CN1341679B - 多孔复合膜的制备方法 - Google Patents

多孔复合膜的制备方法 Download PDF

Info

Publication number
CN1341679B
CN1341679B CN011225092A CN01122509A CN1341679B CN 1341679 B CN1341679 B CN 1341679B CN 011225092 A CN011225092 A CN 011225092A CN 01122509 A CN01122509 A CN 01122509A CN 1341679 B CN1341679 B CN 1341679B
Authority
CN
China
Prior art keywords
film
preparation
polymer
porous
porous composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN011225092A
Other languages
English (en)
Other versions
CN1341679A (zh
Inventor
J-F·潘尼奥
F·卡皮塔恩
P·莱格夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ballauer
Original Assignee
Ballauer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ballauer filed Critical Ballauer
Publication of CN1341679A publication Critical patent/CN1341679A/zh
Application granted granted Critical
Publication of CN1341679B publication Critical patent/CN1341679B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28026Particles within, immobilised, dispersed, entrapped in or on a matrix, e.g. a resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/10Specific pressure applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/046Elimination of a polymeric phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249986Void-containing component contains also a solid fiber or solid particle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Inert Electrodes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

本发明涉及特别是具有高比表面的多孔复合产品,其特征在于:它由聚合材料和至少20%的一种或几种填料形成,还在于所述产品可以通过挤塑而得到。本发明还涉及一种多孔复合产品的制造方法,其中包括:a)形成含有一种或几种不溶聚合物、一种或几种可溶或可煅烧聚合物、一种或几种填料的混合物;b)挤塑所述混合物,形成挤塑的产品前体;c)从所述挤塑的产品前体中除去一种或几种可溶和可煅烧的聚合物;d)回收多孔复合产品。本发明还涉及由特别是具有高比表面的多孔复合产品组成的各种挤塑制品。本发明最后涉及由多孔复合产品的膜形成的电极。

Description

多孔复合膜的制备方法
本申请是申请日为1998年2月5日、申请号为98802355.5、发明名称为“多孔特别是高比表面复合产品、制备方法和多孔复合膜电化学组件电极”的专利申请的分案申请。
技术领域
本发明涉及多孔的,特别是呈膜状的,特别是高比表面的复合产品,以及制备这种产品的方法。本发明还涉及实施所述方法的复合产品的前体。本发明还涉及呈膜状多孔复合产品作为电化学装置组件中电极的应用,以及在包装或催化领域选择性膜作为高比表面、多孔复合产品的常见应用。
背景技术
人们尤其是通过专利申请书EP-A-283187已经对在第一种热塑性聚合物和第二种热塑性聚合物混合物熔融温度下通过挤塑然后借助于适当的溶剂除去第二种聚合物所得到的低密度多孔膜有所了解。这样的多孔膜可以应用于特别是过滤或分离之类不同应用领域。
专利申请书EP-A-430439叙述了制备这种膜的改进的方法,其中第一种热塑性聚合物和第二种不相容的热塑性聚合物的混合物通过模具进行挤塑,然后借助于溶剂除去不相容的聚合物,该方法的特征在于,在模具的上游插入一个多孔的挡板,以得到一种多孔结构,它包括一个低孔隙率的纵向区和另一个较高孔隙率的纵向区。
另外我们知道可以在双层类型电容器中使用的可以充上较多电量或者放出该电量的可极化电极。
可以在超电容器中使用的可极化电极是基于轻而且具有大的交换表面的可完满地极化材料如作为高比表面,特别是大于1000m2/g碳质材料的活性炭。
对于具有最大功效的电极,它应该具有最大含量的有效质量,而且这部分质量要最容易到达。后一个性能意味着它具有开孔结构。比如活性织物电极就是这种情况:我们由粘胶基的织物或聚丙烯腈的织物,先碳化然后活化制造出活性炭的织物。
但是,这样的电极价格昂贵,厚度厚而且不均匀(一般超过300μm)。再有,尽管这样实施至少在理论上允许使用缠绕技术,但在实际上被证实这样的使用难以进行。
我们还可以通过烧结得到一种有效质量很高(一般高于98%)的电极。将活性炭和不同的添加剂,特别是黑色导电体与液体机械混合,直至得到一种悬浮液为止。将得到的溶液倒入部分抽真空的过滤壁上。在一定时间以后,各组分均匀地沉积在过滤壁上,这时液体通过此壁。该部分真空在各组分之间建立了内聚力,这相当于被压实。在该壁上回收的干材料就是电极。
但正如在前面所指出的,此技术具有许多缺点。特别是它很难适合于使用缠绕技术,电极的厚度、均匀性和规整性难以控制。再者,该方法在选择聚合物方面受到限制。特别是不能使用聚烯烃。
还可以将含碳的填料与含有少量比如3%聚四氟乙烯的聚合物粘接剂机械混合,直至得到很粘的膏状物为止,然后进行层合使其成片状,将此片用冲压刀切割制成电极。
此方法与上述实施方法具有同样的缺点。
还可以举出通过涂布制造的方法,在该方法中,将活性填料和一种或几种添加剂,比如聚合物粘接剂在溶剂中混合,直至得到粘度被控制的膏状物为止。将该膏状物涂布在支持片上,以后该支持片就是电流的集电极。将此片放入烘箱中蒸发掉溶剂。
该沉积物可以是较薄(直至几微米)且厚度均匀,有效质量含量高。
然而,由于该方法视具体情况而定使用可能有毒的溶剂,因此是一个难于实施的方法。
我们还知道呈薄膜,特别是聚烯烃薄膜状的电极可以使用缠绕技术。
这些可极化的电极基于含碳材料如高比表面,特别是大于1000m2/g的活性炭以及基于如聚烯烃,特别是聚乙烯、聚丙烯或其它聚合物如聚酯、聚碳酸酯、聚酰亚胺的粘接剂。
例如,曾经提出过使用聚乙烯或聚丙烯粘接剂和活性炭粉的可极化电极(见JP-A-22062/92)。
但是,基于如聚乙烯或聚丙烯粘接剂的可极化电极具有很低的孔隙率。
上面所举出的其它的粘接剂也具有这些现象。
文献BE-A-693135叙述了一种多孔和整体上呈原纤维状,含有直至占其总重量98%导电填料如石墨或金属的聚四氟乙烯片。
这类结构是通过将聚四氟乙烯颗粒的水分散液和可提取的聚合物混合,然后烧结而得到的。此烧结过程包括一个导致聚四氟乙烯颗粒发生剪切变形并且将颗粒转化为伸长纤维网的关键步骤。然后进行挤塑,再以后除去可提取的聚合物。最终的结构具有大于0.1μm的孔隙。此片状物可以在燃料电池中用作电极。
日文文献JP-A-57100142的摘要叙述了多孔膜的制造方法,其中包括将15-60%(体积)的聚烯烃树脂、3-40%(体积)的聚醚、20-80%(体积)的细分散可提取粉末、0.5-10%(体积)的不溶粉末的混合物挤塑,然后提取出聚醚和可提取粉末。申请人证实,不可能使用在此文献中叙述的方法得到在含有高填料含量的同时其机械性能不会受到严重影响的片状物。
US 4396693A公开了一种电极活性导电组合物,该组合物由一种电极组合物前体组成,该电极前体组合物由小纤维组成,该小纤维由可纤维化的第一聚合物形成,该第一聚合物彻底分散在含有电极活性颗粒、形成载体的第二聚合物以及可脱除的聚合物成孔剂的物质中(参见其第2栏第16-21行)。
与之相比,本发明所定义的混合物是均匀的,也就是说所述混合物未被纤维化,其中的聚合材料呈非纤维状。
US 4862328公开了一种多孔电极,该电极中含有纤维(参见其图1及第2栏第59行),这意味着该电极具有纤维化结构。另外,该纤维并未与聚合材料充分混合,由其中的图1可以清楚地看出,其中的填料(细碳粉4)被分组在小袋中(结点2)。
与之相比,本发明所定义的混合物是均匀的,也就是说所述产品是未纤维化的,并且填料均匀分布在所述产品中。
US 3673278公开了一种聚碳酸酯组合物,该组合物具有阻燃性能,且具有最小下滴性能(参见其第1栏第45-47行),并且该组合物并不是多孔的,也不是通过挤出得到的。
US 4309494公开了一种用于液体电解质电池的隔膜,该隔膜由多孔膜形成,所述多孔膜通过共混乙烯乙烯醇共聚物、惰性填料和增塑剂的组合物得到(参见其第2栏第47-52行)。
该文献并未提及所述膜的比表面积以及所使用的填料的比表面积,其中也没有公开平均孔径小于0.5μm。
US 5171774公开了一种适用于自动过流重置保护设备的PTC组合物(参见其第1栏第6-10行),该组合物含有比表面积可能大于1000m2/g的碳黑。但其中所公开的PTC组合物是以小片形式提供的(参见其第3栏第60行),而不是本发明的膜形式。
US 4190707公开了一种由多孔膜制成的电池隔膜,其中所述膜的平均孔径小于0.5μm(参见其第4栏第27-28行)。该文献表明所述电池隔膜可以达到“低电阻”状态(参见其第5栏第61-62行)。
事实上,该文献所提及的是所述电池隔膜达到“低离子电阻”状态,因为所述隔膜应该是不导电的,否则就会在电池电极之间发生短路。在该文献中,低离子电阻是通过形成适当的孔得到的(参见其第5栏第61-62行),并且所述孔是通过提取填料得到的。
该文献中建议提取初始组合物中所含有的无机填料(例如参见其第栏第61-62行及第7栏第2-3行)。提取无机填料的目的在于在隔膜中形成适当的孔(参见其第5栏第19-22行)。但这种对无机填料的提取导致最终隔膜中无机填料的含量小于3%体积(参见其第10栏第33-38行)。
US 4957943公开了一种微孔制品,该制品可以以含有填料的膜的形式提供,例如可用作电池隔膜(参见其第11栏第62-66行)。但该文献完全没有提及所述膜的比表面积、所述填料的比表面积以及平均孔径。
另外,该文献也没有公开具有均匀结构的产品。在其中描述的方法中,所述产品通过膨胀而扩张(参见其第10栏第36-42行),这被称为“鼓泡过程”。这种鼓泡过程不会形成均匀的产品,特别是不可能在膨胀方面上形成均匀的产品。
US 5538811公开了一种固体聚合物电解质,该电解质通过将含有醚型氧的聚合物、增塑剂及最终的多种盐混合得到。该电解质被涂覆到电极层上并被干燥得到一个层压片。该电解质完全不是多孔的,并且不可能通过挤出得到。
US 5811025完全不涉及多孔复合膜,其中公开的是一种用于发动机流体换热系统的冷却剂组合物。
WO96/20505完全不涉及通过挤出形成的多孔复合膜,其中公开的是一种含有短纤维和热熔短纤维的无纺织物,其中所述热熔短纤维热熔合在一起以粘结所述短纤维并固定无纺织物的结构。
US 5738111公开了一种微孔膜材料,其包含热塑性聚合物或聚四氟乙烯以及水和油排斥型氟化合物,其中的多孔膜通过延伸膜以形成孔和小纤维而形成(参见其第8栏第13-17行)。因此,其中的孔完全不是通过除去可溶性聚合物来形成的,即完全不同于本发明的技术方案。
US 4100238公开了一种制备可渗透性膜的方法。该方法包括通过压制一种混合物而形成片材,所述混合物含有热塑性线性有机合成树脂(A)和与该合成树脂部分相容的化合物(B),其中该化合物(B)利用溶剂部分脱除。但其中的片材是通过压制形成的(参见其第12栏第67行及第13栏第30、50、63行),而不是挤出形成的。
US 5538811公开了一种打算用于在电容器中形成电解质层的电解质溶液,该电解质溶液由包含特定聚合物材料和活性炭的混合物形成,其中的活性炭的比表面积为2500m2/g,并且微孔的平均孔径为20埃(0.002μm)。但该文献中并没有提及所得到的电解质层的比表面积。
尽管该文献涉及了活性炭微孔的平均孔径,但其中完全没有表明所得到的电解质层具有微孔结构,而且可以看出其中的电解质层并不是多孔的。这是因为其中制备所述电解质层的方法(涂覆和固化)并不包括任何可以在电解质层中形成孔的步骤(参见其第15栏第5-14行)。
另外,在该文献中,所述电解质层并不是通过挤出形成的,而是涂覆在形成集电器的金属箔上(参见其第15栏第8-14行)。
US 5811025公开了一种包含铝片的电极,所述铝片上涂有由80wt%活性炭和20wt%聚合物粘结剂的第一层(参见其实施例4)。但该文献没有提及所述第一层的比表面积、所述填料的比表面积及平均孔径。另外,在该文献中,所述第一层也不是通过挤出形成的(参见其第7栏第15行,可知其中的电极是热辊形成的)。
US 5665442公开了一种复合产品,该产品由一种包括无机混料、有机聚合物和纤维的混合物组成,该产品打算用于形成厚度为0.01mm至1cm的片材(参见其第19栏第31-36行),而该片材打算用于形成装食物或饮料的容器。但该片材并不是多孔的。另外,该文献中所公开的片材也完全不含有一种或多种比表面积大于1000m2/g的填料。
US 5458836并不涉及制备多孔复合膜的方法,其中公开的是一种用于挤出聚合物的带有模头的挤出装置。
US 4403007公开了一种组合物,该组合物含有乙烯共聚物、增塑剂、填料、未硫化的弹性体聚合物及烯烃聚合物。该组合物可用于制备消声片材。但该组合物并不是多孔的,也没有经过挤出操作。
US 3407249公开了一种多孔的完全纤维化的聚四氟乙烯片材,该片材通过共混聚四氟乙烯、可提取的树脂聚合物和最终的填料而制备,其中对所述混合物进行研磨,以形成小纤维或纤维(参见其第3栏第43-44行及第6栏第58-60行),并且其中所述树脂聚合物利用溶剂提取出来。
与之相比,本发明所定义的混合物是均匀的,也就是说本发明中的混合物并未纤维化。
US 3407096公开了一种复合多孔片材,该片材通过将聚甲基丙烯酸甲酯与聚四氟乙烯分散体及导体填料而得到,对该混合物进行研磨(参见其第1栏第40-45行),从而使聚四氟乙烯颗粒转化成拉伸的小纤维网络(参见其第1栏第54行)。因此,该文献中得到的产品是经纤维化的产品,即该产品是由不连续的结构组成的。
与之相比,本发明的产品具有连续的结构,即所述产品为“均匀形式”。
由此可知,本发明与该文献公开内容的区别还是很明显的,因为本发明赋予所述产品一些有利的性能,如破碎时的抗张强度。由于所述产品是有韧性的,因此可以用于形成通风薄膜,并且可以避免使用载体。
JP57-100142公开了一种制备微孔膜的方法,其中所述膜通过熔融挤出一种共混物形成,所述共混物包括烯烃树脂、聚亚烷基氧化物、可提取的细粉和水不溶性细粉,其中对所述聚亚烷基氧化物和所述可提取的细粉(季戊四醇颗粒)进行提取。但该文献中公开的混合物的组分与本发明的混合物的组分是完全不同的。
JP62-124116并不涉及制备多孔复合膜的方法,其中公开的是一种由环氧树脂、酚树脂、酚改性的硅氧烷化合物以及特定的无机填料组成的组合物,而该组合物适用于密封电子部件。
与这些文献的公开内容相比,本发明所定义的方法特别适用于制备聚合物膜,且当在电化学能量贮存设备(电容器、电池)中用作电极时,所制备的聚合物膜具有改进的性能,并且所述多孔膜具有高的活性物质比例且很容易获得该活性物质。另外,所得到的膜不需要支撑结构,并且可以卷绕制成电化学多层设备。
因此都希望制造由粘接剂和填料组成的、特别是具有高比表面、能够使用缠绕技术大量制造的多孔电极。
发明内容
确切地说,本发明的目的是提出一种解决这种技术问题的方法。
本发明的目的之一是提供特别是具有高比表面的新型多孔复合产品。
本发明的另一个目的是提供特别是具有高比表面,高填料含量,能够使用缠绕技术的复合薄膜。
本发明的再一个目的是能够广泛地选择使用聚合物。
本发明的又一个目的是提供制造成本低廉的多孔复合产品或薄膜。
本发明的又一个目的是能够由挤塑技术得到各种形状的可以使用的产品,比如管材、线材、薄膜或其它的挤塑物品。
本发明的又一个目的是提供厚度薄、均匀的呈多孔薄膜状可充分极化而且具有很高有效质量含量的含碳电极。
本发明的又一个目的涉及该多孔复合产品作为选择性隔膜、包装膜、隔离膜的应用。
具体实施方式
本发明首先涉及具有特别高比表面的多孔复合产品,其特征在于,它包括聚合材料和至少20%的一种或几种特别是高比表面的填料,所述产品易于通过挤塑的方法得到。
“产品”一词指的是一种组合体,其内聚力足以使其在无载体条件下保持其完整性。
明显地引人注意的是,本发明产品的初始结构表明在聚合材料中尤其是具有高比表面的填料分布非常均匀,其结构是连续的。此外,聚合材料呈非纤维状。
作为本发明产品的根本特征,申请人注意到,对于上述的填料含量,不具有足够均匀性的产品会导致机械性能不足。
“易于通过挤塑的方法得到”表明该复合产品具有挤塑产品的特征。
为了使“易于通过挤塑方法得到”的产品具有所需的均匀度,必须由尽可能均匀的混合物制造。可以由双螺杆挤塑机得到这种均匀的混合物。也可以使用其它适用的混合装置。
因此,涉及到与能够用前面叙述过的涂敷技术得到的产品存在本质区别的产品。
本发明多孔复合产品的根本特征优选是它具有高比表面。
通过在比如Jean Charpin和Bernard Rasneur的工程师技术出版物Pbis 45-1[《结构研究-比表面测量》中叙述的“BET”测量方法评价比表面。
本发明的多孔复合产品的比表面大于大约10m2/g,优选大于20m2/g,最好在20-100m2/g之间。
该产品的体积孔隙率大于5%。一般低于大约80%。
对于超电容器或蓄电池中的应用,孔隙率一般在15-50%之间。
其平均孔径一般小于1μm,按照一个优选方案,平均孔径小于0.5μm,优选小于0.1μm,最好小于0.02μm。
在特定的含氟聚烯烃的情况下,孔径一般小于0.5μm,特别是在聚四氟乙烯的情况下。
除了有比较高的BET比表面和机械性能以外,这些产品的明显特征是其电化学容量大于2F/g,优选大于10F/g。
在超容量电极的情况下,所需的孔隙率是中孔性的,在比利时专利693135中就是如此,该专利涉及用于“燃料电池”的电极,所需的孔隙应该是开孔(大孔)的,使得燃料流量较大。
在膜状多孔复合产品的情况下,注意到这些薄膜具有卓越的机械性能,这使得可以使用缠绕技术。一般说来,在室温下这些薄膜的拉伸断裂强度高于4MPa,优选高于6MPa。
在填料中,可以举出碳,如石墨、低比表面碳黑,金属氧化物、氧化硅、滑石等。
在一般用来制造这样的复合产品的高比表面填料中,可以特别举出高比表面的含碳材料、矿物颗粒和金属颗粒,比如阮内金属、稀土氧化物、多孔陶瓷、珍珠岩、沸石、粘土等。
对于含碳材料所需要的性能是单位重量的高表面积、低电阻、良好的电化学稳定性。
该含碳材料可以呈粉末形状,由比如石油沥青、酚醛树脂、椰子壳和其它的有机化合物得到。
活性炭特别是具有300-3000m2/g,优选大于1000m2/g的比表面积(BET)。
该聚合材料由不溶解于水性溶剂和/或有机溶剂并且保证该化合物(结构的聚合物或弹性体)的内聚力的弹性体或热塑性聚合物以及含有极性基团的存在于实施得到所述多孔产品或薄膜的制造方法以后的产品中的聚合物或热塑性弹性体形成。
在不溶性弹性体或聚合物当中,可以特别举出如聚丙烯、聚乙烯等聚烯烃、乙烯和丙烯的共聚物。这些聚烯烃可以是膜状产品,特别已知可作为包装膜。这涉及比如低密度或高密度聚乙烯,作为共聚物时它们可视具体情况而定含有或多或少的α-烯烃。
还可以涉及如聚醚嵌段聚酰胺的聚酰胺、聚酰亚胺、高乙烯单体含量的乙烯基共聚物如高乙烯单体含量聚乙烯醋酸乙烯共聚物、丙烯酸类共聚物、如聚苯乙烯的芳香族聚合物,比如苯乙烯-丁二烯共聚物、如聚偏氟乙烯的含氟聚合物、由属于上述单体之一形成的共聚物,比如偏氟乙烯和六氟丙烯的共聚物、偏氟乙烯和三氟乙烯的共聚物。
在溶剂中不溶的弹性体或热塑性聚合物优选自聚烯烃。
在可溶的聚合物当中,可以特别举出可以溶解于如下溶剂的聚合物:水、醇、二甲基甲酰胺、二甲基亚砜、四氢呋喃、丙酮。
当然除此以外,聚合度要适合于用溶剂除去,可溶的聚合物优选自如聚氧亚乙基、聚氧亚丙基的聚醚、如聚乙烯醇的多元醇、乙烯-乙烯基醇的共聚物。在这些聚合物中,特别举出其分子量为200,000-1,000,000的化合物,优选聚醚。
还可以举出能够按照通常方法煅烧的聚合物。
可煅烧的聚合物相当于在上述溶剂中可溶的聚合物,也可以选自其分解温度比结构聚合物或弹性体的分解温度低的聚合物,比如纤维素。
这些聚合物的选择可以用简单实验以本领域专业人员已知方式进行。
该复合产品优选含有至少20%(重量)的填料,优选30-90%,更优选50-85%。
该复合产品优选含有10-40%的不溶于含水和/或有机溶剂的聚合物或热塑性弹性体,以及5-40%的可溶于水和/或有机溶剂的聚合物。
该复合产品还优选含有:
-10-40%的聚烯烃,
-5-40%的聚醚,
-填料适量到100%。
本发明多孔复合产品的其他特征在于,它具有均匀和规则的形状,这就是说,填料与聚合材料紧密地混合,这与比如通过涂布含碳填料与少量聚四氟乙烯型聚合物粘接剂的混合物得到的片状物是不同的。
本发明的复合产品可以呈薄膜状,其优点是可以按照缠绕技术来使用。
这些薄膜避免使用载体。
本发明还涉及如上所述的复合产品的制造方法,该方法的特征在于:
a)制成含有一种或几种不溶性聚合物、一种或几种可溶的或可煅烧的聚合物、一种或几种高比表面填料的混合物,
b)将该混合物挤塑,形成挤塑的产品前体,
c)从此挤塑的产品前体中除去一种或几种可溶的或可煅烧的聚合物,
d)回收多孔复合产品。
因此所述的方法是一种能够得到具有高比表面多孔复合产品的挤塑-消除方法。
“消除”指的是除去大部分可溶的或可煅烧的聚合物,以形成孔隙,条件是尤其是因为这些聚合物与活性炭有亲合性,因而不易被完全除去。
在本方法的步骤a)中,均匀地混合,以便使各个组分成为溶液或分散液,这些组分就是对应于形成该复合产品结构的聚合材料的一种或几种在溶剂中不溶的聚合物、另一种或几种在溶剂中可溶的或可煅烧的聚合物,以及一种或几种具有高比表面的填料,条件是能够保证该复合产品具有内聚力的聚合物(不溶的聚合物)和具有高比表面的填料在步骤c)不被除去。也可以借助于可以实施步骤b)的挤塑机来进行此混合。
在将要在步骤c)中除去的可溶性聚合物当中,可以选择能够按照步骤a)被混合的各种可溶性聚合物,可以特别举出在比如水、醇、二甲基甲酰胺、二甲基亚砜、四氢呋喃和丙酮中溶解的聚合物。
当然除此以外,聚合度要适合于用溶剂除去,该可溶性聚合物特别选自如聚氧亚乙基、聚氧亚丙基的聚醚、如聚乙烯醇的多元醇、乙烯-乙烯基醇的共聚物。
作为能够被除去而形成孔隙的聚合物,也可以举出能够按照通常的方法进行煅烧的聚合物。
该可煅烧的聚合物可以选自其分解温度低于结构聚合物或弹性体的分解温度的聚合物,比如纤维素。
这些聚合物的选择可以用简单实验以本领域专业人员已知方式进行。
该产品不同的组分的混合是在适当的温度下,特别借助于挤塑机进行的。在此情况下,同时进行步骤a)和步骤b),给出具有很小BET比表面(低于约1m2/g)的中间产品前体。
该产品前体可以重新挤塑成为膜的形状,特别是其厚度小于大约300μm的薄膜。
因此,按照一个优选的实施方案,步骤b)按两步实施:
-第一步挤塑(i),包括形成颗粒,
-第二步挤塑(ii),包括形成膜。
第一步优选在一个具有比如线材模头的同向转动的双螺杆挤塑机中进行,而第二步优选在一个具有片状模头的单螺杆挤塑机中进行。
然后将呈颗粒状或膜状的挤塑产品前体进行步骤c)以便除去可溶性聚合物。
此消除步骤可以特别通过使可溶聚合物与适当溶剂接触进而将其溶解来实现。
也可以按照已知的方法进行煅烧,这包括慢慢地将温度升至该有待消除的聚合物的分解温度。
然后回收该产品,它具有的BET比表面大于大约10m2/g,优选大于大约20m2/g。
因此,本发明的再一个目的是一种由聚合材料和一种或几种高比表面填料形成的具有高比表面的多孔复合产品,其特征在于,它可以通过如上所述的挤塑-消除方法得到。
本发明的又一个目的是在消除步骤前得到的产品前体,此产品前体特别可用于实施上述的方法,它包括一种或几种在溶剂中不溶的聚合物、一种或几种另外的可溶于溶剂或可煅烧的聚合物和一种或几种具有高比表面的填料。
不溶聚合物/可溶或可煅烧聚合物的重量比优选0.1-5,更优选0.1-2。
在可形成该产品前体的不含溶剂的混合物中,具有高比表面的填料的含量在20-60%(重量)。
本发明还涉及由本发明的高比表面多孔复合产品形成的膜状电极。
一般说来,此多孔膜状电极可用于制造如蓄电池、双层电容或超电容器的电化学装置。
由两个可极化电极和一个浸有电解液的分隔层按照已知的方式形成超电容器。还用双电解层电容器来说明这些装置。
本发明的电极特别是通过能够得到很高的有效质量含量显著地改善了膜的容量。
特别举出了如下的应用领域:
-电化学储能用的多孔电极,被用于例如电化学发电器、氧化还原蓄电池、空气蓄电池、双层电容器或电化学超电容器、燃料电池等。
-电渗析方法使用的多孔电极,被用于例如制造饮用水、由海水制盐、有机化合物(乳清、奶、葡萄酒等)脱除矿物质、饮用水脱盐、锅炉水软化、核反应中心的流出物去污染。
-电容去离子化方法中使用的多孔电极,被用于例如制造饮用水、由海水制盐、有机化合物(乳清、奶、葡萄酒等)脱除矿物质、饮用水脱盐、锅炉水软化、核反应中心的流出物去污染。
-电解方法中使用的多孔电极,被用于例如制造氯气和氢氧化钠、电解水、由盐制造酸和碱。
-渗析和电渗析方法中使用的电透膜,被用于例如制造饮用水、由海水制盐、有机化合物(乳清、奶、葡萄酒等)脱除矿物质、饮用水脱盐、锅炉水软化、核反应中心的流出物去污染。
-过滤方法中使用的电透膜,被用于例如有机化合物选择性电过滤、微量过滤等。
本发明还涉及这些呈颗粒状或膜状复合产品的应用:
-在过滤和吸附的方法中,比如气体或液体环境的脱湿、选择性吸附(物理吸附和/或化学吸附)、分子筛、污染空气过滤等,
-用于催化剂,
-用于能量交换,比如热绝缘或隔音、换热器等,
-包装,特别是需要选择性渗透性的易碎产品的包装。
下面以说明性实施例来说明本发明:
实施例1
各原料化合物(粉末)的质量分数如下:
-活性炭40%(比表面1250m2/g)
-乙烯-丙烯共聚物20%
-聚氧亚乙基40%(POE300,000)
借助长度为40D,具有两个混合区和三个传送区的同转向双螺杆挤塑机将粉末状的各个组分尽可能均匀地混合。使用的机器是直径58mm的双螺杆,温度分布曲线如下:
50/120/120/110/110/100/100/120/120/150/170℃
模头压力:8MPa
转速:85转/min
流量:34kg/hr
将得到的颗粒加入到长度30D的单螺杆中进行第一次挤塑,使用的机器是直径30mm的双螺杆,温度分布曲线如下:
165/170/170/170/185℃
模头压力:8MPa
转速:10转/min
流量:2kg/hr
得到的膜厚度为200μm。
下面的步骤包括将得到的膜浸入环境温度的水中5分钟。随后在40℃下将膜干燥1小时。
处理以后各化合物的平均含量是:
-活性炭52%重量
-乙烯-丙烯共聚物26%重量
-聚氧亚乙基22%重量
可以在金属化机器中,在处理前或处理后在约0.01Pa(10-4mbar)的压力下将得到的薄膜用铝金属化(比如0.5Ω/□)。
得到的金属化或未金属化薄膜的物理特征导致如下的数据:
-断裂伸长率(见下面的表)
-缠绕强度(直径6mm的芯上):0.05g/μm/mm。
-电极的电化学容量26F/g,(通过超电容器放电曲线的斜率测量,用强静电模式)
-由挤塑机中出来的膜的BET比表面小于1m2/g,在按照在大约5分钟的时间内浸渍电极方法通过水以后,膜的BET比表面为28m2/g。
实施例2
各原料化合物(粉末)的质量分数如下:
-活性炭40%(比表面1250m2/g)
-乙烯-丙烯共聚物10%
-聚氧亚乙基50%(POE300,000)
借助于长度为25D,具有两个混合区和三个传送区的同转向双螺杆挤塑机将粉末状的各个组分尽可能均匀地混合。使用的机器是直径19mm的双螺杆,温度分布曲线如下:
160/170/180/190/200℃
模头压力:10.5MPa
转速:400转/min
流量:1.8kg/hr
将得到的颗粒加入到长度30D的单螺杆中进行第一次挤塑,使用的机器是直径30mm的双螺杆,温度分布曲线如下:
160/170/180/190/220℃
模头压力:17.5MPa
转速:15转/min
流量:2.5kg/hr。得到的膜厚度为180μm。
下面的步骤包括将得到的膜浸入环境温度的水中5分钟。随后在40℃下将膜干燥1小时。
处理以后各化合物的平均重量含量是:
-活性炭60%
-乙烯-丙烯共聚物15%
-聚氧亚乙基25%
可以在金属化机器中,在0.01Pa(10-4mbar)的压力下将得到的薄膜用铝金属化(比如0.5Ω/□)。
得到的金属化或未金属化薄膜的物理特征导致如下的数据:
-断裂伸长率(见下面的表)
-缠绕强度(直径6mm的芯上):0.05g/μm/mm。
-按照在实施例1中叙述的方法,电极的电化学容量为26F/g。
-由挤塑机中出来的膜的BET比表面小于1m2/g,在按照在实施例1中叙述的方法通过水以后,膜的BET比表面为60m2/g。
得到的膜的机械特征的测量
  温度  膜   断裂伸长率(%)   弹性模量(Dn/mm<sup>2</sup>)   力(MPa)
  20℃  实施例1   0.97   134   8.3
  20℃  实施例2   0.89   170   9.3
  40℃  实施例1   1.14   88   6.1
  40℃  实施例2   1.20   125   7.2
  60℃  实施例1   5.73   22   2.0
  60℃  实施例2   1.68   30   2.6
实施例3
各原料化合物(粉末)的质量分数如下:
-活性炭40%(比表面1250m2/g)
-乙烯-丙烯共聚物20%
-聚氧亚乙基40%(POE300,000)
借助于长度为40D,具有两个混合区和三个传送区的同转向双螺杆挤塑机将粉末状的各个组分尽可能均匀地混合。使用的机器是直径58mm的双螺杆,温度分布曲线如下:
50/120/120/110/110/100/100/120/120/150/170℃
模头压力:8MPa
转速:85转/min
流量:34kg/hr
下面的步骤包括在环境温度的水中浸渍得到的颗粒(2mm2/mm)5分钟。
随后在40℃下将膜干燥1小时。
处理以后各化合物的平均重量含量是:
-活性炭60%
-乙烯-丙烯共聚物15%
-聚氧亚乙基25%
得到的颗粒具有30m2/g的可展曲面。

Claims (8)

1.多孔复合膜的制备方法,其特征在于:
a)形成含有一种或多种不溶聚合物、一种或多种可溶聚合物和一种或多种填料的均匀混合物,所述不溶聚合物选自聚烯烃、聚酰胺、聚酰亚胺、高乙烯单体含量的乙烯基共聚物、丙烯酸类共聚物和芳香族聚合物,所述可溶聚合物选自聚醚和聚醇,所述不溶聚合物与可溶聚合物的重量比为0.1-5,且所述混合物含有20-60wt%的所述填料,所述填料为比表面积大于1000m2/g的活性炭,
b)挤塑所述混合物以便形成膜,
c)利用溶剂从所述膜中除去可溶聚合物以便形成孔隙,所述溶剂选自水、醇、二甲基甲酰胺、二甲基亚砜、四氢呋喃和丙酮,
d)回收多孔复合膜,该多孔聚合膜的比表面积大于10m2/g,体积孔隙率大于5%,平均孔径小于1μm。
2.权利要求1的制备方法,其特征在于通过使所述膜与所述溶剂接触实施除去步骤c)。
3.权利要求2的制备方法,其特征在于所述溶剂为水。
4.权利要求1的制备方法,其特征在于步骤b)以两步实施:
-第一步挤塑(i),包括形成颗粒,
-第二步挤塑(ii),包括形成膜。
5.权利要求4的制备方法,其特征在于第一步挤塑(i)在一个同向转动的双螺杆挤塑机中进行,而第二步挤塑(ii)在单螺杆挤塑机中进行。
6.权利要求1的制备方法,其特征在于借助于混合机或双螺杆挤塑机来实施步骤a),保证聚合物和填料均匀混合。
7.权利要求1的制备方法,其特征在于不溶聚合物与可溶聚合物的重量比为0.1-2。
8.权利要求1-7中任一项的制备方法,其特征在于在回收步骤d)之后,卷绕多孔复合膜。
CN011225092A 1997-02-06 1998-02-05 多孔复合膜的制备方法 Expired - Lifetime CN1341679B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9701350A FR2759087B1 (fr) 1997-02-06 1997-02-06 Produit composite poreux de haute surface specifique, procede de preparation et electrode pour ensemble electrochimique formee d'un film composite poreux
FR97/01350 1997-02-06

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNB988023555A Division CN1139622C (zh) 1997-02-06 1998-02-05 多孔特别是高比表面复合产品、制备方法和多孔复合膜电化学组件电极

Publications (2)

Publication Number Publication Date
CN1341679A CN1341679A (zh) 2002-03-27
CN1341679B true CN1341679B (zh) 2010-04-28

Family

ID=9503396

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB988023555A Expired - Lifetime CN1139622C (zh) 1997-02-06 1998-02-05 多孔特别是高比表面复合产品、制备方法和多孔复合膜电化学组件电极
CN011225092A Expired - Lifetime CN1341679B (zh) 1997-02-06 1998-02-05 多孔复合膜的制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB988023555A Expired - Lifetime CN1139622C (zh) 1997-02-06 1998-02-05 多孔特别是高比表面复合产品、制备方法和多孔复合膜电化学组件电极

Country Status (12)

Country Link
US (3) US6962745B2 (zh)
EP (1) EP0960154B1 (zh)
JP (2) JP4884576B2 (zh)
CN (2) CN1139622C (zh)
AT (1) ATE231173T1 (zh)
AU (1) AU749708B2 (zh)
CA (1) CA2295841C (zh)
DE (1) DE69810752T2 (zh)
ES (1) ES2192321T3 (zh)
FR (1) FR2759087B1 (zh)
HK (1) HK1026443A1 (zh)
WO (1) WO1998034977A1 (zh)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2759087B1 (fr) * 1997-02-06 1999-07-30 Electricite De France Produit composite poreux de haute surface specifique, procede de preparation et electrode pour ensemble electrochimique formee d'un film composite poreux
EP1161774A2 (en) 1999-02-19 2001-12-12 Amtek Research International LLC Electrically conductive, freestanding microporous polymer sheet
EP1266420A1 (en) * 2000-03-24 2002-12-18 Scientific Generics Limited Mixed reactant fuel cells with flow through porous electrodes
GB0007306D0 (en) * 2000-03-24 2000-05-17 Scient Generics Ltd Concept for a compact mixed-reactant fuel cell or battery
US6770086B1 (en) * 2000-11-02 2004-08-03 Scimed Life Systems, Inc. Stent covering formed of porous polytetraflouroethylene
WO2004003268A1 (en) 2002-06-28 2004-01-08 Mosaic Systems Bv Functional porous fibres
WO2004064092A1 (ja) * 2003-01-15 2004-07-29 Zeon Corporation 電気二重層キャパシタ用電極の製造方法
FR2850301B1 (fr) * 2003-01-23 2007-10-19 Commissariat Energie Atomique Materiau hybride organique-inorganique comprenant une phase minerale mesoporeuse et une phase organique, membrane et pile a combustible
US7342770B2 (en) * 2003-07-09 2008-03-11 Maxwell Technologies, Inc. Recyclable dry particle based adhesive electrode and methods of making same
US7508651B2 (en) * 2003-07-09 2009-03-24 Maxwell Technologies, Inc. Dry particle based adhesive and dry film and methods of making same
US7295423B1 (en) 2003-07-09 2007-11-13 Maxwell Technologies, Inc. Dry particle based adhesive electrode and methods of making same
US20060147712A1 (en) * 2003-07-09 2006-07-06 Maxwell Technologies, Inc. Dry particle based adhesive electrode and methods of making same
US20070122698A1 (en) 2004-04-02 2007-05-31 Maxwell Technologies, Inc. Dry-particle based adhesive and dry film and methods of making same
US20050250011A1 (en) * 2004-04-02 2005-11-10 Maxwell Technologies, Inc. Particle packaging systems and methods
US7352558B2 (en) 2003-07-09 2008-04-01 Maxwell Technologies, Inc. Dry particle based capacitor and methods of making same
US20050266298A1 (en) * 2003-07-09 2005-12-01 Maxwell Technologies, Inc. Dry particle based electro-chemical device and methods of making same
US7791860B2 (en) 2003-07-09 2010-09-07 Maxwell Technologies, Inc. Particle based electrodes and methods of making same
US20100014215A1 (en) * 2004-04-02 2010-01-21 Maxwell Technologies, Inc. Recyclable dry particle based electrode and methods of making same
US7196122B2 (en) * 2003-08-27 2007-03-27 Korea Advanced Institute Of Science And Technology Nanoporous organic polymer composite and preparation method thereof and its application for catalyst
US7102877B2 (en) * 2003-09-12 2006-09-05 Maxwell Technologies, Inc. Electrode impregnation and bonding
US7920371B2 (en) 2003-09-12 2011-04-05 Maxwell Technologies, Inc. Electrical energy storage devices with separator between electrodes and methods for fabricating the devices
JP2005116762A (ja) 2003-10-07 2005-04-28 Fujitsu Ltd 半導体装置の保護方法及び半導体装置用カバー及び半導体装置ユニット及び半導体装置の梱包構造
US7495349B2 (en) 2003-10-20 2009-02-24 Maxwell Technologies, Inc. Self aligning electrode
US7090946B2 (en) * 2004-02-19 2006-08-15 Maxwell Technologies, Inc. Composite electrode and method for fabricating same
US7384433B2 (en) * 2004-02-19 2008-06-10 Maxwell Technologies, Inc. Densification of compressible layers during electrode lamination
US20060137158A1 (en) * 2004-04-02 2006-06-29 Maxwell Technologies, Inc. Dry-particle packaging systems and methods of making same
US7492571B2 (en) * 2004-04-02 2009-02-17 Linda Zhong Particles based electrodes and methods of making same
US20060246343A1 (en) * 2004-04-02 2006-11-02 Maxwell Technologies, Inc. Dry particle packaging systems and methods of making same
US7227737B2 (en) * 2004-04-02 2007-06-05 Maxwell Technologies, Inc. Electrode design
US20050238810A1 (en) * 2004-04-26 2005-10-27 Mainstream Engineering Corp. Nanotube/metal substrate composites and methods for producing such composites
US20050242471A1 (en) * 2004-04-30 2005-11-03 Bhatt Sanjiv M Methods for continuously producing shaped articles
FR2870248B1 (fr) * 2004-05-13 2008-02-08 Batscap Sa Procede de traitement d'un film d'electrode de supercapacite en vue de creer une porosite et machine associee
BRPI0418864B1 (pt) * 2004-05-26 2018-11-21 3M Innovative Properties Co matriz de filtração e método para a produção de uma matriz de filtração
US7910531B2 (en) 2004-06-17 2011-03-22 C2C Technologies Llc Composition and method for producing colored bubbles
US7245478B2 (en) * 2004-08-16 2007-07-17 Maxwell Technologies, Inc. Enhanced breakdown voltage electrode
FR2876221B1 (fr) * 2004-10-06 2006-12-22 Batscap Sa Module de batterie comprenant un element de stockage d'energie dont le contact est realise par serrage des couches entre elles
FR2881569B1 (fr) * 2005-02-01 2007-04-20 Batscap Sa Electrode de supercondensateur a taux de charge eleve et procede d'obtention par extrusion
US7440258B2 (en) 2005-03-14 2008-10-21 Maxwell Technologies, Inc. Thermal interconnects for coupling energy storage devices
FR2886045B1 (fr) * 2005-05-23 2007-07-13 Ceca Sa Sa Electrode pour systemes de stockage d'energie, son procede de fabrication et systeme de stockage d'energie la comprenant
JP4890815B2 (ja) * 2005-08-10 2012-03-07 積水化学工業株式会社 電気二重層キャパシタ用電極の製造方法及び電気二重層キャパシタ用セパレータの製造方法
DE102005041747B4 (de) * 2005-09-02 2020-03-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Reduzierung von Emissionen durch gasförmige Zersetzungsprodukte eines Elektrolyten in Kraftfahrzeugen und Vorrichtung zur Durchführung des Verfahrens
US20090165748A1 (en) * 2005-10-28 2009-07-02 Kazunori Yamamoto Petroleum fuel supply method and circuit
US20080057398A1 (en) * 2006-09-06 2008-03-06 General Electric Company Non-faraday based systems, devices and methods for removing ionic species from liquid
CA2664639C (en) * 2006-09-28 2015-11-03 Siemens Aktiengesellschaft Energy storage module
US8518573B2 (en) 2006-09-29 2013-08-27 Maxwell Technologies, Inc. Low-inductive impedance, thermally decoupled, radii-modulated electrode core
US8116067B2 (en) * 2006-10-31 2012-02-14 Wisconsin Alumni Research Foundation Nanoporous insulating oxide electrolyte membrane ultracapacitor, button cell, stacked cell and coiled cell and methods of manufacture and use thereof
US20080201925A1 (en) 2007-02-28 2008-08-28 Maxwell Technologies, Inc. Ultracapacitor electrode with controlled sulfur content
US20080204973A1 (en) * 2007-02-28 2008-08-28 Maxwell Technologies, Inc. Ultracapacitor electrode with controlled iron content
CN101425394A (zh) * 2007-10-30 2009-05-06 通用电气公司 一种电极和设备的制造方法
PL2070875T3 (pl) * 2007-12-14 2017-03-31 Unilever N.V. Sposób wytwarzania elektrody do dejonizacji pojemnościowej oraz elektroda otrzymana wspomnianym sposobem
TWI363361B (en) 2007-12-31 2012-05-01 Taiwan Textile Res Inst Electrode of supercapacitor and the manufacturing method thereof
US8518253B2 (en) * 2008-12-17 2013-08-27 General Electric Company Ion-exchange device and regeneration method of ion-exchange material thereof
WO2010150534A1 (ja) * 2009-06-23 2010-12-29 クラレケミカル株式会社 通液型キャパシタ、脱イオン水の製造方法、及び脱イオン水製造装置
JP5867798B2 (ja) * 2010-05-28 2016-02-24 国立大学法人金沢大学 多孔質ポリイミド膜の製造方法、多孔質ポリスチレン膜の製造方法、多孔質電極の製造方法及び多孔質電極
WO2012087409A2 (en) 2010-10-12 2012-06-28 The Regents Of The University Of Michigan High performance transition metal carbide and nitride and boride based asymmetric supercapacitors
WO2012051326A1 (en) 2010-10-12 2012-04-19 The Regents Of The University Of Michigan Transition metal carbide or nitride or boride based supercapcitors with metal foam electrode substrate
FR2970594B1 (fr) 2011-01-13 2013-01-18 Batscap Sa Ensemble de stockage d'energie electrique a element empile en accordeon
US9365939B2 (en) * 2011-05-31 2016-06-14 Wisconsin Alumni Research Foundation Nanoporous materials for reducing the overpotential of creating hydrogen by water electrolysis
FR2982869A1 (fr) * 2011-11-17 2013-05-24 Jean-Christophe Leger Additif a base de poudre de charbon vegetal pour matrice polymere ou similaire
CN102530843B (zh) * 2012-01-20 2014-08-13 中国科学院上海技术物理研究所 一种疏松化聚酰亚胺红外吸收薄膜的制备方法
KR20130111819A (ko) * 2012-04-02 2013-10-11 삼성에스디아이 주식회사 이차전지용 바인더 조성물, 이를 이용한 이차전지 및 이의 제조방법
US9163337B2 (en) 2012-10-24 2015-10-20 GM Global Technology Operations LLC PFCB nanometer scale fibers
TW201432748A (zh) * 2013-01-25 2014-08-16 Corning Inc 製造碳電極材料之方法
CN103187180B (zh) * 2013-03-06 2015-07-15 浙江理工大学 一种纳米碳化硅-氧化钌复合材料的制备方法
MX2016009330A (es) * 2014-02-19 2017-02-02 Hutchinson Procedimiento para la preparacion de una composicion de electrodo que tiene propiedades magneticas, una mezcla y una composicion que se obtienen por medio de este procedimiento, y este electrodo en si.
CN104851604A (zh) * 2015-04-02 2015-08-19 安徽江威精密制造有限公司 一种利用废弃pvc制备的超级电容器用电极材料及其制备方法
FR3034771B1 (fr) * 2015-04-13 2019-04-19 Hutchinson Materiaux conducteurs thermiques et/ou electriques et leur procede de preparation
FR3034775B1 (fr) 2015-04-13 2018-09-28 Hutchinson Materiau pour le stockage thermique
CN104867681B (zh) * 2015-04-30 2017-05-03 河北工业大学 纳米多孔铜银支撑的二氧化锰电极片及其制备方法
WO2017067808A1 (en) * 2015-10-20 2017-04-27 Unilever N.V. Electrode for capacitive deionization
US10787303B2 (en) 2016-05-29 2020-09-29 Cellulose Material Solutions, LLC Packaging insulation products and methods of making and using same
JP6657029B2 (ja) * 2016-06-21 2020-03-04 住友化学株式会社 積層体
US11078007B2 (en) 2016-06-27 2021-08-03 Cellulose Material Solutions, LLC Thermoplastic packaging insulation products and methods of making and using same
US10199180B2 (en) * 2016-10-03 2019-02-05 Board Of Regents, The University Of Texas Systems Fabric supercapacitor
US11094997B2 (en) 2017-05-29 2021-08-17 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430623B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11158907B2 (en) 2017-12-19 2021-10-26 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
JP6430618B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430617B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
JP6430621B1 (ja) 2017-12-19 2018-11-28 住友化学株式会社 非水電解液二次電池
US11205799B2 (en) 2017-12-19 2021-12-21 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery
CN113201195B (zh) * 2021-06-15 2022-08-02 西北工业大学 一种钛酸锶钡多孔陶瓷/聚偏氟乙烯复合材料及制备方法
EP4350795A1 (de) * 2022-10-05 2024-04-10 Coperion GmbH Aufbereitungsanlage und verfahren zum aufbereiten eines energiespeichermaterials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE693135A (zh) * 1966-01-25 1967-07-25
US4957943A (en) * 1988-10-14 1990-09-18 Minnesota Mining And Manufacturing Company Particle-filled microporous materials
EP0480667B1 (en) * 1990-10-09 1996-03-20 Cook Incorporated Percutaneous stent assembly

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3602332A (en) * 1969-01-08 1971-08-31 Grace W R & Co Lead-loaded microporous acoustic panel
US3673278A (en) * 1971-01-04 1972-06-27 Gen Electric Fluorinated polyolefin modified flame retardant polycarbonate composition
US3852113A (en) * 1971-12-30 1974-12-03 Osaka Soda Co Ltd Positive electrode for high energy primary cells and cells using same
JPS51119069A (en) * 1975-03-20 1976-10-19 Nippon Oil Co Ltd Method of producing permeable film
JPS5832171B2 (ja) * 1976-06-24 1983-07-11 旭化成株式会社 多孔膜の製造方法
JPS5937292B2 (ja) * 1977-10-03 1984-09-08 旭化成株式会社 ポリオレフイン樹脂多孔膜およびアルカリ蓄電池セパレ−タ−ならびにミクロフイルタ−
JPS5832167B2 (ja) * 1978-11-18 1983-07-11 工業技術院長 親水性内部表面を持つ多孔質高分子複合体及びその製法
US4309494A (en) * 1979-05-15 1982-01-05 Stockel Richard F Electrochemical cell having battery separator of ethylene-vinyl alcohol copolymer
US4480290A (en) * 1979-07-17 1984-10-30 Les Condensateurs Sic Safco Electrolytic capacitor including a composite separator between the anode and the cathode thereof
US4403007A (en) * 1980-08-11 1983-09-06 E. I. Du Pont De Nemours & Co. Filled thermoplastic compositions based on ethylene interpolymers and polyester, polyether and polyether ester plasticizers
JPS57100142A (en) * 1980-12-15 1982-06-22 Mitsubishi Petrochem Co Ltd Preparation of microporous film
US4396693A (en) * 1981-01-19 1983-08-02 Mpd Technology Corporation Production of a cell electrode system
GB2168981B (en) * 1984-12-27 1988-07-06 Asahi Chemical Ind Porous fluorine resin membrane and process for preparation thereof
JPH07105316B2 (ja) * 1985-08-13 1995-11-13 旭硝子株式会社 電気二重層コンデンサ用分極性電極及びその製造方法
US4654281A (en) * 1986-03-24 1987-03-31 W. R. Grace & Co. Composite cathodic electrode
US5143805A (en) * 1986-03-24 1992-09-01 W. R. Grace & Co.-Conn: Cathodic electrode
JPS6372064A (ja) * 1986-09-16 1988-04-01 Asahi Chem Ind Co Ltd 多孔膜電極
US5227101A (en) * 1988-03-31 1993-07-13 The Dow Chemical Company Process of making microporous membranes from poly(etheretherketone)-type polymers and low melting point crystallizable polymers
US4963304A (en) * 1988-09-26 1990-10-16 The Dow Chemical Company Process for preparing microporous membranes
JP2733076B2 (ja) * 1988-11-28 1998-03-30 大東通信機株式会社 Ptc組成物
DE69008892T2 (de) * 1989-02-20 1994-09-29 Nitto Chemical Industry Co Ltd Verfahren zur Herstellung von Kieselsäure mit einem niedrigen Silanolgehalt.
JPH0422062A (ja) * 1990-05-15 1992-01-27 Kuraray Chem Corp 分極性電極板
US5102917A (en) * 1990-09-14 1992-04-07 Cpc Engineering Corporation Porous polysulfone media suitable for filtration
US5981038A (en) * 1991-10-18 1999-11-09 3M Innovative Properties Company Minnesota Mining And Manufacturing Co. Laminate preventing transmissions of viral pathogens
US5451454A (en) * 1991-12-24 1995-09-19 Bridgestone Corporation High-molecular materials and processes for manufacturing the same
US5538811A (en) * 1992-07-23 1996-07-23 Matsushita Electric Industrial Co., Ltd. Ionic conductive polymer electrolyte
US5508072A (en) * 1992-08-11 1996-04-16 E. Khashoggi Industries Sheets having a highly inorganically filled organic polymer matrix
US5458836B1 (en) * 1994-03-11 1998-08-04 Du Pont Polymer extrusion die and use thereof
US5716997A (en) * 1994-09-01 1998-02-10 Bridgestone Corporation Polymeric reticulated structure and method for making
FR2729009B1 (fr) * 1994-12-28 1997-01-31 Accumulateurs Fixes Electrode bifonctionnelle pour generateur electrochimique ou supercondensateur et son procede de fabrication
JPH11513304A (ja) * 1995-10-04 1999-11-16 モンサント・カンパニー 多孔質ポリマー製バイオサポートおよび水性廃物流の生処理におけるその使用
FR2759087B1 (fr) * 1997-02-06 1999-07-30 Electricite De France Produit composite poreux de haute surface specifique, procede de preparation et electrode pour ensemble electrochimique formee d'un film composite poreux
JPH11135369A (ja) * 1997-10-28 1999-05-21 Nec Corp 電気二重層コンデンサ
AU761327B2 (en) * 1998-08-04 2003-06-05 Toray Industries, Inc. Fused benzene heterocycle derivatives and utilization thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE693135A (zh) * 1966-01-25 1967-07-25
US4957943A (en) * 1988-10-14 1990-09-18 Minnesota Mining And Manufacturing Company Particle-filled microporous materials
EP0480667B1 (en) * 1990-10-09 1996-03-20 Cook Incorporated Percutaneous stent assembly

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP昭-124146A 1987.06.05
JP昭57-100142A 1982.06.22

Also Published As

Publication number Publication date
JP5085581B2 (ja) 2012-11-28
AU749708B2 (en) 2002-07-04
DE69810752T2 (de) 2003-11-13
DE69810752D1 (de) 2003-02-20
JP2001511825A (ja) 2001-08-14
US6962745B2 (en) 2005-11-08
FR2759087B1 (fr) 1999-07-30
FR2759087A1 (fr) 1998-08-07
CN1246877A (zh) 2000-03-08
CN1341679A (zh) 2002-03-27
JP4884576B2 (ja) 2012-02-29
US7384686B2 (en) 2008-06-10
US6702965B2 (en) 2004-03-09
US20020136887A1 (en) 2002-09-26
US20030157314A1 (en) 2003-08-21
EP0960154B1 (fr) 2003-01-15
CN1139622C (zh) 2004-02-25
AU6105898A (en) 1998-08-26
WO1998034977A1 (fr) 1998-08-13
US20030175494A1 (en) 2003-09-18
HK1026443A1 (en) 2000-12-15
JP2009197227A (ja) 2009-09-03
CA2295841C (fr) 2007-09-25
CA2295841A1 (fr) 1998-08-13
ES2192321T3 (es) 2003-10-01
EP0960154A1 (fr) 1999-12-01
ATE231173T1 (de) 2003-02-15

Similar Documents

Publication Publication Date Title
CN1341679B (zh) 多孔复合膜的制备方法
KR100767549B1 (ko) 리튬 이온 전지용 세퍼레이터
US6525923B2 (en) Electrode for an electric double layer capacitor and process for producing it
EP2390947A1 (en) Lead-oxide battery plate with nonwoven glas mat
KR20170019348A (ko) 폴리올레핀 다층 미세 다공질 막, 이의 제조 방법 및 전지용 세퍼레이터
US20060039100A1 (en) Reinforcing material-carrying functional sheet
CN101635341A (zh) 锂电池隔离膜及其制造方法
JPWO2012102241A1 (ja) ポリオレフィン樹脂多孔性フィルム、およびそれを用いた非水電解質電池用セパレータ
CN106654121B (zh) 一种耐高温多层微孔隔膜及其制备方法
WO2003100954A2 (en) Microporous, mixed polymer phase membrane
WO2009148493A2 (en) Electrodes for electric double layer devices
CN106784555B (zh) 一种耐高温复合微孔隔膜及其制备方法
CN112952295A (zh) 一种聚烯烃-纤维素复合隔膜及其制备方法
JP2000007315A (ja) 固形状活性炭及びそれを用いた電気二重層コンデンサ並びにその製造方法
JP2006287175A (ja) 蓄電デバイス用セパレータ及びその製造方法並びに蓄電デバイス
JP2017535080A (ja) 高密度炭素電極の用途に適した高密度炭素材料の製造方法
JPH0444407B2 (zh)
CN110120304B (zh) 一种海藻酸盐-环糊精复合多孔炭及其在超级电容器中的应用
JPH10158064A (ja) 固形状活性炭及びその製造方法
US20080233473A1 (en) Membrane and method for making the same
CN115863065A (zh) 一种柔性电极纤维及其制备方法和应用
JPH1050566A (ja) 固形状活性炭及びその製造方法及びこれを用いた電気二重層コンデンサ
KR20220072255A (ko) 안정성이 향상된 폴리에틸렌 다공성 분리막 제조방법 및 이로부터 제조된 폴리에틸렌 다공성 분리막

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20100428