CN1378703A - 用于电可擦可编程只读存储器的高温氧化物沉积方法 - Google Patents

用于电可擦可编程只读存储器的高温氧化物沉积方法 Download PDF

Info

Publication number
CN1378703A
CN1378703A CN00814074A CN00814074A CN1378703A CN 1378703 A CN1378703 A CN 1378703A CN 00814074 A CN00814074 A CN 00814074A CN 00814074 A CN00814074 A CN 00814074A CN 1378703 A CN1378703 A CN 1378703A
Authority
CN
China
Prior art keywords
deposition
layer
silicon nitride
oxide
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00814074A
Other languages
English (en)
Other versions
CN100447953C (zh
Inventor
阿维得·哈利亚
罗伯特·B·欧格
小森秀树
K·欧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cypress Semiconductor Corp
Original Assignee
Fujitsu Ltd
Advanced Micro Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd, Advanced Micro Devices Inc filed Critical Fujitsu Ltd
Publication of CN1378703A publication Critical patent/CN1378703A/zh
Application granted granted Critical
Publication of CN100447953C publication Critical patent/CN100447953C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/792Field effect transistors with field effect produced by an insulated gate with charge trapping gate insulator, e.g. MNOS-memory transistors
    • H01L29/7923Programmable transistors with more than two possible different levels of programmation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40117Multistep manufacturing processes for data storage electrodes the electrodes comprising a charge-trapping insulator

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

一种于二位EEPROM装置(10)制造ONO浮动栅极电极(26)的方法,包括使用高温氧化物(HTO)沉积处理形成顶氧化物层(32),其中HTO处理是在700至约800℃温度利用LPCVD或RTCVD沉积处理器进行。该方法进一步包括使用原位LPCVD或RTCVD沉积处理循序形成一层氮化硅层(30)及一层顶氧化物层(32),其中于形成顶氧化物层(32)之前,氮化硅层(30)未暴露于周围气氛。使用HTO沉积处理形成顶氧化物层(32),经由减少ONO浮动栅极电极(26)的电荷泄漏而提供改进的二位EEPROM内存装置(10)。

Description

用于电可擦可编程只读存储器的高温氧化物沉积方法
技术领域
本发明涉及制造半导体装置的方法,尤其涉及制造二位EEPROM装置的方法。
背景技术
非易失性内存装置目前广用于当电力中断时仍然需要保有信息的电子组件。非易失性内存装置包括只读存储器(ROM),可编程只读存储器(PROM),可擦可编程只读存储器(EPROM)以及电可擦可编程只读存储器(EEPROM)装置。EEPROM装置与其它非易失性内存装置的差异在于其可利用电力编程规划以及擦除。快闪EEPROM装置类似EEPROM装置在于内存单元可以电力编程规划以及擦除。但快闪EEPROM装置可使用单一电流脉冲而让装置内的全部内存单元被擦除。
典型EEPROM装置包括储存电荷的浮动栅极电极。浮动栅极电极覆于沟道区上,沟道区驻在半导体基片的源极区与漏极区间。浮动栅极电极连同源极区及漏极区形成加强式晶体管。经由储存电荷于浮动栅极电极,加强式晶体管的阈电压被调整至相对高值。相对地,当电荷由浮动栅极电极移开时,加强式晶体管的阈电压被调整至相对低值。加强式晶体管的阈电压值决定当晶体管藉施加适当电压至源极及漏极而被导通时流经晶体管的电流。当阈电压高时,无电流流经晶体管,定义为逻辑0态。相对地,当阈电压低时,电流将流经晶体管,且被定义为逻辑1态。
于快闪EEPROM装置,电子经由覆盖于加强式晶体管的沟道区上方的一层电介质层被转移至浮动栅极电极。电子的转移由热电子注入而引发或藉法勒诺海(Fowler-Nordheim)隧道效应而被引发。任一种电转移机构中,电压经由上方覆盖的控制栅极电极而施加至浮动栅极。控制栅极电极容性耦合至浮动栅极电极,因此施加于控制栅极电极的电压耦合至浮动栅极电极。快闪EEPROM装置经由施加高正电压的控制栅极电极以及低正电压的漏极区而编程规划,将电子由沟道区移转至浮动栅极电极。快闪EEPROM装置经由控制栅极电极接地,以及经由加强式晶体管的源极或漏极区施加高正电压而被擦除。于擦除电压条件下,电子由浮动栅极电极被去除且移转至半导体基片的源极或漏极区。
EEPROM装置技术的产品开发努力焦点集中在提高编程规划速度,降低编程规划及读取电压,提高资料保有时间,缩短单元擦除时间以及缩小单元维度。前述多项研究目标可经由发展浮动栅极电极的制造材料及制造方法而予解决。最近,发展的努力的焦点集中于制造浮动栅极电极的电介质材料。氮化硅组合二氧化硅已知可于加强式晶体管的控制栅极电极与沟道区间提供满意的电介质分隔,同时具有足够储存电荷的电力特征。
制造浮动栅极电极的一项重要电介质材料为氧化物-氮化物-氧化物(ONO)结构。编程规划期间,电荷由ONO结构的基片移转至氮化硅层。电压施加至栅极及漏极,形成垂直及横向电场,其加速电子顺着沟道长度方向移动速度。当电子沿沟道移动时部分电子获得足够能量可跳越底层二氧化硅层的电位障壁而变成被捕捉于氮化硅层。由于接近漏极的电场最强,故电子被捕捉于接近漏极区。反相施加于源极及漏极的电位将使电子于相反方向顺着沟道移动而变成注入接近源极区的氮化硅层。由于氮化硅不具导电性,故导入氮化硅层的电荷倾向于维持于局限化。如此依据施加的电压电位而定,电荷可储存于单一连续氮化硅层的多个分立区。
非易失性内存设计时利用电子储存于氮化硅层的局限化性质,已经设计出内存电路,其利用电荷储存于ONO层的两区。此种类型的非易失性内存装置称作为二位(two-bit)EEPROM。二位EEPROM可储存如同相等大小内存矩阵的已有EEPROM的信息量的两倍。一左一右位储存于氮化硅层的实体不同区,接近各内存单元的左区及右区。然后编程规划方法用以让二位同时进行编程规划及读取。内存单元的二位可经由施加适当擦除电压至栅极以及施加至源极或漏极区而个别擦除。
虽然最近EEPROM技术的进展已经可让内存设计时使用二位资料储存,而让EEPROM矩阵的内存容量加倍,但此种装置内部材料层的制造上仍然存在有多种挑战。特别ONO层必须小心制造以防形成于ONO层内部提供电荷泄漏路径的界面状态。如此ONO制造技术的进展为确保二位EEPROM装置使用的ONO结构的适当电隔离所需。
发明概述
本发明为一种于二位EEPROM装置制造ONO浮动栅极电极的方法。使用ONO浮动栅极电极制造二位EEPROM装置要求形成高品质ONO结构。原因在于二位EEPROM装置的适当发挥功能要求ONO结构内部的局限化电荷储存。特别顶氧化物层必须具有足够使电荷陷阱的形成减至最低的密度。电荷陷阱形成于顶氧化物层可能导致非期望的电荷泄漏于顶氧化物层,以及泄漏于顶氧化物层与下方氮化硅层间的界面。于适当形成的ONO结构中,全部电荷皆储存于氮化硅层。经由制造高品质顶氧化物层,ONO结构的储存电荷保持局限化于氮化硅层的预定区内部。
一种形式中,ONO浮动栅极电极的制法包括提供半导体基片,以及热生长第一氧化硅层于半导体基片上。然后氮化硅层形成于第一氧化硅层上。然后第二氧化硅层形成而覆盖于氮化硅层上,第二氧化硅层使用高温氧化物(HTO)沉积法形成。高温氧化物沉积法是在约700至约800℃的温度进行。
附图说明
图1以剖面图说明根据本发明制造的半导体基片的一部分,含有一浮动栅极晶体管其结合一ONO结构;以及
图2至4以剖面图说明根据本发明制造ONO结构的制程步骤。
需了解为求简化说明及清晰,附图显示各组件不必照比例绘制。例如部分组件的尺寸被相对于彼此夸大以求清晰。进一步若视为适当,各图中参考编号可重复指示对应的组件。
具体实施方式
图1以剖面图显示一种适合用于二位EEPROM装置的浮动栅极晶体管10。浮动栅极晶体管10包括源极/漏极区12及14位于半导体基片16且由一沟道区18隔开。第一及第二位线氧化物区20及22分别覆于源极/漏极区12及14上。控制栅极电极24覆盖于沟道区18上且由ONO结构26隔开。控制栅极电极24及ONO结构26形成堆栈栅极结构。
ONO结构26包括第一氧化硅层28覆于沟道区18上方。氮化硅层30覆于第一氧化硅层28上方。第二氧化硅层(或顶氧化物层)32覆于氮化硅层30上方。
浮动栅极晶体管10操作时,电压施于控制栅极电极24以及施于源极/漏极区12及14,造成电荷由源极/漏极区12及14传播跨沟道区1 8。一旦电荷遭遇够强的垂直电场,则电荷被注入或由沟道区18穿隧进入氮化硅层30。举例言之,依据施加于控制栅极电极24以及施加于源极/漏极区12及14的特殊电压位准而定,电荷34移转至氮化硅层30且局限于源极/漏极区12或源极/漏极区14附近。
业界人士了解二位EEPROM装置发挥适当功能必然要求电荷34保持隔离于其最初被导入的氮化硅层30该区。电荷34适当维持于氮化硅层30的局限区对二位EEPROM装置发挥适当性能具有关键重要性。特别ONO结构26品质必须可使第一及第二氧化硅层28及32与氮化硅层30间的界面处电荷泄漏减至最低。此外,第二氧化硅层32必须具有够高密度,因此于氧化硅材料内部的电荷陷阱数量减至最少。
根据本发明,ONO结构26内部的电荷泄漏经由形成高品质顶氧化物层而减至最低。藉本发明所得较低电荷泄漏以及改进浮动栅极晶体管性能经由根据本发明进行的ONO制造过程将更为明了。
参照图2,第一氮化硅层28形成而覆盖于半导体基片16表面上。较佳半导体基片16为单晶硅基片。半导体基片16具有先前经处理而去除碎屑(debris)及天然氧化物的上表面36。较佳第一氧化硅层28是在升高温度于干分子氧存在下藉热氧化表面36形成。较佳氧化过程是在约900至约1100℃温度进行。氧化处理形成氧化硅层,较佳具有厚度约50至约150埃,及更佳具有厚度约100埃。氧化处理可以批次型热氧化炉或另外于单一晶圆氧化装置进行。
形成第一氧化硅层28后,氮化硅层30形成而覆盖于第一氧化硅层28上,如图3说明。较佳氮化硅层30利用快速热化学气相沉积(RTCVD)方法形成。RTCVD方法是在约700至约800℃的温度进行。氮化硅材料经由氨(NH3)与二氯硅烷(SiCl2H2)或硅烷(SiH4)反应形成。该方法进行一段时间且于足够形成氮化硅层较佳具有厚度约50至约150埃,及更佳约100埃的气体流速进行。本发明的一具体实施例中,氨以约每分钟一标准升(slpm)的流速被导入RTCVD装置内,以及二氯硅烷或硅烷以约30至约50每分钟标准立方厘米(sccm)的流速被导入。RTCVD方法以三步骤进行,包括初步温度升高步骤、沉积步骤、冷却步骤。较佳基片16于RTCVD装置的总停驻时间约3分钟。较佳氮化硅层的步骤于约2分钟完成。
另外,氮化硅层30可利用低压化学气相沉积(LPCVD)方法形成。替代方法中,氮化硅可于批次沉积装置形成。LPCVD方法较佳是在约200至约6666.13kPa的压力于700至800℃温度使用氨气以及二氯硅烷或硅烷气体进行。
形成氮化硅层30后,第二氧化硅层32形成而覆盖于氮化硅层30上,如图4所示。根据本发明,第二氧化硅层32通过RTCVD或LPCVD方法形成。第二氧化硅层32使用氧化亚氮(N2O)以及二氯硅烷于RTCVD装置形成。RTCVD方法较佳是在约700至约800℃温度进行经历约3分钟的总处理时间。类似用以沉积氮化硅层30的RTCVD方法,使用三步骤沉积顺序包括温度升高步骤、沉积步骤及冷却步骤。于RTCVD装置的总处理时间约3分钟。较佳沉积步骤其间使用约1至约3slpm及更佳约2slpm氧化亚氮。此外使用约25至约75sccm及更佳约50sccm二氯硅烷。RTCVD方法形成氧化硅层具有较佳厚度约50至约150埃及更佳约100埃。LPCVD方法中,第二氧化物于批次型炉内于700至800℃温度沉积于氮化物上。
前述形成氮化硅层及顶氧化物层二者的RTCVD处理可有利地提供原位(in-situ)处理用以循序形成个别层于ONO结构。特别,以循序原位沉积顺序形成氮化硅层30及第二氧化硅层32可减少氮化硅/氧化硅界面的污染。此外,可减少无法控制的天然氧化作用,以确保单纯高密度氧化硅层沉积于氮化硅层30上。
本发明的主要特征方面包括于氮化硅层30未暴露于周围气氛的条件下,循序形成氮化硅层30及第二氧化硅层32。氮化硅层30沉积于第一氧化硅层28后,基片16是在真空条件下移送至氧化物沉积腔室内而基片未暴露于周围气氛。另外,晶圆移转过程中,可导入正压惰性气体气氛。原位氮化物及氧化物沉积反应可于批次型LPCVD系统进行。
业界人士了解存在有多种手段可确保氮化硅层30于第二氧化硅层32的沉积之前不会暴露于周围气氛。例如使用丛集/工具(cluster/tool)装置,其中半导体基片16是在连续真空环境下或正压惰性气体气氛下,由氮化物沉积腔室移转至氧化物沉积腔室。另外,氮化物沉积过程及氧化物沉积过程可于单一沉积腔室进行,该单一沉积腔室配置成可容纳各种处理气体。如此所有这些变化及修改意图皆涵盖于本发明的范围。
形成ONO结构26后,经由沉积一层栅极形成材料于第二氧化硅层32上而完成图1所示堆栈栅极结构。然后进行光刻术图案化以及蚀刻处理,以界定控制栅极电极34以及ONO浮动栅极电极。业界人士了解多种栅极形成材料可用于制造控制栅极电极24。例如控制栅极电极24可使用多晶硅、非晶硅、耐热金属硅化物等形成。
如此根据本发明揭示一种于一种二位EEPROM装置制造一种ONO浮动栅极电极的方法,其全然可提供前文说明的各项优点。虽然已经参照特定具体实施例说明本发明,但本发明绝非囿限于这些具体实施例。业界人士了解可未脱离本发明的精神而做出多种修改及变化。例如组成ONO结构的各层厚度可与此处揭示厚度不同。因此预期所有这些落入本发明权利要求范围及其相当范围的这些变化及修改皆含括于本发明。

Claims (10)

1.一种于一个二位EEPROM装置(10)制造一种ONO浮动栅极电极(26)的方法,包含下列步骤:
提供一半导体基片(16);
热生长一层第一氧化硅层(28)覆盖于半导体基片(16)上;
形成一层氮化硅层(30)覆于第一氧化硅层(28)上;以及
使用高温氧化物沉积方法沉积一层第二氧化硅层(32)覆于氮化硅层(30)上,
其中高温氧化物沉积处理是在约700至约800℃的温度进行。
2.如权利要求1所述的方法,其中沉积第二氧化物层(32)的步骤包括使用氧化亚氮以及第二种选自硅烷及二氯硅烷组成的组群的气体进行低压化学气相沉积。
3.如权利要求2所述的方法,其中沉积第二氧化物层(32)的步骤包含使用由0.5至约2slpm氧化亚氮以及约10至约50sccm所述第二气体进行低压化学气相沉积。
4.如权利要求1所述的方法,其中沉积第二氧化物层(32)的步骤包含使用氧化亚氮以及二氯硅烷进行快速热化学气相沉积。
5.如权利要求4所述的方法,其中沉积第二氧化物层(32)的步骤包括使用约1至约3slpm氧化亚氮及约25至约75sccm二氯硅烷进行快速热化学气相沉积而形成一层厚约5至约15埃的氧化硅层。
6.一种在半导体基片(16)上于一个二位EEPROM装置(10)制造包括一ONO浮动栅极电极(26)的堆栈栅极结构的方法,该半导体基片具有一层第一位线氧化物层(20)以及一层第二位线氧化物层(22)其间由一基片表面区(18)隔开,其特征在于所述方法包含下列步骤:
形成一层ONO层(26)于基片表面区(18)上,形成方式为首先,经由热生长第一氧化硅层(28)于基片表面区(18)上,其次,形成一氮化硅层(30)覆于第一氧化硅层(28)上,以及第三,使用高温氧化物沉积方法沉积第二氧化硅层(32)于氮化硅层(30)上,
其中高温氧化硅沉积方法是在约700至约800℃的温度进行;
沉积一层栅极电极层(24)于ONO层(26)上;以及
形成一堆栈栅极结构于基片表面区(18)上,
其中该堆栈栅极结构包括一控制栅极电极(24)覆于一ONO浮动栅极电极(26)上。
7.如权利要求6所述的方法,其中沉积第二氧化物层(32)的步骤包括使用氧化亚氮以及第二种选自硅烷及二氯硅烷组成的组群的气体进行低压化学气相沉积。
8.如权利要求6所述的方法,其中沉积第二氧化物层(32)的步骤包含使用氧化亚氮以及二氯硅烷进行快速热化学气相沉积。
9.一种于一个二位EEPROM装置(10)制造一种ONO浮动栅极电极(26)的方法,包含下列步骤:
提供一具有一硅表面区(18)半导体基片(16);
热生长氧化硅层(28)覆于该表面区(18)上;以及
使用选自RTCVD以及LPCVD组成的组群中的一种沉积方法,沉积一层氮化硅层(30)于氧化硅层(28)上以及一层顶氧化硅层(32);
其中该氮化硅层(30)及该顶氧化硅层(32)是在未暴露于周围气氛的条件下循序沉积;以及
其中沉积处理是在约700至约800℃的温度进行。
10.如权利要求9所述的方法,其中RTCVD方法包含三步骤顺序包括一温度升高步骤、一沉积步骤经历约1分钟以及一冷却步骤。
CNB00814074XA 1999-10-25 2000-10-16 于二位eeprom装置制造ono浮动栅极的高温氧化物沉淀方法 Expired - Lifetime CN100447953C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/426,672 US6265268B1 (en) 1999-10-25 1999-10-25 High temperature oxide deposition process for fabricating an ONO floating-gate electrode in a two bit EEPROM device
US09/426,672 1999-10-25

Publications (2)

Publication Number Publication Date
CN1378703A true CN1378703A (zh) 2002-11-06
CN100447953C CN100447953C (zh) 2008-12-31

Family

ID=23691746

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00814074XA Expired - Lifetime CN100447953C (zh) 1999-10-25 2000-10-16 于二位eeprom装置制造ono浮动栅极的高温氧化物沉淀方法

Country Status (9)

Country Link
US (1) US6265268B1 (zh)
EP (1) EP1234324B1 (zh)
JP (1) JP4907815B2 (zh)
KR (1) KR100784472B1 (zh)
CN (1) CN100447953C (zh)
AT (1) ATE341832T1 (zh)
DE (1) DE60031155T2 (zh)
TW (1) TW523815B (zh)
WO (1) WO2001031695A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316574C (zh) * 2003-06-11 2007-05-16 旺宏电子股份有限公司 Ono介电质及其制造方法
CN100377335C (zh) * 2004-04-30 2008-03-26 东部亚南半导体株式会社 制造闪存器件的方法
CN100382282C (zh) * 2004-10-20 2008-04-16 力晶半导体股份有限公司 非挥发性存储单元的制作方法
CN100444402C (zh) * 2003-09-04 2008-12-17 株式会社日立制作所 半导体装置
CN106463419A (zh) * 2014-04-30 2017-02-22 惠普发展公司有限责任合伙企业 集成电路
CN109003879A (zh) * 2017-06-06 2018-12-14 中芯国际集成电路制造(上海)有限公司 栅介质层的形成方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6768165B1 (en) * 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US20020102797A1 (en) * 2001-02-01 2002-08-01 Muller David A. Composite gate dielectric layer
US6559014B1 (en) 2001-10-15 2003-05-06 Advanced Micro Devices, Inc. Preparation of composite high-K / standard-K dielectrics for semiconductor devices
US6562491B1 (en) 2001-10-15 2003-05-13 Advanced Micro Devices, Inc. Preparation of composite high-K dielectrics
US7115469B1 (en) 2001-12-17 2006-10-03 Spansion, Llc Integrated ONO processing for semiconductor devices using in-situ steam generation (ISSG) process
US6790755B2 (en) 2001-12-27 2004-09-14 Advanced Micro Devices, Inc. Preparation of stack high-K gate dielectrics with nitrided layer
KR100426488B1 (ko) * 2001-12-29 2004-04-14 주식회사 하이닉스반도체 플래시 메모리 셀과 그 제조 방법 및 프로그램/소거/독출방법
US7031196B2 (en) * 2002-03-29 2006-04-18 Macronix International Co., Ltd. Nonvolatile semiconductor memory and operating method of the memory
US7094707B1 (en) * 2002-05-13 2006-08-22 Cypress Semiconductor Corporation Method of forming nitrided oxide in a hot wall single wafer furnace
US6917544B2 (en) 2002-07-10 2005-07-12 Saifun Semiconductors Ltd. Multiple use memory chip
US7136304B2 (en) 2002-10-29 2006-11-14 Saifun Semiconductor Ltd Method, system and circuit for programming a non-volatile memory array
US6912163B2 (en) * 2003-01-14 2005-06-28 Fasl, Llc Memory device having high work function gate and method of erasing same
US6885590B1 (en) 2003-01-14 2005-04-26 Advanced Micro Devices, Inc. Memory device having A P+ gate and thin bottom oxide and method of erasing same
US7178004B2 (en) 2003-01-31 2007-02-13 Yan Polansky Memory array programming circuit and a method for using the circuit
US6822284B2 (en) * 2003-04-16 2004-11-23 Macronix International Co., Ltd. ONO dielectric for memory cells
US7164177B2 (en) * 2004-01-02 2007-01-16 Powerchip Semiconductor Corp. Multi-level memory cell
EP1553635A1 (en) * 2004-01-08 2005-07-13 Macronix International Co., Ltd. Nonvolatile semiconductor memory and operating method of the memory
US7390718B2 (en) * 2004-02-20 2008-06-24 Tower Semiconductor Ltd. SONOS embedded memory with CVD dielectric
KR100596484B1 (ko) * 2004-05-31 2006-07-03 삼성전자주식회사 유전막 형성 방법 및 이를 이용한 불휘발성 메모리 장치의제조방법
US7518179B2 (en) 2004-10-08 2009-04-14 Freescale Semiconductor, Inc. Virtual ground memory array and method therefor
US7638850B2 (en) 2004-10-14 2009-12-29 Saifun Semiconductors Ltd. Non-volatile memory structure and method of fabrication
US8053812B2 (en) 2005-03-17 2011-11-08 Spansion Israel Ltd Contact in planar NROM technology
EP1746645A3 (en) 2005-07-18 2009-01-21 Saifun Semiconductors Ltd. Memory array with sub-minimum feature size word line spacing and method of fabrication
US7619275B2 (en) * 2005-07-25 2009-11-17 Freescale Semiconductor, Inc. Process for forming an electronic device including discontinuous storage elements
US7582929B2 (en) * 2005-07-25 2009-09-01 Freescale Semiconductor, Inc Electronic device including discontinuous storage elements
US20070020840A1 (en) * 2005-07-25 2007-01-25 Freescale Semiconductor, Inc. Programmable structure including nanocrystal storage elements in a trench
US7642594B2 (en) * 2005-07-25 2010-01-05 Freescale Semiconductor, Inc Electronic device including gate lines, bit lines, or a combination thereof
US7250340B2 (en) * 2005-07-25 2007-07-31 Freescale Semiconductor, Inc. Method of fabricating programmable structure including discontinuous storage elements and spacer control gates in a trench
US7314798B2 (en) * 2005-07-25 2008-01-01 Freescale Semiconductor, Inc. Method of fabricating a nonvolatile storage array with continuous control gate employing hot carrier injection programming
US7262997B2 (en) * 2005-07-25 2007-08-28 Freescale Semiconductor, Inc. Process for operating an electronic device including a memory array and conductive lines
US7394686B2 (en) * 2005-07-25 2008-07-01 Freescale Semiconductor, Inc. Programmable structure including discontinuous storage elements and spacer control gates in a trench
US7619270B2 (en) * 2005-07-25 2009-11-17 Freescale Semiconductor, Inc. Electronic device including discontinuous storage elements
US7285819B2 (en) * 2005-07-25 2007-10-23 Freescale Semiconductor, Inc. Nonvolatile storage array with continuous control gate employing hot carrier injection programming
US7112490B1 (en) * 2005-07-25 2006-09-26 Freescale Semiconductor, Inc. Hot carrier injection programmable structure including discontinuous storage elements and spacer control gates in a trench
US7256454B2 (en) * 2005-07-25 2007-08-14 Freescale Semiconductor, Inc Electronic device including discontinuous storage elements and a process for forming the same
US7668017B2 (en) 2005-08-17 2010-02-23 Saifun Semiconductors Ltd. Method of erasing non-volatile memory cells
US20070048936A1 (en) * 2005-08-31 2007-03-01 Jongoh Kim Method for forming memory cell and periphery circuits
US7808818B2 (en) 2006-01-12 2010-10-05 Saifun Semiconductors Ltd. Secondary injection for NROM
US7692961B2 (en) 2006-02-21 2010-04-06 Saifun Semiconductors Ltd. Method, circuit and device for disturb-control of programming nonvolatile memory cells by hot-hole injection (HHI) and by channel hot-electron (CHE) injection
US8253452B2 (en) 2006-02-21 2012-08-28 Spansion Israel Ltd Circuit and method for powering up an integrated circuit and an integrated circuit utilizing same
US7760554B2 (en) 2006-02-21 2010-07-20 Saifun Semiconductors Ltd. NROM non-volatile memory and mode of operation
US7592224B2 (en) 2006-03-30 2009-09-22 Freescale Semiconductor, Inc Method of fabricating a storage device including decontinuous storage elements within and between trenches
US7701779B2 (en) 2006-04-27 2010-04-20 Sajfun Semiconductors Ltd. Method for programming a reference cell
US7651916B2 (en) * 2007-01-24 2010-01-26 Freescale Semiconductor, Inc Electronic device including trenches and discontinuous storage elements and processes of forming and using the same
US7838922B2 (en) * 2007-01-24 2010-11-23 Freescale Semiconductor, Inc. Electronic device including trenches and discontinuous storage elements
US7572699B2 (en) * 2007-01-24 2009-08-11 Freescale Semiconductor, Inc Process of forming an electronic device including fins and discontinuous storage elements
US9406683B2 (en) 2014-12-04 2016-08-02 International Business Machines Corporation Wet bottling process for small diameter deep trench capacitors
US9218978B1 (en) 2015-03-09 2015-12-22 Cypress Semiconductor Corporation Method of ONO stack formation
US9824895B1 (en) 2016-09-27 2017-11-21 Cypress Semiconductor Corporation Method of integration of ONO stack formation into thick gate oxide CMOS flow

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3032364C2 (de) 1980-08-28 1987-11-12 Philips Patentverwaltung Gmbh, 2000 Hamburg Elektrisch programmierbarer Halbleiter-Festwertspeicher und Verfahren zu seiner Herstellung
JPS58500683A (ja) 1981-05-11 1983-04-28 エヌ・シ−・ア−ル・コ−ポレ−シヨン 閾値変更可能半導体メモリ−装置
US5168334A (en) 1987-07-31 1992-12-01 Texas Instruments, Incorporated Non-volatile semiconductor memory
US5120672A (en) * 1989-02-22 1992-06-09 Texas Instruments Incorporated Fabricating a single level merged EEPROM cell having an ONO memory stack substantially spaced from the source region
US5104819A (en) * 1989-08-07 1992-04-14 Intel Corporation Fabrication of interpoly dielctric for EPROM-related technologies
US5467308A (en) * 1994-04-05 1995-11-14 Motorola Inc. Cross-point eeprom memory array
US5619052A (en) * 1994-09-29 1997-04-08 Macronix International Co., Ltd. Interpoly dielectric structure in EEPROM device
ATE249099T1 (de) * 1995-06-16 2003-09-15 Imec Inter Uni Micro Electr Vertikale misfet-bauelemente, cmos- prozessintegration, ram-anwendungen
JPH09283642A (ja) * 1996-04-18 1997-10-31 Sony Corp Moios構造の形成方法
KR100255512B1 (ko) * 1996-06-29 2000-05-01 김영환 플래쉬 메모리 소자 제조방법
JP3915154B2 (ja) * 1996-12-16 2007-05-16 ソニー株式会社 半導体不揮発性記憶装置及びその製造方法
US6768165B1 (en) * 1997-08-01 2004-07-27 Saifun Semiconductors Ltd. Two bit non-volatile electrically erasable and programmable semiconductor memory cell utilizing asymmetrical charge trapping
US5972804A (en) * 1997-08-05 1999-10-26 Motorola, Inc. Process for forming a semiconductor device
JPH11111871A (ja) * 1997-10-06 1999-04-23 Seiko Epson Corp 不揮発性半導体記憶装置及びその製造方法
US6063666A (en) * 1998-06-16 2000-05-16 Advanced Micro Devices, Inc. RTCVD oxide and N2 O anneal for top oxide of ONO film
US6074917A (en) * 1998-06-16 2000-06-13 Advanced Micro Devices, Inc. LPCVD oxide and RTA for top oxide of ONO film to improve reliability for flash memory devices

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1316574C (zh) * 2003-06-11 2007-05-16 旺宏电子股份有限公司 Ono介电质及其制造方法
CN100444402C (zh) * 2003-09-04 2008-12-17 株式会社日立制作所 半导体装置
CN100377335C (zh) * 2004-04-30 2008-03-26 东部亚南半导体株式会社 制造闪存器件的方法
CN100382282C (zh) * 2004-10-20 2008-04-16 力晶半导体股份有限公司 非挥发性存储单元的制作方法
CN106463419A (zh) * 2014-04-30 2017-02-22 惠普发展公司有限责任合伙企业 集成电路
CN106463419B (zh) * 2014-04-30 2019-05-14 惠普发展公司有限责任合伙企业 集成电路
CN109003879A (zh) * 2017-06-06 2018-12-14 中芯国际集成电路制造(上海)有限公司 栅介质层的形成方法
CN109003879B (zh) * 2017-06-06 2021-03-19 中芯国际集成电路制造(上海)有限公司 栅介质层的形成方法

Also Published As

Publication number Publication date
WO2001031695A1 (en) 2001-05-03
JP2003513445A (ja) 2003-04-08
EP1234324B1 (en) 2006-10-04
ATE341832T1 (de) 2006-10-15
KR100784472B1 (ko) 2007-12-11
DE60031155D1 (de) 2006-11-16
TW523815B (en) 2003-03-11
CN100447953C (zh) 2008-12-31
KR20020080330A (ko) 2002-10-23
EP1234324A1 (en) 2002-08-28
US6265268B1 (en) 2001-07-24
JP4907815B2 (ja) 2012-04-04
DE60031155T2 (de) 2007-07-05

Similar Documents

Publication Publication Date Title
CN100447953C (zh) 于二位eeprom装置制造ono浮动栅极的高温氧化物沉淀方法
CN100383933C (zh) 快闪内存的穿隧氮氧化物
JP4489359B2 (ja) 不揮発性半導体記憶装置
US6927136B2 (en) Non-volatile memory cell having metal nano-particles for trapping charges and fabrication thereof
TWI392063B (zh) 製造電荷捕獲介電質之方法及製造矽-氧化物-氮化物-氧化物-矽(sonos)型非揮發性半導體裝置之方法
CN101432852B (zh) 非易失性存储器件
CN100452439C (zh) 半导体器件的晶体管及其制造方法
US6458677B1 (en) Process for fabricating an ONO structure
CN106653761A (zh) 含多层氧氮化物层的氧化物‑氮化物‑氧化物堆栈
US6893920B2 (en) Method for forming a protective buffer layer for high temperature oxide processing
US5252847A (en) Electrical erasable and programmable read-only memory and manufacturing method therefor
JP4696383B2 (ja) 不揮発性半導体記憶装置の製造方法
US7880220B2 (en) Non-volatile memory device and fabrication method of non-volatile memory device and memory apparatus including non-volatile memory device
JP2002261175A (ja) 不揮発性半導体記憶装置およびその製造方法
CN1229873C (zh) 利用分开的介电浮栅的新型易收缩非易失性的半导体存储单元及其制造方法
CN102637696B (zh) 闪存的存储单元及其形成方法
KR100905276B1 (ko) 다층 터널 절연막을 포함하는 플래시 메모리 소자 및 그제조 방법
US8110485B2 (en) Nanocrystal silicon layer structures formed using plasma deposition technique, methods of forming the same, nonvolatile memory devices having the nanocrystal silicon layer structures, and methods of fabricating the nonvolatile memory devices
CN1178293C (zh) 电可擦可编程只读存储器单元及其制造方法
CN106601748A (zh) 一种半导体器件及其制造方法
CN100343980C (zh) 非挥发性存储元件及其制造方法
CN100552955C (zh) 浮置栅极存储单元及其制造方法
KR100223287B1 (ko) 반도체 소자의 하부산화막 형성방법
JPH0745725A (ja) 不揮発性半導体記憶装置及びその形成方法
KR20100069791A (ko) 플라즈마 증착 기술을 이용한 나노결정 실리콘막 구조체, 그의 형성방법, 나노결정 실리콘막 구조체를 구비하는 비휘발성 메모리 소자 및 그의 형성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: AMD (USA) CO., LTD.

Free format text: FORMER OWNER: ADVANCED MICRO DEVICES INC.

Owner name: ADVANCED MICRO DEVICES INC.

Free format text: FORMER OWNER: AMD INVESTMENT CO., LTD.

Owner name: AMD INVESTMENT CO., LTD.

Free format text: FORMER OWNER: AMD (USA) CO., LTD.

Free format text: FORMER OWNER: FUJITSU LIMITED

Effective date: 20040820

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20040820

Address after: California, USA

Applicant after: Flying cable Co.,Ltd.

Address before: California, USA

Applicant before: AMD Investments Ltd.

Co-applicant before: Fujitsu Ltd.

Effective date of registration: 20040820

Address after: California, USA

Applicant after: AMD Investments Ltd.

Co-applicant after: FUJITSU Ltd.

Address before: California, USA

Applicant before: AMD (USA) Limited by Share Ltd.

Co-applicant before: Fujitsu Ltd.

Effective date of registration: 20040820

Address after: California, USA

Applicant after: AMD (USA) Limited by Share Ltd.

Co-applicant after: FUJITSU Ltd.

Address before: California, USA

Applicant before: ADVANCED MICRO DEVICES, Inc.

Co-applicant before: Fujitsu Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160321

Address after: California, USA

Patentee after: CYPRESS SEMICONDUCTOR Corp.

Address before: California, USA

Patentee before: SPANSION LLC

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20081231