1478292 A CN 1478292A CN A018198546 A CNA018198546 A CN A018198546A CN 01819854 A CN01819854 A CN 01819854A CN 1478292 A CN1478292 A CN 1478292A
Authority
CN
China
Prior art keywords
vacuum chamber
plating system
mobile
operationally
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA018198546A
Other languages
English (en)
Other versions
CN1291060C (zh
Inventor
杰里D・基德
杰里D·基德
D・哈林顿
克雷格D·哈林顿
N・霍普金斯
丹尼尔N·霍普金斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Basic Resources Inc
Original Assignee
Basic Resources Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basic Resources Inc filed Critical Basic Resources Inc
Publication of CN1478292A publication Critical patent/CN1478292A/zh
Application granted granted Critical
Publication of CN1291060C publication Critical patent/CN1291060C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Abstract

本发明提供了一种事实上使用任何已知或现有的用于涂敷或镀覆的沉积技术进行镀覆工艺的示范性的移动式镀覆系统和方法。该移动式镀覆系统可包括位于移动式储存箱中的真空室、外部真空泵和控制外部真空泵的一部分或全部操作的控制部件。在移动式镀覆系统的运送途中,外部真空泵位于移动式储存箱中,而当该移动式镀覆系统在固定了以及运转过程中时,外部真空泵位于移动式储存箱之外。该外部真空泵可以安装在滑轨上,并且在操作中,该外部真空泵与真空室相连,以助于在真空室中产生所需压力。该外部真空泵使用柔性管件与真空室相连,以减少和/或消除任何由于外部真空泵运转从而在真空室内部和移动式储存箱内部引起的机械振动。本发明提供了一种使用移动式镀覆系统的示范性的方法,其包括将移动式镀覆系统安装在所需的镀覆位置,将外部真空泵从移动式等离子镀覆系统的移动式储存箱的内部移出,并使用柔性管件将该外部真空泵与位于移动式等离子镀覆系统的移动式储存箱内的真空室相连。

Description

移动式镀覆系统及方法
相关申请
与本申请相关的有美国专利申请系列号为09/427775的名称为“等离子镀覆系统和方法”的申请,其申请日为1999年10月26日,发明人为Jerry D.Kidd、Craig D.Harrington和Daniel N.Hopkins,以及美国专利申请系列号为09/578166的名称为“可配置真空系统和方法”的申请,其申请日为2000年5月22日,发明人为Jerry D.Kidd、CraigD.Harrington和Daniel N.Hopkins。
技术领域
本发明一般涉及镀覆和涂敷材料的移动式系统和沉积技术领域,具体涉及移动式镀覆系统和方法。
发明背景
涂敷和镀覆材料以及改善工程表面的沉积技术可包括任何一种沉积技术。这些沉积技术可以包括例如真空淀积或物理汽相淀积(“PVD”)、化学气相淀积(“CVD”)、溅射和离子镀。通常,这些沉积技术可包括步骤:(a)靶或基底的制备和表面清理;(b)将真空度或所需的压力水平设定到指定的工作参数;以及(c)进行沉积。这样的沉积技术涉及大型、昂贵和复杂的系统、设备和机器。
例如,许多这样的沉积技术需要昂贵、庞大且复杂的真空系统,以将真空度设定并维持在指定的工作压力。这样的真空系统通常可包括真空室,可用作低真空前级真空泵的机械真空泵,次级真空泵如扩散泵、低温泵和/或涡轮分子泵,和复杂的压力计如离子真空计。这些真空系统往往需要复杂的管道和不会泄漏的管路布置,以便能保持和持续精确的所需工作压力和参数。由于接口问题和真空泵运转引起机械振动,使得这样复杂的管道和管路在管道转弯处或管道接口处尤其易于渗漏。
一些或所有的真空泵如扩散泵可能还需要大型且复杂的冷却系统,这些冷却系统在真空泵运转之前和运转期间往往使用数百或数千加仑的冷却循环水。这可能需要大型和庞大的水冷系统,包括大型蓄水池和用于冷却大型蓄水池中的水的制冷系统。
因为沉积技术涉及这样大型、昂贵且复杂的系统、设备和机器,这样的系统通常必须永久安装在一个场所。当大型零件或部件如那些重达数百或数千磅的零件或部件、或者是庞大的或难以装运的零件或部件需要使用沉积技术之一来进行涂敷或镀覆时,大概唯一的选择是在这样的大型或庞大的部件之上或附近处永久安装这样的系统。这允许这样的大型和庞大的部件只移动短的距离来进行涂敷或镀覆。
令人遗憾的是,由于这种选择花费高,成本上往往不允许。高的开支不仅包括取得不动产和设备的成本、安装这样复杂系统的成本,还包括保养设备和聘用成功操作和维护这种系统所需的专业人员的成本。设计沉积技术系统也存在问题。所有这类的系统需要定制设计,以满足特殊需要和适应安装环境。包罗万象的沉积技术系统是不存在的。正如已经说明的那样,沉积技术系统的设计、安装、操作和维修复杂并且昂贵,因此使用沉积技术涂敷或镀覆大型和庞大的部件往往是不可能的,尽管这种大型和庞大的部件可能会从这样的沉积技术所带来的显著优点中大大受益。
有时候,某些部件或零件的有效性如此关键,从安全和/或财务的观点来看,不管发货延迟或货物遗失的风险如何小,也是个太大的风险,尽管通过涂敷或镀覆能获得显著的优点。例如,核电站中使用的反应堆容器盖螺柱(head stud)如此重要和独特,因此在工厂停歇期间如核电站在大约每两年左右发生的燃料重新加载期间,发货延迟或货物遗失的风险大得难以承受。例如,由于滞延而不能运转,核电站每天可能损失几十万乃至数百万美元。因此,某些部件或零件如此重要,以至于它们决不会被装运到另一个地方去使用沉积技术进行镀覆或涂敷,尽管通过这样的沉积技术可能获得显著的优点。
发明概述
从以上可以认识到人们已经有了对于移动式镀覆系统和方法的需要,该系统和方法容许包括所有相关的成熟设备和系统的镀覆系统方便地送达用户所在地或者事实上送达任何所需的地点。根据本发明,提供了一种基本上消除了上述一或多个缺点和问题的移动式镀覆系统和方法。
根据本发明的一个方面,提供了一种施行镀覆工艺的移动式镀覆系统。该移动式镀覆系统包括位于移动式储存箱中的真空室、外部真空泵和控制外部真空泵的某些或所有的操作的控制元件。当运送移动式镀覆系统时,外部真空泵置于移动式储存箱中,而当移动式镀覆系统被固定以及运转时,外部真空泵位于移动式储存箱之外。外部真空泵可以安装在滑轨上,运转时,外部真空泵与真空室连接,有助于在真空室中产生所需的压力。使用柔性管件将外部真空泵与真空室相连,以减少和/或消除由于外部真空泵运转从而在真空室内部和移动式储存箱内部引起的机械振动。
根据本发明的另一个方面,提供了一种使用移动式镀覆系统的方法,包括将移动式镀覆系统安装在所需的镀覆位置,将外部真空泵从移动式等离子镀覆系统的移动式储存箱内部移至外部,使用柔性管件将外部真空泵与位于移动式等离子镀覆系统的移动式储存箱内部的真空室相连。该方法也可包括将基底和沉积物质放置在真空室内,使用外部真空泵来设定真空室中所需的压力,用沉积物质镀覆基底。
本发明提供了许多技术优点,包括能够在事实上任何所需地点应用进行涂敷和镀覆的成熟沉积技术、系统、设备和机器,这显著增加了这样的重要技术的可利用性。
本发明的另一个技术优点包括能够将沉积技术的涂敷或镀覆应用于大型的和庞大的不能或不能轻易被运送的部件和零件,而不会带来显著的设计、操作和保养使用沉积技术的复杂系统的费用。
本发明的又一个技术优点包括能够涂敷或镀覆使命重大的部件如核电站使用的反应堆容器盖螺柱。因为本发明允许在客户处使用沉积技术,因此消除了由于可能的发货延迟或货物遗失造成的无法接受的风险。
本发明的另一个技术优点包括能够削减或省去甚至是较小的部件和零件或非关键性零件的运输费用,并省去了设计、操作和保养使用沉积技术的复杂系统的大笔费用和成本。这显著降低了总成本。
本发明还有一个技术优点,包括能够在移动式腔室之外运行嘈杂的机械真空泵,如机械低真空前级真空泵,从而减少了机械振动,增加了移动式镀覆系统的运行可靠性。
另一个技术优点包括能够在移动式镀覆系统的移动式储存箱内使用成熟的冷却系统如水冷系统。
还有一个技术优点包括能够使用成熟的沉积技术,而不会产生或遗留任何有害的废弃副产物。这很有意义。
从以下的附图、说明书和权利要求书中,本领域的专业人员很容易想见本发明的其它技术优点。
附图说明
现在参照下面的简要说明、并结合附图和发明详述部分的说明来更全面地理解本发明及其优点,其中同样的数字标记代表同样的零件:
图1是说明根据本发明的一个实施方案的可用于镀覆材料的等离子镀覆系统示意图;
图2是等离子镀覆系统的真空室顶视图,描绘了平台为转台的一个实施方案;
图3是说明根据本发明的一个实施方案的丝极周围的等离子体形成并分散到等离子镀覆基底的侧视图;
图4是表示包括底层、过渡层和工作层的沉积层的剖视图;
图5是说明根据本发明的一个实施方案的等离子镀覆方法的流程图;
图6是说明根据本发明的一个实施方案的使用本发明的系统的背溅射方法的流程图;
图7是根据本发明的一个实施方案的移动式镀覆系统的顶视图;
图8是说明外部真空泵与移动式镀覆系统的真空室之间的连接的侧视图;和
图9是说明使用根据本发明的一个实施方案的移动式镀覆系统的方法的流程图。
发明详述
首先应该理解尽管在下面说明了本发明的示范性实施方案,本发明还可以使用许多无论是目前已知的或是现有的技术来实施。本发明决不应受限于示范性实施例、附图和下面说明的方法,包括在此说明和描述的示范性设计和装置。
首先,以下结合图1-6来详细说明等离子镀覆系统和方法。图1-6说明了一种使用移动式镀覆系统和方法的沉积技术。最后,结合图7-9来详细说明移动式镀覆系统和方法的一种实施方案,该实施方案示范了结合前面的图1-6详述的沉积技术的等离子镀覆系统类型。
图1是说明根据本发明的实施方案的可用于镀覆各种材料的等离子镀覆系统10的示意图。系统10包括了用于支撑等离子镀覆真空室14内基底12的各种设备。一旦达到了合适的工作参数和条件,丝极16和丝极18提供的沉积物质可被蒸发或汽化,形成等离子体。等离子体通常含有沉积物质的正离子,并会被吸引到基底12上形成沉积层。等离子体可以想像为围绕或邻近基底12的离子云。等离子体通常在从丝极16和丝极18到接近基底12的最近表面之间形成一个暗区,使正离子加速向基底12移动。
丝极16和丝极18与支撑基底12的平台20一起,位于真空室14内。传动件22表示了驱动马达24与真空室14内平台20的主轴之间的连接。在图1所示的实施方案中,平台20为在真空室14内旋转的转台。传动件22将驱动马达24的旋转运动与平台20的主轴机械连接起来,以使平台20旋转。平台20的主轴的旋转通过各种支承轴承如底板轴承28和平台轴承30而促进。
如上所述,真空室14位于或封接于底板32之上。事实上,真空室14可以使用任何具备承受内部真空和外部压力如大气压的适宜的机械特性的材料制成。例如,真空室14可以是金属腔或是玻璃罩。在一个可选的实施方案中,底板32起着平台20的作用,支撑着基底12。底板32可以认为是真空室14的一部分。
底板32也对系统10起着机械支撑的作用,同时还允许各种设备从其下表面贯通至其位于真空室14中的上表面。例如,丝极16和丝极18从丝极电源控制元件34接收电能。应注意,尽管图1中标出了两组丝极电源控制元件34,优选的是这两组元件如一组元件那样工作。为了向丝极16和丝极18提供电能,电导线必须如图1所示穿过底板32。类似地,驱动马达24也必须穿过或贯穿底板32,向传动件22传送机械动作,从而使平台20旋转。馈电通路26,下面会有更详尽的说明,也贯穿底板32,并在平台20和各种信号发生器之间提供电传导通道,下面也会有更详尽的说明。在一个优选的实施方案中,馈电通路26作为换向器与平台20的底面接触,在该实施方案中,平台20用作转台。馈电通路26可以作为换向器,象金属刷那样工作,其能与平台20的底面接触,并且即使平台20旋转,也能与之保持电接触。
丝极电源控制元件34向丝极16和丝极18提供电流。在一个实施方案中,丝极电源控制元件34能在一个特定的时间段向丝极16提供电流,然后在第二个时间段向丝极18提供电流。根据丝极的设置情况不同,丝极电源控制元件34可以向丝极16和丝极18同时提供电流,或者以分开的时间间隔提供电流。这种灵活性容许多于一种的特定沉积材料在不同时间被等离子镀覆到基底12上。优选丝极电源控制元件34向丝极提供交流电,但是可以使用任何已知的产生电流的方法来提供电流。在一个优选的实施方案中,丝极电源控制元件34提供了足够幅度或强度的电流,以在丝极16中产生充足的热量,从而蒸发或汽化其中提供的沉积物质。
为了保证均匀加热位于丝极16或丝极18之上或之中的沉积物质,优选丝极控制元件34以递增的方式提供电流,以使在真空室14内熔化的沉积物质中热量分布更均匀。
在一个优选的实施方案中,平台20用作转台,使用如上所述的机械联动装置使之旋转。可用如图1所示的速度控制元件36来控制平台20的旋转速度。优选平台20的旋转速率为5转/分~30转/分。据信等离子镀覆用的平台20的最佳旋转速率为12转/分~15转/分。平台20旋转的优点是能使基底12受到更均匀的镀覆或涂敷。这在当平台20表面上置有多个基底时尤其如此。这容许在等离子镀覆过程中真空室14内多个基底中的每一个均同等、均匀地放置。
在其它的实施方案中,事实上平台20可以以任何所需的角度或倾斜度倾斜。例如,平台20可以是平面、水平面、垂直面、倾斜面、弯曲表面、曲线面(curvilinear suface)、螺旋面,或者作为真空室的一部分如真空室内的支承结构。如前所述,平台20可以是固定的或者是旋转的。在一个可选的实施方案中,平台20包括可用来旋转一个或多个基底的滚轴。
在一个优选的实施方案中,平台20提供或者包括了连通馈电通路26和基底12之间的导电通路。在一个实施方案中,平台20为金属或导电材料,因此可在平台20上的任何位置提供馈电通路26和基底12之间的导电通路。在这样的情况下,在平台20和使平台20旋转的轴之间设置绝缘体21,以便电绝缘。另一个实施方案中,在平台20顶面的某个位置有导电材料与平台20底面的某个位置有电连接。这样,基底12可以置于平台20顶侧的适当位置,而馈电通路26可以置于平台20底侧的适当位置。如此进行基底12与馈电通路26之间的电连接。
馈电通路26向平台20和基底12提供直流信号和射频信号。与这些信号均有关的所需工作参数在下面有更详尽的说明。优选通过直流电源66产生负压直流信号,通过射频发射器64产生所需功率水平的射频信号。然后优选用直流/射频混合器68将两组信号混合,通过射频平衡电路70提供给馈电通路26,通过最小化驻波反射功率来平衡信号。优选用人工来控制射频平衡电路70。
在一个可选的实施方案中,平台20,包括其所有的支撑元件、构件和设备如驱动电机24和传动件22均被去除。在这种情况下,基底12与馈电通路26电连接。
用图1中系统10的剩余设备和部件来产生、维持并控制真空室14内所需的真空条件。这是通过使用真空系统来做到的。真空系统包括低真空泵(roughing pump)46和初级阀48,在刚开始时用来降低真空室14中的压力。真空系统还包括前级真空泵40、前级阀44、扩散泵42和主阀50。开启前级阀44,使前级真空泵40可以开始工作。在通过关闭初级阀48而关闭低真空泵46之后,将扩散泵42加热到合适的温度,然后开启主阀50。这使得扩散泵42可以进一步将真空室14中的压力降低到所需水平。
然后可以以所需的速率向真空室14中引入气体60如氩气,从而将真空室14中的压力增加到所需的压力值或达到一定的压力范围。气体调节阀控制着气体60通过底板32进入真空室14内的流速。
正如以下将根据本发明的教导联系图5和图6要作的更详尽的说明那样,一旦所有的工作参数和条件均达到了,系统10中便发生等离子镀覆。通过真空室14内等离子体的形成,可以在基底12上等离子镀覆一层或多层包括如基层、过渡层和工作层在内的沉积层。优选等离子体包括沉积物质蒸发或者汽化得到的带正电荷的沉积物质离子,以及被引入真空室14中的气体60产生的正离子。人们相信,在等离子中存在并最终成为沉积层的一部分的气体离子如氩气离子不会显著降低沉积层的性能。向真空室14中引入气体同样有助于控制真空室14内所需的压力,从而可以根据本发明的教导产生等离子体。在一个可选的实施方案中,等离子镀覆工艺在无气体的环境下进行,因此通过真空系统来形成并充分维持真空室14内的压力。
真空室14中等离子体的产生被认为是各种影响因素的结果,这些影响因素如加热位于丝极如丝极16和丝极18中的沉积物质产生的热离子效应,以及施加所需电压水平的直流信号和施加所需功率水平的射频信号。
系统10的真空系统可以包括各种真空系统如扩散泵、前级真空泵、低真空泵、低温泵、涡轮泵和任何能够使真空室14中的压力达到本发明所需的压力的泵。
如上所述,真空系统包括低真空泵46和与前级真空泵40一起使用的扩散泵42。低真空泵46通过初级阀48与真空室14相连。当初级阀48打开时,可以在刚开始时用低真空泵46来降低真空室14中的压力。一旦真空室14内达到了所需的低压,即关闭初级阀48。低真空泵46通过底板32上的通孔或开口与真空室14相连。优选低真空泵46为机械泵。在图1所示的系统10的真空系统的一个优选实施方案中,该实施方案中的真空系统还包括通过前级阀44与扩散泵42相连的前级真空泵40。前级真空泵40可以是一个机械泵,其与扩散泵42结合使用,将真空室14内的压力降低到比使用低真空泵46所产生的压力还要低。
在低真空泵46降低了真空室14内的压力之后,通过主阀50和图1中用位于主阀50之上、平台20之下的虚线表示的底板32上的通孔或开口来使扩散泵42与真空室14相连,使用加热器并且可能需要使用冷却水或其他物质来冷却扩散泵42。一旦扩散泵42已被加热并已做好了工作准备,就可以开启主阀50,以使真空室14内的压力通过扩散泵42协同前级真空泵44的作用得到进一步降低。例如,真空室14内的压力可被降低到4毫托以下。在背溅射工艺过程中,真空室14内的压力可以降低到100毫托直至20毫托。优选在背溅射工艺过程中,真空室14内的压力为50毫托直至30毫托。在等离子镀覆工艺的系统10正常运转的过程中,可以通过真空系统将真空室14内的压力降低到4毫托直至0.1毫托。优选在等离子镀覆工艺过程中使用真空系统以将真空室14内的压力降低到1.5毫托直至0.5毫托。
图2是等离子镀覆系统的真空室顶视图,表示了平台为转台20的一个实施方案。在转台20的表面上对称放置了基底12a、12b、12c和12d。转台20可以顺时针或者逆时针方向旋转。事实上基底12a-12d可以由任何现有材料制成,在图2中为圆柱形,因此每个基底在顶视图中表现为圆形。
丝极电源控制元件34与第一套丝极94和96以及第二套丝极90和92有电连接。尽管图2中没有完全标示出这种电连接关系,应理解丝极电源控制元件34可以向第一套丝极94和96、或者是第二套丝极90和92提供电流。这样,沉积层可有两层如基层和工作层。优选首先通过第一套丝极94和96提供的沉积物质来镀覆基层,再用第二套丝极90和92上提供的沉积物质在基底12a-12d的基层上沉积工作层。
图2中基底的布置可被描述成一系列的基底,其包括与转台20的中心更为接近的朝内表面,和与转台20的外缘更为接近的朝外表面。例如,12a-d系列基底的朝内表面在基底旋转靠近丝极时分别在不同的时间面向丝极92和丝极96。同样,基底12a-d的朝外表面在它们旋转靠近丝极时面向丝极90和94。
如前所述,事实上丝极电源控制元件34可以提供任何种类的电流如直流电流或交流电流,但是优选提供交流电流。
在工作中,例如转台20按顺时针方向旋转,这样在基底12b靠近或者经过丝极之后,下一个靠近或者经过丝极的基底是基底12c,如此下去。在一个实施例中,第一套丝极94和96上装载着沉积物质如镍(或钛),第二套丝极上装载着沉积物质如银/钯合金。该实施例是镀覆两套沉积物质或者两层沉积层的例子。
在设定了真空室内所有的工作参数之后,正如在这里自始至终描述的那样,丝极电源控制元件34可以向第一套丝极94和96提供交流电流,将使镍蒸发或者汽化,以与真空室内的气体如氩气一起形成等离子体。等离子体中带正电荷的镍离子和带正电荷的氩离子将被吸引到处于负电位的基底12a-d上。通常基底旋转时离第一套丝极90和92的距离越近,将会沉积越多的材料。因为转台是旋转的,施加到各个基底上的一层或多层沉积层是均匀的。
在开始的等离子体已被镀覆到12a-d系列基底上形成沉积层的基层之后,丝极电源控制元件34被通电,以向第二套丝极90和92提供足量的电流。类似地,在氩离子和银/钯离子之间形成了等离子体,然后在正在旋转的基底上形成工作层。
在镀覆基层的过程中,主要通过丝极94中的沉积物质镍来涂敷基底12a-d的朝外表面。类似地,通过丝极96中的沉积物质镍来涂敷基底的朝内表面。对于将银/钯等离子镀覆到基底上形成沉积层的镀覆来说,也存在同样的关系。
图3是根据本发明的一个实施方案,说明丝极100周围的等离子体形成和扩散,以等离子镀覆基底12的侧视图。丝极100做成导线篮子的形状,如钨丝篮子,如图所示,沉积物质102置于其中,并由丝极100机械支撑住。当丝极电源控制元件34向丝极100提供了足够的电流时,沉积物质102会熔化或者汽化,形成等离子体104。当然,本发明的所有工作参数必须能使沉积物质达到等离子体状态,以便发生等离子镀覆。
处于负电位的基底12吸引等离子体104的正离子,以形成沉积层。如图所示,等离子体104的分布图显示等离子体104的大部分正离子被吸引到丝极100和沉积物质102附近。如图所示当等离子体104与基底12的顶面接触时将产生一些卷曲。类似地,等离子体104的一部分正离子可能被吸引到平台或者转台上。正如已说明的那样,本发明提供了一种形成沉积层的有效办法,即确保沉积物质的大部分离子被用于形成沉积层。
图4是表示包括基层110、过渡层112和工作层114在内的基底12的沉积层的剖视图。首先应注意构成沉积层的各个层的厚度与基底12的尺寸基本上不成比例;然而,根据本发明的一个实施方案,沉积层的各内层的相对厚度彼此成比例。
一般地,根据本发明的教导,基底上整个沉积层的厚度通常被认为是介于500埃和20,000埃之间。在一个优选的实施方案中,整个沉积层的厚度被认为是介于3,000埃和10,000埃之间。本发明提供了包括所有的沉积层如基层110、过渡层112和工作层114在内的沉积层厚度的优异的再现性和可控性。据信,本发明可以提供精度约为500埃的可控层厚。还应提到的是,本发明可用来形成具有一层或任意多层内层的沉积层。
沉积层的厚度通常根据等离子镀覆基底的预定用途的性质来决定。除了其它的许多变量和因素外,还可包括这些变量如温度、压力和工作环境的湿度。对于每层的金属或沉积物质种类的选择也高度依赖于等离子镀覆基底的所需用途的性质。
例如,本发明防止或者显著减少了部件之间因过度磨损而发生的咬住。这种咬住包括配合部件的两个表面如螺纹表面装配在一起时常会发生的相互咬住。咬住可能引起部件断裂和破裂,这常常导致严重破坏。通过对一个或多个接触表面进行等离子镀覆,可以防止或减少咬住发生。可使用各种沉积物质来获得这种有益的效果。然而,优选用等离子镀覆工艺在一个或多个接触表面上沉积镍或钛基层和银/钯合金工作层,来减少咬住。对于高温如超过650华氏度的应用来说,优选通过等离子镀覆工艺沉积镍或钛基层和金工作层来减少咬住。
通过试验,人们发现当铬被沉积,无论是作为基层、过渡层还是作为工作层时,对于减少咬住的效果并不好。人们相信,铬可能是一种在等离子镀覆工艺过程中更难加以控制的沉积物质。
等离子镀覆还可用来镀覆阀零件如在非核爆炸应用中的阀杆,优选等离子镀覆钛基层、金过渡层和铟工作层。在原子核应用如核电站应用中,铟并不是优选的等离子镀覆沉积物质,因为它被认为是过高的放射性同位素吸收体。替代地,而镍基层和银/钯合金工作层对于等离子镀覆原子核应用中的阀杆则是优选的。
如图4所示,工作层14通常比相应的过渡层112和基层110厚得多。还应注意到的是图示中基底12顶部的涂层在基底12的中央或中央附近较薄。这取决于在等离子镀覆工艺过程中丝极如何放置。例如,如果丝极如同图2-3中所示那样放置,基底12中央的沉积层一般会比其侧边的沉积层薄。
尽管在这里已经讨论过了各种厚度范围,应理解本发明并没有对最大沉积层厚度作出限制。事实上,沉积层的厚度,尤其是工作层114的厚度,可以为通常取决于等离子镀覆基底12将来的工作环境的任何所需厚度。优选基层110和过渡层112以及工作层114之下的任何其它层的厚度显著小于相应的工作层114的厚度。例如,基层110和过渡层112的厚度范围可为500~750埃,而工作层114的厚度事实上可以为例如18,000埃。
图5是根据本发明的一个实施方案的等离子镀覆方法500的流程图。方法500从方框502开始,进行到方框504。在方框504,准备了等离子镀覆的材料或基底。包括清理基底,以除去异物、污物和油。可以使用任何已知的清理工艺,如钢结构刷涂委员会(SSPC)规定的那些工艺。例如,可用标准SSPC-5来保证基底被清理达到纯净金属的状态。同样,可以使用标准SSPC-10。优选将基底进行喷砂处理,例如进行喷丸处理以进一步保证除去异物或污物。应注意在基底的表面可以存在氧化层。本发明容许即使在基底表面存在氧化层的情况下仍能用等离子镀覆具有优异的粘附性能和机械性能的沉积层。
方法500进行到方框506,在这里设定等离子镀覆系统的必要条件。等离子镀覆系统的装置不同,该必要条件的内容有所不同。在使用扩散泵作为真空系统的一部分的情况下,例如必须确保冷却水的供应。同样,必须确定具备足够的润滑油和空气,以使与等离子镀覆系统相关的各种设备、阀和装置能够运转。在进行到方框510之前,还应该在此落实气体如氩气的足量供应。
假定扩散泵用作真空系统的一部分,在方框510处使扩散泵做好工作的准备。包括打开前级阀,启动与扩散泵结合使用的前级真空泵。一旦达到了前级真空度,就可使扩散泵的加热器通电。这使得扩散泵进入使用状态。
方法500进行到方框512,在这里作真空室准备。包括如将基底放置于真空室内等许多步骤。通常将基底放置在真空室内的平台或转台上的指定位置。在进入真空室内部之前,真空室的密封要被破坏,优选将钟形罩或外部构件从底板上抬起。将基底放置到平台上之后,就可将丝极放置到与基底相应的位置。
放置丝极可能涉及许多技术,并且包括这些变量如丝极提供的沉积物质数量和种类,相对于基底的距离以及相对于其它丝极的距离。一般从丝极或沉积物质的中心线算起到基底上最近点的距离为0.1~6英寸。但是,当沉积物质将成为沉积层的基层或过渡层时,优选丝极或沉积物质与基底之间的距离范围为2.75~3.25英寸。类似地,当沉积物质将作为沉积层的工作层沉积到基底上时,优选丝极或沉积物质与基底之间的距离为2~2.5英寸。
在等离子镀覆多种沉积物质的情况下,有必要考虑容纳第一沉积物质的丝极与容纳第二沉积物质的丝极的相对位置,使每个丝极之间以及与基底之间的相对位置相互对应。一般来说,包含作为沉积层的基层、过渡层或工作层的沉积物质的第二丝极和第一丝极之间的距离应为0.1~6英寸。
包含将作为基层的沉积物质的丝极之间的距离一般为0.1~6英寸。优选该距离为3~4英寸。上述关于丝极之间距离的数据也适用于丝极中的沉积物质将作为沉积层中的过渡层的情形。类似地,包含将作为沉积层的工作层的沉积物质的丝极之间的距离一般应为0.1~6英寸,但是优选为2.5~3英寸。
方框512的真空室准备中也可能需要考虑平台上要被等离子镀覆的一系列基底的布置情况。例如,设置在真空室内的向一系列基底的朝内表面镀覆沉积物质覆层的丝极与位于真空室内的镀覆一系列朝外表面的丝极相比,需要的沉积物质的质量或重量可能要少20~80%。确定朝内表面和朝外表面是以相对于平台或转台的位置关系为基准的,朝内表面是指靠近平台或转台中心的那些表面。上述的原因在由于一般来说朝内表面和朝外表面对等离子体的正离子的吸引力有所不同,造成一系列基底的朝内表面的等离子镀覆工艺效率高于该系列基底的朝外表面的等离子镀覆工艺效率。这样也确保朝内表面和朝外表面上的沉积层厚度更加均匀。在这种情况下,优选丝极位置,丝极上沉积物质的重量或质量也将有所不同。通常,两个不同位置之间的沉积物质的质量或重量可相差20~80%。优选镀覆朝内表面的丝极中的沉积物质的质量或重量比镀覆朝外表面的丝极上的沉积物质的质量或重量要少40~50%。放置在丝极中的沉积物质的量与沉积层和其各内层所需的厚度相对应。这已结合图3作过更详尽的讨论和说明。
在形成等离子的过程中,丝极的类型影响着其中的沉积物质熔化或蒸发形成的分布图谱。本发明中可以使用各种类型、形状和结构的丝极。例如,丝极可以是钨篮、舟皿、线圈、坩埚、射线枪、电子束枪、加热枪或任何其它的结构如真空室内的支承结构。一般通过向丝极通电流来加热丝极。但是,本发明可以使用任何方法或方式来加热丝极内的沉积物质。
真空室准备还包括将沉积物质放置在一个或多个丝极中。事实上本发明可使用任何能在本发明的条件和参数下蒸发从而形成等离子体的材料。例如,沉积物质事实上可包括任何金属如金属合金、金、钛、铬、镍、银、锡、铟、铅、铜、钯、银/钯和其它各种金属。同样,沉积物质可包括任何其它材料如碳、非金属、陶瓷、金属碳化物、金属硝酸盐和各种其它材料。沉积物质通常为丸状、颗粒、细粒、粉末、线状、带状或条状材料。一旦装好了丝极,就可以关闭并密封真空室。这可能包括用真空室的底板来密封真空室的外罩部分。
方法500进行到方框514,在此初步设置真空室内的真空条件。在一个实施方案中,如图1中表示的系统10,刚开始用低真空泵对真空室抽真空,将真空室内的压力降到足够低,以使其它的泵可以接替它并进一步降低真空室内的压力。在一个实施方案中,开始启用的低真空泵为机械泵,随后可打开初级阀,以连通真空室。一旦低真空泵起到了预定的作用,将真空室内的压力降到了预定或设计水平,就关闭初级阀。此时,方法500转到方框516。
在方框516,用另一个真空泵来进一步降低真空室内的压力。例如,在一个实施方案中,使用扩散泵/前级真空泵来进一步降低真空室内的压力。在图1所示的本发明的实施方案中,通过开启主阀,使用扩散泵,并辅以机械前级真空泵,来进一步降低真空室内的压力。
通常将真空室内的压力降低到4毫托以下。优选将真空室内的压力降低到1.5毫托以下。在下面结合方法500的方框518说明的进行背溅射的情况下,真空室内的压力降低到100毫托以下,一般为20毫托~100毫托。在进行背溅射的一个优选实施方案中,真空室内的压力降低到50毫托以下,一般为20毫托~50毫托。
进行到方框518,可施行背溅射工艺来进一步清理、准备基底。但是应该理解的是该工艺不是必须的。在下面会结合图6来对背溅射工艺作更详细说明。背溅射工艺可包括真空室内平台或转台的旋转。在这种情况下,通常转台的转速为5转/分~30转/分。优选转台的转速为12转/分~15转/分。根据本发明的教导,优选在基底上形成沉积层时转台也运转。
方法500进行到方框520,在此设定工作真空度。尽管如上面结合方框514和516讨论过的那样真空室内的真空条件已经建立,但现在可以通过将气体以一定的流速引入真空室内来确定工作真空度,通常将真空室内的压力升高到0.1毫托~4毫托。优选引入气体将真空室内的压力升高到0.5毫托~1.5毫托。这将保证在等离子体中没有沉积物质离子相撞,并将提高沉积效率,向基底提供干净的、高度粘附的沉积层。引入到真空室内的气体可以是各种气体,但是优选为惰性气体、稀有气体、活性气体或者如氩气、氙气、氡气、氦气、氖气、氪气、氧气、氮气等气体,以及其它各种气体。该气体最好为非易燃性气体。应理解本发明并不要求引入气体,而是可以在没有气体的情况下进行。
方框522处设定系统的各种工作参数和数值。这一般包括使转台旋转,需要的话,施加直流信号,和施加射频信号。假定平台包括转台或某些其它的旋转设备,优选在此使转台旋转。当然这要假定先前转台没有旋转,并且进行背溅射方框518的处理与否可自行酌定。一旦转台旋转被设定,就可以向基底施加直流信号和射频信号。通常向基底施加的直流信号的电压为1~5,000伏特。应注意优选电压的极性为负;但也不总是这样要求。在一个优选的实施方案中,向基底施加的直流信号的电压为负500~负750伏特。
向基底施加的射频信号的功率一般为1~50瓦特的。优选射频信号的功率为10瓦特或者为5~15瓦特。射频信号的频率一般为几千赫兹或者几兆赫兹的工业指定频率。优选频率信号为13.56千赫兹。尽管自始至终使用术语射频来描述在基底上产生和施加的射频信号,应理解的是术语射频并不限于通常意义上的频率约为10千赫兹~100,000兆赫兹的信号。术语射频还应包括能有助于在真空室内形成或激发等离子体的任何频率的信号。
优选方框522还包括使用混合器电路来混合直流信号和射频信号,从而复合信号。这使得向基底上施加的只有一个信号。通常使用穿过真空室的底板并与平台的导电部分接触、随后与基底电连接的馈电通路来实现这一点。方框522还包括通过使用射频平衡网路来平衡复合信号。优选通过降低驻波反射功率来平衡复合信号。这优选通过人工进行控制。
如曾在混合器电路中看到的那样,在天线或输出的输出特性或负荷特性改变时,当电信号或电波从输出负载反射回到混合器或信号源时可能出现问题。这些问题可能包括射频发射器破坏,和转移到基底和真空室中的功率减少,转移到基底和真空室中的功率是为了保证形成足够的等离子体来圆满完成等离子镀覆工艺。
这个问题可以通过射频平衡网路来减少或解决,该射频平衡电路能调整它的阻抗来抵消或降低反射波,在一个实施方案中阻抗包括电阻、电感和电容。输出载荷或天线的阻抗和电特性受到如等离子体存在与否、平台上基底的形状和性能等的影响。由于在等离子镀覆工艺过程中存在这些变化,在工艺过程中可能需要调整射频平衡电路来降低驻波反射功率,换句话说或者是防止或减小返回到射频发射器的驻波比例。优选在等离子镀覆工艺过程中,这些调整由操作者手工进行。在其它的实施方案中,射频平衡电路是自动调整的。但是必须小心操作,以保证自动调整不会补偿过度或者是不能跟踪输出载荷的变化。
方法500进行到方框524,在此一种或多种沉积物质被熔化或蒸发,产生等离子体。等离子体在本发明提供的条件下产生,使得沉积层通过等离子镀覆在基底表面上形成。人们相信沉积层在形成中等能量水平形成,该中等能量一般为10eV~90eV。
一般通过向沉积物质周围的丝极提供电流来使沉积物质蒸发或汽化。在一个优选的实施方案中,沉积物质被慢慢或逐渐加热,以使沉积物质中具有更均匀的热量分布。这也促进了等离子体的形成。提供的电流可以是交流电流或者是任何其它足以在丝极中产生熔化沉积物质的热量的电流。在其它的实施方案中,可以引入与沉积物质进行化学接触的试剂来加热沉积物质。在另外的实施方案中,可以使用电磁能或微波能来加热沉积物质。
真空室内的条件将利于形成等离子体。等离子体一般包括气体离子如氩离子,和沉积物质离子如金、镍或钯离子。由于缺失一个或多个电子,气体离子和沉积物质离子一般为正离子。人们相信引入射频信号以及加热沉积物质产生的热离子(thermionic)现象有助于形成等离子体。在某些情况下,产生的等离子体可能包括带负电荷的离子。
基底上用直流信号而产生的负电位将会吸引等离子体中的正离子。同样,这主要包括沉积物质离子,可能还包括气体离子如在方法500中较早引入的气体中的氩气离子。人们相信气体离子如氩气离子的掺入不会使材料变劣或降低沉积层的机械性能。
应注意一些在先著作建议最好在基底上或其附近引入磁铁,从而在等离子体被吸引到基底上形成沉积层时影响等离子体的离子移动路径。现在,实验证据表明,引入这样的磁铁事实上是没有必要的,会产生有害影响。磁铁的存在可能导致沉积厚度不均匀,并对工艺的可控性、再现性和可靠性显然不利。
当设计的沉积层包括多个内层时,在方框524要进行多层镀覆。这意味着在通过加热丝极而使基层沉积物质熔化之后,再通过加热丝极来使过渡层沉积物质(或者是接着要施加的覆层沉积物质)受热熔化。照这样,就可以镀覆任意层内层的沉积层。在形成后续的沉积内层之前,前面的沉积层应该已经完全或近乎完全形成。由此方法500具有显著的优点,其容许无需破坏和重新设立真空室的真空度而沉积具有多层内层的沉积层。这一点能显著地减少总的等离子镀覆时间和成本。
方法500进行到方框526,在这里关闭系统。在图1所示系统的实施方案中,关闭主阀,打开通向真空室的通气阀,以平衡真空室内的压力。然后打开真空室,就可以立刻取出基底。这是因为方法500的等离子镀覆工艺中不会在基底内产生过多热量。这具有显著的优点,因为基底和沉积层的材料或机械结构不会受到过高温度的不利影响。然后就可以根据需要使用等离子镀覆基底。因为基底的温度一般等于或低于125华氏温度,通常无需任何热保护就能立即对基底进行处理。
方法500还具有不产生任何废弃副产物的优点,是环保的。另外,方法500还能有效利用沉积物质,因此能有效利用而不会浪费贵重金属如金和银。此外,由于本发明不使用高能沉积技术,因此对基底无不利的冶金或机械作用。相信是因为本发明的沉积层没有深嵌入基底内部,但是沉积层仍然表现出优异的粘着性能、机械性能和材料性能。在方框528处取出基底之后,方法500在方框530处结束。
图6是根据本发明的一个实施方案,使用本发明的系统和方法的背溅射方法600的流程图。在沉积层通过等离子镀覆在基底上形成之前,可以用背溅射来进一步清理基底。背溅射通常清除污物和异物,从而使基底更干净,沉积层更加坚固和均匀。方法600从方框602开始,进行到方框604处将气体引入真空室,引入速率要能维持或产生真空室内所需的压力。这与前面图5中方框520的说明类似。一般地,真空室内的压力应为100毫托以下,如20毫托~100毫托。优选真空室内的压力为30毫托~50毫托。
方法600进行到方框606,必要的话在此使平台或转台旋转。如上所述,转台的旋转速率为5转/分~30转/分,但是优选为12转/分~15转/分。
进行到方框608时,设定直流信号并施加到基底上。通常施加的直流信号为1~4,000伏特。优选施加的直流信号的电压为负100~负250伏特。
方框608处还包括产生射频信号并施加到基底上。射频信号的功率一般为1~50瓦特。优选射频信号的功率为10瓦特,或者为5~15瓦特。优选将直流信号和射频信号混合、平衡,并作为复合信号施加到基底上。结果,在方框604处引入的气体将形成等离子体。该气体一般为惰性气体或希有气体如氩气。等离子体的形成包括从气体生成正离子。这些等离子体的正离子受到吸引并加速移向优选处于负电位的基底,从而除去基底上的污物。一旦污物或异物离开基底,便可通过真空泵如扩散泵的运转将它们从真空室中抽出。
进行到方框610处,持续进行背溅射工艺通常达30秒~1分钟。取决于基底的条件和清洁程度,背溅射工艺持续的时间可长可短。一般地,允许背溅射工艺持续进行,直到背溅射工艺产生的电容放电基本上完成或者显著减少。这可以通过观察与基底的污物的电容放电相一致的火花或闪光来进行肉眼监控。可称之为微弧。
在背溅射工艺过程中,必须对直流信号加以控制。这通常是通过手工调整直流电源来做到的。优选直流信号的电压达到最大值,但不要使直流电源过载。随着背溅射工艺的进行,由于背溅射工艺过程中等离子体发生变化,直流电源中的电流将会改变。因此在背溅射工艺过程中有必要调整直流信号的电压。
方法600进行到方框612,在此去除直流信号和射频信号,并关掉气体。方法600进行到方框614便结束。
图7是根据本发明的一个实施方案的移动式镀覆系统700的顶视图。移动式镀覆系统700的实施使用了移动式储存箱702。在一个优选的实施方案中,移动式储存箱702为封闭式或半封闭式拖车,通常由柴油卡车如“双轮(Semi)”或“18轮”柴油卡车来牵引。然而,应该理解事实上本发明的移动式储存箱702可以使用任何现有的移动式储存箱、货箱、拖车等等,例如货箱、海/陆两用货箱、载重拖车或牵引拖车的内储存箱、半拖车、货车、冷藏车、货运拖车、冷藏箱、平板拖车、自卸拖车、牵引拖车或封顶拖车。尽管移动式储存箱702的优选实施方案为密封式或半封闭式的储存箱,在另一个实施方案中,本发明也能为敞开式或半敞开式拖车或货箱。
图示的移动式镀覆系统700,其中外部真空泵704放置在移动式储存箱702之外。这表明该移动式镀覆系统700处于固定和工作状态。当移动式镀覆系统700在运送途中或处于非工作状态时,外部真空泵704可以储存在移动式储存箱702内。例如,图中外部真空泵704附近有一个开口706,在一个优选的实施方案中,外部真空泵704可以通过开口706储存在移动式储存箱702中。于是在运送途中,外部真空泵704与移动式储存箱702在一起。本发明并不限制任何开口如开口706或开口754的位置或存在与否。开口754也是进入移动式储存箱702的入口。在一个优选的实施方案中,外部真空泵704包括安装在滑轨上的机械低真空泵708和机械前级真空泵710。这样,外部真空泵704可以通过开口706方便、快速地进出移动式储存箱702。例如,可以使用叉式升降机将外部真空泵704移入或移出移动式储存箱702。
外部真空泵704置于移动式储存箱702之外、并在储存箱外运转这一点具有明显的技术优点,能减小或消除镀覆工艺过程中在移动式储存箱702内的设备和系统中产生的内部振动、噪音和泄漏。这类的振动和机械应变可能对整个镀覆工艺有巨大的危害。一般外部真空泵704是用来协助在位于移动式储存箱702内的真空室712中产生所需的压力,使得所需的镀覆工艺可以在所需的可靠的工作参数下进行。在一个优选的实施方案中,低真空泵708通过或使用柔性管件714与真空室712相连。同样,前级真空泵710可使用柔性管件714与真空室712相连,在图7所示的实施方案中是通过内部真空泵716,图示为扩散泵,来与真空室712相连。除了外部真空泵704位于移动式储存箱702的外部这一点之外,柔性管件714也有助于消除、减小或隔离外部真空泵704在其他设备、机器和系统上引起的机械振动、应变和噪音。此外,柔性管件714允许管道运动,以至于在管道中不会产生使移动式镀覆系统700完全停工的机械应力、疲劳和潜在裂纹或破裂。外部真空泵704和真空室712(和内部真空泵716)之间接合的一个实施方案将在下面结合图8进行详尽说明。
在继续说明之前,应该强调的是本发明的移动式镀覆系统700并不以任何方式受限于任何特定类型的镀覆工艺、系统或沉积技术。如以上结合图1-6的详细说明中所述,可以使用移动式镀覆系统700来实施等离子镀覆系统或工艺。事实上本发明可以利用任何已知的或现有的使用真空室和真空泵的镀覆工艺。例如,但不作任何限制,移动式镀覆系统700可以使用以下任一种镀覆工艺:真空淀积、物理汽相淀积、化学气相淀积、溅射、离子镀和离子注入。实质上,图7所示的移动式镀覆系统700反映了在上面结合图1说明过的等离子镀覆系统10的一种实施装置。
移动式储存箱702可通过变压器718与电源相连。于是,变压器718可以向移动式镀覆系统700的各种设备和系统提供适当的所需电压和功率。在一个实施方案中,可以在移动式储存箱702的顶部附近安置电力总线,使得整个移动式储存箱可以方便地使用电源,但没有安全隐患,该总线在图7中没有表示。图7中还有空调设备720。空调设备720的作用是在移动式储存箱702内提供适宜、舒适的工作环境,并帮助冷却需要冷却的设备。
在移动式储存箱702中表示出来的冷却系统包括冷却器722、水箱724和适当的管路或连接件,可将冷却水从冷却器722送到内部真空泵716,图中该泵为扩散泵,冷却水和内部真空泵716之间作热量交换,然后水回流到水箱724中,随后送到冷却器722进行冷却。尽管在图1的系统10中没有表示,与图1的扩散泵42相似,内部真空泵716需要适当运行冷却系统来确保在真空室712内的工作压力产生并维持在特定镀覆工艺所要求的水平。冷却器722可以是一种致冷装置,这样,该致冷装置产生的热废气可以通过通道(duct)726从移动式储存箱702的内部排出。
本发明的移动式镀覆系统700还具有容许相对容易地处理大型、庞大和沉重的部件的显著优点。从移动式储存箱702的主入口处放入要被涂敷或镀覆的基底、零件或部件,如图7所示,当主入口门728和主入口门730打开时,放置基底、零件或部件。在基底特别沉重或笨重的情况下,在主入口或开口处设置空中吊运/升降组件732。在所示的实施方案中,空中吊运/升降组件732包括安装在移动式储存箱702顶部附近的框架结构。空中吊运/升降组件732的框架结构可以移动,并可以用马达734驱动。马达734使得空中吊运/升降组件732用轮子如图示的轮子736,沿着设置于移动式储存箱702顶部或上部附近的轨道从移动式储存箱702的主开口处滚进、滚出或滑进、滑出。在一个优选的实施方案中,移动式镀覆系统700包括铰接的延伸轨道738和740(也可称为“空中翼轨”),因此安置延伸轨道738可以将上述的空中吊运/升降组件732的轨道延伸到移动式储存箱702之外。
如双箭头所示,空中吊运/升降组件732可以在移动式储存箱702的内部和外部移动。当空中吊运/升降组件732移出移动式储存箱702时,延伸轨道738和740提供了空中吊运/升降组件732的各种轮子如轮子736可以安放或在其上滚动的轨道。
工作中,庞大或笨重工件放置在移动式储存箱702的主开口或入口处的外面。随后,用马达734来移动空中吊运/升降组件732,使空中吊运/升降组件732的升举器(在图7中没有特别表示出来)放置在庞大基底的上方或附近。如前面解释的那样,当空中吊运/升降组件732位于移动式镀覆系统700的移动式储存箱702之外时,使用延伸滚道738和740来支撑空中吊运/升降组件732。然后将升举器放低,该升举器优选为电动或机动升举器,并将基底提升到适当的位置。然后将空中吊运/升降组件732放置在移动式储存箱702的主开口之内,直到将基底放置到预定位置。
基底的预定位置一般优选位于移动推车或平台742之上。然后用空中吊运/升降组件732的升举器来放低基底,将基底放置在可移动的推车或平台742上。在图7所示的优选实施方案中,可以将可移动的推车或平台742放置到轨道744上。这允许使用轨道744上的可移动的推车或平台742将基底移到真空室712内。可以将工作台或平台放置在可移动的推车或平台742的顶面,并且优选将基底停放在该表面上。然后将该工作台或平台与基底置入真空室712内,因此,在一个实施方案中,将表面放有基底的工作台或平台沿着位于真空室712内侧的轨道滑入真空室712中。在图7的实施方案中,真空室712为一个大的金属容器,其在靠近轨道744处有一个大的开口。真空室712可以为任何已知或现有的结构,也可由任何已知或现有的材料制成。
一旦将庞大或笨重的基底(或任何其它此类的这种基底)放置到真空室712内,就可以根据要求进行镀覆工艺。例如,该镀覆工艺可以使用以上结合图5讨论过的等离子镀覆方法。在这种情况下,使用所有在前面结合图1说明过的设备来设定适当的工作参数。一般,用控制元件746来控制所有的或某些运行和监控镀覆工艺所需的真空泵、阀及其它配套设备如配套设备748。在一个实施方案中,配套设备748可包括与图1所示相类似的设备。例如,配套设备748可包括类似于图1的直流电源66的可在基底上产生所需电压的直流电源、类似于图1的射频发射器64的可在基底上产生所需功率射频信号的射频发射器,可在真空室712内的丝极上产生所需电流的丝极功率控制元件。控制元件746也可控制真空室712内气体如氩气750的引入。控制元件746也能控制马达752,该马达是用来向真空室712内提供机械能的,如使放置基底的转台或平台上的滚轴旋转的机械能。这与图1的驱动马达24相似。
在其它的实施方案中,移动式镀覆系统700可包括位于移动式储存箱702内的喷丸室。在图7中没有表示出来的喷丸室可用来在将基底引入真空室712内进行镀覆之前对基底进行清理。
图8为根据本发明的一个实施方案,表示外部真空泵704与移动式镀覆系统700的真空室712之间的连接的侧视图。外部真空泵704包括低真空泵708和前级真空泵710。图示中低真空泵708和前级真空泵710均以泵和马达一起来表示,并安装在滑行架780上。在一个优选的实施方案中,可用叉式升降机来升举滑行架780。
低真空泵708通过管道系统与真空室712相连,该管道系统包括低真空截止阀782、延伸通过或通向移动式储存箱702处的可拆卸箱786通向移动式储存箱702内部的柔性管件784。在移动式储存箱702内,低真空泵708在直接与真空室712连接之前还包括柔性管件788和低真空阀790。
外部真空泵704的前级真空泵710与内部真空泵716的扩散泵相连然后通向真空室712的连接包括各种管道系统元件,这些管道系统元件类似于刚才关于低真空泵708的管道系统的说明。在与扩散泵716连接之前还包括柔性管件792、柔性管件794和前级真空阀796,该柔性管件792与可拆卸箱786相连并延伸到移动式储存箱内部。然后通过主阀798将扩散泵716与真空室712相连。
图示中交叉连接阀800将上述两条路径连接起来。尽管交叉连接阀800是常闭的,一旦机械前级真空泵710或机械低真空泵708坏了或者需要维修,该交叉连接阀800允许只使用上述的一个泵来使真空室712内产生所需的真空。这提供了显著的灵活度,从而增强了整体工作的可靠度。
图9是说明使用根据本发明的一个实施方案的移动式镀覆系统700的方法900的流程图。方法900从方框902开始,进行到方框904。在方框904,将移动式镀覆系统放置到所需位置。例如,如果在核电站使用该移动式镀覆系统,该移动式镀覆系统将被放置在或靠近核电站所在地,这样任何需要涂敷或镀覆的关键零件或部件可以方便、轻易地输运,而无需担心装运损耗或延迟。在方框906处,将外部真空泵从移动式镀覆系统的移动式储存箱之内移出,并放到移动式储存箱之外。这具有显著的优点,消除了可能干扰镀覆工艺的巨大机械噪声源和振动源。
方法900进行到方框908,在这里使用柔性管件将外部真空泵与真空室相连。如上面刚讨论过的那样,这一点也进一步隔开了外部真空泵,且消除了由于机械应力、裂纹和泄漏造成的潜在失效或破坏。进行到方框910,可将基底如反应堆容器盖螺柱与沉积物质一起放置到真空室内。如上面结合图7讨论过的那样,在基底为大型或庞大的部件的情况下,本发明具有显著的优点,即允许使用空中吊运/升降机来方便地处理这样的基底,该空中吊运/升降机能延伸到移动式镀覆系统的移动式储存箱之外。然后可将基底按要求准确地放置在能滑入或置入真空室内的平台或工作台上。
方法900进行到方框912,开始进行镀覆工艺。一般包括设定真空室内产所需的压力和工作参数。最后,方法900进行到方框914,使用事实上任何已知的或现有的镀覆或沉积技术如真空淀积、等离子镀覆、物理汽相淀积、化学气相淀积、离子镀、溅射和离子注入来将沉积物质镀覆到基底上。最后,方法900在方框916处结束。
因此,显然本发明提供了一种具备上述一种或多种优点的移动式镀覆系统和方法。尽管上面已经详细说明了优选的实施方案,应理解的是,在这里所能作出的各种改变、替代和变更并不脱离本发明的范围,即便是缺少以上认识到的所有、一个或一些优点。例如,真空室和外部真空泵之间可以使用一个或多个柔性管件或接头进行连接,也可通过内部真空泵如扩散真空泵、低温泵和/或涡轮分子泵进行连接。本发明可使用各种材料和结构来实施。例如,本发明中可使用各种真空泵系统、设备和技术。这些只是本发明规划和覆盖的移动式镀覆系统和方法的其它配置或结构的一部分例子。
在优选的实施方案独立或分开描述和说明的各种部件、设备、物质、元件和工艺可以与其它元件和工艺相结合,而不会背离本发明的范围。例如,可以连接或集成一个或多个泵来帮助在真空室产生或维持所需压力或真空度条件。本领域的专业人员可以很容易地做出其它的改变、替代和变更的实施例,而这些实施例并不背离本发明的精神和范围。

Claims (32)

1.一种用于施行镀覆工艺的移动式镀覆系统,其包括:
移动式储存箱;
位于移动式储存箱中的真空室;
外部真空泵,其可操作地在运送移动式镀覆系统的途中置于移动式储存箱内,而在移动式镀覆系统被固定以及运转过程中置于移动式储存箱之外进行工作,该外部真空泵通过柔性管件可操作地与真空室相连,以助于在真空室内产生所需的压力;和
可控制该外部真空泵的控制元件。
2.根据权利要求1的移动式镀覆系统,其中移动式储存箱为拖车。
3.根据权利要求1的移动式镀覆系统,其中移动式储存箱为货箱。
4.根据权利要求3的移动式镀覆系统,其中货箱为海/陆两用货箱。
5.根据权利要求1的移动式镀覆系统,其中移动式储存箱为卡车货厢。
6.根据权利要求1的移动式镀覆系统,其中外部真空泵安装在滑轨上。
7.根据权利要求1的移动式镀覆系统,其中外部真空泵为机械泵。
8.根据权利要求1的移动式镀覆系统,其中外部真空泵包括低真空泵和前级真空泵。
9.根据权利要求8的移动式镀覆系统,其中低真空泵为使用第一柔性管件与真空室相连的机械泵,前级真空泵为通过第二柔性管件与真空室相连的机械泵。
10.根据权利要求8的移动式镀覆系统,其中低真空泵和前级真空泵安装在滑轨上。
11.根据权利要求1的移动式镀覆系统,还包括:可操作地与真空室相连并有助于在真空室内产生所需压力的内部真空泵,和其中的可操作地控制该内部真空泵的控制元件。
12.根据权利要求11的移动式镀覆系统,其中外部真空泵包括低真空泵和前级真空泵,该低真空泵使用第一柔性管件与真空室相连,而该前级真空泵通过第二柔性管件和内部真空泵与真空室相连。
13.根据权利要求11的移动式镀覆系统,其中内部真空泵为扩散泵。
14.根据权利要求11的移动式镀覆系统,还包括:用于可操作地冷却内部真空泵的冷却系统。
15.根据权利要求14的移动式镀覆系统,其中冷却系统为水冷系统,该冷却系统包括:可操作地产生冷却水并向内部真空泵提供用于冷却的冷却水的冷却器;和可操作地接收并储存来自内部真空泵的温水、并向冷却器提供这种温水的水箱。
16.根据权利要求1的移动式镀覆系统,还包括:
可操作地设于真空室内并支撑着被镀覆基底的平台;
真空室内与平台相应的可操作地装载沉积物质的丝极;和
配套设备,该配套设备包括:
在基底上可操作地产生所需电压的直流电源;
在基底上可操作地产生所需功率的射频信号的射频发射器;和在丝极上可操作地产生所需电流的丝极电源控制元件,以及其中可操作地控制直流电源、射频发射器和丝极电源控制元件的控制元件。
17.根据权利要求16的移动式镀覆系统,其中平台为转台,并进一步包括:可操作地控制转台旋转的马达,和其中的可操作地控制该马达的控制元件。
18.根据权利要求17的移动式镀覆系统,还包括:可操作地支撑平台并运送平台往返于真空室的移动式推车。
19.根据权利要求18的移动式镀覆系统,其中移动式推车在轨道上运行。
20.根据权利要求17的移动式镀覆系统,还包括:用于在镀覆之前清理基底的喷丸室。
21.根据权利要求1的移动式镀覆系统,还包括:可操作地设于真空室内支撑被镀覆基底的平台;和可操作地提升基底并将基底运送到平台上的空中吊运/升降机。
22.根据权利要求21的移动式镀覆系统,还包括:可操作地允许空中吊运/升降机移动到移动式储存箱之外,从而将基底提升并运送到位于移动式储存箱之内的平台上的延伸轨道。
23.根据权利要求1的移动式镀覆系统,其中镀覆工艺为等离子镀覆。
24.根据权利要求1的移动式镀覆系统,其中镀覆工艺使用的是真空淀积。
25.根据权利要求1的移动式镀覆系统,其中镀覆工艺为物理气相淀积。
26.根据权利要求1的移动式镀覆系统,其中镀覆工艺为化学气相淀积。
27.根据权利要求1的移动式镀覆系统,其中镀覆工艺使用的是溅射。
28.根据权利要求1的移动式镀覆系统,其中镀覆工艺使用的是离子镀。
29.根据权利要求1的移动式镀覆系统,其中镀覆工艺使用的是离子注入。
30.一种用于施行镀覆工艺的移动式镀覆系统,其包括:
移动式储存箱;
位于移动式储存箱中的真空室;
外部真空泵,其可操作地在运送移动式镀覆系统的途中置于移动式储存箱内,而在移动式镀覆系统被固定以及运转过程中置于移动式储存箱之外进行工作,该外部真空泵通过柔性管件可操作地与真空室相连,有助于在真空室内产生所需的压力;
可操作地与真空室相连并帮助在该真空室内产生所需压力的内部真空泵;
可操作地冷却该内部真空泵的冷却系统;
可操作地设于真空室内以支撑被镀覆的基底的平台;
真空室内与平台相应的可操作地装载沉积物质的丝极;和
配套设备,其包括:
在基底上可操作地产生所需电压的直流电源;
在基底上可操作地产生所需功率的射频信号的射频发射器;和
可在丝极上可操作地产生所需电流的丝极电源控制元件;和
可操作地控制外部真空泵、内部真空泵、直流电源、射频发射器和丝极电源控制元件的控制元件。
31.一种使用移动式镀覆系统的方法,包括:
将移动式镀覆系统放置在所需的镀覆位置;
将外部真空泵从移动式等离子镀覆系统的移动式储存箱内部移出至外部;和
使用柔性管件将外部真空泵与移动式等离子镀覆系统的移动式储存箱内的真空室相连。
32.根据权利要求31的方法,还包括:
将基底和沉积物质置于真空室内;
使用该外部真空泵来设定真空室内所需的压力;和
用沉积物质来镀覆基底。
CNB018198546A 2000-05-22 2001-05-22 移动式镀覆系统及方法 Expired - Fee Related CN1291060C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/576,640 US6503379B1 (en) 2000-05-22 2000-05-22 Mobile plating system and method
US09/576,640 2000-05-22

Publications (2)

Publication Number Publication Date
CN1478292A true CN1478292A (zh) 2004-02-25
CN1291060C CN1291060C (zh) 2006-12-20

Family

ID=24305307

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018198546A Expired - Fee Related CN1291060C (zh) 2000-05-22 2001-05-22 移动式镀覆系统及方法

Country Status (10)

Country Link
US (3) US6503379B1 (zh)
EP (1) EP1290715A2 (zh)
JP (1) JP2003534458A (zh)
KR (1) KR100819089B1 (zh)
CN (1) CN1291060C (zh)
AU (2) AU2001264782B2 (zh)
CA (1) CA2410347A1 (zh)
MX (1) MXPA02011506A (zh)
WO (1) WO2001090436A2 (zh)
ZA (1) ZA200209993B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109005664A (zh) * 2017-04-07 2018-12-14 应用材料公司 用于真空处理系统的供应接线导件

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7250196B1 (en) * 1999-10-26 2007-07-31 Basic Resources, Inc. System and method for plasma plating
US6521104B1 (en) 2000-05-22 2003-02-18 Basic Resources, Inc. Configurable vacuum system and method
US6503379B1 (en) 2000-05-22 2003-01-07 Basic Research, Inc. Mobile plating system and method
US6893506B2 (en) * 2002-03-11 2005-05-17 Micron Technology, Inc. Atomic layer deposition apparatus and method
US20030180450A1 (en) * 2002-03-22 2003-09-25 Kidd Jerry D. System and method for preventing breaker failure
DE10348639B4 (de) * 2003-10-15 2009-08-27 Von Ardenne Anlagentechnik Gmbh Schleusensystem für eine Vakuumanlage
WO2005109472A2 (en) * 2004-05-07 2005-11-17 Oc Oerlikon Balzers Ag Mobile pvd/cvd coating center
US7115832B1 (en) * 2005-07-26 2006-10-03 United Technologies Corporation Microplasma spray coating apparatus
JP5174467B2 (ja) * 2005-02-24 2013-04-03 エリコン トレーディング アーゲー.,トリュープバッハ 帯鋸及び帯鋸の製造方法
US9177843B2 (en) * 2007-06-06 2015-11-03 Taiwan Semiconductor Manufacturing Company, Ltd. Preventing contamination in integrated circuit manufacturing lines
WO2010067159A2 (en) * 2008-12-12 2010-06-17 Applied Materials, Inc. Integration of a processing bench in an inline coating system
US20100147217A1 (en) * 2008-12-12 2010-06-17 Edgar Haberkorn Integration of a processing bench in an inline coating system
US7993937B2 (en) * 2009-09-23 2011-08-09 Tokyo Electron Limited DC and RF hybrid processing system
DE102013205889B3 (de) 2013-04-03 2014-05-28 Kennametal Inc. Kupplungsteil, insbesondere Schneidkopf für ein Rotationswerkzeug sowie ein derartiges Rotationswerkzeug
DE102013220884B4 (de) 2013-10-15 2022-02-17 Kennametal Inc. Modulares Trägerwerkzeug sowie Werkzeugkopf
DE102014206796B4 (de) 2014-04-08 2020-10-15 Kennametal Inc. Rotationswerkzeug, insbesondere Bohrer sowie Schneidkopf für ein solches Rotationswerkzeug
DE102015211744B4 (de) 2015-06-24 2023-07-20 Kennametal Inc. Rotationswerkzeug, insbesondere Bohrer, und Schneidkopf für ein solches Rotationswerkzeug
USD798921S1 (en) 2015-10-07 2017-10-03 Kennametal Inc. Cutting head for modular drill
US9937567B2 (en) 2015-10-07 2018-04-10 Kennametal Inc. Modular drill
USD798922S1 (en) 2015-10-07 2017-10-03 Kennametal Inc. Cutting head for rotary drill
US10071430B2 (en) 2015-10-07 2018-09-11 Kennametal Inc. Cutting head, rotary tool and support for the rotary tool and for the accommodation of the cutting head
US10294579B2 (en) 2016-04-05 2019-05-21 Snap-On Incorporated Portable and modular production electroplating system
US10196951B2 (en) * 2016-05-31 2019-02-05 Boiler Tube Company Of America Selective catalytic reactor (SCR) door systems
DE102017205166B4 (de) 2017-03-27 2021-12-09 Kennametal Inc. Modulares Rotationswerkzeug und modulares Werkzeugsystem
DE102017212054B4 (de) 2017-07-13 2019-02-21 Kennametal Inc. Verfahren zur Herstellung eines Schneidkopfes sowie Schneidkopf
US10799958B2 (en) 2017-08-21 2020-10-13 Kennametal Inc. Modular rotary cutting tool
CN112077370A (zh) 2019-06-13 2020-12-15 肯纳金属印度有限公司 可转位钻头刀片
JP7228612B2 (ja) 2020-03-27 2023-02-24 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、基板処理方法及びプログラム

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2241228A (en) * 1939-03-03 1941-05-06 Bell Telephone Labor Inc Coating machine
US3329601A (en) 1964-09-15 1967-07-04 Donald M Mattox Apparatus for coating a cathodically biased substrate from plasma of ionized coatingmaterial
US3719052A (en) 1971-05-04 1973-03-06 G White Vacuum system cold trap
BE790940A (fr) 1971-11-04 1973-03-01 Rca Corp Procede de reglage de la composition d'un film
US3961103A (en) 1972-07-12 1976-06-01 Space Sciences, Inc. Film deposition
US4054426A (en) 1972-12-20 1977-10-18 White Gerald W Thin film treated drilling bit cones
US3857682A (en) 1973-02-07 1974-12-31 G White High temperature resistive and dry lubricated film surfaces
US4082636A (en) 1975-01-13 1978-04-04 Sharp Kabushiki Kaisha Ion plating method
US4016389A (en) 1975-02-21 1977-04-05 White Gerald W High rate ion plating source
US4039416A (en) 1975-04-21 1977-08-02 White Gerald W Gasless ion plating
US4022939A (en) * 1975-12-18 1977-05-10 Western Electric Company, Inc. Synchronous shielding in vacuum deposition system
GB1601427A (en) 1977-06-20 1981-10-28 Siemens Ag Deposition of a layer of electrically-conductive material on a graphite body
US4137370A (en) 1977-08-16 1979-01-30 The United States Of America As Represented By The Secretary Of The Air Force Titanium and titanium alloys ion plated with noble metals and their alloys
US4126521A (en) 1977-10-19 1978-11-21 Computer Peripherals, Inc. Method of coating metal surfaces
US4282597A (en) 1977-11-28 1981-08-04 Texas Instruments Incorporated Metal-coated plastic housing for electronic components and the method of making same
JPS581186B2 (ja) 1977-12-13 1983-01-10 双葉電子工業株式会社 イオンプレ−テイング装置
USRE30401E (en) 1978-07-07 1980-09-09 Illinois Tool Works Inc. Gasless ion plating
JPS5557717A (en) 1978-10-25 1980-04-28 Koyo Seiko Co Ltd Rolling bearing
US4310614A (en) 1979-03-19 1982-01-12 Xerox Corporation Method and apparatus for pretreating and depositing thin films on substrates
EP0025263B1 (en) 1979-07-25 1983-09-21 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Nickel and/or cobalt base alloys for gas turbine engine components
US4342631A (en) 1980-06-16 1982-08-03 Illinois Tool Works Inc. Gasless ion plating process and apparatus
US4352370A (en) * 1980-10-16 1982-10-05 Steve Childress Pressure vessel valve housing
US4407712A (en) 1982-06-01 1983-10-04 The United States Of America As Represented By The Secretary Of The Army Hollow cathode discharge source of metal vapor
JPS58221271A (ja) 1982-06-18 1983-12-22 Citizen Watch Co Ltd イオンプレ−テイング法による被膜形成方法
JPS5996137A (ja) 1982-11-25 1984-06-02 Shin Etsu Chem Co Ltd 塩化ビニル系樹脂複合製品の製造方法
US4420386A (en) 1983-04-22 1983-12-13 White Engineering Corporation Method for pure ion plating using magnetic fields
US4468309A (en) 1983-04-22 1984-08-28 White Engineering Corporation Method for resisting galling
US4540596A (en) * 1983-05-06 1985-09-10 Smith International, Inc. Method of producing thin, hard coating
US4938859A (en) 1984-07-31 1990-07-03 Vacuum Optics Corporation Of Japan Ion bombardment device with high frequency
US4725345A (en) 1985-04-22 1988-02-16 Kabushiki Kaisha Kenwood Method for forming a hard carbon thin film on article and applications thereof
US4990233A (en) 1985-06-14 1991-02-05 Permian Research Corporation Method for retarding mineral buildup in downhole pumps
GB2178061B (en) 1985-07-01 1989-04-26 Atomic Energy Authority Uk Coating improvements
DE3635121B4 (de) 1985-10-15 2004-03-04 Bridgestone Corp. Verfahren zur Herstellung eines gummiartigen Verbundmaterials
US4673586A (en) 1985-10-29 1987-06-16 Cosden Technology, Inc. Method for making plastic containers having decreased gas permeability
US4667620A (en) 1985-10-29 1987-05-26 Cosden Technology, Inc. Method and apparatus for making plastic containers having decreased gas permeability
US4852516A (en) * 1986-05-19 1989-08-01 Machine Technology, Inc. Modular processing apparatus for processing semiconductor wafers
US4863581A (en) 1987-02-12 1989-09-05 Kawasaki Steel Corp. Hollow cathode gun and deposition device for ion plating process
US4826365A (en) 1988-01-20 1989-05-02 White Engineering Corporation Material-working tools and method for lubricating
US5225057A (en) * 1988-02-08 1993-07-06 Optical Coating Laboratory, Inc. Process for depositing optical films on both planar and non-planar substrates
US5085499A (en) 1988-09-02 1992-02-04 Battelle Memorial Institute Fiber optics spectrochemical emission sensors
FR2644378B1 (fr) 1988-12-08 1991-06-07 Techmeta Procede de construction de machines sous vide de grandes dimensions a enceintes et equipements mecaniques desolidarises
US5076205A (en) * 1989-01-06 1991-12-31 General Signal Corporation Modular vapor processor system
US5061512A (en) 1989-02-21 1991-10-29 General Electric Company Method of producing lubricated bearings
US4956858A (en) 1989-02-21 1990-09-11 General Electric Company Method of producing lubricated bearings
US5409762A (en) 1989-05-10 1995-04-25 The Furukawa Electric Company, Ltd. Electric contact materials, production methods thereof and electric contacts used these
GB9006073D0 (en) 1990-03-17 1990-05-16 D G Teer Coating Services Limi Magnetron sputter ion plating
US5078847A (en) 1990-08-29 1992-01-07 Jerry Grosman Ion plating method and apparatus
JP3023982B2 (ja) * 1990-11-30 2000-03-21 東京エレクトロン株式会社 成膜方法
US5190703A (en) 1990-12-24 1993-03-02 Himont, Incorporated Plasma reactor chamber
JP3133388B2 (ja) 1991-05-27 2001-02-05 三洋電機株式会社 ステンレス鋼の耐食性改善方法
WO1993007453A1 (en) 1991-10-03 1993-04-15 Iowa State University Research Foundation, Inc. Mobile inductively coupled plasma system
US5252365A (en) 1992-01-28 1993-10-12 White Engineering Corporation Method for stabilization and lubrication of elastomers
US5227203A (en) 1992-02-24 1993-07-13 Nkk Corporation Ion-plating method and apparatus therefor
JPH0673538A (ja) 1992-05-26 1994-03-15 Kobe Steel Ltd アークイオンプレーティング装置
US5357291A (en) * 1992-09-08 1994-10-18 Zapit Technology, Inc. Transportable electron beam system and method
US5439498A (en) * 1992-11-10 1995-08-08 Exide Corporation Process and system for the on-site remediation of lead-contaminated soil and waste battery casings
WO1994021839A1 (en) * 1993-03-15 1994-09-29 Kabushiki Kaisha Kobeseikosho Apparatus and system for arc ion plating
KR100267617B1 (ko) * 1993-04-23 2000-10-16 히가시 데쓰로 진공처리장치 및 진공처리방법
DE4418161A1 (de) 1994-05-25 1995-11-30 Fraunhofer Ges Forschung Einrichtung zur Durchführung elektronenstrahltechnologischer Prozesse im Vakuum
JPH07331414A (ja) 1994-06-01 1995-12-19 Ykk Kk 耐摩耗性膜
DE19526387C2 (de) * 1994-07-19 1998-12-10 Sumitomo Metal Mining Co Doppelt beschichteter Stahlverbundgegenstand und Verfahren zu dessen Herstellung
US5798496A (en) 1995-01-09 1998-08-25 Eckhoff; Paul S. Plasma-based waste disposal system
DE19505258C2 (de) 1995-02-16 1998-08-06 Samsung Electronics Co Ltd Beschichtungsvorrichtung
JPH08321448A (ja) * 1995-05-25 1996-12-03 Tadahiro Omi 真空排気装置、半導体製造装置及び真空処理方法
US5961798A (en) * 1996-02-13 1999-10-05 Diamond Black Technologies, Inc. System and method for vacuum coating of articles having precise and reproducible positioning of articles
ATE218628T1 (de) 1996-11-13 2002-06-15 Doerken Ewald Ag Verfahren zum aufbringen einer anorganischen beschichtung auf einen elektrisch leitfähigen körper
EP0856602A1 (de) 1997-01-31 1998-08-05 Benninger AG Verfahren und Vorrichtung zur Applikation von Küpenfarbstoff, insbesondere Indigo auf eine Fadenschar
US6156392A (en) 1999-07-13 2000-12-05 Nylok Fastener Corporation Process for triboelectric application of a fluoropolymer coating to a threaded fastener
US6521104B1 (en) 2000-05-22 2003-02-18 Basic Resources, Inc. Configurable vacuum system and method
US6503379B1 (en) * 2000-05-22 2003-01-07 Basic Research, Inc. Mobile plating system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109005664A (zh) * 2017-04-07 2018-12-14 应用材料公司 用于真空处理系统的供应接线导件

Also Published As

Publication number Publication date
EP1290715A2 (en) 2003-03-12
US6503379B1 (en) 2003-01-07
ZA200209993B (en) 2004-01-26
JP2003534458A (ja) 2003-11-18
WO2001090436A3 (en) 2002-03-14
AU2001264782B2 (en) 2005-10-13
US20030136670A1 (en) 2003-07-24
KR100819089B1 (ko) 2008-04-02
WO2001090436A2 (en) 2001-11-29
KR20030091652A (ko) 2003-12-03
AU6478201A (en) 2001-12-03
CA2410347A1 (en) 2001-11-29
MXPA02011506A (es) 2004-09-10
US20030121776A1 (en) 2003-07-03
CN1291060C (zh) 2006-12-20
US7189437B2 (en) 2007-03-13
US6858119B2 (en) 2005-02-22

Similar Documents

Publication Publication Date Title
CN1291060C (zh) 移动式镀覆系统及方法
CN1451171A (zh) 可配置真空系统和方法
AU2001264782A1 (en) Mobile plating system and method
US7367488B2 (en) Method of repair of thin wall housings
US7326892B1 (en) Process of microwave brazing with powder materials
WO2013049274A2 (en) Large-area sputtering targets and methods of manufacturing large-area sputtering targets
CN1914352A (zh) 室部件的清洁
AU2001264853A1 (en) Configurable vacuum system and method
US20100058986A1 (en) System and method for plasma plating
AU2006200125B2 (en) Mobile plating system and method
CN108505031A (zh) 一种自动化电子产品表面喷涂工艺方法
JP5634289B2 (ja) 真空処理方法
CA2507735A1 (en) Configurable vacuum system and method
JPH11131221A (ja) 気相堆積形成コーティング装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: VILLANOVA MACHINE MANUFACTURING CO., LTD.

Free format text: FORMER OWNER: BASE RESOURCE CO., LTD.

Effective date: 20080711

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20080711

Address after: ohio

Patentee after: Basic Resources Inc.

Address before: texas

Patentee before: Basic Resources Inc.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061220