CN1369923A - 电极箔的制造方法 - Google Patents

电极箔的制造方法 Download PDF

Info

Publication number
CN1369923A
CN1369923A CN02103349A CN02103349A CN1369923A CN 1369923 A CN1369923 A CN 1369923A CN 02103349 A CN02103349 A CN 02103349A CN 02103349 A CN02103349 A CN 02103349A CN 1369923 A CN1369923 A CN 1369923A
Authority
CN
China
Prior art keywords
electrode
paper tinsel
weight
preferred
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN02103349A
Other languages
English (en)
Inventor
P·豪格
P·比尔克
K·霍尔
D·伊利克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICROCELL GmbH
Original Assignee
MICROCELL GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICROCELL GmbH filed Critical MICROCELL GmbH
Publication of CN1369923A publication Critical patent/CN1369923A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/10Battery-grid making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种用于制造电池电极箔的湿化学方法,该电池含至少一个嵌入锂的电极,该电极由至少两种不同氟化聚合物的混合物组成,在聚合物基体中不溶性电化学活性物质细分散在聚合物中,其特征在于,至少两种不同的氟化聚合物被溶解在溶剂中,未添加增塑剂、溶胀剂或者电解质,只与其BET-表面界于表面最小化的石墨和活性碳之间的高导电碳黑及两维层结构的电化学活性材料混合,该材料的电子传导性至少为10-4S/cm,其中锂能可逆地嵌入和去除,将这样得到的膏状物料涂敷在电极导体或载体箔上,并加以干燥。这样制成的正电极箔和负电极箔层压在隔片上,该电池堆用液态有机电解质浸渍从而形成电池。

Description

电极箔的制造方法
发明领域
本发明涉及一种用于原电池元件的电极箔的湿化学制造方法,该元件含至少一个嵌入锂的电极,该电极由至少两种不同的氟化聚合物的混合物组成,在其聚合物基体中,不溶性的电化学活性物质细分散在聚合物中,而且涉及一种带有按照本发明制造的电极的原电池。
背景技术
出于电化学稳定性的原因,尤其是在正电极面上,在基于锂的原电池中只能采用少数的材料作为电化学活性物料的粘接剂。除了聚烯烃外,尤其采用氟化的聚合物。
文献US 4,828,834 A1报导了聚四氟乙烯(PTFE)在带嵌入锂的电极的可再充电的电池中的应用。这里只加入小的重量百分比,例如1.8-5%的PTFE作为粘接剂,并通过在通常为3t/cm2的压力下冷压得到该电极。
文献5,631,104 A1报导以乙烯-丙烯-二烯-单体作为电化学活性物料的粘接剂,为便于加工该单体溶解于环己环中。这样得到的膏状物涂敷于载体箔上,并加以干燥。
文献WO 98/20566叙述了一种方法,其中聚亚乙烯-均聚物与填料如SiO2或Al2O3干混合。然后加入增塑剂,例如二甲基二己酸酯,并形成电极坏或隔片坯的预成型混合物以热压法或熔化方法中在软化点之上但在该聚合物熔点之下加工。
文献US 5,296,318 A1报导本征导电隔片的制造,从聚偏氟乙烯-六氟丙烯(PVDF-HFP)组合物出发,该组合物与电极箔是可层压。出于引入的电解质盐,隔法箔是强吸湿性的,按不同的电解质盐,还可是对水解敏感的,同时释放氢氟酸。
实施这种方法的缺点是总流程所必需的干燥室和保护气氛的费用高。
文献US 5,460,904 A1给出了一种制造可活化的、可重复充电的锂电池的方法,其中电化学活性物质、添加剂如有时在电极中的电导率改良剂或隔片中的稳定剂、专门的聚合物-共聚物聚偏氟乙烯-六氟丙烯(PVDF-HFP)以及显著份额的软化剂,典型的是二丁基酞酸酯(DBP),在添加丙酮使聚合物溶解之后经强烈混合,并拉出箔。这种箔以多次层压法加工成所谓的双电池,多个双电池形成电池堆,后者嵌入有涂层的深拉铝箔中后,充填电解质、密封、成形、除气和最终密封,以制成电池产品。过程中,上面提及的增塑剂必须首先以昂贵的分离步骤从该双电池中完全去除,因为它在充电的电池中是电化学不稳定的,从而可能在该电池的第一次充电过程中受到不可逆的损害。该分离步骤在时间和费用上都是昂贵的,而回收的增塑剂通常是重污染的,而不能重复利用,同时又会带来较高的费用。为进行分离所建议的溶剂通常是很毒的和具有爆炸性的甲醇或者易着火的己烷。
文献DE 196 52 174 A1建议采用在电化学上是稳定的增塑剂,从而不必被洗脱。为其后吸收电解质的成孔在这里可以热的方式解决,即增塑剂的主要部分可在加湿和真空下被排出。其大的优点在于,软化剂的分离不再需完全实现。当然这不能完全消除昂贵的分离步骤和所需的再循环。其次增塑剂本身亦造成费用,在炉中排出的增塑剂亦应捕集和处置。这可能造成炉区本身的显著污染,尤其是在冷区,在那里大量的增塑剂可能沉积。由通常是难挥发的增塑剂的饱和压力引起的炉室的饱合效应,可能使分离甚至完全中断,这样要花大量费用烘干,会耗费很多时间多次注水及重新抽空。
发明内容
本发明的目的在于简化用于制造聚合物电极的已知方法。
本发明的目的是以开头所述的方法借助权利要求1的特征部分来达到。本发明的有效实施方案以及带有按本方法制造的电极的电池亦在从属权利要求中给出。
本发明的方法有可能制造一种基于在湿化学过程中有高的电化学稳定性的含氟聚合物,优选偏氟乙烯和六氟丙烯的混合物作为自载箔的电极,或者涂在类似聚酯箔的基片上或直接涂于导体电极上,然后以连续的过程,如大件量制造所要求的那样,热层压成层状复合体,从而具有最佳接触的电池复合体的优点,即不再要求像在卷绕式电池那样通过专门的卷绕技术施加压力或者通过刚性的从而通常是重金属的外壳产生的外压。按照本发明的原理,箔在普通的环境条件下制造,最后才在保护气氛下将添加电解质装入电池壳。
如在前言中提及的现有技术表明那样,迄今将这种意见,即增塑剂是需要的,以便拉制箔时阻止固体成分的沉降。并在紧接的加工过程中保持足够的柔软性,该过程包括许多导轮和多次卷绕和拆卷。此外,作为保留空间的增塑剂要为接着的充填电解质提供足够的微孔,则其大部分须再被分离。加之,电极中的增塑剂应可能通过层压过程在导体或隔片上。
但是,本发明的方法表明,它能在完全不加增塑剂的条件下制造无沉降作用的足够柔软的箔,而且只通过丙酮在加工过程中的挥发(丙酮除甲基吡咯烷-2-酮之外优选的溶剂)和聚合物的自然变脆或老化为在以后的工序中以电解质充填提供足够的微孔。此外,电极所含的电导率改良剂(通常是高吸收能力的碳)对电解质的吸收起促进作用,这样,不像已知方法那样,孔隙度只能通过增塑剂产生。本发明方法的主要优选在于,增塑剂及带有上面所列的缺点的去除就完全取消了,而且还能利用聚合物的熔点将电极粘结到放电电极和隔片上。如果在这个步骤中已存锂盐和/或增塑剂存在,则通过电解质盐的分解和通常是挥发的增塑剂会发生熔点降低和可能的气体释放。增塑剂在层压中可作为液膜沉积在电极表面,从而阻碍粘结。
本发明通常在无增塑剂下能以湿化学方式实施的方法提供多孔结构,接着用液态电解质充填该结构,从而该系统成为液体电解质电池。
完全代替增塑剂是以这样的无机物料或化合物作替代物为前提的,它们除预期的电化学性质外还具有特殊的结构和机械性质。在嵌入锂的电池中为改善电极的电子传导性采用了完全特殊的具有多种性能的碳黑。除了在优选方向有与石墨相比的高的电子传导性之外,同时其有效表面,即BET-表面,应尽可能小。这是出于使与液体有机电解质的反应表面最小所需要,因为该反应层在形成时不可逆地消耗锂,而作为随厚度增加电池电阻。采用表面最小化的石墨可以达到较低的表面值。但是石墨本身虽然在负电极的低BET-表面,但不适宜于改善电导率,因为它嵌入有锂,并且在其表面生成一层只传导离子的钝化层SEI,“固体电解质界面”,它是作为与该液态有机锂电解质的反应产物。同样石墨不能贮存一定量的液态电解质。相反,适宜于本发明的碳黑还具有这种有利的贮存性质,从而能提高电极中的电解质量,并由此提高电极的离子导性率。这种碳黑的晶格结构是这样考虑的,即锂几乎不能被嵌入,从而不能形成相当于石墨情况的SEI。箔的机械性质将通过这种碳黑以有利的方式得到改进,这就使它特别适宜作为增塑剂的代替物。
适宜于本发明的碳黑所具有的BET-表面为50-500m2/g,优选50-150m2/g,尤其是50-80m2/g,其最小电导率为103S/cm。其堆密度应介于0.05-0.30g/m3范围内,液体吸收为1-20ml/g,优选5-10ml/g。该碳黑可同样用于正电极和负电极,即其量为0.1-20重量%,优选2-6,尤其是2-2.5重量%(负极面)以及4.5-5.5重量%(正极面)。该数据以包括溶剂的膏状物配料计算(这种碳黑的商品名称为Super P,由Sedema或Keitjen Black公司销售)。
一般说来,有如石墨或LiCoO2的层结构的材料在机械方面极适宜于代替增塑剂。这可明显地从石墨的滑动作用看出来。出于提及的原因石墨只用在正电极上。这里石墨对正电极的电导率的改进作用与石墨作负电极中嵌入活性锂的材料有明显的区别。石墨作电导率改进剂时通常很细,其粒度低达几微米,而其使锂可逆嵌入的性质,在不可逆吸收锂过高的意义上,特别是在第一个半循环过程中是有害的,当石墨用作负电极的活性材料时,其粒度至少应为20微米,更宜为35-50微米,还由于其特有的结构和表面,作为活性材料是合格的。
LiCoO2是Li-Me-O化合物的代表,Me在这里表示过渡金属,要提高电化学稳定性可用氟取代氧,能使结构稳定的主族元素宜取Mg或Al。这些能对电池的抗高温的电化学性质起有利的影响。这些化合物出于电化学的原因,即其相对锂的电势,只能用于正电极。通常正电极箔材料的电化学活性物质选自三元(Li-Me1-O)或四元(Li-Me1-Me2-O)的锂过渡金属氧化物是适宜的,其中Me1和Me2选自Ti、V、Cr、Fe、Mn、Ni、Co,而且该化合物有时还含达15-原子%的Mg、Al、N或F以便使结构稳定。
作为负电极的电化学活性物质采用石墨化的碳变体。
在充电的电池中与液态有机电解质的反应产物,例如LiCoO3或LiOH,据推测亦在正极面产生,因此,本发明的嵌入活性锂的材料作为正极面的增塑剂代替物具有的BET-表面为0.1-2m2/g,碱性pH为9-11.5,以及粒度为1-50微米。有时用Li2CO3或LiOH进行表面处理。在这类材料的情况下典型的堆密度为1.9-2.6g/cm3,密度为3.8-4.3g/cm3。其量宜为0.1-25重量%,优选5-20,尤其优选10-15重量%。该数据按包括溶剂在内的总膏状物配料计算。LiCoO2具有很好的电化学性质,其Li/Co比例为0.98-1.05,制备温度至少在650℃左右。
制备箔的膏状物中的溶剂含量应在50-75重量%,优选55-75重量%,尤其优选57.2-62.5重量%。
正电极箔PVDF/HFP比例在最大为99.5和最小为0.5之间,优选在最大为80和最小为20之间,而且PVDF/HFP的分子量比例在3.2-2.8之间,优选在2.3-2.5之间。对负电极箔而言,PVDF/HFP比例在最大为99.5和最小为0.5之间,优选在最大为85和最小为15之间,而且PVDF/HFP的分子量之间的比例在3.2-2.8之间,优选在2.3-2.5之间,密度在1.6-1.9g/cm3之间,优选在1.7-1.8g/cm3,尤其优选1.78g/cm3,熔点高于130℃,优选145℃,尤其优选154-155℃,熔化焓为40-55J/g,优选44-46J/g。
起始膏的粘度在0.1-15帕,优选1-10帕,尤其优选3-6帕。
实施例
实施例1
为制造阳极,将250ml丙酮与27.8g PVDF-HFP(Powerflex,ElfAtochem公司)一道放入500ml锥形瓶中,并在水浴中加热至42℃。用IKA混合器搅拌,直至该聚合物完全溶解。然后加入6.2g导电碳黑(Super P,Sedema公司)和275.3g球状石墨(MCMB 25-28,OsakaGas公司),并搅拌2小时。而且搅拌速度调到如此强,正好不搅拌入空气。
对于阴极采用同样的流程,这里在250ml丙酮中加入24.8gPVDF-HFP(Powerflex,Elf Atochem公司)、2.6g导电碳黑(Super P,Sedema公司),2.6g石墨(KS6,Timcal公司)作电导改进剂以及276.2g锂钴氧化物(FMC)。
阳极和阴极用铸带法制造,其面重为19-21g/cm2。Mylar(聚酯)作载体箔。阳极然后在温度为160℃,压重为45kg下层压至铜箔上。在辊层压时的有效宽度为6cm。对阴极而言,参数为165℃和35kg。用这样层压的条冲模制成活性面积约为6×3cm2的阳极和阴极,接着将该阳极和阴极层压为双电池(阴极/隔片/阳极/隔片/阴极)。
隔片为三层(PP/PE/PP)并有薄的PVDF-HFP层。首先在130℃和10kg下,将隔片两面层压到阳极上,然后在第二层压步骤中,在同样参数下层压上阴极和下阴极。在这里有效宽度为3cm。
实施例2
方法同实施例1,只是阳极直接浇铸于铜箔上。
附图简介
图1表示本发明的电池在负荷为C/5下放电电压和电极电流的变化过程。在这种情况下IL和UL表示通过层压制造的电极(实施例1)的电压和电压;IC和UC表示通过直接浇铸制造的电极(实施例2)的电流和电压。
图2和3表示在温度为20℃(图2)和60℃(图3)及电流为C/2下电容变化过程K随循环数n的关系。在某些初始循环中负荷电流为C/5。
KL表示层压电极(实施例1)的测量值,而KC表示直接在导体上浇铸的电极的测量值。

Claims (16)

1.一种用于制造电池电极箔的湿化学方法,该电池含至少一个嵌入锂的电极,该电极由至少两种不同氟化聚合物的混合物组成,在聚合物基体中不溶性电化学活性物质细分散在聚合物中,其特征在于,至少两种不同的氟化聚合物被溶解在溶剂中,未添加增塑剂、溶胀剂或者电解质,只与其BET-表面界于表面最小化的石墨和活性碳之间的高导电碳黑及两维层结构的电化学活性材料混合,该材料的电子传导性至少为10-4S/cm,其中锂能可逆地嵌入和去除,将这样得到的膏状物料涂敷在电极导体或载体箔上,并加以干燥。
2.权利要求1的方法,其特征在于,作为聚合物采用偏氟乙烯和六氟丙烯。
3.权利要求1或2的方法,其特征在于,作为溶剂采用N-甲基吡咯烷-2-酮或丙酮。
4.权利要求1-3之一项的方法,其特征在于,作为正电极箔的电化学活性材料采用三元(Li-Me1-O)或四元(Li-Me1-Me2-O)锂过渡金属氧化物,其中Me1和Me2选自Ti、V、Cr、Fe、Mn、Ni、Co,有时该化合物有时还含达15-原子%的Mg、Al、N或F以使结构稳定。
5.权利要求1-3之一项或多项的方法,其特征在于,作为负电极箔的电化学活性材料采用石墨化的碳变体。
6.权利要求1-5之一项或多项的方法,其特征在于,作为正电极箔的活性材料采用BET-表面为0.1-2m2/g,粒度为1-50μm的材料。
7.权利要求1-6之一项或多项的方法,其特征在于,作为正电极的材料采用LiCoO2,其Li/Co的比例为0.98-1.05。
8.权利要求1-6之一项或多项的方法,其特征在于,碳黑的BET-表面为30-150m2/g,优选50-80m2/g,而碳黑的液体吸收为1-20,优选5-10ml/g之间。
9.权利要求1-8之一项或多项的方法,其特征在于,用于负电极箔的膏状混合物含55-95重量%,优选65-85重量%的碳材料。
10.权利要求1-9之一项或多项的方法,其特征在于,用于正电极箔的膏状混合物含65-98重量%,优选含75-95重量%的锂过渡金属氧化物。
11.权利要求1-10之一项或多项的方法,其特征在于,该膏状混合物含50-75重量%,优选55-65重量%的溶剂。
12.权利要求1-11之一项或多项的方法,其特征在于,正电极箔的PVDF/HFP比例在最大为99.5和最小为0.5之间,优选在最大为80和最小为20之间,而且PVDF/HFP的分子量的比例为3.2-2.8,优选2.3-2.5。
13.权利要求1-12之一项或多项的方法,其特征在于,负电极箔的PVDF/HFP比例在最大为99.5和最小为0.5之间,优选在最大为85和最小为15之间,而PVDF/HFP之间的分子量的比例为3.2-2.8,优选为2.3-2.5。
14.权利要求1-13之一项或多项的方法,其特征在于,原始膏的粘度调节到1-10帕,优选3-6帕。
15.一种具有至少一个电极箔的原电池,该箔是按权利要求1-12之一的方法制造的。
16.权利要求15的原电池,其特征在于,正电极箔和负电极箔是按照权利要求1-12之一的方法制造的,该箔层压到隔片上,并且该电池堆用液态有机电解质浸渍。
CN02103349A 2001-02-03 2002-02-01 电极箔的制造方法 Pending CN1369923A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10104988A DE10104988A1 (de) 2001-02-03 2001-02-03 Verfahren zur Herstellung von Elektrodenfolien
DE10104988.0 2001-02-03

Publications (1)

Publication Number Publication Date
CN1369923A true CN1369923A (zh) 2002-09-18

Family

ID=7672799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN02103349A Pending CN1369923A (zh) 2001-02-03 2002-02-01 电极箔的制造方法

Country Status (6)

Country Link
US (1) US20020119371A1 (zh)
EP (1) EP1229597A3 (zh)
JP (1) JP2002289197A (zh)
KR (1) KR20020064864A (zh)
CN (1) CN1369923A (zh)
DE (1) DE10104988A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103907227A (zh) * 2011-10-27 2014-07-02 株式会社神户制钢所 电极材料、电极和二次电池

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005089422A2 (en) 2004-03-17 2005-09-29 California Institute Of Technology Methods for purifying carbon materials
US7794880B2 (en) * 2005-11-16 2010-09-14 California Institute Of Technology Fluorination of multi-layered carbon nanomaterials
US20070218364A1 (en) * 2005-10-05 2007-09-20 Whitacre Jay F Low temperature electrochemical cell
US8232007B2 (en) 2005-10-05 2012-07-31 California Institute Of Technology Electrochemistry of carbon subfluorides
US7563542B2 (en) * 2005-10-05 2009-07-21 California Institute Of Technology Subfluorinated graphite fluorides as electrode materials
US8377586B2 (en) 2005-10-05 2013-02-19 California Institute Of Technology Fluoride ion electrochemical cell
US8658309B2 (en) * 2006-08-11 2014-02-25 California Institute Of Technology Dissociating agents, formulations and methods providing enhanced solubility of fluorides
KR101422311B1 (ko) * 2006-12-04 2014-07-22 시온 파워 코퍼레이션 전해질의 분리
US20090111021A1 (en) * 2007-03-14 2009-04-30 Rachid Yazami High discharge rate batteries
WO2009003573A1 (en) 2007-06-29 2009-01-08 Umicore High density lithium cobalt oxide for rechargeable batteries
JP5682209B2 (ja) * 2010-10-05 2015-03-11 新神戸電機株式会社 リチウムイオン二次電池
KR102316033B1 (ko) * 2014-06-11 2021-10-21 도레이 카부시키가이샤 전지용 세퍼레이터 및 이의 제조 방법
CN106558725B (zh) * 2015-09-29 2020-05-12 丰田自动车株式会社 锂离子二次电池
CN106450260B (zh) * 2016-09-26 2019-08-13 电子科技大学 锂离子电池正极材料LiCo1-x-yVxMgyO2-yFy及其制备方法
KR102417267B1 (ko) 2016-11-02 2022-07-04 삼성에스디아이 주식회사 리튬 이차 전지
KR102417774B1 (ko) 2018-04-20 2022-07-05 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
KR102417773B1 (ko) 2018-04-27 2022-07-05 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
CN109994729B (zh) * 2019-03-19 2021-03-05 宁德新能源科技有限公司 正极材料及使用所述正极材料的电化学装置
CN114050240B (zh) * 2021-11-05 2023-03-14 合肥国轩高科动力能源有限公司 钛掺杂多孔三元材料及其制备方法、半电池及锂离子电池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2196785B (en) * 1986-10-29 1990-05-23 Sony Corp Organic electrolyte secondary cell
US5460904A (en) * 1993-08-23 1995-10-24 Bell Communications Research, Inc. Electrolyte activatable lithium-ion rechargeable battery cell
US5296318A (en) * 1993-03-05 1994-03-22 Bell Communications Research, Inc. Rechargeable lithium intercalation battery with hybrid polymeric electrolyte
CA2158242C (en) * 1995-09-13 2000-08-15 Qiming Zhong High voltage insertion compounds for lithium batteries
KR100454308B1 (ko) * 1996-12-16 2004-10-26 다이낑 고오교 가부시키가이샤 비수전해액 2 차 전지용 결착제 및 그것을 사용한 전지전극합제
ID20294A (id) * 1997-02-28 1998-11-26 Atochem North America Elf Kopolimer viniliden fluorida dan heksafluoropropilena yang mempunyai kandungan zat yang dapat diekstrak yang berkurang dan kejernihan larutan yang lebih baik
US6136470A (en) * 1998-02-20 2000-10-24 Micron Technology, Inc. Battery electrodes, batteries, and methods of forming batteries and battery electrodes
US6537703B2 (en) * 1998-11-12 2003-03-25 Valence Technology, Inc. Polymeric mesoporous separator elements for laminated lithium-ion rechargeable batteries
KR100362283B1 (ko) * 2000-05-12 2002-11-23 삼성에스디아이 주식회사 리튬 2차 전지의 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103907227A (zh) * 2011-10-27 2014-07-02 株式会社神户制钢所 电极材料、电极和二次电池
CN103907227B (zh) * 2011-10-27 2017-10-13 株式会社神户制钢所 电极材料、电极和二次电池

Also Published As

Publication number Publication date
US20020119371A1 (en) 2002-08-29
EP1229597A3 (de) 2004-04-28
EP1229597A2 (de) 2002-08-07
DE10104988A1 (de) 2002-08-08
JP2002289197A (ja) 2002-10-04
KR20020064864A (ko) 2002-08-10

Similar Documents

Publication Publication Date Title
CN1369923A (zh) 电极箔的制造方法
CN105591058B (zh) 耐热微孔膜和电池隔膜
US11018379B2 (en) Electrode, secondary battery using same, and method for manufacturing electrode
RU2482573C1 (ru) Токосъемник для вторичной батареи и вторичная батарея с его использованием
CN100585939C (zh) 非水电解质二次电池
KR102014983B1 (ko) 양극 및 이를 채용한 리튬 전지
JP5331627B2 (ja) リチウム二次電池用セパレーターおよびこれを用いたリチウム二次電池
CN109994740A (zh) 复合集流体与包含其的复合极片及电化学装置
CN111129602A (zh) 一种一体化成型固态电池的制备方法
KR101704157B1 (ko) 고용체 리튬 함유 전이 금속 산화물 및 리튬 이온 이차 전지
CN105470576A (zh) 一种高压锂电池电芯及其制备方法、锂离子电池
JP2008234872A (ja) 正極活物質および電池
KR20090050952A (ko) 비수 전해질 전지
WO2013115311A1 (ja) 固溶体リチウム含有遷移金属酸化物及びリチウムイオン二次電池
JP2013114882A (ja) リチウムイオン二次電池
JP2008041504A (ja) 非水電解質電池
CN114270569A (zh) 制造全固态电池的锂金属单元电芯的方法和通过该方法制造的单元电芯
JP4240060B2 (ja) 正極活物質および電池
JP5211480B2 (ja) 電極用活物質粒子、電極、電気化学デバイス及び電極の製造方法
JP5061433B2 (ja) 集電体およびそれを用いたリチウムイオン二次電池
JP5228501B2 (ja) 電極用活物質粒子、電極、電気化学デバイス及び電極の製造方法
US11967678B2 (en) All solid-state lithium-ion battery incorporating electrolyte-infiltrated composite electrodes
JP2019067619A (ja) 二次電池
JP2023548177A (ja) 負極より面積が広い正極を含む全固体電池及びその製造方法
JP2007157499A (ja) 電池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication