US20020102797A1 - Composite gate dielectric layer - Google Patents

Composite gate dielectric layer Download PDF

Info

Publication number
US20020102797A1
US20020102797A1 US09/773,442 US77344201A US2002102797A1 US 20020102797 A1 US20020102797 A1 US 20020102797A1 US 77344201 A US77344201 A US 77344201A US 2002102797 A1 US2002102797 A1 US 2002102797A1
Authority
US
United States
Prior art keywords
layer
silicon oxide
dielectric layer
silicon
chemical vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/773,442
Inventor
David Muller
Gregory Timp
Glen Wilk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Priority to US09/773,442 priority Critical patent/US20020102797A1/en
Assigned to LUCENT TECHNOLOGIES INC. reassignment LUCENT TECHNOLOGIES INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TIMP, GREGORY L., MULLER, DAVID A., WILK, GLEN DAVID
Priority to JP2002025036A priority patent/JP2002305303A/en
Publication of US20020102797A1 publication Critical patent/US20020102797A1/en
Priority to US10/227,091 priority patent/US7253063B2/en
Priority to JP2009063925A priority patent/JP2009177192A/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28185Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the gate insulator and before the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28211Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a gaseous ambient using an oxygen or a water vapour, e.g. RTO, possibly through a layer

Definitions

  • the present invention relates to semiconductor devices.
  • a capacitance is associated with a gate dielectric layer, which insulates a gate electrode from a channel disposed within a semiconductor substrate.
  • the input capacitance of a FET may be increased by either reducing the thickness of the gate dielectric layer or increasing its dielectric constant.
  • Gate dielectric layers have historically been realized by bulk silicon dioxide, SiO 2 .
  • industry has been reducing the thickness of bulk silicon dioxide-based gate dielectric layers to increase input FET capacitances.
  • bulk silicon dioxide becomes exceedingly susceptible to leakage currents tunneling through the gate dielectric layer.
  • the leakage current problem is now becoming a practical concern.
  • a gate dielectric layer may be advantageously formed from at least one layer of the silicon oxide (SiO X ⁇ 2 ) to increase the input FET capacitance, while also providing a desirable interface with a silicon substrate.
  • a gate dielectric layer formed of at least one layer of silicon oxide (SiO X ⁇ 2 ) having a thickness of about 5 ⁇ or less may be insufficient to withstand leakage current problems. Consequently, we have invented a composite gate dielectric layer having a complementary dielectric layer formed upon a layer of silicon oxide (SiO X ⁇ 2 ). The complementary dielectric layer is of sufficient thickness to substantially inhibit the flow of leakage current.
  • the complementary dielectric layer has a dielectric constant greater than that of the layer of silicon oxide.
  • the complementary dielectric layer may be formed from at least one of aluminate, silicate, ZrO 2 , HfO 2 , TiO 2 , Gd 2 O 3 , Y 2 O 3 , Si 3 N 4 , Ta 2 O 5 and Al 2 O 3 .
  • FIG. 2 is a cross-sectional view of an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of another embodiment of the present invention.
  • FIG. 4 is a flow chart of another embodiment of the present invention.
  • the input capacitance of a field effect transistor is associated with a gate dielectric layer positioned between a gate electrode and a channel disposed within a silicon semiconductor.
  • FET field effect transistor
  • C is the capacitance
  • A is the area (length by width) of the dielectric layer
  • C/A is the capacitance per unit area
  • ⁇ 0 is a constant (i.e., 8.854 ⁇ 10 ⁇ 12 Farads/meter) referred to as the permittivity in free space
  • k is the dielectric constant of the dielectric layer
  • t is the thickness of the dielectric layer.
  • silicon oxide, SiO X ⁇ 2 is an oxide-based compound having a stoichiometry in which each silicon atom is bonded with four or less oxygen atoms.
  • silicon oxide, SiO X ⁇ 2 exhibits a dielectric constant greater than that of bulk silicon dioxide. This general observation was initially theorized in the aforementioned study reported by two of us in “The Electronic Structure at the Atomic Scale Of Ultrathin Gate Oxides,” Nature, Vol. 399, June 1999.
  • the layer of silicon oxide, SiO X ⁇ 2 creates a high quality interface with silicon. Consequently, we have recognized that a layer of silicon oxide, SiO X ⁇ 2 , may be advantageously employed as a gate dielectric layer to increase the input capacitance per unit area of a semiconductor device, such as a field effect transistor (“FET”).
  • FET field effect transistor
  • FIG. 1 graphically depicts the dielectric constant of a layer of silicon oxide, SiO X ⁇ 2 , as a function of the layer's thickness.
  • the dielectric constant of the layer of silicon oxide, SiO X ⁇ 2 begins to increase beyond that of bulk silicon dioxide (i.e., about 3.9).
  • Our inventive efforts have uncovered that the dielectric constant of the layer of silicon oxide, SiO X ⁇ 2 , peaks below 3 ⁇ .
  • the layer of silicon oxide reaches a dielectric constant in the range of about 8 to 12, at a thickness of about 3 ⁇ or less.
  • FIG. 2 a first embodiment of the present invention is illustrated.
  • a cross-sectional view of a semiconductor device 10 such as a metal oxide semiconductor FET (“MOSFET”), for example, is shown.
  • MOSFET metal oxide semiconductor FET
  • gate dielectric layer 60 may be formed from a layer of silicon oxide, SiO X ⁇ 2 .
  • the layer of silicon oxide, SiO X ⁇ 2 exhibits a dielectric constant, k, greater than that of bulk silicon dioxide (i.e., about 3.9).
  • this layer of silicon oxide, SiO X ⁇ 2 has a thickness of about 5 ⁇ or less to realize this increased dielectric constant.
  • the dielectric constant of this layer of silicon oxide, SiO X ⁇ 2 may be optimized in view of the potential flow of leakage current through gate dielectric layer 60 .
  • Gate dielectric layer 65 comprises a first layer 60 of silicon oxide, SiO X ⁇ 2 .
  • First layer 60 has a dielectric constant, k, greater than that of bulk silicon dioxide. As shown in FIG. 1, first layer 60 has a thickness of about 5 ⁇ or less to realize this increased dielectric constant.
  • second layer 80 reduces the input capacitance per unit area of device 100 because the positioning of second layer 80 upon first layer 60 of silicon oxide, SiO X ⁇ 2 , creates a series capacitance.
  • the input capacitance, C IN of device 100 may be expressed using the following mathematical equations:
  • C 1 is the capacitance created by first layer 60
  • C 2 is the capacitance created by the second layer 80 .
  • C IN /A is input capacitance per unit area. From the hereinabove mathematical equations, input capacitance per unit area will decrease with the addition of second layer 80 . As such, the thickness of second layer 80 may be optimized to further minimize the potential flow of leakage current through gate dielectric layer 65 , while providing the maximum possible capacitance per unit area for device 100 .
  • Second layer 80 advantageously may have a thickness of about 3.5 ⁇ , a dielectric constant of in the range of about 9-10.
  • the inclusion of second layer 80 also enables the thickness of first layer 60 to be potentially reduced to about 3.5 ⁇ such that its dielectric constant is also in the range of about 9-10.
  • FIG. 4 a third embodiment of the present invention is illustrated.
  • a cross-sectional view is shown of a semiconductor device 110 .
  • device 110 comprises a conductive channel 30 electrically connected to a source 40 and a drain 50 , each of which are formed within a silicon substrate 20 .
  • Composite dielectric layer 75 comprises at least two dielectric layers, one of which being a layer 60 of silicon oxide, SiO X ⁇ 2 .
  • First layer 60 has a dielectric constant, k, greater than about 3.9, and as such, a thickness of about 5 ⁇ or less.
  • First layer 60 is formed upon channel 30 to provide an interface with silicon substrate 20 which is less rough in comparison with the alternative materials presently being explored for use as gate dielectric layers.
  • composite dielectric layer 75 of device 110 comprises a complementary dielectric layer 90 formed from alternative materials.
  • Complementary dielectric layer 90 has a higher dielectric constant than that of layer 60 of silicon oxide, SiO X ⁇ 2 .
  • complementary dielectric layer 90 may be sufficiently thicker than second layer 80 of FIG. 3 to further inhibit the flow of leakage current, all while maintaining the capacitance per unit area of device 110 . Consequently, complementary dielectric layer 90 may have a thickness as high as about 60 ⁇ , for example.
  • complementary dielectric layer 90 advantageously may have a dielectric constant of greater than about 7 and as high as about 30—though higher dielectric constants may be derived by skilled artisans upon reviewing the instant disclosure—a thickness range of about 5 ⁇ and 60 ⁇ . We believe that the inclusion of complementary dielectric layer 90 within composite gate dielectric layer 75 will further reduce the leakage current.
  • a dielectric layer is formed upon a clean silicon substrate.
  • a thermal layer of silicon dioxide is grown upon a clean silicon (Si) substrate.
  • This growth step may be realized by rapid thermal oxidation at a temperature of about 1000° C., for about 5 seconds or less, at a pressure of 0.5 mTorr or less. Similar results have been obtained using a furnace at a temperature of about 800° C. or more, for about 10 seconds or more, at a pressure of about one (1) mTorr or less.
  • a transition metal, such as Zr, Hf or Ti, for example, is subsequently implanted into the thermally grown layer of silicon dioxide.
  • the implanted thermally grown layer of silicon dioxide is annealed in an O 2 atmosphere at a temperature of about 800° C. or more, for about 5 seconds or less, at a pressure of about one (1) mTorr or less.
  • the anneal step forms a layer of silicon oxide, SiO X ⁇ 2 , upon the silicon substrate, and the aforementioned complementary dielectric layer upon the silicon oxide layer.
  • an etch back step may also be performed after the growth step, as well as after the implant step to insure that the resultant thickness of the silicon oxide is about 5 ⁇ or less.
  • This etch back step may be performed using an HF chemistry, as well as atomic scale electron-energy-loss spectroscopy (“EELS”) to ascertain the appropriate thickness.
  • EELS atomic scale electron-energy-loss spectroscopy
  • a layer of silicon oxide, SiO X ⁇ 2 is formed upon a clean silicon substrate using atomic layer chemical vapor deposition (“ALCVD”) techniques.
  • ACVD atomic layer chemical vapor deposition
  • a monolayer of oxygen is first formed upon the substrate by ALCVD.
  • a monolayer of a hydroxyl group is first formed upon the substrate by ALCVD.
  • a monolayer of silicon (with a ligand) is thereafter formed upon the monolayer of oxygen (or hydroxyl group), and a second monolayer of oxygen (again in practice a hydroxyl group) is formed upon the monolayer of silicon (with a ligand).
  • Each ALCVD step may be advantageously performed at a temperature of about 1000° C.
  • each ALCVD step includes the step of introducing an oxygen or silicon precursor dose of about 10 15 atoms/cm 2 .
  • the complementary dielectric layer may be formed upon the layer of silicon oxide.
  • a second layer(s) of silicon oxide may be formed upon the layer of silicon oxide.
  • a composite dielectric layer is formed upon a clean silicon substrate by either a metal organic chemical vapor deposition (“MOCVD”) or a low pressure chemical vapor deposition (“LPCVD”) technique.
  • MOCVD metal organic chemical vapor deposition
  • LPCVD low pressure chemical vapor deposition
  • gaseous ZrO and SiO are introduced in the presence of the substrate.
  • a layer of silicon oxide, SiO X ⁇ 2 is formed upon the substrate, and a metal-silicate is formed upon the layer of silicon oxide.
  • a composite dielectric layer is formed by initially evaporating a metal in an O 2 atmosphere.
  • These metal atoms deposited by any means, such as CVD or PVD, for example, form a layer of metal-oxide or metal-silicide upon the cleaned silicon substrate.
  • an anneal step is performed in an O 2 atmosphere at a temperature range of about 800° C. and 1100° C., for about 5 seconds or less, at a pressure of about one (1) mTorr or less. Consequently, a layer of silicon oxide, SiO X ⁇ 2 , is formed upon the substrate, and a layer of metal-silicate is formed upon the layer of silicon oxide.
  • a composite dielectric layer is formed by initially sputtering transition metal atoms into an O 2 atmosphere having a temperature or about 800° C. or more.
  • a chemical vapor deposition or an evaporation step may be performed. These metal atoms form a layer of metal or metal-silicide upon the cleaned silicon substrate.
  • an anneal step is performed in an O 2 atmosphere at a temperature of about 800° C. ore more, for about 5 seconds or less, at a pressure of about one (1) mTorr or less. Consequently, a layer of silicon oxide, SiO X ⁇ 2 , is formed upon the substrate, and a layer of metal-silicate is formed upon the layer of silicon oxide.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

A semiconductor device having composite dielectric layer formed between a silicon substrate and a gate electrode. The composite gate dielectric layer including a layer of silicon oxide, SiOX≦2, having a dielectric constant of greater than about 3.9 and about 12 or less, and a complementary dielectric layer for inhibiting the flow of leakage current through the composite dielectric layer.

Description

    FIELD OF THE INVENTION
  • The present invention relates to semiconductor devices. [0001]
  • BACKGROUND OF THE INVENTION
  • In a field effect transistor (“FET”), a capacitance is associated with a gate dielectric layer, which insulates a gate electrode from a channel disposed within a semiconductor substrate. As semiconductor devices continue to be scaled down to reduce power consumption, the demand for higher input FET capacitances has increased. The input capacitance of a FET may be increased by either reducing the thickness of the gate dielectric layer or increasing its dielectric constant. [0002]
  • Gate dielectric layers have historically been realized by bulk silicon dioxide, SiO[0003] 2. To date, industry has been reducing the thickness of bulk silicon dioxide-based gate dielectric layers to increase input FET capacitances. However, at thicknesses of less than about 15 Å, bulk silicon dioxide becomes exceedingly susceptible to leakage currents tunneling through the gate dielectric layer. Thus, the leakage current problem is now becoming a practical concern.
  • To overcome this leakage current problem, industry has begun to explore various alternatives materials. These alternative materials have a dielectric constant greater than that of bulk silicon dioxide. As input FET capacitance is directly proportional to the dielectric constant of the gate dielectric layer and inversely proportional to the gate dielectric layer's thickness, it is believed that one of these alternative materials may enable the formation of a gate dielectric layer of a sufficient thickness to ameliorate the leakage current problem, while also increasing the input FET capacitance. Typical materials being investigated include metal-silicon-oxynitride and metal silicate, for example. [0004]
  • The use of such alternative materials as gate dielectric layers gives rise to other problems, however. The interface between the alternative materials under consideration and the underlying silicon substrate is of a poorer quality than the interface between bulk silicon dioxide and the silicon substrate. This poorer interface quality, attributable to several factors including an increased number of defects (e.g., dangling bonds) at the silicon interface, as well as the numbers of charges to become trapped by these defects. The trapped charges degrade device performance, reduce the reliability of the gate dielectric layer, and, therefore, reduce the FETs' so-called “mean time between failure.”[0005]
  • In accordance with the invention of our co-pending, commonly assigned, U.S. patent application, entitled “A SILICON OXIDE BASED GATE DIELECTRIC LAYER,” Ser. No. ______, filed concurrently with the present application, we have recognized that the search for gate dielectric materials other than silicon dioxide is somewhat misplaced. The invention in our co-pending application takes advantage of the silicon dioxide/silicon interface study, as reported by two of us in “The Electronic Structure at the Atomic Scale Of Ultrathin Gate Oxides,” Nature, Vol. 399, June 1999, which theorizes that a layer of silicon oxide (SiO[0006] X≦2) of a sufficient thickness may exhibit a dielectric constant greater than that of bulk silicon dioxide (i.e., about 3.9). In the aforementioned co-pending patent application, a gate dielectric layer may be advantageously formed from at least one layer of the silicon oxide (SiOX≦2) to increase the input FET capacitance, while also providing a desirable interface with a silicon substrate.
  • SUMMARY OF THE INVENTION
  • We have recognized that a gate dielectric layer formed of at least one layer of silicon oxide (SiO[0007] X≦2) having a thickness of about 5 Å or less may be insufficient to withstand leakage current problems. Consequently, we have invented a composite gate dielectric layer having a complementary dielectric layer formed upon a layer of silicon oxide (SiOX≦2). The complementary dielectric layer is of sufficient thickness to substantially inhibit the flow of leakage current.
  • The addition of the complementary dielectric layer will likely reduce the input FET capacitance. As such, the complementary dielectric layer has a dielectric constant greater than that of the layer of silicon oxide. For example, the complementary dielectric layer may be formed from at least one of aluminate, silicate, ZrO[0008] 2, HfO2, TiO2, Gd2O3, Y2O3, Si3N4, Ta2O5 and Al2O3. By judiciously choosing an alternative material for the complementary dielectric layer, and an appropriate thickness, a gate dielectric layer may be provided which exhibits an advantageous combination of properties (i.e., increased capacitance and reduced leakage current, for example) not achieved by the prior art approaches of fabricating a gate dielectric layer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will be better understood from reading the following description of non-limiting embodiments, with reference to the attached drawings, wherein below: [0009]
  • FIG. 1 is a graphical illustration of an embodiment of the present invention; [0010]
  • FIG. 2 is a cross-sectional view of an embodiment of the present invention; [0011]
  • FIG. 3 is a cross-sectional view of another embodiment of the present invention; and [0012]
  • FIG. 4 is a flow chart of another embodiment of the present invention.[0013]
  • It should be emphasized that the drawings of the instant application are not to scale but are merely schematic representations, and thus are not intended to portray the specific dimensions of the invention, which may be determined by skilled artisans through examination of the disclosure herein. [0014]
  • DETAILED DESCRIPTION OF THE PRESENT INVENTION
  • As stated hereinabove, the input capacitance of a field effect transistor (“FET”) is associated with a gate dielectric layer positioned between a gate electrode and a channel disposed within a silicon semiconductor. The continued pursuit of increasing input FET capacitances has led industry to two alternatives—namely, reducing the thickness of the gate dielectric layer, or increasing the dielectric constant of the gate dielectric layer. These efforts are driven by the inverse relationship between capacitance and the thickness of the gate dielectric layer, as well as the direct relationship between capacitance and dielectric constant. These relationships may be expressed using the following mathematical equations:[0015]
  • C=[ε 0 * k * A]/t
  • or[0016]
  • C/A=[ε 0 * k]/t
  • where C is the capacitance, A is the area (length by width) of the dielectric layer, C/A is the capacitance per unit area, ε[0017] 0 is a constant (i.e., 8.854×10−12 Farads/meter) referred to as the permittivity in free space, k is the dielectric constant of the dielectric layer, and t is the thickness of the dielectric layer. From these mathematical expressions, it can be seen that the capacitance per unit area, C/A, may be increased by either decreasing the thickness, t, or increasing the dielectric constant, k.
  • Various advantages have been recognized in employing bulk silicon dioxide, SiO[0018] 2, as a gate dielectric layer at the interface of a silicon (Si) substrate. Consequently, efforts have been expended to fabricate gate dielectric layers from continuously thinner layers of bulk silicon dioxide, SiO2. This drive to produce thinner bulk silicon dioxide layers is a result of its fixed dielectric constant, k.
  • Referring to FIG. 1, the characteristics of a layer of silicon oxide, SiO[0019] X≦2, according to an embodiment of the present invention are graphically illustrated. For the purposes of the present invention, silicon oxide, SiOX≦2, is an oxide-based compound having a stoichiometry in which each silicon atom is bonded with four or less oxygen atoms. We have observed that at certain atomic thicknesses, silicon oxide, SiOX≦2, exhibits a dielectric constant greater than that of bulk silicon dioxide. This general observation was initially theorized in the aforementioned study reported by two of us in “The Electronic Structure at the Atomic Scale Of Ultrathin Gate Oxides,” Nature, Vol. 399, June 1999. Given its material composition, the layer of silicon oxide, SiOX≦2, creates a high quality interface with silicon. Consequently, we have recognized that a layer of silicon oxide, SiOX≦2, may be advantageously employed as a gate dielectric layer to increase the input capacitance per unit area of a semiconductor device, such as a field effect transistor (“FET”).
  • FIG. 1 graphically depicts the dielectric constant of a layer of silicon oxide, SiO[0020] X≦2, as a function of the layer's thickness. At a thickness of about 5 Å, the dielectric constant of the layer of silicon oxide, SiOX≦2, begins to increase beyond that of bulk silicon dioxide (i.e., about 3.9). Our inventive efforts have uncovered that the dielectric constant of the layer of silicon oxide, SiOX≦2, peaks below 3 Å. We believe that the layer of silicon oxide reaches a dielectric constant in the range of about 8 to 12, at a thickness of about 3 Å or less. Consequently, we have recognized the advantageousness of forming a gate dielectric layer employing this layer of silicon oxide, SiOX≦2, at the interface with the silicon substrate. The increased dielectric constant is a consequence of the proximity of the oxide layer to a material with a smaller bandgap—it is not necessary for the silicon oxide, SiOX≦2, to be substoichiometric in the present invention.
  • Referring to FIG. 2, a first embodiment of the present invention is illustrated. Here, a cross-sectional view of a [0021] semiconductor device 10, such as a metal oxide semiconductor FET (“MOSFET”), for example, is shown. Other devices, however, will be apparent to skilled artisans upon reviewing the instant disclosure.
  • [0022] Semiconductor device 10 comprises a silicon substrate 20 having a conductive channel 30 electrically connected to a source 40 and a drain 50. Above channel 30 is a conductive layer, such as a gate electrode 70. By this arrangement, a gate dielectric layer 60 may be formed between channel 30 and gate electrode 70. As gate dielectric layer 60 has insulative properties, an input capacitance is formed between channel 30 and gate electrode 70.
  • To increase the input capacitance per unit area of [0023] device 10, we have recognized that gate dielectric layer 60 may be formed from a layer of silicon oxide, SiOX≦2. The layer of silicon oxide, SiOX≦2, as depicted in FIG. 1, exhibits a dielectric constant, k, greater than that of bulk silicon dioxide (i.e., about 3.9). As reflected in FIG. 1, this layer of silicon oxide, SiOX≦2, has a thickness of about 5 Å or less to realize this increased dielectric constant. The dielectric constant of this layer of silicon oxide, SiOX≦2, may be optimized in view of the potential flow of leakage current through gate dielectric layer 60.
  • In an advantageous embodiment, [0024] device 10 is operative with the layer of silicon oxide, SiOX≦2, having at a thickness of about 4.5 Å and a dielectric constant of about 8.
  • Referring to FIG. 3, a cross-sectional view of a [0025] semiconductor device 100, such as a MOSFET, is illustrated according to a second embodiment of the present invention. As with semiconductor device 10 of FIG. 2, device 100 comprises a conductive channel 30 electrically connected to a source 40 and a drain 50, each of which are formed within a silicon substrate 20. Above channel 30 is a conductive layer, such as a gate electrode 70.
  • Formed between [0026] channel 30 and a gate electrode 70, is a gate dielectric layer 65. Gate dielectric layer 65 comprises a first layer 60 of silicon oxide, SiOX≦2. First layer 60 has a dielectric constant, k, greater than that of bulk silicon dioxide. As shown in FIG. 1, first layer 60 has a thickness of about 5 Å or less to realize this increased dielectric constant.
  • To further reduce the propensity of leakage current, gate dielectric layer [0027] 65 of device 100 comprises a second layer 80 of silicon oxide, SiOX≦2. Second layer 80 may also include one or more additional layers of silicon oxide, SiOX≦2. Second layer 80, much like first layer 60, exhibits a dielectric constant, k, greater than about 3.9. To realize this dielectric constant, second layer 80 has a thickness of about 5 Å or less.
  • It should be noted that the inclusion of second layer [0028] 80, in conjunction with first layer 60, reduces the input capacitance per unit area of device 100 because the positioning of second layer 80 upon first layer 60 of silicon oxide, SiOX≦2, creates a series capacitance. As such, the input capacitance, CIN, of device 100 may be expressed using the following mathematical equations:
  • 1/C IN=1/C 1+1/C 2
  • or[0029]
  • C IN =[C 1 * C 2 ]/[C 1 +C 2]
  • where C[0030] 1 is the capacitance created by first layer 60, and C2 is the capacitance created by the second layer 80. Given the mathematical relationship between capacitance, dielectric constant and thickness, the above expressions may be restated as follows:
  • C IN=[ε0 * k 1 * k 2 * A 1 * A 2 ]/[t 1 * k 2 * A 2 +t 2 * k 1 * A 1]
  • where t[0031] 1 and t2 are the thicknesses of first and second layers, 60 and 80, k1 and k2 are the dielectric constant of first and second layers, 60 and 80, and A1 and A2 are the areas of first and second layers, 60 and 80. If first and second layers, 60 and 80, have the same width and lengths, and thus the same areas (i.e., A1=A2), then the above mathematical expression may be further restated as follows:
  • C IN /A=[ε 0 * k 1 * k 2 ]/[t 1 * k 2 +t 2 * k 1]
  • where C[0032] IN/A is input capacitance per unit area. From the hereinabove mathematical equations, input capacitance per unit area will decrease with the addition of second layer 80. As such, the thickness of second layer 80 may be optimized to further minimize the potential flow of leakage current through gate dielectric layer 65, while providing the maximum possible capacitance per unit area for device 100.
  • By this design, it is believed that the inclusion of second layer [0033] 80 in gate dielectric layer 65 reduces the leakage current over device 10 in FIG. 2. Second layer 80 advantageously may have a thickness of about 3.5 Å, a dielectric constant of in the range of about 9-10. The inclusion of second layer 80 also enables the thickness of first layer 60 to be potentially reduced to about 3.5 Å such that its dielectric constant is also in the range of about 9-10.
  • Referring to FIG. 4, a third embodiment of the present invention is illustrated. Here, a cross-sectional view is shown of a [0034] semiconductor device 110. As with devices 10 and 100 of FIGS. 2 and 3, device 110 comprises a conductive channel 30 electrically connected to a source 40 and a drain 50, each of which are formed within a silicon substrate 20.
  • Formed between [0035] channel 30 and a gate electrode 70 is a composite dielectric layer 75. Composite dielectric layer 75 comprises at least two dielectric layers, one of which being a layer 60 of silicon oxide, SiOX≦2. First layer 60 has a dielectric constant, k, greater than about 3.9, and as such, a thickness of about 5 Å or less. First layer 60 is formed upon channel 30 to provide an interface with silicon substrate 20 which is less rough in comparison with the alternative materials presently being explored for use as gate dielectric layers.
  • To further reduce the propensity of leakage current, [0036] composite dielectric layer 75 of device 110 comprises a complementary dielectric layer 90 formed from alternative materials. Complementary dielectric layer 90 has a higher dielectric constant than that of layer 60 of silicon oxide, SiOX≦2. By selecting an alternative material having such a dielectric constant, complementary dielectric layer 90 may be sufficiently thicker than second layer 80 of FIG. 3 to further inhibit the flow of leakage current, all while maintaining the capacitance per unit area of device 110. Consequently, complementary dielectric layer 90 may have a thickness as high as about 60 Å, for example. Alternative materials considered for these purposes include, but are not limited to aluminates, silicates, ZrO2, HfO2, TiO2, Gd2O3, Y2O3, Si3N4, Ta2O5 and Al2O3. Various substitutes will be apparent to skilled artisans upon reviewing the instant disclosure.
  • We estimate that [0037] complementary dielectric layer 90 advantageously may have a dielectric constant of greater than about 7 and as high as about 30—though higher dielectric constants may be derived by skilled artisans upon reviewing the instant disclosure—a thickness range of about 5 Å and 60 Å. We believe that the inclusion of complementary dielectric layer 90 within composite gate dielectric layer 75 will further reduce the leakage current.
  • Referring to FIG. 5, a flow chart is illustrated. This flow chart depicts a number of methods for forming a gate dielectric layer. Variations and substitutions to the recited methods will be apparent to skilled artisans upon reviewing the disclosure herein. [0038]
  • According to a first processing path along the flow chart, a dielectric layer is formed upon a clean silicon substrate. Initially, a thermal layer of silicon dioxide is grown upon a clean silicon (Si) substrate. This growth step may be realized by rapid thermal oxidation at a temperature of about 1000° C., for about 5 seconds or less, at a pressure of 0.5 mTorr or less. Similar results have been obtained using a furnace at a temperature of about 800° C. or more, for about 10 seconds or more, at a pressure of about one (1) mTorr or less. A transition metal, such as Zr, Hf or Ti, for example, is subsequently implanted into the thermally grown layer of silicon dioxide. Thereafter, the implanted thermally grown layer of silicon dioxide is annealed in an O[0039] 2 atmosphere at a temperature of about 800° C. or more, for about 5 seconds or less, at a pressure of about one (1) mTorr or less. The anneal step forms a layer of silicon oxide, SiOX≦2, upon the silicon substrate, and the aforementioned complementary dielectric layer upon the silicon oxide layer. It should be noted that an etch back step may also be performed after the growth step, as well as after the implant step to insure that the resultant thickness of the silicon oxide is about 5 Å or less. This etch back step may be performed using an HF chemistry, as well as atomic scale electron-energy-loss spectroscopy (“EELS”) to ascertain the appropriate thickness.
  • According to a second processing path, a layer of silicon oxide, SiO[0040] X≦2, is formed upon a clean silicon substrate using atomic layer chemical vapor deposition (“ALCVD”) techniques. Here, a monolayer of oxygen is first formed upon the substrate by ALCVD. In practice, however, a monolayer of a hydroxyl group is first formed upon the substrate by ALCVD. A monolayer of silicon (with a ligand) is thereafter formed upon the monolayer of oxygen (or hydroxyl group), and a second monolayer of oxygen (again in practice a hydroxyl group) is formed upon the monolayer of silicon (with a ligand). Each ALCVD step may be advantageously performed at a temperature of about 1000° C. Furthermore, each ALCVD step includes the step of introducing an oxygen or silicon precursor dose of about 1015 atoms/cm2. Once the layer of silicon oxide is formed, the complementary dielectric layer may be formed upon the layer of silicon oxide. Alternatively, a second layer(s) of silicon oxide may be formed upon the layer of silicon oxide.
  • According to a third processing path, a composite dielectric layer is formed upon a clean silicon substrate by either a metal organic chemical vapor deposition (“MOCVD”) or a low pressure chemical vapor deposition (“LPCVD”) technique. As part of these MOCVD or LPCVD steps, gaseous ZrO and SiO are introduced in the presence of the substrate. Upon performing an anneal step in an O[0041] 2 atmosphere at a temperature of about 800° C. or more, for about 5 seconds or less, at a pressure of about (1) mTorr or less, a layer of silicon oxide, SiOX≦2, is formed upon the substrate, and a metal-silicate is formed upon the layer of silicon oxide.
  • According to a fourth processing path, a composite dielectric layer is formed by initially evaporating a metal in an O[0042] 2 atmosphere. These metal atoms, deposited by any means, such as CVD or PVD, for example, form a layer of metal-oxide or metal-silicide upon the cleaned silicon substrate. Thereafter, an anneal step is performed in an O2 atmosphere at a temperature range of about 800° C. and 1100° C., for about 5 seconds or less, at a pressure of about one (1) mTorr or less. Consequently, a layer of silicon oxide, SiOX≦2, is formed upon the substrate, and a layer of metal-silicate is formed upon the layer of silicon oxide.
  • According to a fifth processing path along the flow chart, a composite dielectric layer is formed by initially sputtering transition metal atoms into an O[0043] 2 atmosphere having a temperature or about 800° C. or more. As an alternative to sputtering, a chemical vapor deposition or an evaporation step may be performed. These metal atoms form a layer of metal or metal-silicide upon the cleaned silicon substrate. Thereafter, an anneal step is performed in an O2 atmosphere at a temperature of about 800° C. ore more, for about 5 seconds or less, at a pressure of about one (1) mTorr or less. Consequently, a layer of silicon oxide, SiOX≦2, is formed upon the substrate, and a layer of metal-silicate is formed upon the layer of silicon oxide.
  • While the particular invention has been described with reference to illustrative embodiments, this description is not meant to be construed in a limiting sense. It is understood that although the present invention has been described, various modifications of the illustrative embodiments, as well as additional embodiments of the invention, will be apparent to one of ordinary skill in the art upon reference to this description without departing from the spirit of the invention, as recited in the claims appended hereto. Thus, while a gate dielectric layer for a field effect transistor (“FET”) and a method of fabricating a gate dielectric layer is disclosed, it should be apparent to skilled artisans that the present invention may be applied to dielectric layers generally, as well as other devices requiring increased capacitance per unit area. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as fall within the true scope of the invention. [0044]

Claims (17)

1. A semiconductor device comprising:
a conductive layer;
a silicon substrate; and
a composite gate dielectric layer formed between the silicon substrate and the conductive layer, the composite gate dielectric layer comprising:
a layer of silicon oxide, SiOX≦2, having dielectric constant greater than about 3.9 and about ≦12; and
a complementary dielectric layer disposed upon the layer of silicon oxide.
2. The semiconductor device of claim 1, wherein the layer of silicon oxide has a thickness of about ≦5 Å.
3. The semiconductor device of claim 2, wherein the complementary dielectric layer has a dielectric constant greater than about the dielectric constant of the layer of silicon oxide.
4. The semiconductor device of claim 3, wherein the complementary dielectric layer comprises at least one of an aluminate, silicate, ZrO2, HfO2, TiO2, Gd2O3, Y2O3, Si3N4, Ta2O5 and Al2O3.
5. A semiconductor device comprising:
a layer of silicon oxide, SiOX≦2, formed upon a semiconductor substrate, the layer of silicon oxide having a dielectric constant greater than about 3.9 and about ≦12; and
a complementary dielectric layer disposed upon the layer of silicon oxide.
6. The semiconductor device of claim 5, wherein the layer of silicon oxide has a thickness of about ≦5 Å.
7. The semiconductor device of claim 6, wherein the complementary dielectric layer has a dielectric constant greater than about the dielectric constant of the layer of silicon oxide.
8. The semiconductor device of claim 7, wherein the complementary dielectric layer comprises at least one of an aluminate, silicate, ZrO2, HfO2, TiO2, Gd2O3, Y2O3, Si3N4, Ta2O5 and Al2O3.
9. A method of fabricating a composite gate dielectric layer comprising the step of:
forming a complementary dielectric layer upon a layer of silicon oxide, SiOX≦2, the layer of silicon oxide having a thickness of about ≦5 Å and a dielectric constant greater than about 3.9 and about ≦12.
10. The method of claim 9, wherein step of forming a complementary dielectric layer upon a layer of silicon oxide comprises the steps of:
forming a first monolayer of oxygen upon a silicon substrate by at least one of atomic layer chemical vapor deposition, metal organic chemical vapor deposition and low pressure chemical vapor deposition;
forming a monolayer of silicon upon the first monolayer of oxygen by at least one of atomic layer chemical vapor deposition, metal organic chemical vapor deposition and low pressure chemical vapor deposition;
forming a second monolayer of oxygen upon the monolayer of silicon by at least one of atomic layer chemical vapor deposition, metal organic chemical vapor deposition and low pressure chemical vapor deposition; and
growing the complementary dielectric layer upon the second monolayer of oxygen.
11. The method of claim 10, wherein the complementary dielectric layer is grown by at least one of metal organic chemical vapor deposition and low pressure chemical vapor deposition.
12. The method of claim 9 wherein the step of forming a complementary dielectric layer upon a layer of silicon oxide comprises the steps of:
growing a layer of silicon dioxide upon a silicon substrate;
implanting a transition metal into the layer of silicon dioxide; and
annealing the implanted silicon dioxide layer to form the layer of silicon oxide and the complementary dielectric layer.
13. The method of claim 12, wherein the transition metal comprises at least one of Zr, Hf and Ti.
14. The method of claim 9, wherein the step of forming a complementary dielectric layer upon a layer of silicon oxide comprises the steps of:
forming a metal-silicide upon a silicon substrate; and
annealing the metal-silicide to form the layer of silicon oxide upon the silicon substrate and the complementary dielectric layer upon the layer of silicon oxide.
15. The method of claim 14, wherein the step of forming a metal-silicide upon a silicon substrate comprises the step of heating a silicide to release metal atoms into an O2 atmosphere.
16. The method of claim 14, wherein the step of annealing is performed in an O2 atmosphere at a temperature of about 800° C. for a time of less than about 5 seconds.
17. The method of claim 14, wherein the step of forming a metal-silicide upon a silicon substrate comprises the step of at least one of sputtering metal atoms in an O2 atmosphere, evaporating metal atoms in an O2 atmosphere, and chemical vapor depositing metal atoms in an O2 atmosphere.
US09/773,442 2001-02-01 2001-02-01 Composite gate dielectric layer Abandoned US20020102797A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/773,442 US20020102797A1 (en) 2001-02-01 2001-02-01 Composite gate dielectric layer
JP2002025036A JP2002305303A (en) 2001-02-01 2002-02-01 Semiconductor device and method of forming gate dielectric substance-combined layer
US10/227,091 US7253063B2 (en) 2001-02-01 2002-08-23 Method of fabricating a composite gate dielectric layer
JP2009063925A JP2009177192A (en) 2001-02-01 2009-03-17 Semiconductor device and method of forming composite gate dielectric layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/773,442 US20020102797A1 (en) 2001-02-01 2001-02-01 Composite gate dielectric layer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/227,091 Division US7253063B2 (en) 2001-02-01 2002-08-23 Method of fabricating a composite gate dielectric layer

Publications (1)

Publication Number Publication Date
US20020102797A1 true US20020102797A1 (en) 2002-08-01

Family

ID=25098269

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/773,442 Abandoned US20020102797A1 (en) 2001-02-01 2001-02-01 Composite gate dielectric layer
US10/227,091 Expired - Fee Related US7253063B2 (en) 2001-02-01 2002-08-23 Method of fabricating a composite gate dielectric layer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/227,091 Expired - Fee Related US7253063B2 (en) 2001-02-01 2002-08-23 Method of fabricating a composite gate dielectric layer

Country Status (2)

Country Link
US (2) US20020102797A1 (en)
JP (2) JP2002305303A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6723581B1 (en) * 2002-10-21 2004-04-20 Agere Systems Inc. Semiconductor device having a high-K gate dielectric and method of manufacture thereof
US20040110361A1 (en) * 2002-12-10 2004-06-10 Parker Christopher G. Method for making a semiconductor device having an ultra-thin high-k gate dielectric
US20050032318A1 (en) * 2002-02-22 2005-02-10 Robert Chau Method for making a semiconductor device having a high-k gate dielectric
US20080246100A1 (en) * 2003-07-30 2008-10-09 Infineon Technologies Ag: High-k dielectric film, method of forming the same and related semiconductor device
US8809152B2 (en) 2011-11-18 2014-08-19 International Business Machines Corporation Germanium oxide free atomic layer deposition of silicon oxide and high-k gate dielectric on germanium containing channel for CMOS devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654458B2 (en) * 2004-12-24 2011-03-23 リコープリンティングシステムズ株式会社 Silicon member anodic bonding method, ink jet head manufacturing method using the same, ink jet head and ink jet recording apparatus using the same
JP5223771B2 (en) * 2009-05-08 2013-06-26 東京エレクトロン株式会社 Film forming method, gate electrode structure forming method and processing apparatus
US8647723B2 (en) * 2010-10-22 2014-02-11 GM Global Technology Operations LLC Nucleation of ultrathin, continuous, conformal metal films using atomic layer deposition and application as fuel cell catalysts
US9979028B2 (en) 2013-12-13 2018-05-22 GM Global Technology Operations LLC Conformal thin film of precious metal on a support

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861763A (en) * 1981-10-09 1983-04-12 武笠 均 Feel sensor fire fighting apparatus
US5393683A (en) * 1992-05-26 1995-02-28 Micron Technology, Inc. Method of making semiconductor devices having two-layer gate structure
KR960005681B1 (en) * 1992-11-07 1996-04-30 금성일렉트론주식회사 Method for manufacturing a capacitor of semiconductor memory device
US6088216A (en) * 1995-04-28 2000-07-11 International Business Machines Corporation Lead silicate based capacitor structures
US6841439B1 (en) * 1997-07-24 2005-01-11 Texas Instruments Incorporated High permittivity silicate gate dielectric
US6013553A (en) * 1997-07-24 2000-01-11 Texas Instruments Incorporated Zirconium and/or hafnium oxynitride gate dielectric
US5834353A (en) * 1997-10-20 1998-11-10 Texas Instruments-Acer Incorporated Method of making deep sub-micron meter MOSFET with a high permitivity gate dielectric
US6057584A (en) * 1997-12-19 2000-05-02 Advanced Micro Devices, Inc. Semiconductor device having a tri-layer gate insulating dielectric
US6066519A (en) * 1998-04-16 2000-05-23 Advanced Micro Devices, Inc. Semiconductor device having an outgassed oxide layer and fabrication thereof
US6245652B1 (en) * 1998-09-04 2001-06-12 Advanced Micro Devices, Inc. Method of forming ultra thin gate dielectric for high performance semiconductor devices
KR100455737B1 (en) * 1998-12-30 2005-04-19 주식회사 하이닉스반도체 Gate oxide film formation method of semiconductor device
US6060755A (en) * 1999-07-19 2000-05-09 Sharp Laboratories Of America, Inc. Aluminum-doped zirconium dielectric film transistor structure and deposition method for same
US6265268B1 (en) * 1999-10-25 2001-07-24 Advanced Micro Devices, Inc. High temperature oxide deposition process for fabricating an ONO floating-gate electrode in a two bit EEPROM device
US6248628B1 (en) * 1999-10-25 2001-06-19 Advanced Micro Devices Method of fabricating an ONO dielectric by nitridation for MNOS memory cells
US6448127B1 (en) * 2000-01-14 2002-09-10 Advanced Micro Devices, Inc. Process for formation of ultra-thin base oxide in high k/oxide stack gate dielectrics of mosfets
JP3383632B2 (en) * 2000-02-23 2003-03-04 沖電気工業株式会社 Method for manufacturing MOS transistor
US6677640B1 (en) * 2000-03-01 2004-01-13 Micron Technology, Inc. Memory cell with tight coupling
US6320784B1 (en) * 2000-03-14 2001-11-20 Motorola, Inc. Memory cell and method for programming thereof
US6649543B1 (en) * 2000-06-22 2003-11-18 Micron Technology, Inc. Methods of forming silicon nitride, methods of forming transistor devices, and transistor devices
US6551929B1 (en) * 2000-06-28 2003-04-22 Applied Materials, Inc. Bifurcated deposition process for depositing refractory metal layers employing atomic layer deposition and chemical vapor deposition techniques
US6599781B1 (en) * 2000-09-27 2003-07-29 Chou H. Li Solid state device
US6586334B2 (en) * 2000-11-09 2003-07-01 Texas Instruments Incorporated Reducing copper line resistivity by smoothing trench and via sidewalls
JP2002170825A (en) * 2000-11-30 2002-06-14 Nec Corp Semiconductor device and mis type semiconductor device, and its manufacturing method
US6693051B2 (en) * 2001-02-01 2004-02-17 Lucent Technologies Inc. Silicon oxide based gate dielectric layer
US6458661B1 (en) * 2001-06-18 2002-10-01 Macronix International Co., Ltd. Method of forming NROM
KR100400252B1 (en) * 2001-06-29 2003-10-01 주식회사 하이닉스반도체 Method for manufacturing Tantalium Oxide capacitor
US6548422B1 (en) * 2001-09-27 2003-04-15 Agere Systems, Inc. Method and structure for oxide/silicon nitride interface substructure improvements
TW510048B (en) * 2001-11-16 2002-11-11 Macronix Int Co Ltd Manufacturing method of non-volatile memory
US6790755B2 (en) * 2001-12-27 2004-09-14 Advanced Micro Devices, Inc. Preparation of stack high-K gate dielectrics with nitrided layer
US6674138B1 (en) * 2001-12-31 2004-01-06 Advanced Micro Devices, Inc. Use of high-k dielectric materials in modified ONO structure for semiconductor devices
US6586349B1 (en) * 2002-02-21 2003-07-01 Advanced Micro Devices, Inc. Integrated process for fabrication of graded composite dielectric material layers for semiconductor devices
US6797525B2 (en) * 2002-05-22 2004-09-28 Agere Systems Inc. Fabrication process for a semiconductor device having a metal oxide dielectric material with a high dielectric constant, annealed with a buffered anneal process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050032318A1 (en) * 2002-02-22 2005-02-10 Robert Chau Method for making a semiconductor device having a high-k gate dielectric
US7166505B2 (en) 2002-02-22 2007-01-23 Intel Corporation Method for making a semiconductor device having a high-k gate dielectric
US6723581B1 (en) * 2002-10-21 2004-04-20 Agere Systems Inc. Semiconductor device having a high-K gate dielectric and method of manufacture thereof
US20040110361A1 (en) * 2002-12-10 2004-06-10 Parker Christopher G. Method for making a semiconductor device having an ultra-thin high-k gate dielectric
WO2004053964A1 (en) * 2002-12-10 2004-06-24 Intel Corporation A method for making a semiconductor device having an ultra-thin high-k gate dielectric
US6787440B2 (en) * 2002-12-10 2004-09-07 Intel Corporation Method for making a semiconductor device having an ultra-thin high-k gate dielectric
US20080246100A1 (en) * 2003-07-30 2008-10-09 Infineon Technologies Ag: High-k dielectric film, method of forming the same and related semiconductor device
US7655099B2 (en) * 2003-07-30 2010-02-02 Infineon Technologies Ag High-k dielectric film, method of forming the same and related semiconductor device
US8809152B2 (en) 2011-11-18 2014-08-19 International Business Machines Corporation Germanium oxide free atomic layer deposition of silicon oxide and high-k gate dielectric on germanium containing channel for CMOS devices
US8952460B2 (en) * 2011-11-18 2015-02-10 International Business Machines Corporation Germanium oxide free atomic layer deposition of silicon oxide and high-k gate dielectric on germanium containing channel for CMOS devices

Also Published As

Publication number Publication date
US7253063B2 (en) 2007-08-07
US20030017715A1 (en) 2003-01-23
JP2009177192A (en) 2009-08-06
JP2002305303A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
US6844604B2 (en) Dielectric layer for semiconductor device and method of manufacturing the same
US6713846B1 (en) Multilayer high κ dielectric films
Lee et al. Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon
US7902019B2 (en) Dielectric layer for semiconductor device and method of manufacturing the same
JP2009177192A (en) Semiconductor device and method of forming composite gate dielectric layer
US20080272364A1 (en) Insulating film and electronic device
US20020130340A1 (en) Method of forming a multilayer dielectric stack
US6693051B2 (en) Silicon oxide based gate dielectric layer
EP1179837A2 (en) Transistor structure comprising doped zirconia, or zirconia-like dielectic film
US20070034966A1 (en) Dual gate CMOS semiconductor devices and methods of fabricating such devices
US7601578B2 (en) Defect control in gate dielectrics
WO2009042028A2 (en) Lanthanide dielectric with controlled interfaces
KR20080064749A (en) Electronic device and process for manufacturing the same
US6700171B2 (en) Gate dielectric
JP3981094B2 (en) Semiconductor device
US20060151845A1 (en) Method to control interfacial properties for capacitors using a metal flash layer
KR20020064624A (en) Dielectric layer for semiconductor device and method of fabricating the same
KR100864871B1 (en) The manufacturing method of semiconductor device
US20060234436A1 (en) Method of forming a semiconductor device having a high-k dielectric
US20130200440A1 (en) High-k heterostructure
JP2002134737A (en) Field effect transistor and its manufacturing method
US20070138519A1 (en) Production process for a semiconductor component with a praseodymium oxide dielectric

Legal Events

Date Code Title Description
AS Assignment

Owner name: LUCENT TECHNOLOGIES INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MULLER, DAVID A.;TIMP, GREGORY L.;WILK, GLEN DAVID;REEL/FRAME:011707/0166;SIGNING DATES FROM 20010403 TO 20010410

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION