CN1386304A - 深亚微米互补型金属氧化半导体的交指形状多层电容器结构 - Google Patents

深亚微米互补型金属氧化半导体的交指形状多层电容器结构 Download PDF

Info

Publication number
CN1386304A
CN1386304A CN01800844A CN01800844A CN1386304A CN 1386304 A CN1386304 A CN 1386304A CN 01800844 A CN01800844 A CN 01800844A CN 01800844 A CN01800844 A CN 01800844A CN 1386304 A CN1386304 A CN 1386304A
Authority
CN
China
Prior art keywords
capacitor
vertical
dielectric layer
lead
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01800844A
Other languages
English (en)
Other versions
CN1199277C (zh
Inventor
T·索拉蒂
V·瓦图亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1386304A publication Critical patent/CN1386304A/zh
Application granted granted Critical
Publication of CN1199277C publication Critical patent/CN1199277C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0688Integrated circuits having a three-dimensional layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

电容器包含:第一层面的导电平行线;至少一个第二个层面的导电平行线,放置在第一层面之上,第一和第二层面的线被安排在垂直的排中;放置在第一和第二层面的导线之间的介电层;至少一个连接每排的线的交点,藉此形成垂直的电容器的平行阵列电容器板;和形成电容器的端子的电相反的节点,平行阵列的垂直电容器板以交替的方式电连接到相对节点以便板有交替的电极性。

Description

深亚微米互补型金属氧化半导体的交指形状多层电容器结构
本发明涉及在金属氧化物-半导体(MOS)中的电容器结构,和特别地,涉及深亚微米CMOS(互补型金属氧化半导体)的交指形状多层(IM)电容器结构,该电容器结构通过穿越多个层面中的导线互相连接以构造一个平行阵列的垂直电容器板来形成,和以交替方式互相连接这些板到那相对节点以便板有交替的电极性。
用于深亚微米CMOS的传统电容器结构典型地为用一薄电介质层分开的二个平坦的平行板结构。板由数层导电材料形成,例如金属或多晶硅。电容器结构通常被一个在下面的电介质层来与基体相隔离。为了要在这些装置中达成高电容量密度,附加的板被提供。图1A和1B举例说明一个深亚微米CMOS结构中的代表性的传统多平行板电容器10。电容器结构10包括被介电层13分开的电导线12的垂直堆叠。导线12和电介质层13被构造在一个半导体基体11上。导线12形成电容器10的板或电极。板12被以交替的方式一起电连接以致于所有的″A″板是一个第一极性而所有的″B″板是一个与第一极性相对的第二极性。
与平行板电容器结构有关的主要限制是当在CMOS处理中的几何特征被依比例缩小时,在板之间的最小距离不改变。因此,电容量密度的增长不是在如此依比例缩小的时候下实现的。
各种具有高电容量密度的其他电容器结构,例如双倍多晶硅电容器和栅氧化物电容器,是在现有技术中已知道。双倍多晶硅电容器,然而,不引导它们自己到深亚微米CMOS处理。栅氧化物电容器通常不被在深亚微米CMOS处理中,因为它们有引起生产量和可靠性问题的栅极,它们产生随电压而变化的电容量,和可能经历可以击穿栅氧化物的高电压。
用于动态随机存取储存器(DRAMs)的沟槽电容器结构有高电容量密度。这样的电容器通过在基体蚀刻和用导电的和介电材料填充沟槽来形成垂直的电容量结构。然而,因为它们增加蚀刻和填充处理过程,所以沟槽电容器对制造是昂贵的。
交指形状的电容器结构在微波应用中被用。这些电容器被靠近地放置,交指形状的导线结构在其间上生产边缘和交叉电容以实现电容。然而,在被交指形状电容器所产生的交叉电容量被限制在单个导体的层面上。
因此,需要深亚微米CMOS的一个改良的电容器结构,它利用了收缩半导体处理过程(shrinking semiconductor process)几何特征和能被廉价的制造。
电容器结构包括一个第一层面的导电平行线的组成而且至少有一个第二层面的导电性平行线放置在第一层面中的线,第一个和第二层面的线被安排垂直行中。一个介电层被放置在第一和第二层面的导线之间。一个或更多连接第每行中的一和第二层面线,藉此形成垂直的电容器板的平行阵列。电的相对节点形成电容器的端子。垂直电容器板的平行阵列以交替的方式被电连接到节点以便板有交替的电极性。
现在将会在对示例性的实施例的考虑之上结合附图更完全,清晰地详细地描述本发明的优点,特性和各种不同的附加特征,其中
图1是在一个深亚微米集成电路中的传统的平行板电容器结构的顶视图;
图1B是由图1A的线1B-1B所看的剖视图;
图2A是依照本发明一个实施例的深亚微米CMOS结构中的交指形状多层(IM)电容器的顶视图;
图2B是图2A的IM电容器的部分透视图;
图2C是图2B的IM电容器部分的端面图;和
图3是传统的交指形状的电容器的端面图。
应该被了解附图是为举例说明本发明的目的和是不要依比例所绘制的。
图2A-2C举例说明根据本发明一个实施例的用于在深亚微米CMOS中产生电容量的交指形状多层(IM)电容器结构。IM电容器结构20被结在一个多个导体层面处理过程中(四个电的导体层面L1-L4仅仅被示例性描述)在半导体的一个基体材料21(图2B和2C)被构造。第一导体层面L1包括第一平行阵列的导电性的层面线22,第二个导体层面L2包括第二平行阵列导电性的层面线23,第三个导体层面L3包括第三平行阵列导电性的层面线24,和第四个导体层面L4包括一第四平行阵列的导电性层面线25。一个第一电介质层26填充在基体21和第一导体层面L1之间;一电介质层27填充在第一个和第二之间的导体层面L1,L2之间的空间和在第一导体层面L1的线22之间的空间;一个第三个电介质层28填充在第二个和第三导体层面L2,L3之间的空间,和第二导体层面L2的线23之间的空间;一第四的介电层29填充在第三个和第四个导体层面L3,L4之间空间,和在第三个导体层面L3的线24之间的空间;和一第五的介电层34填充在第四个导体层面L4的线25之间的空间。
四层面的L1-L4导电线23-25在排或堆叠中是相互垂直对准。每排的导电线23-25是经由垂直延伸的导电性交点30-32互相电连接的,该导电交点在第二个,第三和第四个介电层27-29中形成。导电线23-25的排而且交点30-32形成一个平行阵列的垂直延伸板33,该板形成电容器的电极20。垂直的板33通过将A板的顶部和底部电连接到一个第一公共节点A和将B板的顶部和底部电连接到一个第二公共节点B上(图2A)来交指式地电连接到具有相反极性的“A”,“B”板上。第一和第二节点A,B形成IM电容器的端子结构20。
本发明中的IM电容器结构20产生电容量的机制可通过首先检查一个如图3所示的传统单一层面交指形状的电容器结构40来最好地被了解。交指形状的电容器结构40具有所有的在交指形状的导电线41之间的的交叉电容量CC和所有在交指形状的导电线41之间边缘电容量Cf的和的总电容量CTotal。在交指形状的电容器结构40中,边缘电容量Cf在数量上是与交叉电容量Cc可比较的。
本发明的IM电容器结构20也有总电容量CTotal,它是在交指形状的垂直板之间的交叉电容量CC(在在毗连导线之间的交叉电容量和在毗连的交点之间的交叉电容量的总和)上和所有在交指形状的垂直板33之间的边缘电容量Cf的总和。然而,不同于传统的交指形状的电容器结构40,当边缘电容量Cf的量不改变的时候,交叉电容量Cc随着在IM电容器结构20中每个附加的导体层面的增加而增加。因此,IM电容器结构20的边缘电容量对总电容量Ctotal的贡献比较少。如附加的导体层面在IM电容器结构20中被用,交叉电容量CC上的数量在电容器的总电容量CTotal中变成一个主要因素,而边缘电容量Cf的量变得更加不重要的。
在现在的现有技术的深亚微米CMOS技术状态中,大约0.5个微米或更少的导线间隔是通常的。因此,在本发明的IM电容器结构20的垂直板之间的最小距离典型地相等或少於大约0.5个微米。(当堆叠四个导线层面的时候,板的高度典型地比约0.5个微米大)。在本发明的IM电容器结构20的垂直板33之间的亚微米间隔能提供比使用传统的平行板电容器结构所能到达的更大的电容量密度。
电容量密度的改进能被通过比较传统的平行板电容器的电容量看到,类似在图1A和1B中显示的,由五(5)个板被构造和有15微米×39微米的尺寸,依照本发明(图2A)的由用4个导体层面构造的一个电容器和有14.9微米×39微米的尺寸。两个电容器在一个0.25微米CMOS处理工艺中被构造。在平行板电容器的节点A和B之间的平行板电容量被发现是95fF,而与之相比的,在IM电容器的节点A和B之间的电容量被发现是150fF。因此,本发明的IM电容器结构提供电容量密度的约60%的增加。
如半导体处理技术的几何特征继续收缩而且按比例减少,本发明中的IM电容器结构20的电容量密度有利的增加。这是因为在本发明的IM电容器结构20中的Mw导电线22-25的最小宽度(图2C),交点30-32的尺寸,在在相同的垂直板中交点30-32之间的最小的距离Mdv(图2B),和垂直板33之间的最小距离Md(图2C)将有利地减少。结果,在IM电容器结构20中的交叉电容量CC将会增加。这样的电容量增加不可能在传统的多层平行板电容器中结构,因为导体的高度或厚度和介电层面不会依比例减少。因此,在传统的平行板电容器结构的板之间的距离将会大约保持为1个微米。
本发明的IM电容器结构典型地在正在使用传统的深亚微米CMOS处理技术的硅中被制造。本发明的电容器结构也能在使用传统的深亚微米处理的砷化镓或任何其他的适当半导体系统中被制造。在使用深亚微米CMOS处理的硅中的制造过程,通常包括在硅半导体基体的被选择的部分上上生长或沉积第一层的二氧化硅以形成第一电介质层。二氧化硅层有在约为一个微米的范围内的厚度。第一层金属,例如铝,或高度地导电的多晶硅,被沉积在二氧化硅的第一电介质层上,然後使用公知的掩模和干蚀刻技术被限定为导线以形成第一导体层面。如上所述,导线宽度和间隔被设定成最小的处理尺寸以提高结构的电容量,也就是,线和在线之间的间隔是尽可能狭窄的。
然后第二层的二氧化硅被生长或沉积在导线上以形成第二个电介质层。二氧化硅的第二个电介质层的厚度是在一个微米的范围内。延伸下到第一导体层面的多个孔被定义在二氧化硅的第二个电介质层中然後使用传统的制造技术填充金属或多晶硅以形成在第二个电介质中层垂直地延伸的交点。第二金属层,例如铝或多晶硅,在第二个二氧化硅的电介质层上被沉积然後被限定在第二个导体层面的导线之内。剩余的电介质层,交点,导体层面,而且导线以上述相同方式被制造。
本领域中的一般技术人员应理解特定的电介质材料可以代替二氧化硅(硅系统)或氮化硅(砷化镓系统)用于形成介电层。举例来说铁-电的陶瓷,例如PLZT(镧修正的锆钽酸铅)能用来形成介电层。与二氧化硅的介电常数3.9相反,当PLZT有一个大约4,700的介电常数,PLZT层的使用非常大地提高电容量。
本领域的一般技术人员将会进一步认识本发明的IM电容器结构在许多应用中可能是有用的,例如射频,模拟和数字应用。射频线路应用电容器来进行匹配。每单位面积的电容量愈大,区域也愈小和费用越低。在模拟电路应用中,不受欢迎的噪音能时常被通过使用大的电容器(KT/C)来减少。在数字电路应用中,大的去耦合电容量是非常重要的并且通过能本发明的电容器容易地具有。
虽然本发明已经参照於上述的实施例进行了描述,但是可以不背离本发明的构思而进行附加的修正和变化。因此,所有的这些修正和变化被考虑在附加的权利要求范围里面。

Claims (11)

1.电容器(20)包含:
第一层面(L1)的导电平行线(22);
至少一个第二个层面(L2)的导电平行线(23),放置在第一层面(L1)之上,第一和第二层面(L1,L2)的线(22,23)被安排在垂直的排中;
放置在第一和第二层面(L1,L2)的导线(22,23)之间的介电层(27);
至少一个连接每排的线(22,23)的交点(30),藉此形成垂直的电容器的平行阵列电容器板(33);和
形成电容器(20)的端子的电相反的节点(A,B),平行阵列的垂直电容器板(33)以交替的方式电连接到相对节点(A,B)以便板(33)有交替的电极性。
2.权利要求1的电容器(20),导线(22,23)包含金属。
3.权利要求1的电容器(20),导线(22,23)包含多晶硅。
4.权利要求1的4,电容器(20),介电层(27)包含二氧化硅。
5.权利要求1的电容器(20),进一步包含:
以垂直延伸排的方式放置在第二个层面线(23)上的至少一个第三个层面(L3)的导电平行线(24);
一个放置在第二和第三层面(L2,L3)的导线(23,24)的之间的第二电介质层(28);和
连接在每排中的第二的和第三层面线(23,24)的至少一交点(31)以便第三个层面线(24)垂直延伸平行阵列垂直电容器板(33)。
6.权利要求1的电容器(20),其中在何处第一和至少第二个多层面(L1,L2)的导电平行线(22,23)包含安排在垂直排中的多个导电平行线(22,23,24,25),而且介电层包含多个介电层(27,28,29,30),每层(27,28,29,30)放置在相对导线层面之间。
7.权利要求1的电容器(20),其中电容器(20)被构造在一个基体(21)上。
8.权利要求7的电容器(20),其中基体(21)由一个半导体材料制成。
9.权利要求1的电容器(20),其中电容器(20)包含亚微米MOS结构。
10.权利要求1的电容器(20),其中电容器(20)包含亚微米CMOS结构。
11.权利要求1的电容器(20),其中电容器(20)包含一个亚微米结构。
CNB018008445A 2000-04-07 2001-03-29 深亚微米互补型金属氧化半导体的交指形状多层电容器结构 Expired - Lifetime CN1199277C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/545,785 2000-04-07
US09/545,785 US6822312B2 (en) 2000-04-07 2000-04-07 Interdigitated multilayer capacitor structure for deep sub-micron CMOS

Publications (2)

Publication Number Publication Date
CN1386304A true CN1386304A (zh) 2002-12-18
CN1199277C CN1199277C (zh) 2005-04-27

Family

ID=24177532

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018008445A Expired - Lifetime CN1199277C (zh) 2000-04-07 2001-03-29 深亚微米互补型金属氧化半导体的交指形状多层电容器结构

Country Status (6)

Country Link
US (1) US6822312B2 (zh)
EP (1) EP1275154A2 (zh)
JP (1) JP2003530699A (zh)
KR (1) KR20020020906A (zh)
CN (1) CN1199277C (zh)
WO (1) WO2001078149A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100390997C (zh) * 2002-12-31 2008-05-28 英特尔公司 每层都具有多个极板的多层电容
CN103597598A (zh) * 2011-06-23 2014-02-19 国际商业机器公司 交叉指状垂直原生电容器

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8744384B2 (en) 2000-07-20 2014-06-03 Blackberry Limited Tunable microwave devices with auto-adjusting matching circuit
US6690570B2 (en) * 2000-09-14 2004-02-10 California Institute Of Technology Highly efficient capacitor structures with enhanced matching properties
DE10206918A1 (de) * 2002-02-19 2003-08-28 Infineon Technologies Ag Kondensatorelement und Verfahren zum Erzeugen eines Kondensatorelements
TW548779B (en) * 2002-08-09 2003-08-21 Acer Labs Inc Integrated capacitor and method of making same
US7095072B2 (en) * 2003-01-16 2006-08-22 Nec Electronics Corporation Semiconductor device with wiring layers forming a capacitor
US7268383B2 (en) * 2003-02-20 2007-09-11 Infineon Technologies Ag Capacitor and method of manufacturing a capacitor
US6785118B1 (en) * 2003-03-31 2004-08-31 Intel Corporation Multiple electrode capacitor
US6999298B2 (en) 2003-09-18 2006-02-14 American Semiconductor, Inc. MIM multilayer capacitor
JP4415744B2 (ja) * 2003-12-11 2010-02-17 パナソニック株式会社 電子部品
JP4371799B2 (ja) * 2003-12-19 2009-11-25 株式会社リコー 容量素子
JP4615962B2 (ja) * 2004-10-22 2011-01-19 ルネサスエレクトロニクス株式会社 半導体装置
JP4343085B2 (ja) 2004-10-26 2009-10-14 Necエレクトロニクス株式会社 半導体装置
KR100672673B1 (ko) 2004-12-29 2007-01-24 동부일렉트로닉스 주식회사 커패시터 구조 및 그 제조방법
TWI258865B (en) * 2005-03-29 2006-07-21 Realtek Semiconductor Corp Longitudinal plate capacitor structure
GB0506899D0 (en) 2005-04-05 2005-05-11 Plastic Logic Ltd Multiple conductive layer TFT
JP4569924B2 (ja) * 2005-04-08 2010-10-27 エルピーダメモリ株式会社 半導体装置の製造方法
JP4805600B2 (ja) * 2005-04-21 2011-11-02 ルネサスエレクトロニクス株式会社 半導体装置
JP2006332290A (ja) * 2005-05-25 2006-12-07 Elpida Memory Inc 容量素子、半導体装置及び半導体装置のパッド電極の端子容量設定方法
US20060273425A1 (en) * 2005-06-06 2006-12-07 Khan Qadeer A High density capacitor structure
US7548407B2 (en) 2005-09-12 2009-06-16 Qualcomm Incorporated Capacitor structure
DE102005046734B4 (de) * 2005-09-29 2011-06-16 Infineon Technologies Ag Halbleiterbauelement mit integrierter Kapazitätsstruktur
DE102005047409A1 (de) * 2005-10-04 2007-04-12 Infineon Technologies Ag Halbleiterbauelement mit integrierter Kapazitätsstruktur
US9406444B2 (en) * 2005-11-14 2016-08-02 Blackberry Limited Thin film capacitors
US8169014B2 (en) * 2006-01-09 2012-05-01 Taiwan Semiconductor Manufacturing Co., Ltd. Interdigitated capacitive structure for an integrated circuit
US7645675B2 (en) * 2006-01-13 2010-01-12 International Business Machines Corporation Integrated parallel plate capacitors
US7711337B2 (en) 2006-01-14 2010-05-04 Paratek Microwave, Inc. Adaptive impedance matching module (AIMM) control architectures
US20070181973A1 (en) * 2006-02-06 2007-08-09 Cheng-Chou Hung Capacitor structure
TWI271754B (en) * 2006-02-16 2007-01-21 Jmicron Technology Corp Three-dimensional capacitor structure
US7518850B2 (en) * 2006-05-18 2009-04-14 International Business Machines Corporation High yield, high density on-chip capacitor design
US7466534B2 (en) * 2006-06-06 2008-12-16 International Business Machines Corporation High capacitance density vertical natural capacitors
US7535312B2 (en) 2006-11-08 2009-05-19 Paratek Microwave, Inc. Adaptive impedance matching apparatus, system and method with improved dynamic range
US7714676B2 (en) 2006-11-08 2010-05-11 Paratek Microwave, Inc. Adaptive impedance matching apparatus, system and method
US7456463B2 (en) * 2007-02-06 2008-11-25 International Business Machines Corporation Capacitor having electrodes at different depths to reduce parasitic capacitance
US7838919B2 (en) * 2007-03-29 2010-11-23 Panasonic Corporation Capacitor structure
US9177908B2 (en) * 2007-04-30 2015-11-03 Taiwan Semiconductor Manufacturing Company, Limited Stacked semiconductor capacitor structure
JP5104872B2 (ja) * 2007-10-03 2012-12-19 富士通セミコンダクター株式会社 容量素子及び半導体装置
US7991363B2 (en) 2007-11-14 2011-08-02 Paratek Microwave, Inc. Tuning matching circuits for transmitter and receiver bands as a function of transmitter metrics
US8138539B2 (en) 2007-11-29 2012-03-20 Infineon Technologies Ag Semiconductor devices and methods of manufacture thereof
JP5104403B2 (ja) * 2008-02-29 2012-12-19 富士通株式会社 キャパシタ
US20090225490A1 (en) * 2008-03-06 2009-09-10 Tsuoe-Hsiang Liao Capacitor structure
US7994610B1 (en) 2008-11-21 2011-08-09 Xilinx, Inc. Integrated capacitor with tartan cross section
US8207592B2 (en) * 2008-11-21 2012-06-26 Xilinx, Inc. Integrated capacitor with array of crosses
US7944732B2 (en) * 2008-11-21 2011-05-17 Xilinx, Inc. Integrated capacitor with alternating layered segments
WO2010059335A1 (en) 2008-11-21 2010-05-27 Xilinx, Inc. Shielding for integrated capacitors
US7994609B2 (en) * 2008-11-21 2011-08-09 Xilinx, Inc. Shielding for integrated capacitors
US8362589B2 (en) * 2008-11-21 2013-01-29 Xilinx, Inc. Integrated capacitor with cabled plates
US7956438B2 (en) * 2008-11-21 2011-06-07 Xilinx, Inc. Integrated capacitor with interlinked lateral fins
US8027144B2 (en) * 2009-04-28 2011-09-27 United Microelectronics Corp. Capacitor structure
US8379365B2 (en) * 2009-04-28 2013-02-19 Taiwan Semiconductor Manufacturing Company, Ltd. Metal oxide metal capacitor with slot vias
US8242579B2 (en) * 2009-05-25 2012-08-14 Infineon Technologies Ag Capacitor structure
US8014124B2 (en) * 2009-06-03 2011-09-06 Mediatek Inc. Three-terminal metal-oxide-metal capacitor
US8482048B2 (en) * 2009-07-31 2013-07-09 Alpha & Omega Semiconductor, Inc. Metal oxide semiconductor field effect transistor integrating a capacitor
US8378450B2 (en) * 2009-08-27 2013-02-19 International Business Machines Corporation Interdigitated vertical parallel capacitor
US9026062B2 (en) 2009-10-10 2015-05-05 Blackberry Limited Method and apparatus for managing operations of a communication device
US8810002B2 (en) * 2009-11-10 2014-08-19 Taiwan Semiconductor Manufacturing Company, Ltd. Vertical metal insulator metal capacitor
US9941195B2 (en) 2009-11-10 2018-04-10 Taiwan Semiconductor Manufacturing Co., Ltd. Vertical metal insulator metal capacitor
US10283443B2 (en) 2009-11-10 2019-05-07 Taiwan Semiconductor Manufacturing Co., Ltd. Chip package having integrated capacitor
US9343237B2 (en) 2009-11-10 2016-05-17 Taiwan Semiconductor Manufacturing Company, Ltd. Vertical metal insulator metal capacitor
US8803631B2 (en) 2010-03-22 2014-08-12 Blackberry Limited Method and apparatus for adapting a variable impedance network
CA2797074C (en) 2010-04-20 2018-08-14 Research In Motion Rf, Inc. Method and apparatus for managing interference in a communication device
US8712340B2 (en) 2011-02-18 2014-04-29 Blackberry Limited Method and apparatus for radio antenna frequency tuning
US8653844B2 (en) 2011-03-07 2014-02-18 Xilinx, Inc. Calibrating device performance within an integrated circuit
US8594584B2 (en) 2011-05-16 2013-11-26 Blackberry Limited Method and apparatus for tuning a communication device
US9769826B2 (en) 2011-08-05 2017-09-19 Blackberry Limited Method and apparatus for band tuning in a communication device
US8941974B2 (en) 2011-09-09 2015-01-27 Xilinx, Inc. Interdigitated capacitor having digits of varying width
US8692608B2 (en) 2011-09-19 2014-04-08 United Microelectronics Corp. Charge pump system capable of stabilizing an output voltage
US9030221B2 (en) 2011-09-20 2015-05-12 United Microelectronics Corporation Circuit structure of test-key and test method thereof
US8395455B1 (en) 2011-10-14 2013-03-12 United Microelectronics Corp. Ring oscillator
US8421509B1 (en) 2011-10-25 2013-04-16 United Microelectronics Corp. Charge pump circuit with low clock feed-through
US8588020B2 (en) 2011-11-16 2013-11-19 United Microelectronics Corporation Sense amplifier and method for determining values of voltages on bit-line pair
US8493806B1 (en) 2012-01-03 2013-07-23 United Microelectronics Corporation Sense-amplifier circuit of memory and calibrating method thereof
JP5793089B2 (ja) 2012-01-05 2015-10-14 パナソニック株式会社 直交ハイブリッドカプラ、増幅器及び無線通信装置
SG11201404773YA (en) * 2012-03-22 2014-10-30 California Inst Of Techn Micro -and nanoscale capacitors that incorporate an array of conductive elements having elongated bodies
US9250148B2 (en) 2012-03-22 2016-02-02 California Institute Of Technology Multi-directional environmental sensors
US20130334657A1 (en) * 2012-06-15 2013-12-19 Taiwan Semiconductor Manufacturing Co., Ltd. Planar interdigitated capacitor structures and methods of forming the same
US9350405B2 (en) 2012-07-19 2016-05-24 Blackberry Limited Method and apparatus for antenna tuning and power consumption management in a communication device
US8970197B2 (en) 2012-08-03 2015-03-03 United Microelectronics Corporation Voltage regulating circuit configured to have output voltage thereof modulated digitally
US8724404B2 (en) 2012-10-15 2014-05-13 United Microelectronics Corp. Memory, supply voltage generation circuit, and operation method of a supply voltage generation circuit used for a memory array
US8669897B1 (en) 2012-11-05 2014-03-11 United Microelectronics Corp. Asynchronous successive approximation register analog-to-digital converter and operating method thereof
US8711598B1 (en) 2012-11-21 2014-04-29 United Microelectronics Corp. Memory cell and memory cell array using the same
US8873295B2 (en) 2012-11-27 2014-10-28 United Microelectronics Corporation Memory and operation method thereof
US8643521B1 (en) 2012-11-28 2014-02-04 United Microelectronics Corp. Digital-to-analog converter with greater output resistance
US8953401B2 (en) 2012-12-07 2015-02-10 United Microelectronics Corp. Memory device and method for driving memory array thereof
US9030886B2 (en) 2012-12-07 2015-05-12 United Microelectronics Corp. Memory device and driving method thereof
US10404295B2 (en) 2012-12-21 2019-09-03 Blackberry Limited Method and apparatus for adjusting the timing of radio antenna tuning
US9374113B2 (en) 2012-12-21 2016-06-21 Blackberry Limited Method and apparatus for adjusting the timing of radio antenna tuning
US8917109B2 (en) 2013-04-03 2014-12-23 United Microelectronics Corporation Method and device for pulse width estimation
CN112133566A (zh) 2013-06-10 2020-12-25 加州理工学院 用于提供耐高温的超级电容器的系统和方法
US9105355B2 (en) 2013-07-04 2015-08-11 United Microelectronics Corporation Memory cell array operated with multiple operation voltage
US8947911B1 (en) 2013-11-07 2015-02-03 United Microelectronics Corp. Method and circuit for optimizing bit line power consumption
US8866536B1 (en) 2013-11-14 2014-10-21 United Microelectronics Corp. Process monitoring circuit and method
US9270247B2 (en) 2013-11-27 2016-02-23 Xilinx, Inc. High quality factor inductive and capacitive circuit structure
US9143143B2 (en) 2014-01-13 2015-09-22 United Microelectronics Corp. VCO restart up circuit and method thereof
US9524964B2 (en) 2014-08-14 2016-12-20 Xilinx, Inc. Capacitor structure in an integrated circuit
CN104882430A (zh) * 2014-08-27 2015-09-02 北京中电华大电子设计有限责任公司 一种基于深亚微米cmos工艺的横向mom电容
US9438319B2 (en) 2014-12-16 2016-09-06 Blackberry Limited Method and apparatus for antenna selection
US20160343796A1 (en) * 2015-05-22 2016-11-24 Mediatek Inc. Capacitor structure and method for forming the same
TWI772741B (zh) * 2020-02-07 2022-08-01 旺宏電子股份有限公司 金屬電容
US11152458B2 (en) 2020-02-07 2021-10-19 Macronix International Co., Ltd. Metal capacitor
EP4053865B1 (en) * 2021-03-02 2024-04-24 Imec VZW Trench capacitor device for a superconducting electronic circuit, superconducting qubit device and method for forming a trench capacitor device for a qubit device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851552A (ja) * 1981-09-22 1983-03-26 Matsushita Electric Ind Co Ltd 半導体装置
JP2700959B2 (ja) 1991-02-25 1998-01-21 三菱電機株式会社 集積回路のキャパシタ
US5208725A (en) 1992-08-19 1993-05-04 Akcasu Osman E High capacitance structure in a semiconductor device
JPH07283076A (ja) 1994-04-15 1995-10-27 Nippon Telegr & Teleph Corp <Ntt> キャパシタ
JPH088393A (ja) 1994-06-23 1996-01-12 Fujitsu Ltd 半導体装置
US5583359A (en) * 1995-03-03 1996-12-10 Northern Telecom Limited Capacitor structure for an integrated circuit
US5939766A (en) 1996-07-24 1999-08-17 Advanced Micro Devices, Inc. High quality capacitor for sub-micrometer integrated circuits
US5978206A (en) 1997-09-30 1999-11-02 Hewlett-Packard Company Stacked-fringe integrated circuit capacitors
EP1043740B1 (en) 1999-04-09 2006-08-23 STMicroelectronics N.V. Layered capacitor device
US20020072189A1 (en) 1999-12-17 2002-06-13 Haroun Baher S. Via capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100390997C (zh) * 2002-12-31 2008-05-28 英特尔公司 每层都具有多个极板的多层电容
CN103597598A (zh) * 2011-06-23 2014-02-19 国际商业机器公司 交叉指状垂直原生电容器
CN103597598B (zh) * 2011-06-23 2016-05-11 国际商业机器公司 交叉指状垂直原生电容器

Also Published As

Publication number Publication date
JP2003530699A (ja) 2003-10-14
US20020047154A1 (en) 2002-04-25
WO2001078149A2 (en) 2001-10-18
EP1275154A2 (en) 2003-01-15
WO2001078149A3 (en) 2002-03-21
KR20020020906A (ko) 2002-03-16
US6822312B2 (en) 2004-11-23
CN1199277C (zh) 2005-04-27

Similar Documents

Publication Publication Date Title
CN1199277C (zh) 深亚微米互补型金属氧化半导体的交指形状多层电容器结构
CN1194417C (zh) 具有同心环形板阵列的用于深亚微型cmos的多层电容器结构
CN1205648C (zh) 用于深亚微米cmos的带有交替连接的同心线的多层电容器结构
TW525220B (en) Multilayer pillar array capacitor structure for deep sub-micron CMOS
US8133792B2 (en) Method for reducing capacitance variation between capacitors
US20050077581A1 (en) Metal-over-metal devices and the method for manufacturing same
CN1771603A (zh) 半导体芯片中具有降低的电压相关性的高密度复合金属-绝缘体-金属电容器
US7061746B2 (en) Semiconductor component with integrated capacitance structure having a plurality of metallization planes
US9343237B2 (en) Vertical metal insulator metal capacitor
CN1165983C (zh) 叠层电容器存储单元及其制造方法
CN1160777C (zh) 制造集成半导体存储装置的方法
CN118486674A (zh) Mom电容器及其形成方法
CN219322901U (zh) 一种半导体器件及半导体芯片
CN1099702C (zh) 半导体器件的生产方法
JP2003124329A (ja) 容量素子
CN117393545A (zh) 电容器及其形成方法
WO2003103029A1 (en) A capacitor device formed on a substrate, integrated circuit com prising such a device and method for manufacturing a capacitor device
KR20000038359A (ko) 디램 셀 캐패시터의 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: NXP CO., LTD.

Free format text: FORMER OWNER: ROYAL PHILIPS ELECTRONICS CO., LTD.

Effective date: 20070914

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20070914

Address after: Holland Ian Deho Finn

Patentee after: Koninkl Philips Electronics NV

Address before: Holland Ian Deho Finn

Patentee before: Koninklike Philips Electronics N. V.

CX01 Expiry of patent term

Granted publication date: 20050427

CX01 Expiry of patent term