CN1448992A - 在半导体器件中形成接触插塞的方法 - Google Patents

在半导体器件中形成接触插塞的方法 Download PDF

Info

Publication number
CN1448992A
CN1448992A CN03101730A CN03101730A CN1448992A CN 1448992 A CN1448992 A CN 1448992A CN 03101730 A CN03101730 A CN 03101730A CN 03101730 A CN03101730 A CN 03101730A CN 1448992 A CN1448992 A CN 1448992A
Authority
CN
China
Prior art keywords
contact hole
under
silicon fiml
contact
scope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03101730A
Other languages
English (en)
Other versions
CN100338736C (zh
Inventor
郑又硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covenson wisdom N.B.868 company
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of CN1448992A publication Critical patent/CN1448992A/zh
Application granted granted Critical
Publication of CN100338736C publication Critical patent/CN100338736C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • H01L21/02063Cleaning during device manufacture during, before or after processing of insulating layers the processing being the formation of vias or contact holes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising semiconducting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • H01L21/28562Selective deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76814Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种在半导体器件中形成接触插塞的方法,其即使在接触尺寸变小且台阶覆盖性降低的情况下也能防止接触电阻的增加、并能抑制接触电阻均匀性的降低。本发明方法包括步骤:通过蚀刻衬底上的绝缘层形成接触孔;在接触孔中的衬底上形成具有第一掺杂浓度的第一硅膜,使得接触孔被部分填充;使掺杂气体在第一硅膜的表面上冲刷;以及在第一硅膜上形成具有比第一掺杂浓度高的第二掺杂浓度的第二硅膜,直至填充该接触孔。

Description

在半导体器件中形成接触插塞的方法
技术领域
本发明涉及一种制造半导体器件的方法,更具体地,涉及一种在半导体器件中形成具有双重多晶硅(DPS)薄膜的接触插塞的方法。
背景技术
近来,接触插塞的尺寸随着半导体器件集成水平的日益提高而减小。由于接触插塞的此小尺寸,通常所使用的硅插塞的接触电阻反而增大。特别地,形成在接触插塞界面上的氧化物是增大多晶硅插塞接触电阻的原因之一。因此,进行清洁工序来去除该氧化物,以降低多晶硅插塞的接触电阻。
然而,在通过借助非原位(ex-situ)清洁工艺清洁半导体衬底来去除氧化物构成的层的情形下,在完成了非原位清洁工艺的半导体衬底装载到沉积设备上的同时,自然氧化层形成了。因为此原因,不可能完全去除形成在接触插塞界面上的氧化物。因此,如果接触插塞的尺寸在自然氧化层依然存在的状况下减小,则接触电阻更大程度地增加。因此,应当采用原位清洁工艺,以最大程度地抑制自然氧化层的形成。
传统的多晶硅插塞工艺通常在管式沉积设备(tube-type depositionequipment)或单一晶片型沉积设备(single wafer-type deposition equiment)中进行。
在通过借助管式沉积设备沉积硅薄膜来形成接触插塞的情形下,对于硅薄膜可以获得良好的台阶覆盖性,但不可能进行原位清洁工艺。因此,在进行非原位清洁工艺之后必然沉积硅薄膜。然而,自然氧化层在将晶片装入沉积硅薄膜所需的管式沉积设备中的过程中形成。
由于单一晶片型沉积设备具有清洁功能,所以可以进行原位清洁工艺,并在此原位环境下沉积硅薄膜,从而防止自然氧化层形成。
如上所述,如果接触插塞在单一晶片型沉积设备中形成,则通过在氢气氛中或清洁工序中施行烘烤或快速热处理(RTP),可以去除形成在接触插塞界面处的自然氧化层。然而,与管式沉积设备的使用相比,当接触插塞的尺寸更小时,诸如均匀性和台阶覆盖性的特性变差。具体地,接触电阻的均匀度降低。
此外,因为减小的接触尺寸和增大的长径比,应当通过沉积硅来进行充分的间隙填充。然而,与管式沉积设备相比,单一晶片型沉积设备具有差的间隙填充能力。
图1A和1B为曲线图,示出了接触插塞的接触电阻随传统接触尺寸的变化。
参见图1A,该曲线图示出了每个接触尺寸为0.18μm时获得的接触电阻的值。单一晶片型沉积设备显现了与选择性外延生长(SEG)或管式DF33较相似的接触电阻和均匀性。
然而,在接触尺寸减小到0.14μm的情形下,固相外延(SPE)或先进多晶硅工艺(APP)的接触电阻增加,导致总体较差的均匀性和平均接触电阻的迅速增大。
发明内容
因此,本发明的目的是提供一种在半导体器件中形成接触插塞的方法,即使接触尺寸变得更小,该方法也能防止接触电阻的增加、以及因较差的台阶覆盖性导致的接触电阻的均匀性的降低。
根据本发明的一个方面,提供一种在半导体器件中形成接触插塞的方法,包括步骤:通过蚀刻衬底上的绝缘层形成接触孔;在接触孔中的衬底上形成具有第一掺杂浓度的第一硅膜,使得接触孔被部分填充;使掺杂气体在第一硅膜的表面上冲刷;以及在第一硅膜上形成具有比第一掺杂浓度高的第二掺杂浓度的第二硅膜,直至填充该接触孔。
根据本发明的另一个方面,冲刷掺杂气体的步骤在形成第一硅膜后在原位环境(in-situ environment)中进行。并且,冲刷掺杂气体的步骤进行约5秒至20秒,且通过将少量PH3加入氢气获得的掺杂气体的流量为约20sccm至约500sccm。为形成第一硅膜所采用的相同的温度和压力用于冲刷该掺杂气体。
根据本发明的再一个方面,清洁接触孔的步骤还包括以下步骤:在非原位环境下进行第一次清洁;以及在原位环境下进行第二次清洁。此外,进行第二次清洁的步骤在单一晶片型沉积设备中,通过在氢气氛中将以约10℃每秒至约100℃每秒的一加热速度快速上升至约900℃至约960℃的温度降低来进行。
根据本发明的又一个方面,第一硅膜在单一晶片型化学气相沉积设备中在原位环境下形成。具体地,在约5Torr至约50Torr范围内的一压力下,在约500℃至约650℃范围内的一温度下,通过提供SiH4、H2和混合了约1%PH3的H2的混合气体,沉积第一硅膜。此外,第一预定浓度在约1×1019atoms/cm3至约21×1020atoms/cm3的范围内。
根据本发明的又一个方面,第二硅膜在管式化学气相沉积设备中形成。具体地,在约0.1Torr至约1Torr范围内的一压力下,在约510℃至约610℃范围内的一温度下,在提供SiH4、H2和混合约1%PH3的H2的混合气体的同时,沉积第二硅膜。此外,第二预定浓度在约1×1020atoms/cm3至约31×1021atoms/cm3的范围内。
附图说明
由以下结合附图给出的对优选实施例的说明,本发明的以上和其它目的和特征将变得清晰,其中:
图1A和1B是显示接触插塞的接触电阻随传统接触尺寸变化的曲线图;
图2A至2E是说明根据本发明一优选实施例形成接触插塞的方法的剖视图;
图3A至3C是显示根据本发明优选实施例的接触插塞的接触电阻值的曲线图;
图4是显示包括传统管式多晶硅插塞和根据本发明制备的双重多晶硅插塞的半导体器件中的电流(I)和电压(V)之间的对比的示意图;以及
图5是显示相应于本发明的温度设置的Kelvin接触电阻特性的曲线图。
具体实施方式
图2A至2E是剖视图,示出了根据本发明优选实施例在半导体器件中形成具有双重多晶硅(DPS)薄膜的接触插塞的方法。
参见图2A,层间绝缘层13形成在设置有包括结区域12的各种元件的衬底11上。然后,蚀刻层间绝缘层13的预定部分,以形成暴露衬底11的结区域12的接触孔14。
此时,自然氧化层15形成在由接触孔14的形成而露出的结区域12的表面上。此外,在形成接触孔14的同时,出现蚀刻的副产物残余和由结区域12处的蚀刻导致的损伤层。残余物和损伤层降低了半导体器件的漏电流特性。此外,自然氧化层15增大了接触电阻,因而成为降低半导体器件的电性能的一个因素。
在去除自然氧化层15之前,在通过蚀刻层间绝缘层13的预定部分形成接触孔14的过程中附带产生的残余物和损伤层通过采用热氧化技术、氢气退火技术或等离子体清洁技术来去除。
首先,热氧化技术是一种工艺,其中,热氧化层通过将温度维持在约900℃至约1000℃的范围内而在接触孔内的结区域上形成,然后通过利用以约50比约1的比例稀释的HF水溶液的浅的湿式浸渍过程来去除。即,残余物和损伤层在被取代以形成热氧化层后被去除。其次,氢气退火技术是一种在约900℃至约1000℃范围内的一温度下供给氢气约5分钟至约10分钟的工艺。再者,等离子体清洁技术是一种在约1W至约50W范围内的一低功率下利用NF3或包括H2的SiF6来进行的工艺。
在通过以上技术中的一种去除残余物和损伤层之后,第一清洁工序在非原位环境下,通过湿式浸渍工艺,在沉积硅插塞前进行。第一清洁工序去除由诸如碳和氧化物的污染物导致的污染。具体地,将H2SO4和H2O2溶液应用约5分钟到约10分钟以去除碳污染,该溶液通过用H2O2稀释H2SO4得到,H2SO4的稀释比在约10至约50的范围内,H2O2的稀释比为约1。其后,应用稀释的HF水溶液约10秒至60秒,以除去氧化物污染。此处,HF水溶液以约50至约500范围内的一比例用其比例约为1的H2O稀释。
参见图2,在非原位清洁工序之后,衬底11装到单一晶片型沉积设备上,使得第二清洁工序在原位环境中进行。原位清洁工序用于通过进行H2快速热退火工序(以下成为H2-RTP)来去除结区域12表面上的自然氧化层15。
用于去除自然氧化物层15的H2-RTP工序通过将一温度降低来进行,该温度已经被设置为以约10℃每秒至约100℃每秒范围内的一加热速度快速上升至900℃至950℃之间的一范围。
参见图2C,在进行原位清洁工序的单一晶片型沉积设备中,具有第一预定浓度的第一硅薄膜16A沉积在接触孔14中的结区域12上。此处,第一硅薄膜16A在原位清洁工序之后,在不暴露在空气中的情况下直接在该单一晶片型沉积设备内沉积。
同时,第一硅薄膜16A沉积至总接触孔大小的约5%至30%。优选地,第一硅薄膜16A沉积至约40至约400范围内的一厚度。
此外,第一硅薄膜16A的沉积在约550℃至约650℃范围内的一温度下,在约5Torr至约50Torr范围内的一压力下,通过供给由混合SiH4、H2和混合了约1%PH3的H2获得的混合气体来进行。此时,SiH4的流量在约50sccm至约300sccm的范围内,同时H2的流量保持在约500sccm至约10000sccm的范围内。此外,混合气体的流量在约10sccm至约50sccm的范围内。
根据以上条件,第一硅薄膜16A沉积,使得第一预定浓度在约1×1019atoms/cm3至约21×1020atoms/cm3的范围内。沉积具有如此低浓度的第一硅薄膜16A的原因在于保持结区域12的清洁状态,并防止掺杂在结区域12上的磷因后续热工艺的热供给(thermal budget)而向外扩散。
通常,与在其它类型沉积法中处理的相比,在单一晶片型化学气相沉积(CVD)设备中处理的沉积层存在低的均匀性和台阶覆盖特性的问题。然而,第一硅薄膜16A不受台阶覆盖性和均匀性降低的影响,因为其较薄地沉积至约40至约400范围内的一厚度。优选地,由于单一晶片型CVD设备具有清洁功能,所以第一硅薄膜16A可以在进行清洁工序后在原位环境下沉积,从而防止自然氧化层15在第一硅薄膜16A和结区域12之间的界面上形成。结果,还可以防止因自然氧化层15导致的接触电阻增大。
参见图2D,在沉积第一硅薄膜16A之后,H2气中包括的PH3作为掺杂气体在原位环境下得以冲刷。此冲刷工序在第一硅薄膜16A的表面上形成掺杂剂吸收层16B。掺杂剂吸收层16B减小了由后续第二硅薄膜增加接触电阻的作用。
当在非原位环境下沉积第二硅薄膜时,难以抑制第一和第二薄膜之间的界面上薄氧化层的形成。然而,如果采用在完成第一硅薄膜16A的沉积的步骤的终了时以高浓度PH3气体冲刷第一硅薄膜16A的表面,则可以抑制接触电阻的增加。
形成掺杂剂吸收层16B的冲刷工序以相同的用于第一硅薄膜16A的沉积工序的温度和压力进行约5秒至20秒,但是包括约10% PH3气体的含H2气的掺杂气体的流量在约20sccm至约500sccm的范围内。
参见图2E,具有第二预定浓度的第二硅薄膜16C沉积在第一硅薄膜16A上,具体地是在掺杂剂吸收层16B上,直至完全填充接触孔14。
通过进行以上工序,形成了包括第一和第二硅薄膜16A和16C的接触插塞16。第二硅薄膜16C在完成第一硅薄膜16A的沉积后毫无延迟地在管式CVD设备中连续沉积。
同时,第二硅薄膜16C在约0.1Torr至约1Torr压力范围内的一压力下,在约510℃至约610℃温度范围内的一温度下,通过供给由混合SiH4气体、H2气和混合了约1%PH3的H2气获得的混合气体来沉积。SiH4气体的流量在约200sccm至约2000sccm的范围内,同时H2气的流量在约500sccm至约5000sccm的范围内。此外,混合气体的流量在约100sccm至约1000sccm的范围内。此时,在沉积第二硅薄膜16C时,沉积速率维持在约50每分钟以下,以提高间隙填充性能。
根据以上提供的条件,沉积第二硅薄膜16C,具有约1×1020atoms/cm3至约31×1021atoms/cm3范围内的第二浓度。
由于第二硅薄膜16C在管式CVD设备中形成,所以可以通过提高台阶覆盖特性来防止具有大长径比的接触孔14中的接缝或空洞现象。
第二硅薄膜16C通过在单一晶片型CVD设备中形成第一硅薄膜16A之后将其装入管式CVD设备中来形成。由于,第二硅薄膜16C是在形成第一硅薄膜16A之后立即形成的,所以自然氧化层的形成最大程度地得以控制。虽然自然氧化层可以在形成第二硅薄膜16C的过程中形成,但是由于界面的一致性因后续热处理而未保留(retain),所以其未增加接触电阻。
然后,采用预定数量的平坦化工序来去除层间绝缘层13的顶部上的第二硅薄膜16C,以制备各自均电独立的接触插塞。
图3A至3C是曲线图,显示了对根据本发明优选实施例的接触插塞的接触电阻值的分析。为了分析接触插塞自身的接触电阻,采用了Kelvin接触电阻(Rc)图。另一方面,连续接触电阻(chain contact resistance)(Rc)图用于评价接触电阻的均匀性。
图3A示出了接触尺寸为约0.18μm情形下的Kelvin接触电阻图。由本发明制备的多晶硅插塞TMW1-A+DF333具有减小通过传统管式沉积设备沉积的多晶硅插塞DF33的约50%的接触电阻。此外,仅用H2-RTP在非原位环境下处理的样品RTP-cln+DF33也具有减小传统多晶硅插塞的约30%至约40%的接触电阻。
图3B示出了约0.18μm接触尺寸下的接触电阻。降低接触电阻的效果与图3A所示的接触电阻相同。
图3C显示了接触尺寸为约0.14μm情形下的接触电阻。与图3A和3B中所示的接触电阻相比,连续接触电阻显示了比Kelvin接触电阻更好的均匀性,且双重多晶硅插塞具有比传统管式沉积设备中形成的多晶硅插塞好的接触电阻。该接触电阻为约10%,且均匀性一样好。
以上结果的原因是由于多晶硅插塞之间界面的单晶特性。此现象由对电流(I)与电压(V)特性的评估所验证。
图4是显示两个半导体器件的I与V特性之间的对比的图表,一个半导体器件具有通过传统管式沉积设备形成的多晶硅插塞,另一个具有根据本发明形成的双重多晶硅插塞。在低电流施加部分,双重多晶硅(以下称为DPS)插塞具有欧姆接触的特性,这表示界面具有单晶。另一方面,通过管式沉积设备形成的多晶硅插塞显示出非欧姆接触的特性,这表示绝缘材料存在于多晶硅插塞之间的界面上。
具体地,低电流下的接触电阻的快速增加可降低半导体器件的操作性能。界面上绝缘材料的存在通过对相应于温度的Kelvin接触电阻的评估得以验证。
图5是示出根据温度的Kelvin接触电阻的图。
参见图5,DPS具有典型的硅插塞特性。即,接触电阻随着温度升高逐渐增大。相反,多晶硅插塞显现出接触电阻随温度提高而降低。
根据本发明,单晶硅插塞通过多晶硅沉积法形成,从而将接触电阻减至最小。此外,由于本发明涉及多晶硅处理,所以出现小的工艺热负荷(process heat load),从而能防止半导体器件的热劣化。此外,可以由于管式硅沉积设备的使用而防止台阶覆盖性的降低,并提高接触电阻的均匀性。
虽然本发明已经参照特定的优选实施例得以说明,但是对本领域技术人员而言清楚的是,在不脱离所附权利要求限定的发明范围的情况下,可作各种改变和修改。

Claims (17)

1.一种在半导体器件中形成接触插塞的方法,包括步骤:
通过蚀刻衬底上的绝缘层形成接触孔;
在接触孔中的衬底上形成具有第一掺杂浓度的第一硅膜,使得接触孔被部分填充;
使掺杂气体在第一硅膜的表面上冲刷;以及
在第一硅膜上形成具有比第一掺杂浓度高的第二掺杂浓度的第二硅膜,直至填充该接触孔。
2.如权利要求1所述的方法,其中,冲刷掺杂气体的步骤在形成第一硅膜后在原位环境中进行。
3.如权利要求1所述的方法,其中,冲刷掺杂气体的步骤进行约5秒至20秒,且通过将PH3加入氢气而获得的掺杂气体的流量为约20sccm至约500sccm。
4.如权利要求1所述的方法,其中,在形成第一硅膜所用的相同的温度和压力下进行冲刷该掺杂气体的步骤。
5.如权利要求1所述的方法,还包括形成该接触孔之后清洁该接触孔的步骤。
6.如权利要求1所述的方法,其中,清洁接触孔的步骤包括的步骤有:
在非原位环境下进行第一次清洁;以及
在原位环境下进行第二次清洁。
7.如权利要求6所述的方法,其中,进行第二次清洁的步骤在单一晶片型沉积设备中进行。
8.如权利要求6所述的方法,其中,进行第二次清洁的步骤通过在氢气氛中将以约10℃每秒至约100℃每秒范围内的一加热速度快速上升至约900℃至约950℃的温度进行降低来进行。
9.如权利要求6所述的方法,其中,进行第一次清洁的步骤利用湿式浸渍工艺来处理。
10.如权利要求1所述的方法,其中,第一硅膜在单一晶片型化学气相沉积设备中在原位环境下形成。
11.如权利要求1所述的方法,其中,在约5Torr至约50Torr范围内的一压力下和在约500℃至约650℃范围内的一温度下,通过提供SiH4、H2和混合了约1%的PH3的H2的混合气体,沉积第一硅膜。
12.如权利要求11所述的方法,其中,SiH4、H2和混合气体分别具有约50sccm至约300sccm、约500sccm至约10000sccm、以及约10sccm至约50sccm范围内的流量。
13.如权利要求1所述的方法,其中,第一掺杂浓度在约1×1019atoms/cm3至约21×1020atoms/cm3的范围内。
14.如权利要求1所述的方法,其中,第二硅膜在管式化学气相沉积设备中形成。
15.如权利要求1所述的方法,其中,在约0.1Torr至约1Torr范围内的一压力下和在约510℃至约610℃范围内的一温度下,通过提供SiH4、H2和混合了约1%的PH3的H2的混合气体,沉积第二硅膜。
16.如权利要求1所述的方法,其中,SiH4、H2和混合气体分别具有约200sccm至约2000sccm、约500sccm至约5000sccm、以及约100sccm至约1000sccm范围内的流量。
17.如权利要求1所述的方法,其中,第二预定浓度在约1×1020atoms/cm3至约31×1021atoms/cm3的范围内。
CNB031017304A 2002-03-30 2003-01-21 在半导体器件中形成接触插塞的方法 Expired - Fee Related CN100338736C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR17679/02 2002-03-30
KR10-2002-0017679A KR100446316B1 (ko) 2002-03-30 2002-03-30 반도체장치의 콘택플러그 형성 방법
KR17679/2002 2002-03-30

Publications (2)

Publication Number Publication Date
CN1448992A true CN1448992A (zh) 2003-10-15
CN100338736C CN100338736C (zh) 2007-09-19

Family

ID=28450112

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031017304A Expired - Fee Related CN100338736C (zh) 2002-03-30 2003-01-21 在半导体器件中形成接触插塞的方法

Country Status (3)

Country Link
US (1) US6844259B2 (zh)
KR (1) KR100446316B1 (zh)
CN (1) CN100338736C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479923A (zh) * 2010-11-30 2012-05-30 中芯国际集成电路制造(北京)有限公司 相变存储器的制作方法
CN108538780A (zh) * 2018-04-18 2018-09-14 睿力集成电路有限公司 位线/存储节点接触栓塞和多晶硅接触薄膜的制造方法
CN109768050A (zh) * 2018-12-18 2019-05-17 长江存储科技有限责任公司 三维存储器及其制备方法
CN110896668A (zh) * 2018-12-18 2020-03-20 长江存储科技有限责任公司 多堆栈三维存储器件以及其形成方法
US11011539B2 (en) 2018-12-18 2021-05-18 Yangtze Memory Technologies Co., Ltd. Multi-stack three-dimensional memory devices and methods for forming the same
WO2022142314A1 (zh) * 2020-12-30 2022-07-07 长鑫存储技术有限公司 存储节点接触结构的形成方法及半导体结构

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475122B1 (ko) * 2002-12-20 2005-03-10 삼성전자주식회사 실리콘 접촉저항을 개선할 수 있는 반도체 소자 형성방법
US7049230B2 (en) * 2003-11-26 2006-05-23 Hynix Semiconductor Inc. Method of forming a contact plug in a semiconductor device
US20050164469A1 (en) * 2004-01-28 2005-07-28 Infineon Technologies North America Corp. Method for N+ doping of amorphous silicon and polysilicon electrodes in deep trenches
US7138307B2 (en) * 2004-08-04 2006-11-21 Intel Corporation Method to produce highly doped polysilicon thin films
US20060182993A1 (en) * 2004-08-10 2006-08-17 Mitsubishi Chemical Corporation Compositions for organic electroluminescent device and organic electroluminescent device
US7144808B1 (en) 2005-06-13 2006-12-05 Texas Instruments Incorporated Integration flow to prevent delamination from copper
US7946331B2 (en) * 2005-06-14 2011-05-24 Cufer Asset Ltd. L.L.C. Pin-type chip tooling
US20060281303A1 (en) * 2005-06-14 2006-12-14 John Trezza Tack & fuse chip bonding
US7786592B2 (en) * 2005-06-14 2010-08-31 John Trezza Chip capacitive coupling
US7687400B2 (en) * 2005-06-14 2010-03-30 John Trezza Side stacking apparatus and method
US7838997B2 (en) * 2005-06-14 2010-11-23 John Trezza Remote chip attachment
US7767493B2 (en) * 2005-06-14 2010-08-03 John Trezza Post & penetration interconnection
US7560813B2 (en) * 2005-06-14 2009-07-14 John Trezza Chip-based thermo-stack
US7851348B2 (en) * 2005-06-14 2010-12-14 Abhay Misra Routingless chip architecture
US8456015B2 (en) * 2005-06-14 2013-06-04 Cufer Asset Ltd. L.L.C. Triaxial through-chip connection
US7781886B2 (en) * 2005-06-14 2010-08-24 John Trezza Electronic chip contact structure
KR100605585B1 (ko) * 2005-06-20 2006-07-31 주식회사 하이닉스반도체 이중층 고상에피택시실리콘을 패드플러그로서 갖는 반도체소자 및 제조방법
US7687397B2 (en) * 2006-06-06 2010-03-30 John Trezza Front-end processed wafer having through-chip connections
US20070281460A1 (en) * 2006-06-06 2007-12-06 Cubic Wafer, Inc. Front-end processed wafer having through-chip connections
JP4249765B2 (ja) * 2006-07-05 2009-04-08 エルピーダメモリ株式会社 半導体装置及びその製造方法
US7670874B2 (en) * 2007-02-16 2010-03-02 John Trezza Plated pillar package formation
JP2009200384A (ja) * 2008-02-25 2009-09-03 Elpida Memory Inc 単結晶層含有基板、soi基板、半導体装置およびそれらの製造方法
KR101076887B1 (ko) 2009-06-26 2011-10-25 주식회사 하이닉스반도체 반도체 메모리소자의 랜딩플러그 형성방법
EP2416350A1 (en) 2010-08-06 2012-02-08 Imec A method for selective deposition of a semiconductor material
US8815735B2 (en) * 2012-05-03 2014-08-26 Nanya Technology Corporation Semiconductor device and method of manufacturing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671073B2 (ja) * 1989-08-29 1994-09-07 株式会社東芝 半導体装置及びその製造方法
JP2808965B2 (ja) * 1992-02-19 1998-10-08 日本電気株式会社 半導体装置
JP2699921B2 (ja) * 1995-04-21 1998-01-19 日本電気株式会社 半導体装置の製造方法
JP2685028B2 (ja) * 1995-05-31 1997-12-03 日本電気株式会社 半導体装置の製造方法
US5599736A (en) * 1995-06-28 1997-02-04 Vanguard International Semiconductor Corporation Fabrication method for polysilicon contact plugs
JPH09115866A (ja) * 1995-10-17 1997-05-02 Mitsubishi Electric Corp 半導体装置の製造方法
US5759905A (en) * 1995-12-29 1998-06-02 Micron Technology, Inc. Semiconductor processing method of forming a conductively doped semiconductive material plug within a contact opening
JPH1027847A (ja) * 1996-07-09 1998-01-27 Mitsubishi Electric Corp 集積化半導体素子
JP2877108B2 (ja) * 1996-12-04 1999-03-31 日本電気株式会社 半導体装置およびその製造方法
KR100426492B1 (ko) * 1996-12-28 2004-06-11 주식회사 하이닉스반도체 반도체소자의전하저장전극형성방법
US5994211A (en) * 1997-11-21 1999-11-30 Lsi Logic Corporation Method and composition for reducing gate oxide damage during RF sputter clean
US6249010B1 (en) * 1998-08-17 2001-06-19 National Semiconductor Corporation Dielectric-based anti-fuse cell with polysilicon contact plug and method for its manufacture
KR100322536B1 (ko) * 1999-06-29 2002-03-18 윤종용 에치 백을 이용한 다결정 실리콘 컨택 플러그 형성방법 및 이를 이용한 반도체 소자의 제조방법
US6187659B1 (en) * 1999-08-06 2001-02-13 Taiwan Semiconductor Manufacturing Company Node process integration technology to improve data retention for logic based embedded dram
US6268281B1 (en) * 1999-11-15 2001-07-31 Taiwan Semiconductor Manufacturing Company Method to form self-aligned contacts with polysilicon plugs
JP2002009038A (ja) * 2000-06-21 2002-01-11 Asm Japan Kk 半導体基板の処理方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102479923A (zh) * 2010-11-30 2012-05-30 中芯国际集成电路制造(北京)有限公司 相变存储器的制作方法
CN102479923B (zh) * 2010-11-30 2014-04-02 中芯国际集成电路制造(北京)有限公司 相变存储器的制作方法
CN108538780A (zh) * 2018-04-18 2018-09-14 睿力集成电路有限公司 位线/存储节点接触栓塞和多晶硅接触薄膜的制造方法
CN109768050A (zh) * 2018-12-18 2019-05-17 长江存储科技有限责任公司 三维存储器及其制备方法
CN110896668A (zh) * 2018-12-18 2020-03-20 长江存储科技有限责任公司 多堆栈三维存储器件以及其形成方法
US10985142B2 (en) 2018-12-18 2021-04-20 Yangtze Memory Technologies Co., Ltd. Multi-deck three-dimensional memory devices and methods for forming the same
US11011539B2 (en) 2018-12-18 2021-05-18 Yangtze Memory Technologies Co., Ltd. Multi-stack three-dimensional memory devices and methods for forming the same
CN110896668B (zh) * 2018-12-18 2021-07-20 长江存储科技有限责任公司 多堆栈三维存储器件以及其形成方法
US11367737B2 (en) 2018-12-18 2022-06-21 Yangtze Memory Technologies Co., Ltd. Multi-stack three-dimensional memory devices and methods for forming the same
WO2022142314A1 (zh) * 2020-12-30 2022-07-07 长鑫存储技术有限公司 存储节点接触结构的形成方法及半导体结构

Also Published As

Publication number Publication date
CN100338736C (zh) 2007-09-19
KR100446316B1 (ko) 2004-09-01
US20030186533A1 (en) 2003-10-02
US6844259B2 (en) 2005-01-18
KR20030078562A (ko) 2003-10-08

Similar Documents

Publication Publication Date Title
CN100338736C (zh) 在半导体器件中形成接触插塞的方法
US6693022B2 (en) CVD method of producing in situ-doped polysilicon layers and polysilicon layered structures
CN1748287A (zh) 硅半导体基板及其制造方法
CN1707756A (zh) 具有低接触电阻的半导体设备及其制造方法
US11600521B2 (en) Surface modification layer for conductive feature formation
CN1610115A (zh) 具有hmp金属栅的半导体器件
US20100099251A1 (en) Method for nitridation pretreatment
US10312096B2 (en) Methods for titanium silicide formation using TiCl4 precursor and silicon-containing precursor
CN1282999C (zh) 制造半导体元件的方法
TW473829B (en) An improved method of depositing a conformal h-rich Si3N4 layer onto a patterned structure
KR100567969B1 (ko) 도핑된폴리실리콘층및폴리실리콘층구조물의제조방법,및폴리실리콘층을포함하는층및층구조물의구조화방법
US9947547B2 (en) Environmentally green process and composition for cobalt wet etch
JP5336070B2 (ja) 選択エピタキシャル成長プロセスの改良方法
CN1679151A (zh) 半导体装置和半导体装置的制造方法
KR100505441B1 (ko) 반도체 소자의 캐패시터 제조 방법
CN1612325A (zh) 半导体器件的制造方法
KR101162258B1 (ko) 반도체소자의 콘택 형성 방법
KR950002173B1 (ko) 반도체 장치의 폴리실리콘 증착방법
KR20030078548A (ko) 반도체장치의 콘택플러그 형성 방법
TW201840889A (zh) 用於半導體表面之氣相鈍化的系統及方法
US20240222192A1 (en) Selective metal selectivity improvement with rf pulsing
KR20080029574A (ko) 인시츄 식각 방식에 의한 반도체소자의 리세스된 콘택플러그 형성 방법
KR100414564B1 (ko) 반도체 소자의 콘택 플러그 형성 방법
KR100376258B1 (ko) 반도체 소자의 플러그 형성 방법
CN117393492A (zh) 浅槽隔离结构的形成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: 658868 NEW BRUNSWICK, INC.

Free format text: FORMER OWNER: HAIRYOKSA SEMICONDUCTOR CO., LTD.

Effective date: 20120612

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20120612

Address after: new brunswick

Patentee after: Hynix Semiconductor Inc.

Address before: Gyeonggi Do, South Korea

Patentee before: Hairyoksa Semiconductor Co., Ltd.

C56 Change in the name or address of the patentee

Owner name: CONVERSANT INTELLECTUAL PROPERTY N.B.868 INC.

Free format text: FORMER NAME: 658868 NEW BRUNSWICK, INC.

CP01 Change in the name or title of a patent holder

Address after: new brunswick

Patentee after: Covenson wisdom N.B.868 company

Address before: new brunswick

Patentee before: Hynix Semiconductor Inc.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070919

Termination date: 20160121

EXPY Termination of patent right or utility model